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Abstract— The unit commitment (UC) problem aims to find
an optimal schedule of generating units subject to the demand
and operating constraints for an electricity grid. The majority of
existing algorithms for the UC problem rely on solving a series
of convex relaxations by means of branch-and-bound or cutting-
planning methods. In this paper, we develop a strengthened
semidefinite program (SDP) for the UC problem by first
deriving certain valid quadratic constraints and then relaxing
them to linear matrix inequalities. These valid inequalities are
obtained by the multiplication of the linear constraints of the
UC problem such as the flow constraints of two different
lines. The performance of the proposed convex relaxation is
evaluated on several instances of the UC problem. For most of
the instances, globally optimal integer solutions are obtained by
solving a single convex problem. Since the proposed technique
leads to a large number of valid quadratic inequalities, an
iterative procedure is devised to impose a small number of
such valid inequalities. For the cases where the strengthened
SDP does give a global integer solution, we incorporate other
valid inequalities, including a set of Boolean quadric polytope
constraints. The proposed relaxations are extensively tested on
various IEEE power systems in simulations.

I. INTRODUCTION

The unit commitment (UC) problem is concerned with
finding an optimal schedule of generating units in a power
system, by minimizing the operational cost of power gen-
erators subject to forecasted energy demand and operating
constraints. The operating constraints include physical limits
and security constraints. In a mixed-integer programming
(MIP) formulation of the UC problem, discrete variables
model the on/off status of each generator and the continuous
variables account for the amount of production for each
generator. The UC problem is NP-complete [1], and large
instances of UC are computationally challenging to solve.

The UC problem has a vital role in the operation of elec-
tricity grids and been studied extensively. The existing opti-
mization techniques for UC include Lagrangian relaxation
(LR) methods, branch-and-bound (BB) methods, dynamic
programming (DP) methods, simulated-annealing (SA) meth-
ods, and cutting-plane methods [2]. The LR method provides
an approximation for the optimal value of an intractable opti-
mization problem by solving a simpler problem. Ongsakul et
al. [3] propose an enhanced adaptive LR method by defining
new decision variables. Moreover, there are several papers
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that propose a unit decommitment procedure for solving the
UC problem [4], [5]. Turgeon designs an algorithm based on
the BB method by recursively splitting the search space into
smaller branches [6]. Furthermore, Rajan et al. [7] propose
a set of valid inequalities (turn on/off) instead of the simple
minimum up- and down-time constraints to be able to solve
hard cases of the UC problem by adopting a branch-and-cut
technique.

The Mixed-Integer Linear Programming (MILP) reformu-
lation of the UC problem was first proposed by Garver
[8]. In addition, Morales-Espana et al. [9] provide new
mixed-integer linear reformulations for start-up and shut-
down constraints in the UC problem, which lead to tighter
relaxations. Furthermore, Ostrowski et al. [10] propose a
class of facet inequalities, including upper bounds for the
generating powers and ramp down and up constraints, to pro-
vide smaller feasible operating schedules for the generators.
The work by Muckstadt et al. [11] designs a BB algorithm
based on the LR method, which breaks down the UC problem
into several simpler UC problems with one generator.

Pang et al. [12] propose DP-based methods by decompos-
ing the problem into a set of smaller subproblems, which
are then solved iteratively one at a time. Since the pure
SA method would give an infeasible solution with a high
probability, advanced SA-based methods aim to address this
issue. For instance, Purushothama et al. [13] improve the rate
of the feasible output by providing a heuristic local search in
the neighborhood of the best solution for the UC problem.
The work by Madrigal et al. [14] proposes an interior-
point/cutting-plane method to solve the UC problem, which
attempts to emend a proposed set repeatedly to ultimately
find the optimal solution by solving the problem over a
tighter feasible set.

In this paper, we adopt a semidefinite programming (SDP)
relaxation scheme combined with valid inequalities based on
the Sherali-Adams method [15]. The SDP technique aims to
find a strong convex model that returns a global minimum
of the UC problem. This mathematical programming method
has received significant attention due to numerous applica-
tions in many fields, including combinatorial and non-convex
optimization, control theory, and power systems [16]–[19].

In this paper, we provide a set of valid inequalities to
attain a tighter description of the feasible operating schedules
for the generators in the UC problem. In order to obtain
the above-mentioned inequalities, we use the Sherali-Adams
method to generate valid non-convex quadratic inequalities
and then relax them to valid convex inequalities in a lifted
space. For instance, we multiply the flow constraints over two
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different lines to obtain a valid non-convex constraint and
then resort to SDP for convexification. The proposed convex
program is called a strengthened SDP, which contrasts with
the traditional SDP relaxation without valid inequalities. The
above procedure is used for producing valid inequalities and
its impact on the feasible set of mixed-integer optimization
problems is broadly studied in the literature [15], [20]–[23].
In this work, we will demonstrate that the strengthened SDP
problem is able to find discrete solutions for almost all test
cases. Since the strengthened SDP problem is computation-
ally prohibitive for large power systems, its complexity is
reduced through the following steps:

1) Relaxing the high-order SDP constraint to lower-order
conic constraints;

2) Adopting a multi-stage approach for imposing a subset
of the developed valid inequalities on the SDP problem.

As shown in simulations, the above steps significantly reduce
the complexity of the strengthened SDP problem without
affecting its solution in most of the test systems. In the case
where the SDP relaxation is not exact, we employ a number
of valid inequalities including the triangle inequalities and a
special case of variable upper bound (VUB) ramp constraints
[21], [24], [25]. The total number of the valid inequalities
deployed in this paper is polynomial in the size of the
problem. Similar to the methods surveyed above, this work
studies the UC problem for a linear model of the power
flow equations, known as a DC model. However, the results
can be applied to a nonlinear AC model of power systems
by combining the proposed technique for handling discrete
variables with the convexification method [19] for tackling
the nonlinearity of continuous variables.

Notations: The symbol rank{·} denotes the rank of a ma-
trix and the notation (·)> represents the transpose operator.
Vectors and matrices are shown by bold lower case and bold
upper case letters, respectively. The notation Wij denotes the
(i, j)th entry of a matrix W, and wi denotes the ith entry of
a vector w. The symbols R and Sn represent the sets of real
numbers and n × n real symmetric matrices, respectively.
The relation u ≥ v indicates that the vector v is less than
or equal to the vector u entry-wise (the same relation is
used for matrices). Given two sets of natural numbers V1

and V2 as well as a matrix W, the notation W{V1,V2}
denotes the submatrix of W that is obtained by keeping
only those rows of W that correspond to the elements of the
set V1 and those columns of W that are associated with the
elements of the set V2. Given a vector w, the notation w{V1}
denotes the subvector of w that is obtained by keeping only
those elements of w corresonding to the elements of V1.
The notation W � 0 indicates that W is a symmetric and
positive semidefinite matrix.

II. PROBLEM FORMULATION

Consider a power grid with nb buses, ng generators, and
nl lines. Assume that B = {1, . . . , nb}, G = {1, . . . , ng} and
L = {1, . . . , nl} denote the bus set, generator set and line set,
respectively. Moreover, suppose that T = {0, 1, . . . , t0, t0 +
1} is the set of time slots over which the UC problem

needs to be solved. Let pi;t and xi;t denote the amount
of generation and the status of the generator i at time t,
respectively, for all i ∈ G and t ∈ T . Assume that the initial
(t = 0) and terminal (t = t0 + 1) statuses of all generators
are off, implying that pi;0 = xi;0 = pi;t0+1 = xi;t0+1 = 0
for all i ∈ G. The set of the decision variables consists of the
continuous variables pi;t and the binary variables xi;t for all
i ∈ G and t ∈ T . Let fq;t denote the flow of line q ∈ L (in an
arbitrary direction) at time t ∈ T . For the sake of notational
simplicity, define xt as the vector of all commitment statuses
and pt as the vector of all generator outputs at time t ∈ T :

xt , [x1;t, . . . , xng;t]
>, pt , [p1;t, . . . , png;t]

>.

The objective function of the UC problem is the sum of
the operational costs of all generating units, which consist
of the power generation, startup and shutdown costs. The
power generation cost is modeled as a quadratic function of
the amount of generation:

gi;t(pi;t, xi;t) , ai × p2
i;t + bi × pi;t + ci; fixed × xi;t, (1)

where ai, bi, and ci; fixed are constant coefficients for gener-
ator i, and ai ≥ 0. Note that the term ci;fixed×xi;t accounts
for a fixed cost if the generator is on and becomes zero
otherwise. The startup and shutdown costs are both assumed
to be identical and modeled as

hi;t(xi;t+1, xi;t) , ci; start.(xi;t+1 − xi;t)2, (2)

where ci; start is the amount of startup or shutdown cost. Note
that since all generators are assumed to be off at the begin-
ning and the end of the horizon (i.e., t = 0 and t = t0+1), if
the startup and shutdown costs have different values, we can
precisely model the problem using the expression (2) after
setting ci; start equal to the average of those two different
costs.

The cost associated with turning on or off a generator
induces a coupling between the decision variables at dif-
ferent times. There are some operating restrictions for the
UC problem, such as the physical limits and the security
constraints. Physical limits include unit capacity and line
capacity constraints, ramping constraints, and minimum up-
and down-time constraints. A unit capacity constraint ensures
that the unit operates within certain limits. A line capacity
constraint enforces the flow on each transmission line not
to exceed its thermal or stability limit. Due to the physical
design of a generator, it may be impossible to significantly
change the production level within a short time interval.
These restrictions are referred to as the ramping constraints.
In addition, each generator may have minimum up-time
and down-time constraints, which prohibit the status of a
generator from changing fast. In order to formulate the UC
problem, we need to define several parameters below.

Define the vector of demands at time t as dt, where its
jth entry is equal to the demand at bus j ∈ B at time
t ∈ T (shown as dtj ). Let fmax denote the the maximum
flow vector for all transmission lines, where its qth entry
is equal to the flow limit for the line q ∈ L (shown
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as fmaxq
). Assume that pi; max and pi; min represent the

upper and lower bounds on the generation of unit i ∈ G,
respectively. Furthermore, define si as the maximum amount
of generation for the startup and shutdown of generator i ∈
G. Moreover, ri denotes the maximum difference between the
generations at two adjacent operating time slots for generator
i. Furthermore, suppose that Ui and Di denote the minimum
up-time and down-time for generator i, respectively. Let H
be the power transfer distribution factors (PTDF) or shift
factor matrix and Cg ∈ Rnb×ng be the bus-to-generator
incidence matrix. Note that Cgji = 1 if and only if generator
i is connected to bus j and Cgji = 0, otherwise. Since we
adopt the DC modeling of the UC problem, the flow of each
line q at time t (shown as fq;t) can be expressed as a linear
combination of all generations at time t. Therefore, the UC
problem can be formulated as follows:

minimize
{xi;t}i∈G;t∈T
{pi;t}i∈G;t∈T

∑
i∈G
t∈T

gi;t(pi;t, xi;t) +
∑
i∈G
t∈T 0

hi;t(xi;t+1, xi;t),

(3a)
subject to xi;t ∈ {0, 1}, (3b)

pi; min.xi;t ≤ pi;t ≤ pi; max.xi;t, (3c)
ng∑
i=1

pi;t =

nb∑
j=1

dtj , (3d)

|H(dt −Cgpt)| ≤ fmax, (3e)
|pi;t+1 − pi;t| ≤ (2si − ri)+

(ri − si)(xi;t+1 + xi;t), (3f)
xi;t+1 − xi;t ≤ xi;τ ,

∀τ ∈ {t+ 1, . . . ,min(t+ Ui, t0)},
(3g)

xi;t−1 − xi;t ≤ 1− xi;τ ,
∀τ ∈ {t . . . ,min(t− 1 +Di, t0)},

(3h)

where:

• T , {1, 2, . . . , t0} and T 0 , {0, 1, 2, . . . , t0}.
• (3b) imposes that status of each generator to be binary

and holds for all i ∈ G and t ∈ T .
• (3c) is the unit capacity constraint and holds for all
i ∈ G and t ∈ T .

• (3d) represents the power balance equation and holds
for all i ∈ G and t ∈ T .

• (3e) indicates the line capacity constraint and holds for
all t ∈ T .

• (3f) formulates the ramping constraint and holds for all
i ∈ G and t ∈ T 0.

• (3g) is the minimum up-time constraint and holds for
all i ∈ G and t ∈ T 0.

• (3h) is the minimum down-time constraint and holds for
all i ∈ G and t ∈ T 0.

Note that the security constraints have not been modeled
explicitly in order to streamline the presentation. However,
the results to be presented in this work are valid in presence

of linear security constraints obtained using line outage
distribution factors.

Remark 1. The inequality (3f) encapsulates two types of
ramping constraints. More precisely, it imposes the inequality
|pi;t+1 − pi;t| ≤ ri in the case xi;t+1 = xi;t = 1 and the
inequality |pi;t+1 − pi;t| ≤ si in the case xi;t+1 6= xi;t

Remark 2. Note that the constraints (3c)-(3h) can all be
formulated linearly in terms of the decision variables.

III. CONVEX RELAXATION OF UC PROBLEM

In what follows, the main results of this work will be
developed.

A. SDP Relaxations

By relaxing the integrality (3b) to the linear constraints

0 ≤ xi;t ≤ 1, (4)

the resulting optimization problem becomes convex, which
is referred to as the basic quadratic programming (QP)
relaxation of the UC problem. As shown in Section IV, the
solution of this convex problem is almost always fractional
for the test systems. Motivated by this observation, the
objective is to design stronger relaxations. Consider the
vector

w , [x>1 , . . . ,x
>
t0 ,p

>
1 , . . . ,p

>
t0 ]
> (5)

The constraint (4) together with the constraints of the UC
problem except for (3b) can all be merged into a single linear
vector constraint Mw ≥m, for some constant matrix M and
vector m. Furthermore, the condition (3b) can be expressed
as the quadratic equation

xi;t(xi;t − 1) = 0. (6)

Therefore, the UC problem can be stated as follows:

minimize
w∈R2t0

c(w) (7a)

subject to Mw ≥m, (7b)
wk(wk − 1) = 0, k = 1, 2, . . . , ngt0,

(7c)

where c(w) is equivalent to the total cost of the UC problem.
It is straightforward to verify that c(w) is a convex function
with respect to w.

Remark 3. Let 0a×b and 1a×b denote a× b matrices with
their entries all equal to 0 and 1, respectively. Moreover, let
In be the n×n identity matrix. Given a vector p, the notation
diag{p} represents a diagonal matrix such that the (i, i)th

entry equals pi. Assume that the ith entries of the vectors
pmax and pmin represent the upper and lower bounds on the
generation of unit i ∈ G, respectively. In order to elaborate
on the reformulation (7) and the structure of its parameters,
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note that

M =



Ing
0ng×ng

−Ing 0ng×ng

−diag{pmin} Ing

diag{pmax} −Ing

01×ng
11×ng

01×ng
−11×ng

0nl×ng
H.Cg

0nl×ng −H.Cg


, m =



0ng×1

−1ng×1

0ng×1

0ng×1∑nb

j=1 dj
−
∑nb

j=1 dj
H.d− fmax

−H.d− fmax


.

in the case t0 = 1.

Consider a matrix variable W and set it to ww>. The
constraints of the UC problem can all be written as inequal-
ities in terms of W and w. This leads to a reformulation of
the UC problem, where W = ww> is the only non-convex
constraint. An SDP relaxation of the UC problem can be
obtained by relaxing W = ww> to the conic constraint
W � ww>. This yields the convex program

minimize
w∈R2ngt0

W∈S2ngt0

cr(w,W) (8a)

subject to Mw ≥m, (8b)
Wkk − wk = 0, k = 1, 2, . . . , ngt0, (8c)

W � ww>, (8d)

where

cr(w,W) =
∑
i∈G
t∈T

(
aiWngt0+ng(t−1)+i,ngt0+ng(t−1)+i

+ biwngt0+ng(t−1)+i + ci;fixedwng(t−1)+i

)
+
∑
i∈G
t∈T0

ci;start.
(
Wngt+i,ngt+i +Wng(t−1)+i,ng(t−1)+i

−Wngt+i,ng(t−1)+i −Wng(t−1)+i,ngt+i

)
(9)

Note that (8d) can be written as a linear matrix inequality
with respect to w and W. The above problem is called the
SDP relaxation of the UC problem.

Theorem 1. The optimal objective values of the SDP relax-
ation (8) and the basic QP relaxation of the UC problem are
the same when t0 = 1.

Proof. Assume that (w∗,W∗) denotes an optimal solution
of the SDP relaxation (8). First, we aim to show that w∗

is a feasible point of the basic QP relaxation. Consider an
index k corresponding to an element of w associated with
a generator status. The constraint (8b) is the same as (7b).
Moreover, (8d) implies that W ∗kk ≥ w∗

2

k , which together with
the constraint (8c) leads to the relation 0 ≤ w∗k ≤ 1. As
a result, w∗ is a point feasible for the basic QP problem.
Due to the definition of cr(w,W) and c(w) and the fact
that W ∗kk ≥ w∗

2

k , one can verify that cr(w∗,W∗) ≥ c(w∗).
Therefore, the optimal cost of the SDP relaxation is greater
than or equal to the cost of the QP relaxation.

In order to complete the proof, it suffices to show that the
optimal cost of the QP relaxation is greater than or equal

to the optimal cost of the SDP relaxation. Suppose that ŵ
denotes the optimal solution of QP relaxation of the UC
problem. One can build a matrix Ŵ such that (ŵ,Ŵ) is
a feasible point of the SDP relaxation with a cost equal to
the optimal cost of the QP relaxation. The constraint (8b)
is a reformulation of the linear constraints and therefore it
holds true. Furthermore, the constraint 0 ≤ ŵk ≤ 1 implies
that ŵ2

k ≤ ŵk. Therefore, we can construct a non-negative
diagonal matrix W0 such that (Ŵ0kk

+ ŵ2
k)− ŵk = 0. As a

result, (ŵ,Ŵ) is feasible for SDP relaxation, where Ŵ =
ŵŵT + Ŵ0. Note that the only possibly required positive
elements of W0 are the diagonal elements corresponding
to the status of generators. Furthermore, notice that these
diagonal elements do not appear in the objective when t0 =
1. Therefore, one can verify that cr(ŵ,Ŵ) = c(ŵ). This
completes the proof.

Remark 4. Note that (8) is indeed a relaxation of the UC
problem. This is due to the fact that if w defined in (5)
is an optimal solution of the UC problem, then (w,wwT )
is feasible for (8) and has the same objective value as
the optimal cost of UC. Furthermore, the proposed SDP
relaxation solves the UC problem if and only if it has an
optimal solution (w∗,W∗) for which the matrix[

1 w∗
>

w∗ W∗

]
has rank 1. From a different perspective, in the case where
x∗i;t’s are all binary numbers at an optimal solution of (8),
the relaxation is exact.

As shown in Section IV, the solution of the convex
problem (8) is almost always fractional for the test systems.

B. Valid Inequalities

Let S denote the set of feasible points of the UC prob-
lem (3). An inequality is said to be valid if it is satisfied
by all points in S. The SDP relaxation (8) can be strength-
ened by adding valid inequalities to it. Consider two scalar
inequalities of the UC problem, namely

u>w −m1 ≥ 0, v>w −m2 ≥ 0,

for fixed coefficients u, v, m1 and m2. Since both of
these inequalities hold for all points w in S, the quadratic
inequality

u>ww>v − (v>m1 + u>m2)w +m1m2 ≥ 0,

is also satisfied for every w ∈ S. The above quadratic
inequality can be relaxed to the linear inequality

u>W>v − (v>m1 + u>m2)w +m1m2 ≥ 0.

C. Strengthened SDP Relaxation

In this part, we construct a set of valid inequalities via the
multiplication of all linear inequalities of the UC problem,
using the strategy delineated in Section III-B. The resulting
quadratic inequalities obtained from (8b) can be expressed
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as the matrix constraint (Mw −m)(Mw −m)> ≥ 0, or
equivalently,

Mww>M> −mw>M> −Mwm> +mm> ≥ 0.

The relaxation of this non-convex inequality yields the linear
matrix inequality

MWM> −mw>M> −Mwm> +mm> ≥ 0 (10)

Replacing the non-convex constraint (7c) in the UC for-
mulation (7) with the linear constraint (10) leads to a
Reformulation-Linearization Technique (RLT) relaxation
of the UC problem. Although it has been proven in [15] that
this relaxation outperforms the basic QP relaxation, it will be
shown in Section IV that this method often fails to generate
feasible solutions for the UC problem.

The addition of the constraint (10) to the SDP relaxation
leads to the convex program:

minimize
w∈R22ngt0

W∈S2ngt0

cr(w,W) (11a)

subject to Mw ≥m, (11b)

MWM> −mw>M> −Mwm> +mm> ≥ 0,
(11c)

Wkk − wk = 0, k = 1, 2, . . . , ngt0,
(11d)

W � ww>. (11e)

This problem is referred to as the strengthened SDP relax-
ation of the UC problem. In Section IV, it will be shown
that the strengthened SDP (11) is exact and significantly
improves the standard SDP and RLT relaxations in most test
cases.

Real-world UC problems are large-scale due to the size
of power grids and the number of time slots. Hence, the
strengthened SDP relaxation (11) would be computationally
expensive for practical systems. In the next section, the
constraint (11e) will be replaced by a number of lower-
order conic constraints. To further reduce the computational
complexity of the proposed relaxation due to the large
number of valid inequalities, an iterative method will be
developed to incorporate only a subset of the inequalities
into the relaxation.

D. Weakly-Strengthened SDP Relaxation

In this subsection, we design a weakly-strengthened SDP
relaxation whose complexity is lower than that of the
strengthened SDP relaxation.

1) Relaxing the conic constraint: Define the sets

Vxt , {ng(t− 1) + 1, ng(t− 1) + 2, . . . , ng(t+ 1)},
Vpt ,
{ng(t0 + t− 1) + 1, ng(t0 + t− 1) + 2, . . . , ng(t0 + t+ 1)},
Vt , Vxt

∪ Vpt
for every t ∈ {1, . . . , t0 − 1}. Observe that Vxt

and Vpt are the index sets of those elements of w

that correspond to {x1;t, . . . , xng ;t, x1;t+1, . . . , xng ;t+1} and
{p1;t, . . . , png;t, p1;t+1, . . . , png;t+1}, respectively. There are
constant matrices Y1, . . . ,Yt0−1 and vectors y1, . . . ,yt0−1

such that, for every t ∈ {1, . . . , t0 − 1}, the inequality

Ytw{Vt} ≥ yt (12)

is equivalent to the collection of those inequalities in (8b)
that only include the decision variables xi;t, pi;t, xi;t+1, and
pi;t+1 for all i ∈ G. Note that the inequalities given in (12)
for t ∈ {1, . . . , t0 − 1} cover all inequalities in (8b) except
for the minimum up-time and down-time constraints.

To handle the minimum up- and down-time constraints,
define the set Vt0 , {1, . . . , ngt0}. Note that Vt0 is the index
set of those elements of w that correspond to the statuses of
the generators over different time slots. There are a matrix
Yt0 and a vector yt0 such that the inequality

Yt0w{Vt0} ≥ yt0 (13)

is equivalent to the minimum up- and down-time constraints
(3g) and (3h). Note that these constraints are inherently linear
functions of the variables xi;t’s.

So far, it has been shown that the condition (8b) can
be replaced by (12) and (13) for t = 1, . . . , t0. Based on
this fact, we introduce a relaxation of the strengthened SDP
problem as follows:

minimize
w∈R2ngt0

W∈S2ngt0

cr(w,W) (14a)

subject to Ytw{Vt} ≥ yt, t = 1, 2, . . . , t0, (14b)

YtW{Vt,Vt}Y>t − ytw{Vt}>Y>t
−Ytw{Vt}y>t + yty

>
t ≥ 0,

t = 1, 2, . . . , t0, (14c)
Wkk − wk = 0, k = 1, 2, . . . , ngt0,

(14d)

W � wwT . (14e)

After this relaxation, the exactness of the proposed relax-
ation can be certified if and only if the variables xi;t’s take
binary values at optimality. The next theorem shows that the
large conic constraint (14e) can be broken down into smaller
conic constraints.

Theorem 2. The conic constraint W � wwT in the
relaxation of strengthened SDP problem (14) is equivalent
to the following set of smaller conic constraints:

W{Vt,Vt} � w{Vt}w{Vt}T , t = 1, 2, . . . , t0 (15)

in the absence of minimum up- and down-time constraints.

Proof. Assume that the minimum up- and down-time con-
straints do not exist. It can be observed that in (14b), (14c),
and (14d), the decision variables at each time instance are
coupled only with the decision variables of the next and
previous time slots. Using the chordal extension technique
[26], it is easy to verify that relaxing the constraint (14e) to
(15) does not affect the optimal cost. This is due to the fact
that the tree decomposition of the above problem is a path.
The details are omitted for brevity.
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2) Imposing a subset of valid inequalities: The strength-
ened SDP problem is obtained from the SDP problem by
adding a large number of valid inequalities. However, many
of those inequalities may not be binding at optimality. As an
effort to avoid such unnecessary constraints, we propose the
following procedure: (i) solve the problem (8) and denote its
solution with W∗

0 , (ii) detect violated valid inequalities by
substituting W∗

0 for the matrix variable W in (14c), (iii) add
only the violated valid inequalities to the problem rather than
all valid inequalities. This problem is referred to as the first-
order weakly-strengthened SDP relaxation. One can solve the
new problem, check the constraint (14c) at a solution of the
first-order relaxation, and add all of the violated inequalities
to the problem. This leads to a tighter relaxation, named
second-order weakly-strengthened SDP. By continuing this
procedure, one will be able to kth-order weakly-strengthened
SDP for k = 1, 2, ..., until the relaxation becomes equivalent
to the strengthened SDP problem in terms of the satisfaction
of all constraints.

E. Triangle and VUB Constraints

It will be shown in simulations that the proposed SDP
relaxations are able to find a global solution of the UC
problem for many test systems under various conditions.
However, there are cases for which the relaxations are not
exact. To further improve the relaxations for such systems,
the so-called triangle inequalities are incorporated in the UC
problem. The efficacy of these valid inequalities has been
studied by Burer et al. [24] and Anstreicher et al. [21]. These
triangle inequalities are

xi;txj;t + xk;t ≥ xi;txk;t + xj;txk;t

xi;txj;t + xi;txk;t + xj;txk;t + 1 ≥ xi;t + xj;t + xk;t

for every i, j, k ∈ G and t ∈ T . Moreover, the proposed
method can be reinforced by adding a special case of the
VUB ramp constraints developed by Damcı-Kurt et al. [25].
These constraints are

pi;t ≤ pi; max.xi;t − (pi; max − si).(xi;t − xi;t−1)

pi;t ≤ pi; max.xi;t − (pi; max − si).(xi;t − xi;t+1)

which can be added to (8b). Note that the above valid
inequalities are the VUB ramp constraints for only two
adjacent time slots. Although the number of all VUB ramp
constraints is exponential in the size of the UC problem, the
number of the inequalities considered above (for two adjacent
time slots) has a polynomial size.

IV. NUMERICAL RESULTS

In this section, the numerical results for evaluating the
proposed relaxations on IEEE case systems are provided.
To generate multiple UC problems for each test case, we
multiply all loads of each IEEE system by a load factor
α chosen from a discrete set {α1, α2, ..., αk}. For each
IEEE system, we plot four curves for k load profiles: (i)
the optimal cost of the (weakly) strengthened SDP, (ii) the
optimality gaps for three different relaxations. As the load

factor changes from α1 to αk, the optimal statuses of the
generators may change multiple times. Whenever the statuses
of the generators for a load scenario varies from those of the
previous load scenario, the corresponding scenario is marked
on the curve by a red cross. Hence, if there is no mark on the
SDP cost curve for a particular load scenario, it means that
the statuses of the generators are the same as those for the
previous load scenario. Each red cross is accompanied by an
integer number, which can be interpreted as follows: if this
number is converted from base 10 to 2, it is the concatenation
of the globally optimal status of all generators. For example,
for a case with 3 generators, the number 5 on the SDP
cost curve indicates that the first and third generators are
active while the second generator is off at a globally optimal
solution of UC (note that 5 = (101)2). Moreover, for every
scenario that at least one of generator statuses found by the
strengthened SDP is neither 0 nor 1, we write “Not Rank-1”
on the curve instead of the an integer number encoding the
optimal generator statuses.

Figure 1(a) shows the solutions found by the strengthened
SDP for 20 load scenarios for the IEEE 9-bus system with
3 generators over one time slot (t0 = 1). The load factors
are αi = 0.1× i for i = 1, 2, ..., 20. It can be observed that
the proposed convex relaxation has found a global solution
of the UC problem for 19 out of 20 scenarios. We define the
optimality gap for any relaxation of the UC problem as

Optimality gap ,
upper bound− lower bound

upper bound
× 100,

where ”upper bound” and ”lower bound” denote the globally
optimal cost of the UC problem (found using an extensive
search) and the optimal cost of the relaxation, respectively.
The optimality gaps for the SDP, RLT and strengthened SDP
relaxations are compared in Figure 1(b). Notice that the SDP
and RLT relaxations perform poorly and the proposed valid
inequalities are essential for obtaining integer solutions.

Figure 2 shows the solutions found by the strengthened
SDP for 20 load scenarios for the IEEE 14-bus system
with 5 generators over one time slot. The load factors are
αi = 0.1 × i for i = 1, 2, ..., 20. The relaxation is exact
in 19 load scenarios. For both of the IEEE 9- and 14-
bus systems, there is only one load scenario for which the
strengthened SDP does not find the globally optimal solution
of the UC problem. After adding the triangle and VUB ramp
constraints to the formulation, the relaxation becomes exact
and it retrieves the optimal solution of the UC problem.
Figure 3 illustrates the results of the strengthened SDP for 13
load scenarios for the IEEE 30-bus system with 6 generators
over one time slot. The load factors are αi = 0.1 × i for
i = 1, 2, ..., 13. It can be observed that the proposed convex
relaxation is exact and finds the globally optimal solution of
the problem for all scenarios. If the load factor is greater
than or equal to 1.4, the UC problem becomes infeasible for
this case since the total load exceeds the total capacity of
generators.

Figure 4 shows the output of the strengthened SDP for 15
load scenarios for the IEEE 57-bus system with 7 generators
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Fig. 1: 20 load scenarios for the IEEE 9-bus system with 3 generators
over one time slot.
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Fig. 2: 20 load scenarios for the IEEE 14-bus system with 5 generators
over one time slot.

over one time slot. The load factors are αi = 0.1 × i for
i = 1, 2, ..., 15. As before, the proposed convex relaxation
obtains the globally optimal solution of the problem for all
scenarios. Furthermore, the UC problem becomes infeasible
if load factor is greater than or equal to 1.6 since the total
load exceeds the total generation capacity.

Consider 10 load scenarios for the IEEE 118-bus system
with 54 generators over one time slot. The load factors are
αi = 0.1 × i for i = 1, 2, ..., 10. Since the strengthened
SDP problem is time-consuming to solve for this system, we
resort to weakly-strengthened SDP relaxations with lower-
order conic constraints. The results are plotted for the first-
order and fourth-order weakly-strengthened SDP problems
in Figure 5. It can be observed that the first-order relaxation
solves half of the cases successfully, whereas the fourth-order
relaxation solves all trials correctly. Figure 6 illustrates the
results of the strengthened SDP (14) with low-order conic
constraints for 10 load scenarios for the IEEE 30-bus system
with 6 generators over t0 = 5 time slots. The load factors
are αi = 0.8 + 0.02 × i for i = 1, 2, ..., 10. Observe that
SDP relaxation fails in only two cases. Note that each red
cross in Figure 6(a) is accompanied by a vertical array of 5
numbers, each showing the commitment parameters (in base
10) for different time instances.

Figure 7 shows the solutions of the strengthened SDP
(14) for 10 load scenarios for the IEEE 57-bus system
with 7 generators over 6 time slots. The load factors are
αi = 0.1 × i for i = 1, 2, ..., 10. The proposed relaxation
is exact for all load scenarios. Consider the IEEE 300-bus
system with 69 generators over one time slot and for the
single load factor of 1. The first-order weakly-strengthened
SDP achieves the global minimum of the UC problem. The
number natural 18338481760792186850 encodes the optimal
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Fig. 3: 13 load scenarios for the IEEE 30-bus system with 6 generators
over one time slot.
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Fig. 4: 15 load scenarios for the IEEE 57-bus system with 7 generators
over one time slot.
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Fig. 6: 10 load scenarios for the IEEE 30-bus system with 6 generators
over t0 = 5 time slot.
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statues of all generators in base 10. After converting this
number to a binary vector, it can be seen that 53 generators
are on and 16 generators are off at optimality. Finally,
consider the IEEE 14-bus system with 5 generators over
24 time slots. As before, the proposed convex model (14)
achieves the globally optimal solution of the UC problem
for this scenario. Figure 8 displays the total load distribution
over this horizon. Furthermore, the integer number on top
of each column represents the optimal configuration of the
generators at each time slot. The optimal costs associated
with the strengthened SDP (14) and its first-order weakly-
strengthened SDP are 210159 and 205838, respectively.
However, the optimal cost for the SDP relaxation without
the proposed valid inequalities is 162600.

V. CONCLUSIONS

The objective of this paper is to design a convex model for
the unit commitment (UC) problem, under the DC modeling
assumption. Finding a global solution to the UC problem is a
daunting challenge. In this paper, we develop a strengthened
SDP relaxation for the UC problem. This is achieved by
generating valid constraints and then relaxing them to linear
matrix inequalities. These valid inequalities are obtained by
the multiplication of the linear constraints of the UC problem
such as the flow constraints of two different lines. Since
the proposed technique incorporates a large number of valid
quadratic inequalities, an iterative algorithm is developed
to select only a subset of such inequalities. The proposed
relaxations are extensively tested on benchmark systems.
Unlike the branch-and-bound and cutting-planning methods
used in the power industry, the technique developed in this
work can be readily generalized to handle an AC nonlinear
model of power flow equations.
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definite completions of partial hermitian matrices,” Linear algebra and
its applications, vol. 58, pp. 109–124, 1984.

701


