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Abstract— In this paper, the rank-constrained matrix fea-
sibility problem is considered, where an unknown positive
semidefinite (PSD) matrix is to be found based on a set of
linear specifications. First, we consider a scenario for which
the number of given linear specifications is at least equal to
the dimension of the corresponding space of rank-constrained
matrices. Given a nominal symmetric and PSD matrix, we
design a convex program with the property that every arbitrary
matrix could be recovered by this convex program based on its
specifications if: i) the unknown matrix has the same size and
rank as the nominal matrix, and ii) the distance between the
nominal and unknown matrices is less than a positive constant
number. It is also shown that if the number of specifications
is nearly doubled, then it is possible to recover all rank-
constrained PSD matrices through a finite number of convex
programs. The results of this paper are demonstrated on many
randomly generated matrices.

I. INTRODUCTION

In this paper, we consider the problem of finding an n×n
symmetric and positive semidefinite (PSD) matrix X of rank
k that satisfies a modest number of linear specifications of
the form:

〈Mr,X〉 = yr, r = 1, . . . ,m, (1)

where M1, . . . ,Mm are some known n× n symmetric ma-
trices, the notation 〈·, ·〉 denotes the Frobenius inner product,
and the scalars y1, . . . , ym are some given specifications
corresponding to the unknown matrix X.

Let S+n,k denote the set of n × n symmetric and PSD
matrices of rank k. The problem of finding a matrix X ∈
S+n,k based on a set of specifications {y1, . . . , ym} is NP-
hard in general, and captures a wide range of other problems
including quadratic feasibility and matrix completion [1].
Special cases of the above rank-constrained feasibility prob-
lem have been successfully addressed in the literature, such
as the case where the number of specifications is relatively
high [2] or whenever the matrices M1, . . . ,Mm admit a
graph-theoretic structure [3], [4].

In this work, we aim to design a class of convex optimiza-
tion problems to find the matrix X ∈ S+n,k, given the input
vector (y1, . . . , ym). This paper is built upon our recent work
[5], which calculates the inverse of polynomial functions
using semidefinite programming (SDP). The inverse function
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theorem states that the inverse of a polynomial function
exists at a neighborhood of any nominal point at which
the Jacobian of the function is invertible. In [5], we have
proven that this inverse function can be found locally using
convex optimization. More precisely, infinitely many SDPs
are proposed in [5], each of which finds the inverse function
at a neighborhood of the nominal point. We have also
designed a convex optimization in [5] to check the existence
of an SDP problem that finds the inverse of the polynomial
function at multiple nominal points and a neighborhood
around each point.

Every optimization problem proposed in this work is in
the form of a semidefinite program. SDP is a subdiscipline
of convex optimization, which has received a significant
amount of attention in the past two decades [6]–[9]. The
SDP relaxation technique is a powerful method for tackling
nonlinearity, which has been proven to be effective in the
convexification of several hard optimization problems in
various areas, including graph theory, approximation theory,
quantum mechanics, neural networks, communication net-
works, and power systems [10]–[15]. SDP relaxation meth-
ods have been successfully used for real-world applications
such as radar code design, multiple-input and multiple-output
beamforming, error-correcting codes, magnetic resonance
imaging (MRI), data training, and portfolio selection, among
many others [16]–[19]. Several papers have evaluated the
performance of SDP relaxations for various problems, by
investigating the approximation ratio and the maximum rank
of SDP solutions [3], [20]–[23]. Moreover, different global
optimization techniques for polynomial optimization have
been built upon SDP relaxations [14], [24]–[27].

A. Notations

The symbols R, R+ and Sn denote the sets of real num-
bers, nonnegative reals and n × n real symmetric matrices,
respectively. rank{·}, trace{·}, and det{·} denote the rank,
trace, and determinant of a given scalar/matrix. ‖·‖2 denotes
the Euclidean norm and ‖ · ‖F denotes the Frobenius norm
of a matrix. Matrices are shown by capital and bold letters.
The symbol (·)T denotes the transpose operator. The notation
〈A,B〉 represents trace{ATB}, which is the inner product
of A and B. The notation W � 0 means that W is a
symmetric and PSD matrix. Moreover, W � 0 means that
it is symmetric and positive definite. The (i, j) entry of W
is denoted as Wij . The interior of a set D ∈ Rn is denoted
by int{D}. The notation null(·) denotes the null space of
a matrix. The notation diag{v1, . . . , vn} denotes the n × n
square matrix whose diagonal values are given by v1, . . . , vn.
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0n and 1n denote the n × 1 vectors of zeros and ones,
respectively. S+n;k denotes the space of n × n symmetric
PSD matrices of rank k. Let Rn,k denote the set of all
n × n symmetric PSD matrices of rank less than or equal
to k. In addition, distP(·, ·) denotes the projection distance.
The cardinality of a set V is denoted as |V|. Given two
sets of natural numbers V1 and V2 as well as a matrix W,
the notation W[V1,V2] denotes the submatrix of W that is
obtained by keeping only those rows of W that correspond
to the elements of the set V1 and those columns of W that
are associated with the elements of the set V2.

II. PROBLEM STATEMENT AND PRELIMINARIES

This paper is concerned with the feasibility problem

find X ∈ Sn
subject to 〈Mr,X〉 = yr, r = 1, . . . ,m, (2a)

X � 0, (2b)
rank{X} = k. (2c)

Definition 1: Associated to the feasibility problem (2),
define the mapping F : S+n;k → Rm as

F(X) , [〈Mr,X〉]r=1,...,m.

Denote the set of non-critical points of F as IF ⊆ S+n;k.
Observe that the dimension of S+n;k is nk − k(k − 1)/2.

In this paper, we first investigate the case where there
are exactly nk − k(k − 1)/2 linear specifications and then
generalize to the over-specified case m > nk−k(k−1)/2. In
order to reduce the complexity of the nonconvex feasibility
problem (2), we aim to drop the rank constraint (2c) and
penalize its effect into the objective function via a linear
term. This idea will be explained below.

Definition 2: Consider the optimization problem

minimize
X∈Sn

〈N,X〉 (3a)

subject to 〈Mr,X〉 = yr, r = 1, . . . ,m, (3b)
X � 0, (3c)

for some constant matrix N. This is referred to as an SDP
relaxation problem with the parameters (N, [yr]

m
r=1).

A solution of the rank-constrained problem (2) is said to be
recoverable through the SDP problem (3) if it is the unique
optimal solution of (3). Let RF (N) denotes the recoverable
region for the optimization problem (3), i.e., the set of
all matrices X in S+n;k that are the unique solution of the
above problem for some input vector (y1, . . . , yk). Indeed,
the minimum number of linear specifications necessary to
recover the matrix X would be the dimension of the manifold
S+n,k, which is equal to

d(n, k) , nk − k(k − 1)/2. (4)

In this work, we generate the matrix N in (3a) based on
an initial guess X0 ∈ S+n;k for the solution. One interesting
property of the proposed convex relaxation scheme is that if
the two subspaces spanned by the columns of the unknown

solution X and the initial guess X0 are relatively close, then
the relaxation is guaranteed to be exact, even if X0 and X are
distanced from each other. In order to quantify the distance
between the subspaces spanned by the columns of matrices,
it is necessary to define the notion of projection metric.

Definition 3: For every X ∈ S+n,k, define PX ∈ S+n,k as
the unique matrix representing the orthogonal projection onto
the space spanned by the columns of X. Accordingly, define
the projection metric distP(·, ·) : S+n,k × S

+
n,k → R+ as

distP(X,Y) , ‖PX − PY‖2. (5)

Moreover, for every X0 ∈ S+n;k, define

BX0;ε = {X ∈ S+n;k |distP(X,X0) < ε}.

Suppose that X ∈ S+n,k admits the eigenvalue decompo-
sition X = QΛQT, where Λ = diag{λ1, . . . , λk} ∈ Rk×k
and Q = [v1, . . . ,vk] ∈ Rn×k collect nonzero eigenvalues
and the corresponding eigenvectors of X, respectively. In
order to observe that the notation PX is well-defined, one
can easily verify that

PX = QQT (6)

is the unique projection matrix described by Definition 3 (see
[28] for further details on projection metric).

The following is a summery of the contributions of this
work:

1) Given an arbitrary nominal point X0 ∈ S+n,k that is
not singular for the mapping F , we design a convex
program that recovers every member of S+n,k in a neigh-
borhood around X0. The set of recoverable matrices can
be explicitly characterized through a nonlinear matrix
inequality and it contains the cone

{X ∈ S+n,k |distP(X,X0) < ε}, (7)

for some ε > 0, where distP(·, ·) denotes the projection
distance.

2) Consider the case where the matrices M1, . . . ,Mm are
chosen generically and

m > k(2n− k). (8)

We show that the parameter ε in (7) is independent
of the nominal point X0. Then, we prove that a finite
number of nominal points can be chosen such that every
matrix in S+n,k is recoverable via the convex program
associated with at least one of the nominal points.

The “generic” assumption in the above statement im-
plies that our result is true for almost every choice of
M1, . . . ,Mm ∈ Sn. A formal definition for the phrase
“generically chosen” will be provided next.

Definition 4: A property (Q) is said to hold for every
“generically chosen” member of a topological space O if
there exists an open dense subset of O whose members all
satisfy (Q).
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The dual of the convex program (3) is regarded as the dual
SDP problem with the parameters (N, [yr]

m
r=1), which can

be written as

minimize
u∈Rm

yTu (9a)

subject to BF (N,u) � 0, (9b)

where u ∈ Rm is the vector of dual variables and BF :
Sn × Rm → Sn is defined as

BF (N,u) , N +

m∑
i=1

uiMi. (10)

The main results of this paper will be developed in the
next section.

III. MAIN RESULTS

The next theorem states that a matrix N can be systemat-
ically designed such that the region of recoverable matrices
RF (N) contains a neighborhood around a given nominal
point X0.

Theorem 1: Let X0 ∈ S+n,k be an arbitrary nominal point
that is not singular for the mapping F . For every arbitrary
matrix N ∈ S+n;n−k satisfying the relation NX0 = 0, there
exists a constant ε > 0 such that every matrix X ∈ BX0;ε is
the unique solution to the SDP relaxation problem (3) with
the parameters (N, [〈Mr,X〉]mr=1).

Proof: The proof is given in Section IV.

According to Theorem 1, we can design a matrix N such
that the region RF (N) includes a neighborhood around the
nominal point X0. Roughly speaking, each of these convex
programs covers a cone containing the nominal point. The
next theorem states that a lower bound on the radius of these
balls could be found for choices of N.

Theorem 2: Let

m > k(2n− k), (11)

and suppose that the matrices M1, . . . ,Mm are chosen
generically from the set Sn. If N ∈ S+n;n−k satisfies the
equation NX0 = 0 for a matrix X0 ∈ S+n;k and all nonzero
eigenvalues of N are equal to 1, then there exists a constant
ε > 0 in terms of M1, . . . ,Mm such that every matrix
X ∈ S+n;k with the property

distP(X,X0) ≤ ε, (12)

is recoverable through the SDP relaxation problem (3) with
the parameters (N, [〈Mr,X〉]mr=1).

Proof: The proof follows immediately from Lemma 3
(to be presented later) and Theorem 1.

Theorem 2 proves the existence of a local recovery region
with a non-demenishing volume. A question arises as to
whether there exists a finite number of SDPs whose recovery
regions altogether cover the whole space of rank-k positive
semidefinite matrices. This problem will be addressed below.

Theorem 3: Assume that

m > k(2n− k), (13)

and that the matrices M1, . . . ,Mm are generic members
of Sn. Then, there exists a finite number of matrices
N1, . . . ,Nq ∈ S+n,n−k such that every matrix X ∈ S+n;k
is recoverable through the SDP relaxation problem (3) with
the parameters (Ns, [〈Mr,X〉]mr=1) for at least one index
s ∈ {1, . . . , q}.

Proof: The proof is given in Section IV.

Theorem 3 states that if the number of measurements is
not too small, then there is a finite number of SDPs such that
the feasibility problem (2) with an arbitrary input (y1, ..., yr)
can be solved via at least one of those SDPs.

IV. PROOFS

The proofs of the results presented in the preceding section
will be provided below. Define Nn , {1, . . . , n} and let
An;k denote the set of subsets of Nn of size k:

An;k , {A ⊆ Nn | |A| = k}.

Let A = {a1, . . . , ak} ∈ An;k and B = {b1, . . . , bn−k} =
Nn \ A such that {ai}i=1,...,k and {bi}i=1,...,n−k are in
ascending order. Define the n× n permutation matrix Πn;A

as

Πn;A =

[
[δai,j ]i=1,...,k;j=1,...,n

[δbi,j ]i=1,...,n−k;j=1,...,n

]
,

where δij denotes the Kronecker delta function. This matrix
consists of two block submatrices of dimensions k × n and
(n − k) × n. The set of n × k lower triangular matrices is
denoted by

Ln;k , {V ∈ Rn×k |Vi,j = 0 if i < j}.

Moreover, for every A ∈ An;k, define

S+n;A , {X ∈ S
+
n;|A| |X[A,A] � 0},

as the set of matrices in S+n;|A| whose principal submatrix
corresponding to the rows and columns in A has full rank.
Observe that

S+n;k =
⋃

A∈An;k

S+n;A.

In order to continuously map the manifold S+n;k into
Rd(n,k), we build a family of mappings each defined from
a subset S+n;A ⊂ S

+
n;k to the linear space Ln;k for some

A ∈ An;k.

Definition 5: (Cholesky embeddings) For every A ∈
An;k, define the function Cn;A : S+n;A → Ln;k as

Cn;A(X) ,
[

LT, L−1X [A,Nn \A]
]T
,

where L is the lower triangular matrix obtained from the
Cholesky decomposition of X[A,A], i.e., LLT = X[A,A].
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Note that

X = ΠT
n;ACn;A(X)Cn;A(X)TΠn;A,

for every X ∈ S+n;k. Throughout the paper, we employ the
collection {(S+n;A, Cn;A)}A∈An;k

as an atlas for the manifold
S+n;k.

In order to differentiate the mapping F : S+n;k → Rm, we
need to characterize the tangent spaces of S+n;k. The tangent
space of S+n;k at point X ∈ S+n;A is an equivalence class
on all curves Γ : (−1,+1) → S+n;A that pass through X at
point 0. Two curves Γ1 and Γ2 are equivalent if they admit
the same derivative at 0, i.e.,

d

dt
Cn;A ◦ Γ1(t)

∣∣∣∣
t=0

=
d

dt
Cn;A ◦ Γ2(t)

∣∣∣∣
t=0

.

Definition 6: Let TXS+n;k denote the tangent space for
S+n;k at point X. Given A ∈ An;k such that X ∈ S+n;A,
the following curve can serve as a representative for the
equivalence class that it belongs to in TXS+n;k:

ΓX;A{V}(t) , ΠT
n;A (Cn;A(X) + tV)

(Cn;A(X) + tV)
T

Πn;A, (14)

where V ∈ Ln;k.

In order to perform a singularity analysis, the pushforward
(Jacobian) of the mapping F can be formed, by differenti-
ating the curves defined in (14):

d

dt
ΓX;A{V}(t)

∣∣∣∣
t=0

= ΠT
n;ACn;A(X)VTΠn;A

+ΠT
n;AVCn;A(X)TΠn;A,

Notation 1: Define the lower triangular vectorization op-
erator Vn;k : Rn×k → Rd(n,k) as

Vn;k(V) , [V1,1, V2,1, . . . , Vn,1, V2,2, V3,2, . . . , Vn,2, . . .
Vk,k, Vk+1,k, . . . , Vn,k]T ∈ Rd(n,k).

Definition 7: Define E1,E2, . . . ,Ed(n,k) as a basis for
Ln;k with the property that

Vn;k(Er) = er, for r = 1, . . . , d(n, k),

where {er}d(n,k)r=1 is the standard basis for Rd(n,k).

Notice that

d

dt
Fr (ΓX;A{V}(t))

∣∣∣∣
t=0

= 〈Mr,
d

dt
(ΓX;A{V}(t))

∣∣∣∣
t=0

〉

= 〈Mr,Π
T
n;ACn;A(X)VTΠn;A + ΠT

n;AVCn;A(X)TΠn;A〉
= 2〈Πn;AMrΠ

T
n;ACn;A(X),V)〉.

If {Er}d(n,k)r=1 is adopted as a basis for Ln;k, then the
pushforward function JF,A(X) : TXS+n;k → Rd(n,k) at a

point X ∈ S+n;A can be parameterized as

JF,A(X) = 2


Vn;k(Πn;AM1ΠT

n;ACn;A(X))T

Vn;k(Πn;AM2ΠT
n;ACn;A(X))T

...
Vn;k(Πn;AMmΠT

n;ACn;A(X))T

 .
Lemma 1: There exists a point X ∈ S+n;k at which F is

singular if and only if there exists a nonzero matrix Y ∈
Rn×n (not necessarily symmetric) of rank less than or equal
to k satisfying the equations

〈Mr,Y〉 = 0, r = 1, . . . ,m. (15)

Proof: Let X ∈ S+n;A be a singularity point of F . There
exists a nonzero C0 ∈ Ln,A such that

d

dt
F
(
[Cn;A(X) + tC0][Cn;A(X) + tC0]T

)∣∣∣∣
t=0

= 0, (16)

which means that

〈Mr, Cn;A(X)C0〉 = 0, r = 1, . . . ,m. (17)

Now, suppose that there exists a Y ∈ Rn×n of rank less than
or equal to k that satisfies (15). It can be easily seen that there
exist C1,C2 ∈ Ln,A such that C1 has full column rank and
Y = C1C

T
2 . Therefore, C1C

T
1 is a singularity point in the

domain of F .

Definition 8: Denote the Grassmannian of k-dimensional
subspaces of Rn as Gn;k. Define G∼ as the equivalency
relation on S+n;k, associated to Gn;k, such that X1

G∼ X2

if and only if the columns of X1 and X2 span the same
k-dimensional subspaces. Moreover, denote the equivalence
class of a matrix X ∈ S+n;k with [X]G ∈ Gn;k.

Lemma 2: If

m > k(2n− k), (18)

then every generically chosen F does not have any singular
point.

Proof: A general mapping F is characterized by the
matrices M1, . . . ,Mm. Define ZF ⊆ Sn as the null space
of the mapping

Z ∈ Sn → [〈Mr,Z〉]mr=1 ∈ Rm. (19)

The linear space ZF has the dimension n(n + 1)/2 − m,
while Sn is of dimension n(n + 1)/2. Therefore, a generic
choice of F results in a generic choice of ZF , which makes
it an arbitrary member of Gn(n+1)/2; [n(n+1)/2−m] that is of
dimension

d1 = m[n(n+ 1)/2−m]. (20)

We aim to show that if (18) holds, then the set of all linear
spaces ZF such that F has a nonzero singularity is of a
dimension smaller than d1. To this end, let Yn,k ⊂ Rn×n be
the set of matrices Y ∈ Rn×n of rank less than or equal to
k, which is of dimension

d2 = k(2n− k). (21)
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According to Lemma 1, the mapping F has a nonzero
singularity if and only if there exists a nonzero Y ∈ Yn,k
such that Y + YT ∈ ZF . For every Y ∈ Yn,k, define

GF (Y) , {ZF |Y + YT ∈ ZF}. (22)

Observe that for every nonzero Y ∈ Yn,k, the manifold
GF (Y) is isomorphic to G[n(n+1)/2−1]; [n(n+1)/2−m−1] that
is of dimension

d3 = m[n(n+ 1)/2−m− 1]. (23)

Consider the manifold of every ZF , where F has a
nonzero singularity. According to (1), this can be represented
as:

Z ,
⋃

Y∈Yn,k

GF (Y). (24)

Now, it remains to investigate the dimension of Z, which is
clearly not greater than d2 +d3. Moreover, according to (18)
we have d2 + d3 < d1, which completes the proof.

Let (X,u) ∈ S+n×Rm be a pair of primal and dual optimal
points for the SDP relaxation problem (3) and the dual SDP
problem (9). The Karush-Kuhn-Tucker (KKT) conditions
impose the relationship(

N +

m∑
r=1

urMr

)
X = 0. (25)

Let X1,X2 ∈ S+n;k. According to the definition X1
G∼ X2,

we have

X1 ∈ IF ⇐⇒ X2 ∈ IF .

Therefore, define

IF ;G , {[X]G |X ∈ IF} .

Moreover, given [X]G ∈ IF ;G, the equation (25) can be
solved for u as follows:

u = −2(J−1F,A)TVn;k(Πn;A N ΠT
n;ACn;A(X0)),

where X0 ∈ S+n,A is an arbitrary member of [X]G. Accord-
ingly, define UF : Gn;k × S+n → Rm as follows

UF (G0,N) , −2(J−1F,A)TVn;k(Πn;A N ΠT
n;ACn;A(X0))

where X0 ∈ S+n,A is an arbitrary member of G0. Observe
that the function UF (·, ·) does not depend on A ∈ An;k, due
to the invariance of pushforward with respect to the choice
of chart.

Lemma 3: Define T +
n,n−k as the set of matrices in S+n,n−k

with all nonzero eigenvalues equal to 1. If

m > k(2n− k), (26)

and M1, . . . ,Mm are generic, then there exists a constant
number σ ≥ 0 in terms of the matrices M1, . . . ,Mm such
that the inequality

‖UF (G1,N)− UF (G2,N)‖2 ≤ σ × distP(G1, G2) (27)

holds for every pair G1, G2 ∈ Gn;k and matrix N ∈ T +
n,n−k.

Proof: For every arbitrary matrix N ∈ T +
n,n−k, the

mapping UF (·,N) : Gn;k → Rm is well defined and contin-
uous according to Lemma 2. Moreover, since the domain of
UF (·,N) is compact, it is Lipschitz continuous. Thus, for
every N, there exists a constant number σN such that the
following inequality holds for every pair G1, G2 ∈ Gn;k:

‖UF (G1,N)− UF (G2,N)‖2 ≤ σN × distP(G1, G2). (28)

Now, observe that the set T +
n,n−k is isomorphic to Gn,k

and therefore is a compact set. The compactness of T +
n,n−k

ensures that σN attains its maximum over T +
n,n−k and the

following constant exists:

σ , max
N∈T +

n,n−k

σN. (29)

This satisfies the equation (27).

Lemma 4: Let X ∈ IF and suppose that N ∈ S+n;n−k
satisfies the relation NX0 = 0. Then, strong duality holds
between the SDP relaxation problem (3) and the dual SDP
problem (9) with the parameters (N, [〈Mr,X〉]mr=1).

Proof: In order to prove strong duality, it suffices to
construct a strictly feasible point for the dual problem. Let
ũ , UF ([X0]G,−In). According to the definition of UF ,
we have: (

−In +

m∑
r=1

ûrMr

)
X0 = 0.

Therefore, a sufficiently small δ > 0 satisfies

N + δ

(
In − In +

m∑
r=1

ûrMr

)
� 0,

which concludes that δ × ũ is strictly feasible for the dual
problem and Slater’s condition is satisfied.

Proof of Theorem 1: Since NX0 = 0, complementary
slackness yields that ur = 0 for r = 1, . . . ,m and
consequently the dual feasibility holds. Therefore, X0 is the
unique solution to the SDP relaxation problem (3). Moreover,
X0 ∈ IF and NX0 = 0 imply that for a δ > 0 there exists
an ε > 0 such that for every X ∈ BX0;ε, complementary
slackness gives unique dual variables ũ and |ũr| < δ for
r = 1, . . . ,m. In order to complete the proof, it suffices to
show that by choosing a sufficiently small δ > 0, the dual
feasibility holds, i.e.,

Ã = N +

m∑
r=1

ũrMr � 0.

Due to the complementary slackness, Ã has k zero eigen-
values. From the eigenvalue perturbation analysis and by
choosing a sufficiently small δ > 0, the remaining n − k
eigenvalues of Ã would be close enough to the n−k positive
eigenvalues of N. �

Proof of Theorem 3: According to Theorem 1, for every
X0 ∈ S+n;k, there exist N ∈ S+n;n−k and ε > 0 such
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that every member of BX0;ε is recoverable using N by the
SDP relaxation problem (3). Since recoverability depends
on X ∈ S+n;k only through the equivalence class [X]G, there
exists ε0 > 0 such that every member of the following set
is recoverable as well:

{X ∈ S+n;k |distP(X,X0) < ε0}.

Now, according to Lemma 2, condition (13) implies that
the mapping F has no singularity. Therefore, we can design
infinitely many convex programs so that the union of their
recoverable regions covers all of the defined equivalence
classes in Gn,k. Due to the compactness of Gn,k, there exists
a finite number of matrices N1, . . . ,Nq ∈ Sn such that the
union of their recoverable regions covers all members of Gn,k
and, thus, the entire set S+n;k. �

V. SIMULATIONS

In this section, we examine the performance of the
proposed convex programs for finding a rank-k positive
semidefinite matrix satisfying a set of linear constraints. In
the simulations, we generate a random symmetric and PSD
nominal matrix X0 and then find a corresponding matrix N
based on Theorem 1. More precisely, we first produce an
n× k matrix with i.i.d. standard normal distribution entries
and denote it by XD. Then, we build the random matrix X0

as XDXT
D that is an element of S+n,k. In order to assess the

recoverable region for the SDP problem (3), random matrices
in S+n,k are selected and then it is checked whether those
matrices belong to the recovery region. To construct such a
random matrix, we first generate an n× k matrix with i.i.d.
zero mean normal distribution entries with the variance of
σ2 and denote it by Xσ,D. Then, we form the matrix

Xσ = (XD + Xσ,D)(XD + Xσ,D)T,

where the value ‖X0−Xσ‖F can be controlled by changing
the variance σ2. To generate the given specifications, we
uniformly sample a random subset of m entries of Xσ from
all (n2 + n)/2 entries excluding those below the diagonal
(since the matrix is symmetric).

In all figures offered in this section, the x-axis represents
the number of sampled entries and the y-axis (that is log-
arithmic) represents the value of variance. The number of
sampled entries or specifications (shown as m) varies from
mmin = nk−k(k−1)/2 to mmax = k(2n−k)+1. Moreover,
for each pair (σ,m), we repeat the aforesaid procedure 50
times, where the tested values for σ are different for each
of the provided simulations. The color of each point in the
figures reflects the recovery rate of the randomly generated
matrix Xσ in the 50 runs, which is scaled between 0 and 1
such that white and black colors indicate success and failure,
respectively.

Figure 1 shows the result for the recovery of 20 × 20
matrices with rank of 1 (i.e., n = 20 and k = 1). In this case,
the value of σ changes from 10−2 to 1, and the number of
given specifications changes from nk − k(k − 1)/2 = 20 to
k(2n−k) + 1 = 40. Notice that the recovered neighborhood

becomes larger by increasing the number of sampled entries.
Consider now the case where n is still 20, but the rank k is
changed to 2. The results are provided in Figure 2. In this
case, the value of σ varies from 10−3 to 1, and the number
of sampled entries changes from nk − k(k − 1)/2 = 39 to
k(2n− k) + 1 = 77.
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Fig. 1: Recovery of 20× 20 matrices with rank of 1.
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Fig. 2: Recovery of 20× 20 matrices with rank of 2.

Figure 3 corresponds to the case where n = 20 and k = 5.
In this scenario, the value of σ changes from 10−3 to 1
and the number of sampled entries varies from nk − k(k −
1)/2 = 90 to k(2n− k) + 1 = 176. By comparing all of the
above plots, it can be observed that as the rank increases,
the recoverable region becomes wider.

VI. CONCLUSIONS

This paper is concerned with the problem of finding an
unknown matrix, given a modest number of linear specifica-
tions in the set of n×n symmetric and positive semidefinite
matrices of rank k, denoted by S+n;k. Based on a given
nominal point in S+n;k as an initial guess, we design a convex
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Fig. 3: Recovery of 20× 20 matrices with rank of 5.

program in order to recover the unknown solution. Every
arbitrary unknown member of S+n;k can be found from its
specifications if the distance between the nominal point and
the unknown matrix is less than a positive constant. We
show that if the number of linear specifications is greater
than a specific number (in terms of the size and rank of the
unknown matrix), then there is a finite number of convex
programs such that every unknown rank-constrained matrix
can be found via one of these convex problems. The results
are demonstrated on many randomly generated systems of
equations.
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