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Abstract— This paper is concerned with the power system
state estimation (PSSE) problem, which aims to find the
unknown operating point of a power network based on a given
set of measurements. The measurements of the PSSE problem
are allowed to take any arbitrary combination of nodal active
powers, nodal reactive powers, nodal voltage magnitudes and
line flows. This problem is non-convex and NP-hard in the worst
case. We develop a set of convex programs with the property
that they all solve the non-convex PSSE problem in the case
of noiseless measurements as long as the voltage angles are
relatively small. This result is then extended to a general PSSE
problem with noisy measurements, and an upper bound on
the estimation error is derived. The objective function of each
convex program developed in this paper has two terms: one
accounting for the non-convexity of the power flow equations
and another one for estimating the noise levels. The proposed
technique is demonstrated on the 1354-bus European network.

I. INTRODUCTION

The power system state estimation (PSSE) is the problem
of determining the state of a power network, namely nodal
complex voltages, based on certain measurements taken at
buses and over branches of the network. This problem plays
a crucial role in control and operation of power networks
[1]. As a special case, the power flow (PF) problem aims to
find the state of the system, given noiseless measurements at
buses. This problem has been studied extensively for many
years, with the goal of designing an efficient computational
method that is able to cope with the non-convexity of the
power flow equations. Since 1962, several linearization and
local search algorithms have been developed for this classical
problem, and the current practice in the power industry relies
on linearization and/or Newton’s method (depending on the
time scale and whether this problem is solved for planning
or real-time operation) [2]–[4].

To tackle the non-convexity of the feasible region de-
scribed by the AC power flow equations, the semidefinite
programming (SDP) relaxation technique can be used [5],
[6]. Sparked by the papers [7] and [8], the SDP relaxation
method has received significant attention in the power society
[9], [10]. The work [8] has developed an SDP relaxation
to find a global solution of the optimal power flow (OPF)
problem, and showed that the relaxation is exact for IEEE
test systems. Recent advances in leveraging the sparsity of
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power systems have made SDP problems computationally
more tractable [11]–[16].

Recently, the SDP relaxation technique has been applied
to the PSSE problem, and gained success in the case where
the number of measurements is significantly higher than the
dimension of the unknown state of the system (i.e., twice
the number of buses minus one) [17], [18]. The papers
[19] and [20] have performed a graph decomposition in
order to replace the large-scale SDP matrix variable with
smaller sub-matrices, based on which different distributed
numerical algorithms have been developed. Moreover, the
formulations in [17] and [18] have been extended in [19]
and [21] to accommodate PMU measurements. The work
[21] has studied a variety of regularization methods to solve
the PSSE problem in presence of bad data and topology
errors. These methods include weighted least square (WLS)
and weighted least absolute value (WLAV) penalty functions,
together with a nuclear norm surrogate for obtaining a low-
rank solution.

In the recent work [22], we have investigated the non-
convex PF problem in two steps: (i) PF is transformed into
an optimization problem by augmenting PF with a suitable
objective function, (ii) the resulting non-convex problem
is relaxed to an SDP. The designed objective function is
not unique and there are infinitely many choices for this
function. It has been proven that if the PF solution belongs
to the recovery region of the SDP problem, then the solution
can be found precisely using SDP. This recovery region
contains voltage vectors with relatively small angles. Note
that voltage angles are often small in practice due to practical
considerations, which has two practical implications: (i)
linearization would be able to find an approximate solution,
(ii) Newton’s method would converge by initializing all
voltage angles at zero. Linearization techniques offer low-
complex approximate models that can provide insights into
power systems, whereas Newton’s method is an attractive
numerical algorithm that has been used in the power industry
for many years. Some of the advantage of the SDP technique
over the aforementioned approaches are as follows:
• A one-time linearization of the power flow equations

(known as DC modeling) solves the PF problem approx-
imately by linearizing the laws of physics. However,
the SDP problem finds the correct solution (with any
arbitrary precision) as long as it belongs to the corre-
sponding recovery region.

• The basin of attraction of Newton’s method is chaotic
and hard to characterize, but the recovery region of the
SDP problem is explicitly characterizable via matrix
inequalities.
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• The SDP relaxation provides a convex model for the
PF problem, which can be solved by many numerical
algorithms (such as Newton’s method).

By building upon the results developed in [22], the goal
of this paper is to solve the PSSE problem via a penalized
convex program (an SDP-type problem), where the measure-
ment equations are softly penalized in the objective function
as opposed to being imposed as equality constraints. The
objective function of the convex program developed here has
two terms: (i) the one previously used for the PF problem
in the noiseless case to deal with non-convexity, (ii) another
one added to account for the noisy measurements. We prove
that the penalized convex program precisely solves the PSSE
problem in the case of noiseless measurements as long as
the solution belongs to its associated recovery region (the
region includes solutions with small voltage angles). In the
noisy case, the SDP matrix solution of the convex program
may or may not have rank-1 due to corrupted measurements.
We design an algorithm to estimate the solution of the
PSSE problem from that of the penalized convex program,
and derive an upper bound on the estimation error. We
demonstrate the efficacy of the proposed technique on a large
test system with over 1000 buses.
A. Notations

The symbols R, R+ and C denote the sets of real,
nonnegative real and complex numbers, respectively. Sn
denotes the space of n× n real symmetric matrices and Hn
denotes the space of n × n complex Hermitian matrices.
Hn+ represents the set of positive semidefinite matrices in
Hn. Re{·}, Im{·}, rank{·}, trace{·}, det{·} and null{·}
denote the real part, imaginary part, rank, trace, determinant
and null space of a given scalar/matrix. diag{·} denotes the
vector of diagonal entries of a matrix. ‖ · ‖F denotes the
Frobenius norm of a matrix. The symbol 〈·, ·〉 represents
the Frobenius inner product of matrices. Matrices are shown
by capital and bold letters. The notations (·)T and (·)∗
denote transpose and conjugate transpose, respectively. The
imaginary unit is shown as

√
−1. The notation 〈A,B〉

represents trace{A∗B}, which is the inner product of A and
B. The notations ]x and |x| denote the angle and magnitude
of a complex number x. The notation W � 0 means that
W is a Hermitian and positive semidefinite matrix. Similarly,
W � 0 means that W is Hermitian and positive definite. The
(i, j) entry of W is denoted as Wij . 0n and 1n denote the
n× 1 vectors of zeros and ones, respectively. 0m×n denotes
the m×n zero matrix and In×n is the n×n identity matrix.
The notation |X | denotes the cardinality of a set X . For
an m × n matrix W, the notation W[X ,Y] denotes the
submatrix of W whose rows and columns are chosen form X
and Y , respectively, for given index sets X ⊆ {1, . . . ,m} and
Y ⊆ {1, . . . , n}. Similarly, W[X ] denotes the submatrix of
W induced by those rows of W indexed by X . The interior
of a set D ∈ Cn is denoted as int{D}.

II. PRELIMINARIES

Let N and L denote the sets of buses (nodes) and
branches (edges) of the power network under study. Denote

the number of buses as n and let pk and qk represent the
net active and reactive power injections at every bus k ∈ N .
Define p = [p1 p2 · · · pn]T and q = [q1 q2 · · · qn]T
as the vectors containing net injected active and reactive
powers, respectively. The complex voltage phasor at bus k
is denoted by vk, whose magnitude and phase are shown as
|vk| and ]vk, respectively. The vector of all nodal voltages
is shown as v. We orient the lines of the network arbitrarily
and define sf ;l = pf ;l + qf ;l

√
−1 and st;l = pt;l + qt;l

√
−1

as the complex power injections at the from and to ends of
each branch l ∈ L. Note that pf ;l and pf ;l denote the active
powers entered the line from both ends, while qf ;l and qf ;l
denote the reactive powers over the line.

Given an edge (j, k) ∈ L, let gjk + bjk
√
−1 denote the

admittance of the transmission line between nodes j and k.
Due to the passivity of the line, it is assumed that gjk ≥ 0 and
bjk ≤ 0. Define Y ∈ Cn×n as the admittance matrix of the
network. Likewise, define Yf ∈ C|L|×n and Yt ∈ C|L|×n
as the from and to branch admittance matrices, respectively.
These matrices satisfy the equations

i = Yv, if = Yfv, it = Ytv, (1)
where i ∈ Cn is the complex nodal current injection, and
if ∈ C|L| and it ∈ C|L| are the vectors of currents at the from
and to ends of branches, respectively. Although the results
to be developed in this paper hold for a general matrix Y,
we make a few assumptions to streamline the presentation:
• The network is a connected graph.
• Every line of the network consists of a series impedance

with nonnegative resistance and inductance.
• The shunt elements are ignored for simplicity in guaran-

teeing the observability of the network, which ensures
that Y × 1n = 0n.

The power balance equations can be expressed as p +
q
√
−1 = diag{vv∗Y∗}. Let

Y = G + B
√
−1, (2)

where G and B are the conductance and susceptance matri-
ces, respectively. For every k ∈ N , define

Ek , eke
∗
k, (3a)

Yp;k , (Y∗eke
∗
k + eke

∗
kY)/2, (3b)

Yq;k , (Y∗eke
∗
k − eke

∗
kY)/(2

√
−1) (3c)

where e1, . . . , en denote the standard basis vectors in Rn.
The nodal parameters |vk|2, pk and qk can be expressed as
the Frobenius inner-product of vv∗ with the matrices Ek,
Yp;k and Yq;k, respectively, i.e.,

|vk|2=〈vv∗,Ek〉, pk=〈vv∗,Yp;k〉, qk=〈vv∗,Yq;k〉, (4)

for every k ∈ N . Moreover, let d1, . . . ,d|L| denote the
standard basis vectors in R|L|. Given a line l ∈ L from
node i to node j, we define

Ypf ;l , (Y∗fdle
∗
i + eid

∗
lYf )/2, (5a)

Yqf ;l , (Y∗fdle
∗
i − eid

∗
lYf )/(2

√
−1), (5b)

Ypt;l , (Y∗tdle
∗
j + ejd

∗
lYt)/2, (5c)

Yqt;l , (Y∗tdle
∗
j − ejd

∗
lYt)/(2

√
−1) (5d)
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and then write the branch parameters pf ;l, qf ;l, pt;l and qt;l
as the inner product of vv∗ with the matrices Ypf ;l, Yqf ;l,
Ypt;l and Yqt;l as follows:

pf ;l = 〈vv∗,Ypf ;l〉, qf ;l = 〈vv∗,Yqf ;l〉,
pt;l = 〈vv∗,Ypt;l〉, qt;l = 〈vv∗,Yqt;l〉,

for every l ∈ L. Equations (4) and (6) offer a compact
formulation for common measurements in power networks.
A general state estimation problem with m measurements
can be formulated as finding a solution to a system of
quadratic equations of the form

xr = 〈vv∗,Mr〉+ ωr, r = 1, . . . ,m, (7)

where
• x1, . . . , xm are the known measurements/specifications.
• ω1, . . . , ωm are some unknown measurement noises,

with possibly known statistical information.
• M1, . . . ,Mm are some known n×n Hermitian matrices

(e.g., they could be any subset of the matrices defined
in (3) and (5)).

In the case where all noises ω1, . . . , ωm are equal to zero,
the above problem reduces to the well-known power flow
problem.

A. Semidefinite Relaxation

The state estimation problem, as a general case of the
power flow problem, is nonconvex due to the quadratic
matrix vv∗. Hence, it is desirable to convexify the problem.
By replacing the term vv∗ with a new matrix variable W,
the quadratic equations in (7) can be linearly formulated in
terms of W:

xr = 〈W,Mr〉+ ωr, r = 1, . . . ,m. (8)

Provided that the quadratic measurements x1, . . . , xm are
noiseless, solving the non-convex equations (7) is tantamount
to finding a rank-1 matrix W ∈ Hn+ satisfying the above
linear equations (because such a matrix W could then be
decomposed as vv∗). The problem of finding a matrix W ∈
Hn+ satisfying the linear equations in (8) is regarded as a
convex relaxation of (7) since it includes no restriction on
the rank of W. Although (7) normally has a finite number
of solutions whenever m ≥ 2n − 1, its SDP relaxation
(8) is expected to have infinitely many solutions because
the matrix variable W includes O(n2) scalar variables as
opposed to O(n). Hence, it is desirable to minimize a convex
function of W subject to the SDP relaxation of the noiseless
measurement constraints to make the solution unique.

B. Sensitivity Analysis

It is straightforward to verify that if v is a solution to the
state estimation problem, then αv is another solution of this
problem for every complex number α with magnitude 1. To
resolve the existence of infinitely many solutions due to a
simple phase shift, we assume that ]vk is equal to zero at
a pre-selected bus (named, slack bus).

Notation 1: Let O denote the set of all buses of the
network except for the slack bus. Then, the operating point

of the power system can be characterized in terms of the
real-valued vector

v ,
[
Re{v[N ]T} Im{v[O]T}

]T ∈ R2n−1. (9)

In addition, for every n×n Hermitian matrix X, the notation
X represents the following (2n− 1)× (2n− 1) real-valued
and symmetric matrix:

X =

[
Re{X[N ,N ]} −Im{X[N ,O]}
Im{X[O,N ]} Re{X[O,O]}

]
. (10)

Definition 1: Define the function A(v) : R2n−1 → Rm
as the mapping from the state of the power network (i.e.,
v) to the vector of noiseless specifications (i.e., x). The r-th
component of A(v) can be expressed as

Ar(v) , 〈vv∗,Mr〉, r = 1, . . . ,m.

Define also the sensitivity matrix JA(v) ∈ R(2n−1)×m as
the Jacobian of A(v) at the point v, which is equal to

JA(v) = 2
[
M1 v M2 v . . . Mm v

]
.

According to the inverse function theorem, if JA(v) has
full row rank, then the inverse of the function A(v) exists in
a neighborhood of the point v. Similarly, it follows from the
Kantorovich Theorem that, under the previous assumption,
the equation (7) can be solved using Newton’s method by
starting from any initial point sufficiently close to the point
v, provided that the measurements are noiseless. We will
show that the invertibility of JA(v) is beneficial not only for
Newton’s method but also for the SDP relaxation technique.

Definition 2: A vector of complex voltages v is said to
be observable through the system of equations (7) if JA(v)
has full row rank. Define JA ∈ Cn as the set of all such
observable voltage vectors.

The point v = 1n (associated with v = 1n) is often
regarded as a nominal state for: (i) the linearization of the
quadratic power flow equations, (ii) the initialization of local
search algorithms used for nonlinear power flow equations.
Throughout this paper, we assume that JA(1n) has full row
rank.

Assumption 1: The point 1n is observable through the
system of equations (7) (i.e., 1n ∈ JA).

We have shown in [22] that the above assumption holds
for the classical power flow problem to be stated next.

C. Classical Power Flow Problem

The power flow (PF) problem can be regarded as a
noiseless state estimation problem, for which ω1, ω2, . . . , ωm
are all equal to zero. As a special case of the PF problem,
the classical PF problem is concerned with the case where
the number of quadratic constraints (namely m) is equal to
2n − 1, the measurements are all at buses as opposed to a
combination of buses and lines, and there is no measurement
noise. To formulate the problem, three basic types of buses
are considered based on the parameters known at each bus:
• PQ bus: pk and qk are specified.
• PV bus: pk and |vk| are specified.
• The slack bus: |vk| is specified.
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Each PQ bus represents a load bus or possibly a generator
bus, whereas each PV bus represents a generator bus. Given
the specified parameters at every bus of the network, the
classical PF problem aims to solve the network equations
in order to find an operating point that fits the input values.
Note that Assumption 1 holds for the classical power flow
problem.

D. Noiseless Case
To be able to proceed with this paper, we review the key

results of [22] in this section. Consider the case where m =
2n− 1 and the measurements in (7) are noiseless:

xr = 〈vv∗,Mr〉, r = 1, . . . ,m. (11)

To solve this set of quadratic equations through a convex re-
laxation, we aim to propose a family of convex optimization
problems of the form

minimize
W∈Hn

〈W,M〉 (12a)

subject to 〈W,Mr〉 = xr, r = 1, . . . ,m, (12b)
W � 0, (12c)

where the matrix M ∈ Hn+ is to be designed. Unlike the
compressing sensing literature that assumes M = In, it is
desirable to contrive M such that the above problem yields a
unique rank-1 solution W from which a feasible solution v
can be recovered for (11). Notice that the existence of such
a rank-1 solution depends in part on its input specifications
x1, x2, . . . , xm. It is said that the SDP problem (12) solves
the set of equations (11) for the input x = [x1, x2, . . . , xm]T

if (12) has a unique rank-1 solution.
Definition 3: Given M ∈ Hn+, a voltage vector v is said

to be recoverable if W = vv∗ is the unique solution of
the SDP problem (12) for some x1, x2 . . . , xm ∈ R. Define
RA(M) as the set of all recoverable vectors of voltages.

Note that the set RA(M) is indeed the collection of all
possible operating points v that can be found through (12)
associated with different values of x1, x2, . . . , xm. In order
to narrow the search space for the matrix M, we impose
some conditions on this matrix below.

Assumption 2: The matrix M satisfies the properties:
• M � 0
• 0 is a simple eigenvalue of M
• The vector 1n belongs to the null space of M.

Note that if B is the susceptance matrix (defined in (2))
then −B satisfies Assumption 2. The next lemma reveals an
interesting property of (12).

Lemma 1 (see [22]): If Assumptions 1 and 2 hold and
v ∈ RA(M) ∩ JA, then strong duality holds between the
primal SDP (12) with the input x = A(v) and its dual.
Moreover, the vector

λA(v,M) , −2JA(v)−1M v (13)
is the unique vector of Lagrange multipliers associated with
the constraints in (12b).

Definition 4: Define Dn as the set of all n × n positive
semidefinite Hermitian matrices with the sum of two smallest
eigenvalues greater than 0.

The following theorem offers a nonlinear matrix inequality
to characterize the interior of the set of recoverable voltage
vectors, except for a subset of measure zero of this interior
at which the Jacobian of A(v) loses rank.

Theorem 1 (see [22]): If Assumptions 1 and 2 hold, then
the interior of the set RA(M) can be characterized as

int{RA(M)} ∩ JA = {v ∈ JA| FA(v,M) ∈ Dn},

where the matrix function FA :JA×Hn+ → Hn is defined as

FA(v,M) , M +

m∑
r=1

λrMr (14)

and λr denotes the rth entry of λA(v,M) defined in (13).
The following theorem shows that if Assumptions 1 and

2 hold, then the region RA(M) contains the nominal point
1n and a ball around it.

Theorem 2 (see [22]): If Assumptions 1 and 2 hold, then
the region RA(M) has a non-empty interior containing the
point 1n.

III. MAIN RESULTS

In the presence of measurement noises, the convex prob-
lem (12) may be infeasible (if m > 2n − 1) or result
in a poor approximate solution. To remedy this issue, a
standard approach is to estimate the noise values through
some auxiliary variables ν1, . . . , νm ∈ R. This can be
achieved by incorporating a regularization term φ : Rm → R
into the objective function that elevates the likelihood of the
estimated noise:

minimize
W∈Hn

ν∈Rm

〈W,M〉+ µ× φ(ν) (15a)

subject to 〈W,Mr〉+ νr = xr, r = 1, . . . ,m, (15b)
W � 0 (15c)

where µ > 0 is a fixed parameter. We refer to this problem
as the penalized convex problem. If the noise parameters
admit a zero mean Gaussian distribution with a covariance
matrix Σ = diag(σ2

1 , . . . , σ
2
m), then φ(ν) = φWLS(ν) and

φ(ν) = φWLAV(ν) lead to the weighted least square (WLS)
and weighted least absolute value (WLAV) estimators, where

φWLS(ν),
ν21
σ2
1

+· · ·+ ν2m
σ2
m

, (16a)

φWLAV(ν),
|ν1|
σ1

+· · ·+ |νm|
σm

(16b)

To solve the state estimation problem under study, we need to
address two questions: (i) how to deal with the nonlinearity
of the measurement equations, (ii) how to deal with noisy
measurements. The terms 〈W,M〉 and φ(ν) in the objective
function of the penalized convex problem (15) aim to handle
issues (i) and (ii), respectively. In fact, it can be observed that
• If µ = 0, the objective function (15a) reduces to
〈W,M〉, which may resolve the non-convexity of the
quadratic measurement equations by returning a rank-1
solution in the noiseless case, due to Theorem 2.

• If µ = +∞, the objective function (15a) is equivalent
to φ(ν) (i.e., 〈W,M〉 becomes unimportant). In this
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case, the resulting objective function aims to estimate
the noise values.

A question arises as to whether a finite value for µ could
integrate the benefits of the cases µ = 0 and µ = +∞.

Theorem 3: Suppose that Assumptions 1 and 2 hold, and
that m = 2n − 1. Consider a function φ(ν) : Rm → R+

such that
• φ(0m) = 0,
• φ(ν) = φ(−ν),
• φ(ν) is continuous, convex, and strictly increasing with

respect to all its arguments over the region Rm+ .
There exists a region T ⊆ Cn containing 1n and its
neighborhood such that, for every v ∈ T , the penalized
convex problem (15) with the input x = A(v) has a rank-1
solution, for every positive real number µ. Moreover, this
solution is unique if φ(·) is strictly convex.

Proof: Consider an arbitrary voltage vector v. Let
(Wopt,νopt) denote a solution of (15) with the input x =
A(v). Since (W,ν) = (1n1∗n,A(v)−A(1n)) is a feasible
point, one can write:

〈Wopt,M〉+ µ× φ(νopt)

≤ 〈1n1∗n,M〉+ µ× φ(A(v)−A(1n)). (17)

On the other hand, it follows from the relations M � 0 and
Wopt � 0 as well as Assumption 2 that

〈Wopt,M〉 ≥ 0 and 〈1n1∗n,M〉 = 0. (18)

Combining (17) and (18) leads to the inequality

φ(νopt) ≤ φ(A(v)−A(1n)). (19)

On the other hand,

‖(A(v)− νopt)−A(1n)‖ ≤ ‖A(v)−A(1n)‖+‖νopt‖
≤‖A(v)−A(1n)‖+max{‖ν‖ |φ(ν) ≤ φ(νopt)}
≤‖A(v)−A(1n)‖+max{‖ν‖ |φ(ν) ≤ φ(A(v)−A(1n))}.

Notice that as v approaches 1n, the right side of the above
inequality goes towards zero and hence A(v)−νopt becomes
arbitrarily close to A(1n). This implies that there exists a
region T ∈ Cn containing the point 1n and its neighborhood
such that

A(v)− νopt ∈ image{RA(M)}, ∀ v ∈ T (21)

where image{RA(M)} denotes the image of the region
RA(M) under the mapping A(·). In addition, the penalized
convex problem (15) can be written as

minimize
W∈Hn

〈W,M〉 (22a)

subject to 〈W,Mr〉=Ar(v)− νopt
r , r = 1, . . . ,m, (22b)

W � 0. (22c)

In other words, Wopt is a solution of the above prob-
lem. Moreover, it follows from (21) and Theorem 2 that
v(µ)v(µ)∗ is the only solution of (22) for every v ∈ T ,
where v(µ) is a vector satisfying the relation A(v(µ)) =
A(v) − νopt. As a result, the solution of (15) with the

input x = A(v) is rank-1 for every v in the region T .
Now, it remains to show that v(µ)v(µ)∗ is the only solution
of (15). To prove by contradiction, let (W̃opt, ν̃opt) denote
another solution of (15) with the input x = A(v). Due
to the strict convexity of φ(·), the vectors ν and ν̃ must
be identical. Hence, Wopt and W̃opt must both be optimal
solutions of (22). However, as stated earlier, v(µ)v(µ)∗ is the
unique solution of (22) whenever v ∈ T . This contradiction
completes the proof.

Theorem 3 considers a large class of φ(·) functions, in-
cluding WLS and WLAV. It states that the penalized convex
problem (15) associated with the PF problem always returns
a rank-1 solution as long as the PF solution v is sufficiently
close to 1n, no matter how small or big the mixing term µ
is. A question arises as to whether this rank-1 solution is
equal to the matrix vv∗ being sought. This problem will be
addressed below.

Theorem 4: Suppose that Assumptions 1 and 2 hold.
Given an arbitrary vector of voltages v ∈ RA(M)\{1n},
consider the penalized convex problem (15) with the input
x = A(v). The following statements hold:

i) If φ(ν) = φWLS(ν) and µ ∈ R+, then vv∗ cannot be
a solution of the penalized convex problem.

ii) If φ(ν) = φWLAV(ν) and µ is large enough, then vv∗

is a solution of the penalized convex problem.
Proof: For Part (i), assume that φ(ν) = φWLS(ν) and

consider the matrix (1 − ε)vv∗ + ε 1n1∗n. Since v 6= 1n,
this matrix is not rank-1. We aim to show that the objective
function of the penalized convex problem (15) is smaller
at the point W = (1 − ε)vv∗ + ε 1n1∗n than the point
W = vv∗, for a sufficiently small number ε ∈ R+. To this
end, notice that the function (15a) evaluated at W = vv∗ is
equal to

〈W,M〉+ µ× φ(ν) = 〈vv∗,M〉 (23)

(note that ν is equal to 0m in this case). On the other hand,
the function (15a) at W = (1 − ε)vv∗ + ε 1n1∗n can be
calculated as

〈W,M〉+ µ×φ(ν) = (1− ε)〈vv∗,M〉

+

m∑
r=1

ε2µ

σ2
r

(〈vv∗ − 1n1∗n,Mr〉)2 (24)

Note that since v 6= 1n, the term 〈vv∗,M〉 is strictly
positive. Therefore, when ε approaches zero, the first-order
term with respect to ε dominates the second-order term and
(24) becomes smaller than (23). This completes the proof of
Part (i).

Notice that if the constraint W � 0 were missing, Part (ii)
would have been an immediate consequence of the exact
penalty theorem. We adopt the proof of that theorem given
in [23] to prove Part (ii). Assume that φ(ν) = φWLS(ν), and
let ρ1(x) and ρ2(x) denote the optimal objective values of
the convex problems (12) and (15) as a function of the input
vector x. Due to the convexity of these problems, ρ1(x) and
ρ2(x) are both convex. Assume for now that m = 2n − 1.
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One can write:

ρ2(A(v)) = min
ν∈Rm

{
ρ1(A(v)− ν) + µ

m∑
r=1

|νr|
σr

}
. (25)

On the other hand, the Gradient of ρ1(A(v)− ν) at ν =
0m is equal to the unique vector λ given in (13). For every
arbitrary vector ν, it follows from the mean-value theorem
that there exists a number α ∈ [0, 1] such that

ρ1(A(v)− ν) = ρ1(A(v)) + λTν

+
1

2
νT ×∇2ρ1(A(v)− αν)× ν, (26)

where ∇2 is the Hessian operator. Therefore, when ν is
sufficiently small, we have

ρ1(A(v)− ν) + µ

m∑
r=1

|νr|
σr

= ρ1(A(v))

+
m∑
r=1

(
µ

σr
|νr|+ λrνr +O(ν2)

)
. (27)

It can be inferred from the above equation that ν = 0m is a
local minimum of the function

ρ1(A(v)− ν) + µ

m∑
r=1

|νr|
σr

(28)

if µ is greater than σr|λr| for r = 1, 2, ...,m. Note that
since ρ(·) is convex, any local minimum is a global solution
as well. Now, it follow from (25) that

ρ2(A(v)) = ρ1(A(v)−0m)+µ

m∑
r=1

|0|
σr

= ρ1(A(v)). (29)

This completes the proof for m = 2n−1. Now, consider the
case m > 2n− 1. It can be concluded from (25) that

ρ2(A(v)) ≤ ρ1(A(v)− 0m) + µ

m∑
r=1

|0|
σr

= ρ1(A(v)) (30)

and that

ρ2(A(v)) ≥ min
ν∈Rm

{
ρ1(A(v)− ν) + µ

2n−1∑
r=1

|νr|
σr

}
(31)

(note that the sum is taken up to r = 2n − 1 as opposed
to r = m). On the other hand, we proved earlier that if
µ is large enough, the right side of the above inequality is
equal to ρ1(A(v)). This implies that ρ2(A(v)) ≥ ρ1(A(v))
in light of (31). Combining this relation with (30) concludes
that ρ1(A(v)) = ρ2(A(v)).

Corollary 1: Suppose that Assumptions 1 and 2 hold, and
that φ(ν) = φWLAV(ν). There is a region containing 1n and
a neighborhood around this point such that the following
statements are satisfied for every v in this region:
• The penalized convex problem (15) with the input

x = A(v) has a rank-1 solution, for every positive real
number µ.

• There exists a positive real number µ0, such that the
penalized convex problem (15) with the input x = A(v)
has the unique solution vv∗ and solves the PF problem,
for every µ ≥ µ0.

Proof: The proof follows from Theorems 3 and 4.
Consider the case where the number of measurements (i.e.,

m) is greater than 2n−1 and all measurements are noiseless.
Let K ⊆ {1, . . . ,m} be a subset of the m measurement
equations with only 2n − 1 specifications. According to
Theorem 1, the vector v belongs to the recovery region
of the SDP relaxation problem (12) associated with the
measurements in K if the matrix FB(v,M) in (14) is
positive semidefinite and its second smallest eigenvalue is
strictly positive. In this case, it can be easily verified that the
SDP relaxation problem that includes all m measurements
(rather than only 2n− 1 specifications) also recovers v. The
next theorem generalizes the above result to the noisy case
and derives an upper bound on the estimation error in terms
of the energy of the noise.

Theorem 5: Suppose that Assumptions 1 and 2 hold.
Consider a vector of voltages v ∈ int{RB(M)}∩JA, where

B(v) =
[
〈vv∗,Mu1〉, . . . , 〈vv∗,Mu2n−1〉

]T
. (32)

and u1, . . . , u2n−1 ∈ {1, . . . ,m} correspond to an arbitrary
set of 2n − 1 linearly independent columns of JA(v). Let
(Wopt,νopt) denote an optimal solution of the penalized
convex problem (15) with the noisy input x = A(v) + ω
and φ(ν) = φWLAV(ν). There exists a scalar α > 0 such
that

‖Wopt−αvv∗‖F ≤2

√
µ×φWLAV(ω)×trace{Wopt}

ηn−1
, (33)

where ηn−1 is the second smallest eigenvalue of FB(v,M)
defined in (14).

Proof: The proof developed in [24] can be adopted
to prove this theorem. The details are omitted due to space
restrictions.

A. Rank-One Approximation Algorithm

The penalized convex problem (15) could be computation-
ally expensive for large-scale systems because of the high-
order conic constraint (15c). One method for tackling this
issue is to replace the single conic constraint (15c) with
several lower-order conic constraint as follows:

W{C1, C1}�0, W{C2, C2}�0, . . . , W{Cd, Cd}�0, (34)

where W{C1, C1},W{C2, C2}, . . . ,W{Cd, Cd} are principal
submatrices of W with rows and columns chosen from
C1, C1, . . . , Cd ⊆ N , respectively. C1, C1, . . . , Cd are some
possibly overlapping subsets of N that can be found through
a graph-theoretic analysis of the network graph, named tree
decomposition. This procedure breaks down the large-scale
conic constraint (15c) into several smaller ones. Due to the
sparsity and near planarity of power networks, the decom-
posed penalized convex problem can be significantly lower
dimensional. This is due to the fact that all entries of W
that do not appear in any of the above principal submatrices
could be removed from the optimization problem. These
entries of W, referred to as missing entries, can later be
found through a matrix completion algorithm, which enables
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a rank-1 decomposition of W for recovering a vector of
voltages [25].

In this work, we adopt an alternative approach for re-
covering the vector of voltages, which does not require
calculating the missing entries of W. Given an optimal
solution (Wopt{C1, C1}, . . . ,Wopt{Cd, Cd}) of the decom-
posed penalized convex problem, we obtain an approximate
solution ṽ of the set of equations (7) as follows:

1) Set the voltage magnitude |ṽk| :=
√
W opt
kk for k =

1, . . . , n.
2) Find the phases of the entries of ṽ by solving the convex

program:
minimize
θ∈[−π,π]n

∑
(i,j)∈L

∣∣]W opt
ij − θi + θj

∣∣ (35a)

subject to θo = 0, (35b)
where o ∈ N is the slack bus.

Note that the above approximation technique is exact in
the case where there exists a positive semidefinite filling
Wopt of the known entries such that rank{Wopt} = 1.
Under that circumstance, we have ](Wopt)ij−θi+θj = 0.
If there exists a non-rank-one matrix Wopt with a dominant
nonzero eigenvalue, then the above recovery method aims
to find a vector ṽ for which the corresponding line angle
differences are as closely as possible to those proposed by
(Wopt{C1, C1}, . . . ,Wopt{Cd, Cd}).

B. Zero Injection Buses
Real-world power networks have many intermediate buses

that do not exchange electrical powers with any external load
or generator. In this part, we will exploit this feature of power
systems to design a number of valid inequalities that can be
used to strengthen the convex problems (12) and (15).

Definition 5: A PQ bus k ∈ N is called a zero injection
bus if both active and reactive power injections at bus k are
equal to zero. Define Z as the set of all zero injection buses
of the network.

In the PSSE problem, we seek a solution v whose entries
are all nonzero. A zero voltage is regarded as grounding
the corresponding bus, which is highly undesirable. This
property will be exploited to derive valid inequalities in the
next lemma.

Lemma 2: If v is a solution to the power flow prob-
lem (11) with nonzero entries, then the equation

vv∗Y∗ek = 0n (36)

holds for every k ∈ Z .
Proof: Observe that

vv∗Y∗ek = (v∗k)
−1(vv∗Y∗eke

∗
kv)

= (v∗k)
−1[vv∗(Yp;k + Yq;k

√
−1)v]

= (v∗k)
−1[〈vv∗,Yp;k〉+ 〈vv∗,Yq;k〉

√
−1]v

= (v∗k)
−1(pk + qk

√
−1)v,

(37)

which concludes (36) since pk = qk = 0.
According to Lemma 2, the set of additional constraints

WY∗ek = 0n, k ∈ Z (38)

can be added to the convex problems (12) and (15) in
order to strengthen the relaxations. Notice that each bus
k ∈ Z has only two power constraints 〈W,Yp;k〉 = 0 and
〈W,Yq;k〉 = 0. However, equation (38) introduces 2n valid
scalar constraints for this bus, which would significantly
tighten the relaxations. Note that a large number of buses
in real-world transmission networks are zero injection buses.
As an example, more than one fifth of buses for Polish Grid
test systems are zero buses.

IV. SIMULATION RESULTS

Several papers have shown the superiority of the SDP
convex relaxation of the PSSE problem over Newton’s
method [17]–[22]. That convex relaxation is equivalent to
an unpenalized version of (15) by setting M = 0. We have
observed in many simulations on IEEE and Polish systems
that the penalized convex program with a nonzero matrix
M significantly outperforms the SDP convex relaxation of
PSSE. Due to space restrictions, we study only the PEGASE
1354-bus system in this paper [26]. Consider a positive
number c. Suppose that all measurements are subject to zero
mean Gaussian noises, where the standard deviations for
squared voltage magnitude, nodal active/reactive power, and
branch flow measurements are c, 1.5c and 2c times the cor-
responding noiseless values of squared voltage magnitudes,
nodal active/reactive powers, and branch flows, respectively.

Let M be equal to α × I − B, where the constant α is
chosen in such a way that α× I−B satisfies Assumption 2.
Consider three scenarios as follows:
• Scenario 1: This corresponds to the classical power

flow problem, where the measurements are taken at PV
and PQ buses. The measurements are then corrupted
with Gaussian noise values with c = 0.01.

• Scenario 2: This is built upon Scenario 1 by taking
extra measurements. More precisely, 10% of the line
flow parameters (the entries of pf , pt, qf and qt) are
randomly sampled and added to the measurements used
in Scenario 1.

• Scenario 3: This is the same as Scenario 2 with the
only difference that c = 0.05.

We have generated 20 random trials for each scenario and
solved the penalized convex program (15) for four objective
functions

f1(W,ν) , 〈M,W〉+ µ× φWLS(ν), (39a)

f2(W,ν) , 〈M,W〉+ µ× φWLAV(ν), (39b)

f3(W,ν) , φWLS(ν), (39c)

f4(W,ν) , φWLAV(ν), (39d)

with µ = 0.5. The root mean square errors of the recovered
nodal complex voltages are plotted in Figure 1. Note that
the curves corresponding to the objective functions f3 and
f4 are not shown in Figure 1(a) since they are significantly
higher than those for the functions f1 and f2.

In order to be able to solve the large-scale problem (15)
efficiently, we exploited the sparsity structure of the network.
More precisely, through a graph theoretic algorithm from
[16], the conic constraint of the penalized convex program
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Fig. 1: These plots compare the accuracy of estimated vector of voltages obtained through minimization of different objective functions for case PEGASE
1354-bus system and 20 randomly generated vector of noise values. In each case power flow measurements are available and (a): c = 0.01, (b): additional
10% of line flows are given and c = 0.01, and (c): additional 10% of line flows are given and c = 0.05.

was replaced by a set of low-order conic constraints (as
discussed in Subsection III-A). In order to preserve the
low-complex structure of the problem, only those valid
constraints in (38) that did not change the tree decomposition
of the underling optimization problem were imposed. The
total number of such valid scalar constraints chosen from
(38) and incorporated in (15) is equal to 1436.

V. CONCLUSIONS

This paper aims to find a convex model for the power
system state estimation (PSSE) problem. PSSE is central to
the operation of power systems, and has a high computational
complexity due to the nonlinearity of power flow equations.
In this work, we develop a family of penalized convex
problems to solve the PSSE problem. It is shown that each
convex program proposed in this paper finds the correct
solution of the PSSE problem in the case of noiseless
measurements, provided that the voltage angles are relatively
small. In presence of noisy measurements, it is proven
that the penalized convex problems are all able to find
an approximate solution of the PSSE problem, where the
estimation error has an explicit upper bound in terms of the
noise power. The objective function of each penalized convex
problem has two terms: one accounting for the non-convexity
of the power flow equations and another one for estimating
the noise level. Simulation results elucidate the superiority
of the proposed method.
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