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Abstract— This paper is concerned with obtaining the inverse
of polynomial functions using semidefinite programming (SDP).
Given a polynomial function and a nominal point at which
the Jacobian of the function is invertible, the inverse function
theorem states that the inverse of the polynomial function exists
at a neighborhood of the nominal point. In this work, we show
that this inverse function can be found locally using convex
optimization. More precisely, we propose infinitely many SDPs,
each of which finds the inverse function at a neighborhood of
the nominal point. We also design a convex optimization to
check the existence of an SDP problem that finds the inverse
of the polynomial function at multiple nominal points and a
neighborhood around each point. This makes it possible to
identify an SDP problem (if any) that finds the inverse function
over a large region. As an application, any system of polynomial
equations can be solved by means of the proposed SDP problem
whenever an approximate solution is available. The method
developed in this work is numerically compared with Newton’s
method and the nuclear-norm technique.

I. INTRODUCTION

Consider the feasibility problem

find x ∈ Rm (1a)
subject to P(x) = z, (1b)

for a given vector z ∈ Rq , where

P(x) , [P1(x), P2(x), . . . , Pq(x)]T (2)

and Pi : Rm → R is a multivariate polynomial for i =
1, . . . , q. The vector of variables x ∈ Rm can be interpreted
as the state of a system, for which the measurements or
specifications z1, ..., zq are known. Consider an arbitrary pair
(x0, z0) such that P(x0) = z0. The vector x0 is referred to
as a nominal point throughout this paper. If m = q and the
Jacobian of the function P(·) is invertible at the point x0,
then the inverse function P−1(z) exists in a neighborhood
of z0, in light of the inverse function theorem. A question
arises as to whether this inverse function can be obtained via
a convex optimization problem. This paper aims to address
the above problem using a convex relaxation technique.

Semidefinite programming (SDP) is a subfield of convex
optimization, which has received a considerable amount of
attention in the past two decades [1], [2]. More recently, SDP
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has been used to convexify hard non-convex optimization
problems in various areas, including graph theory, communi-
cation networks, and power systems [3]–[8]. For instance, the
maximum likelihood problem for multi-input multi-output
systems in information theory can be cast as an SDP problem
[9]. SDP relaxations are powerful in solving both polyno-
mial feasibility and polynomial optimization problems. SDP
relaxations naturally arise in the method of moments and
sum-of-squares techniques for finding a global minimum of
a polynomial optimization or checking the emptiness of a
semi-algebraic set [10]–[12].

This paper aims to exploit SDP relaxations to find the
inverse of a polynomial function around a nominal point.
The problem under study includes finding feasible solutions
for polynomial equations as a special case. It is well known
that checking the feasibility of a system of polynomial
equations is NP-hard in general. Some classical approaches
for obtaining a feasible point (if any) are Newton’s method,
Grobner bases, and homotopy. In many applications, an
initial guess is available, which could be utilized as a starting
point for finding an exact solution of (1). Newton-based
methods benefit from a local convergence property, meaning
that if the initial guess is close enough to a solution of
(1), then these algorithms are guaranteed to converge after a
modest number of iterations. However, the basin of attraction
(the set of all such initial states) could be fractal, which
makes the analysis of these methods hard [13], [14].

As a classic result, every system of polynomial equations
can be reformulated as a system of quadratic equations
by a change of variables [15]. Due to this equivalence,
every polynomial optimization problem can be transformed
into a quadratically-constrained quadratic program (QCQP),
whose complexity is extensively studied in the literature
[16], [17]. This transformation can be performed using a
lifting technique (by introducing additional variables and
constraints). In this work, we transform the polynomial
feasibility problem (1) into a quadratic feasibility problem
in a way that the invertibility of the Jacobian is preserved
through this transformation (as needed by both the inverse
function theorem and our approach).

By working on the quadratic formulation of the problem,
we show that there are infinitely many SDP relaxations
that have the same local property as Newton’s method, and
moreover their regions of attractions can all be explicitly
characterized via nonlinear matrix inequalities. More pre-
cisely, for a given nominal pair of vectors x0 ∈ Rm and
z0 ∈ Rq satisfying the relation P(x0) = z0, we present a
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family of SDP relaxations that solve the feasibility problem
(1) precisely as long as the solution belongs to a recoverable
region. It is shown that this region contains x0 and a ball
around it. As a result, the solution of the SDP relaxation,
which depends on its input z, is automatically the inverse
function P−1(z) over the recoverable region. Associated
with each SDP in the proposed class of SDP problems,
we characterize the recoverable region. We also study the
problem of identifying an SDP relaxation whose recoverable
region is relatively large and cast it as a convex optimization.

Our approach to finding the inverse function P−1(z)
locally is based on four steps: (i) transforming (1) into a
quadratic problem, (ii) converting the quadratic formulation
to a rank-constrained matrix feasibility problem, (iii) drop-
ping the rank constraint, (iv) changing the matrix feasibility
problem to an SDP optimization problem by incorporating a
linear objective. The literature of compressed sensing consid-
ers the trace of the matrix variable as the objective function
[18]–[20]. As opposed to the trace function that works only
under strong assumptions (such as certain randomness), we
consider a general linear function and design it in such a way
that the SDP relaxation finds the inverse function P−1(z) at
least locally.

In this work, we precisely characterize the region of
solutions that can be found using an SDP relaxation of (1).
Roughly speaking, this region is provably larger for over-
specified problems, i.e., whenever q > m. In particular,
if q is sufficiently larger than m, the recoverable region
would be the entire space (because in the extreme case the
feasible set of the SDP relaxation becomes either empty or
a single point). Over-specified systems of equations have
applications in various problems, such as state estimation for
wireless sensor networks [21], communication systems [22]
and electric power systems [23]. We will demonstrate the
efficacy of the proposed method for over-specified systems
in a numerical example.

A. Notations

The symbols R and Sn denote the sets of real numbers
and n × n real symmetric matrices, respectively. rank{·},
trace{·}, and det{·} denote the rank, trace, and determinant
of a given scalar/matrix. ‖ · ‖F denotes the Frobenius norm
of a matrix. Matrices are shown by capital and bold letters.
The symbol (·)T denotes the transpose operator. The notation
〈A,B〉 represents trace{ATB}, which is the inner product
of A and B. The notation W � 0 means that W is a
symmetric and positive semidefinite matrix. Also, W � 0
means that it is symmetric and positive definite. The (i, j)
entry of W is denoted as Wij . The interior of a set D ∈ Rn

is denoted by int{D}. The notation null(·) denotes the null
space of a matrix. 0n and 1n denote the n × 1 vectors of
zeros and ones, respectively.

II. PRELIMINARIES

Consider the arbitrary system of polynomial equations (1).
This feasibility problem admits infinitely many quadratic

formulations as

find v ∈ Rn (3a)
subject to Fi(v) = yi, i = 1, 2, . . . , l, (3b)

where F1, F2, . . . , Fl : Rn → R are quadratic and homo-
geneous functions. For every i ∈ {1, ..., l}, Fi(v) can be
expressed as vTMiv for some symmetric matrix Mi. Define

F(v) , [F1(v), F2(v), . . . , Fl(v)]T . (4)

To elaborate on the procedure of obtaining the above
quadratic form, a simple illustrative example will be
provided below.

Illustrative example: Consider the system of polynomial
equations

P1(x) , 3x3
1x2 − x2

2 + 1 = 0, (5a)

P2(x) , 2x1 + x4
2 − 4 = 0. (5b)

Define

v(x) , [1 x1 x2
1 x2 x2

2 x1x2]T . (6)

Let vi(x) denote the i-th component of v(x) for i =
1, . . . , 6. The system of polynomial equations in (5) can be
reformulated in terms of the vector v(x):

3v3(x)v6(x)− v2
4(x) + v2

1(x) = 0, (7a)

2v2(x)v1(x) + v2
5(x)− 4v2

1(x) = 0, (7b)

v3(x)v1(x)− v2
2(x) = 0, (7c)

v5(x)v1(x)− v2
4(x) = 0, (7d)

v6(x)v1(x)− v2(x)v4(x) = 0, (7e)

v2
1(x) = 1, (7f)

The four additional equations (7c), (7d), (7e) and (7f) capture
the structure of the vector v(x) and are added to preserve
the equivalence of the two formulations. For notational
simplicity, the short notation v is used for the variable v(x)
henceforth.

A. Invariance of Jacobian

Given an arbitrary function G : Rm′ → Rq′ , we denote
its Jacobian at point x ∈ Rm′

as

∇G(x) =

[
∂Gj(x)

∂xi

]
i=1,...,m′; j=1,...,q′

. (8)

Note that some sources define the Jacobian as the transpose
of the m′×q′ matrix given in (8). The method to be proposed
for finding the inverse function P−1(x) at a neighborhood
of x0 requires the Jacobian ∇P(x0) to have full rank at the
nominal point x0. Assume that this Jacobian matrix has full
rank. Consider the equivalent quadratic formulation (3) and
let v0 denote the nominal point for the reformulated problem
associated with the point x0 for the original problem. A
question arises as to whether the full-rank assumption of the
Jacobian matrix is preserved through the transformation from
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(1) to (3). It will be shown in the appendix that the quadratic
reformulation can be done in a way that the relation

∇P(x0) = full rank ⇐⇒ ∇F(v0) = full rank (9)

is satisfied. The quadratic reformulation can be obtained in
line with the illustrative example provided earlier. Note that
the Jacobian of F(v) can be obtained as

∇F(v) = 2[M1v M2v . . . Mlv]. (10)

Definition 1: Define IF as the set of all vectors v ∈ Rn

for which ∇F(v) has full row rank.

B. SDP relaxation

Observe that the quadratic constraints in (3b) can be
expressed linearly in terms of the matrix vvT ∈ Sn, i.e.,

vTMiv = 〈Mi,vvT 〉. (11)

Therefore, problem (3) can be cast in terms of a matrix
variable W ∈ Sn that replaces vvT :

find W ∈ Sn (12a)
subject to 〈Mi,W〉 = yi, i = 1, 2, . . . , l, (12b)

W � 0, (12c)
rank(W) = 1. (12d)

By dropping the constraint (12d) from the above non-convex
optimization, and by penalizing its effect through minimizing
an objective function, we obtain the following SDP problem.

Primal SDP:

minimize
W∈Sn

〈M,W〉 (13a)

subject to 〈Mi,W〉 = yi, i = 1, . . . , l (13b)
W � 0. (13c)

We intend to design the objective of the above SDP problem,
namely the matrix M, to guarantee the existence of a unique
and rank-1 solution.

Definition 2: For a given positive semidefinite matrix
M ∈ Sn, define RF(M) as the region of all vectors v ∈ Rn

for which vvT is the unique optimal solution of the SDP
problem (13) for some vector y = [y1, . . . , yl]

T .

Given an arbitrary input vector y, a solution v of the
equation F(v) = y can be obtained from the primal SDP
problem if and only if v ∈ RF(M). As shown earlier in
an illustrative example and in particular equation (6), the
variable v of the quadratic formulation (3) is a function of
the variable x of the original problem (1). In other words, v
should technically be written as v(x). This fact will be used
in the next definition.

Definition 3: For a given positive semidefinite matrix
M ∈ Sn, define RP(M) as the region of all vectors x ∈ Rm

for which the corresponding vector v(x) belongs to RF(M).

Given an arbitrary input vector z, a solution x of the
equation P(x) = z can be obtained from the primal SDP

problem if and only if x ∈ RP(M). In the next section, we
will show that RP(M) contains the nominal point x0 and a
ball around this point in the case m = q. This implies that
the inverse function x = P−1(z) exists in a neighborhood
of z0 and can be obtained from an eigenvalue decomposition
of the unique solution of the primal SDP problem (note that
F−1(y)F−1(y)T becomes the “argmin” of the SDP problem
over that region).

III. MAIN RESULTS

It is useful to consider the dual of the problem (13), which
is stated below.

Dual SDP:

minimize
u∈Rl

yTu (14a)

subject to BF(M,u) � 0 (14b)

where u ∈ Rl is the vector of dual variables and BF :
Sn × Rl → Sn is defined as

BF(M,u) , M +

l∑
i=1

uiMi. (15)

Definition 4: Given a nonnegative number ε, define Pn
ε as

the set of all n×n positive semidefinite symmetric matrices
with the sum of the two smallest eigenvalues greater than ε.

The following lemma provides a sufficient condition for
strong duality.

Lemma 1: Suppose that M ∈ Pn
0 and null(M) ⊆ IF.

Then, strong duality holds between the primal SDP (13) and
the dual SDP (14).

Proof: In order to show the strong duality, it suffices
to build a strictly feasible point u for the dual problem. If
M � 0, then u = 0 is a candidate. Now, assume that M
has a zero eigenvalue. This eigenvalue must be simple due
to the assumption M ∈ Pn

0 . Let h ∈ Rn be a nonzero
eigenvector of M corresponding to its eigenvalue 0. The
assumption null(M) ⊆ IF implies that

hT [M1h M2h . . . Mlh] 6= 0.

Therefore, the relation hTMkh 6= 0 holds for at least one
index k ∈ {1, . . . , l}. Let e1, . . . , el be the standard basis
vectors for Rl. Set u = c × ek, where c is a nonzero
number with an arbitrarily small absolute value such that
chTMkh > 0. Then, one can write

BF(M,u) = M + cMk � 0

if c is sufficiently small.
Lemma 2: Suppose that M ∈ Pn

0 and null(M) ⊆ IF. Let
v ∈ IF be a feasible solution of problem (3) and u ∈ Rl be
a feasible point for the dual SDP (14). The following two
statements are equivalent:
i) (vvT ,u) is a pair of primal and dual optimal solutions

for the primal SDP (13) and the dual SDP (14),
ii) v ∈ null(BF(M,u)).
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Proof: (i) ⇒ (ii): According to Lemma 1, strong
duality holds. Due to the complementary slackness, one can
write

0 = 〈vvT ,BF(M,u)〉
= trace

{
vvTBF(M,u)

}
= vTBF(M,u)v. (16)

On the other hand, it follows from the dual feasibility that

BF(M,u) � 0,

which together with (16) concludes that BF(M,u)v = 0.
(ii)⇒ (i): Since v ∈ IF is a feasible solution of (3), the

matrix vvT is a feasible point for (13). On the other hand,
since v ∈ null(BF(M,u)), we have

〈vvT ,BF(M,u)〉 = 0,

which certifies the optimality of the pair (vvT ,u).
Lemma 2 is particularly interesting in the special case

n = l (or equivalently m = q). In the sequel, we first study
the case where the numbers of equations and parameters are
the same, and then generalize the results to the case where
the number of equations exceeds the number of unknown
parameters. The latter scenario is referred to as an over-
specified problem.

A. Region of Recoverable Solutions

In this subsection, we assume that the number of equations
is equal to the number of unknowns, i.e., l = n. Given a
positive semidefinite matrix M ∈ Pn

0 , we intend to find
the region RF(M), i.e., the set of all vectors that can be
recovered using the convex problem (13).

Definition 5: Define the function of Lagrange multipliers
Λ : Sn×IF → Rl and the matrix function A : Sn×IF → Sn
as follows:

ΛF(M,v) , −2(∇F(v))−1Mv

AF(M,v) , BF(M,ΛF(M,v)).

Lemma 3: Suppose that n = l and let v ∈ IF. Then, we
have v ∈ null(BF(M,u)) if and only if

u = ΛF(M,v) (17)
Proof: The equation BF(M,u)v = 0 can be rear-

ranged as

[M1v M2v . . . Mnv]u = −M v.

Now, the proof follows immediately from the invertibility of
∇F(v).

Whenever the SDP relaxation is exact, Lemmas 2 and 3
offer a closed-form relationship between a feasible solution
of the problem (3) and an optimal solution of the dual
problem (13), through the equation (17).

Since∇F(v0) is invertible due to (9), the region Rn\IF is
a set of measure zero in Rn. In what follows, we characterize
the interior of the region RF(M) restricted to IF. It will be
later shown that this region has dimension n. As a result, the

next theorem is able to characterize RF(M) after excluding
a subset of measure zero.

Theorem 1: Consider the case n = l. For every matrix
M ∈ Pn

0 with the property null(M) ⊆ IF, the equality

IF ∩ int(R(M)) = {v ∈ IF |AF(M,v) ∈ Pn
0 }

holds.

Proof: We first need to show that {v ∈
IF | AF(v,M) ∈ Pn

0 } is an open set. Consider a vector
v such that AF(v,M) ∈ Pn

0 and let δ denote the second
smallest eigenvalue of AF(v,M). Due to the continuity of
det{∇F(·)} and AF(·,M), there exists a neighborhood B ∈
Rn around v such that for every v′ within this neighborhood,
AF(v′,M) is well defined (i.e., v′ ∈ IF) and

‖AF(v′,M)−AF(v,M)‖F <
√
δ. (18)

It follows from an eigenvalue perturbation analysis that
AF(v′,M) ∈ Pn

0 for every v′ ∈ B. This proves that
{v ∈ IF | AF(v,M) ∈ Pn

0 } is an open set. Now, consider
a vector v ∈ IF such that AF(v,M) ∈ Pn

0 . The objective is
to show that v ∈ int{RF(M)}. Notice that since AF(v,M)
is assumed to be in the set Pn

0 , the vector ΛF(v,M) is
a feasible point for the dual problem (14). Therefore, it
follows from Lemmas 2 and 3 that the matrix vvT is an
optimal solution for the primal problem (13). In addition,
every solution W must satisfy

〈AF(v,M),W〉 = 0. (19)

According to Lemma 3, v is an eigenvector of AF(v,M)
corresponding to the eigenvalue 0. Therefore, since
AF(V,M) � 0 and rank{AF(v,M)} = n − 1, every
positive semidefinite matrix W satisfying (19) is equal to
cvvT for a nonnegative constant c. This concludes that vvT

is the unique solution to (13), and therefore v belongs to
RF(M). Since {v ∈ IF | AF(v,M) ∈ Pn

0 } is shown to be
an open set, the above result can be translated as

{v ∈ IF | AF(v,M) ∈ Pn
0 } ⊆ int{RF(M)} ∩ IF. (20)

In order to complete the proof, it is requited to show that
int{RF(M)} ∩ IF is a subset of {v ∈ IF | AF(v,M) ∈
Pn

0 }. To this end, consider a vector v ∈ int{RF(M)}∩IF.
This means that vvT is a solution to (13), and therefore
AF(v,M) � 0, due to Lemma 2. To prove the aforemen-
tioned inclusion by contradiction, suppose that AF(v,M) /∈
Pn

0 , implying that 0 is an eigenvalue of AF(v,M) with
multiplicity at least 2. Let v̂ denote a second eigenvector
corresponding to the eigenvalue 0 such that vT v̂ = 0. Since
v ∈ IF, in light of the inverse function theorem, there exists
a constant ε0 > 0 with the property that for every ε ∈ [0, ε0],
there is a vector wε ∈ Rn satisfying the relation

F(wε) = F(v) + εF(v̂). (21)

This means that the rank-2 matrix

W = vvT + εv̂v̂T (22)
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is a solution to the problem (13) associated with the dual
certificate AF(v,M), and therefore wε /∈ RF(M). This
contradicts the previous assumption that v ∈ int{R(M)}.
Therefore, we have AF(v,M) ∈ Pn

0 , which completes the
proof.

The next theorem states that the region RF(M) has
dimension n around the nominal point v0.

Theorem 2: Consider the case l = n and the nominal
point v0. Let M be a matrix such that M ∈ Pn

0 and
v0 ∈ null(M). Then, we have v0 ∈ int(RF(M)).

Proof: The proof is omitted due to its similarity to the
proof of Theorem 4.

Remark 1: Consider an arbitrary matrix M ∈ Pn
0

such that v0 ∈ null(M). Theorem 2 states that v0 ∈
int(RF(M)). This concludes that x0 ∈ int(RP(M)), mean-
ing that RP(M) contains the nominal point x0 and a ball
around this point. This implies that the inverse function
x = P−1(z) exists in a neighborhood of z0 and can be
obtained from an eigenvalue decomposition of the unique
solution of the primal SDP problem.

Since there are infinitely many M’s satisfying the con-
ditions of Theorem 2, it is desirable to find one whose
corresponding region RF(M) is large (if there exists any
such matrix). To address this problem, consider an arbitrary
set of vectors v1, . . . ,vr ∈ IF. The next theorem explains
that the problem of finding a matrix M such that

v1, . . . ,vr ∈ int(RF(M)) (23)

or certifying the non-existence of such a matrix can be cast
as a convex optimization.

Theorem 3: Consider the case n = l. Given r arbitrary
points v1, . . . ,vr ∈ IF, consider the problem

find M ∈ Sn (24a)
subject to AF(vr,M) ∈ Pn

ε , l = 1, 2, . . . , r (24b)
M ∈ Pn

ε (24c)
Mv0 = 0 (24d)

where ε > 0 is an arbitrary constant. The following state-
ments hold:

i) The feasibility problem (24) is convex.
ii) There exists a matrix M satisfying the conditions given

in Theorem 2 whose associated recoverable set RF(M)
contains v0,v1, . . . ,vr and a ball around each of these
points if and only if the convex problem (24) has a
solution M.
Proof: Part (i) is implied by the fact that the sum of the

two smallest eigenvalues of a matrix is a concave function
and that AF(vr,M) is a linear function with respect to M.
Part (ii) follows immediately from Theorem 1.

B. Over-specified Systems

The results presented in the preceding subsection can all
be generalized to the case l > n. We will present one of
these extensions below.

Theorem 4: Consider the case l > n. Let M be a matrix
such that M ∈ Pn

0 and v0 ∈ null(M). The relation v0 ∈
int(RF(M)) holds.

Proof: Let h1, . . . , hn ∈ {1, . . . , l} correspond to a set
of n linearly independent columns of ∇F(v0). Define the
function H : Rn → Rn as

H(v) , [Fh1
(v), . . . , Fhn

(v)]T (25)

Observe that RH(M) ⊆ RF(M). On the other hand, since
Mv0 = 0, we have

ΛH(v0,M) = 0n, (26)

which concludes that

AH(v0,M) = M ∈ Pn
0 . (27)

Therefore, it follows from Theorem 1 that v0 ∈
int{RH(M)} and therefore v0 ∈ int{RF(M)}

IV. NUMERICAL EXAMPLES

In this section, we will provide two examples to illustrate
the results of this work.

Example 1: Consider the polynomial function P(x) :
R4 → R4 defined as

P1(x) = 3x5
1x3x

4
4 − x2

2x
3
3 + 3x1x2x3x

2
4 (28)

P2(x) = 2x1x2x3x4 − 3x2
1x3x

4
4 + x3

3x
2
4 (29)

P3(x) = x4
1x

2
2x

3
3 − 3x2

2x
2
3x4 (30)

P4(x) = −2x4
1x

2
4 + 6x1x2x

2
3 − x2

3x
2
4. (31)

The objective is to solve the feasibility problem P(x) =
z for an input vector z. Let x0 = [−1 − 1 − 2 1]T be
the nominal point (a guess for the solution). To solve the
equation P(x) = z, we use the primal SDP problem, where
the matrix M in its objective is designed based on Theorem 2
(by solving a simple convex optimization problem to pick
one matrix out of infinitely many candidates). Consider the
region RP(M), which is the set of all points x that can be
recovered by the primal SDP problem. To be able to visualize
this recoverable region in a 2-dimensional space, consider the
restriction of RP(M) to the subspace {x |x3 = −2, x4 = 1}
(these numbers are borrowed from the third and fourth entries
of the nominal point x0). The region RP(M) after the above
restriction can be described as{

(x1, x2)
∣∣ [x1 x2 − 2 1]T ∈ RP(M)

}
(32)

This set is drawn in Figure 1(a) over the box [−2, 0] ×
[−3, 0]. It can be seen that (−1,−1) is an interior point of
this set, as expected from Theorem 2. Note that if M is cho-
sen as I (identity matrix), as prescribed by the compressed
sensing literature [19], its corresponding recoverable region
restricted to the subspace {x | x3 = −2, x4 = 1} becomes
empty (i.e., the SDP problem never works).

To compare the proposed technique with Newton’s
method, consider the feasibility problem P(x) = z for a
given input vector z. To find x, we can use the nominal
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(a) (b)

Fig. 1: Example 1: (a) recoverable region using the primal SDP problem, (b) recoverable region using Newton’s method.

(a) (b)

Fig. 2: Example 2: (a) recoverable region using the primal SDP problem with M designed based on the reference point,
(b) recoverable region using the primal SDP problem with M = I .

point x0 for the initialization of Newton’s method. Consider
the set of all points x that can be found using Newton’s
method for some input vector z. The restriction of this set to
the subspace {x |x3 = −2, x4 = 1} is plotted in Figure 1(b).
This region is complicated and has some fractal properties,
which is a known feature of Newton’s method [13], [14].
The superiority of the proposed SDP problem over Newton’s
method can be seen in Figures 1(a) and (b).

Example 2: The objective of this example is to compare
the proposed technique for designing M with the commonly-
used choice M = I in the context of the matrix completion
problem [19], [24]. Consider a rank-1 positive semidefinite
20× 20 matrix in the form of xxT , where x is an unknown
vector. Assume that the entries of this matrix are known at

30 fixed locations, and the aim is to recover the vector x.
Similarly to Example 1, we restrict the recoverable region
to a 2-dimensional space to be able to visualize the set. To
do so, assume that the last 18 entries of x are restricted
to certain fixed numbers, while the first two entries can
take any values in the finite grid {−200,−199, ..., 0} ×
{−200,−199, ..., 0}. We design a matrix M using the ref-
erence point (−100,−100) in the above grid (by solving a
simple convex optimization problem based on Theorem 3).
The region RP(M) after the aforementioned restriction is
drawn in Figure 2(a). This means that the SDP problem finds
the right solution of the matrix completion problem if the
unknown solution belongs to this region. The corresponding
region for M = I is depicted Figure 2(b), which is a subset
of the region given in Figure 2(a).
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V. CONCLUSIONS

Consider an arbitrary polynomial function together with a
nominal point, and assume that the Jacobian of the function is
invertible at this point. Due to the inverse function theorem,
the polynomial function is locally invertible around the
nominal point. This paper proposes a convex optimization
method to find the inverse function. In particular, infinitely
many semidefinite programs (SDPs) are proposed such that
each SDP finds the inverse function over a neighborhood
of the nominal point. The problem of designing an SDP that
obtains the inverse function over a large region is also studied
and cast as convex optimization. One main application of
this work is in solving systems of polynomial equations. The
benefits of the proposed approach over Newton’s method and
the nuclear-norm technique are numerically demonstrated.
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APPENDIX

To convert an arbitrary polynomial feasibility problem to
a quadratic feasibility problem, we perform two operations
as many times as necessary:
• Select an arbitrary monomial in the polynomial func-

tion.
• Replace all occurrences of that monomial with a new

slack variable.
• Impose an additional constraint stating that the removed

monomial is equal to the new slack variable.
The above operations preserve the full rank property of the
Jacobian matrix. To prove this by induction, consider an
arbitrary monomial and denote it as Pq+1(x). Consider the
following two operations:

i) Replace every occurrence of Pq+1(x) in
P1(x), . . . , Pq(x) with xm+1.

ii) Add a new slack variable xm+1 to the problem together
with the constraint

Pq+1(x)− xm+1 = 0,

Now, the problem (1) can be reformulated as

find x̄ ∈ Rm+1 (33a)
subject to Qi(x̄) = 0, i = 1, . . . , q + 1, (33b)

where the polynomials Q1, . . . , Qq+1 : Rm+1 → R satisfy
the equations:

Qi (x, Pq+1(x)) = Pi(x)− zi for i = 1, . . . , q

Qq+1 (x, Pq+1(x)) = Pq+1(x)− xm+1.

Now, we have

P(x) =

 P1(x)
...

Pq(x)

 =

 Q1(x, Pq+1(x))− z1

...
Qq(x, Pq+1(x))− zq

 .
Define Q : Rm+1 → Rq+1 as

Q(x̄) , [Q1(x̄), Q2(x̄), . . . , Qq+1(x̄)]T . (34)

Theorem 5: The following statements hold:
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i) When the number of equations is equal to the number
of unknowns (i.e., q = m), we have

|det{∇P}| = |det{∇Q}| (35)

ii) In general, the matrix ∇P has full row rank if and only
if ∇Q has full row rank.
Proof: To prove Part (i), define s : Rm → Rm+1 as

follows

s(x) , (x, Pq+1(x)). (36)

Also, for simplicity, define the following operators:

∇+ ,

(
∂

∂x1
, . . . ,

∂

∂xm
,

∂

∂xm+1

)
,

∇− ,

(
∂

∂x1
, . . . ,

∂

∂xm

)
. (37)

Using the chain rule, we get

∂Pi(x)

∂xj
=
∂Qi(s(x))

∂xj
+
∂Qi(s(x))

∂xm+1

∂Pq+1(x)

∂xj
, (38)

which could be written as

∂Pi(x)

∂xj
=
∂Qi(x̄)

∂xj
+
∂Qi(x̄)

∂xm+1

∂Pq+1(x)

∂xj
. (39)

Consequently,

∇−Pi(x) = ∇+Qi(x̄)×
[

I
∇−Pq+1(x)

]
. (40)

Therefore,

(∇P)T =

 ∇
+Q1(x̄)

...
∇+Qq(x̄)

[ I
∇−Pq+1(x)

]
. (41)

On the other hand, ∇
+Q1(x̄)

...
∇+Qq(x̄)

 =


∇−Q1(x̄) ∂Q1(x̄)

∂xm+1

...
...

∇−Qq(x̄)
∂Qq(x̄)
∂xm+1

 , (42)

Hence,

(∇P)T =

 ∇
+Q1(x̄)

...
∇+Qq(x̄)

[ I
∇−Pq+1(x)

]

=

 ∇
−Q1(x̄)

...
∇−Qq(x̄)

+


∂Q1(x̄)
∂xm+1

...
∂Qq(x̄)
∂xm+1

∇−Pq+1(x) . (43)

Now, consider the Jacobian of Q:

(∇Q)T =


∇+Q1(x̄)

...
∇+Qq(x̄)
∇+Qq+1(x̄)



=


∇−Q1(x̄) ∂Q1(x̄)

∂xm+1

...
...

∇−Qq(x̄)
∂Qq(x̄)
∂xm+1

∇−Pq+1(x) −1

 . (44)

According to (43) and (44) and using Schur’s complement,
we conclude that

|det{∇P}| = |det{∇Q}| (45)

Part (ii) can be proven similarly.
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