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Abstract— This paper is concerned with the security-
constrained optimal power flow (SCOPF) problem, where each
contingency corresponds to the outage of an arbitrary number
of lines and generators. The problem is studied by means of
a convex relaxation, named semidefinite program (SDP). The
existence of a rank-1 SDP solution guarantees the recovery of
a global solution of SCOPF. We prove that the rank of the
SDP solution is upper bounded by the treewidth of the power
network, which is perceived to be small in practice. We then
propose a decomposition method to reduce the computational
complexity of the relaxation. In the case where the relaxation
is not exact, we develop a graph-theoretic convex program to
identify the problematic lines of the network and incorporate
the loss over those lines into the objective as a penalization
(regularization) term, leading to a penalized SDP problem. We
perform several simulations on large-scale benchmark systems
and verify that the penalized relaxation is able to find feasible
solutions that are at most 1% away from the unknown global
minima.

I. INTRODUCTION

The classical optimal power flow (OPF) problem aims to
find a steady-state operating point of a power system that
minimizes a desirable cost function, e.g. power loss or gen-
eration cost, and satisfies network and physical constraints
on loads, powers, voltages and line flows [1]. The OPF
problem is not only non-convex but also NP-hard, due to its
possible reduction to the (0,1)-quadratic optimization. Started
by the work [2] in 1962, many of the existing optimization
techniques have been studied for the OPF problem, leading to
algorithms based on linear programming, Newton Raphson,
quadratic programming, nonlinear programming, Lagrange
relaxation, interior point method, artificial intelligence, arti-
ficial neural network, fuzzy logic, genetic algorithm, evolu-
tionary programming and particle swarm optimization [3].
Due to the non-convexity of OPF, these algorithms are not
robust, lack performance guarantees, and may not find a
global optimum.

By exploiting the physical properties of transmission lines,
it has been argued in the series of work [4]–[12] that the
classical OPF problem corresponding to a practical power
system may be convexified and solved efficiently through
a semidefinite programming (SDP) relaxation. In particular,
the paper [13] shows that the SDP relaxation is exact in
two cases under certain technical assumptions: (i) for acyclic
networks, (ii) for cyclic networks after relaxing the angle
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constraints. However, the SDP relaxation is not always exact
for a general mesh network [14]–[17]. To ameliorate the
issue, we have recently shown in [18] that: (i) the exactness
of the SDP relaxation depends on the formulation of the line
capacity constraints, and (ii) the penalization of total reactive
loss may enable the recovery of a near-global solution (i.e.,
a solution that is measurably close to a global minimum) for
modest-sized systems (as verified in 7000 simulations).

The major drawback of representing the optimal power
flow problem as a semidefinite program is the requirement
of defining a square matrix variable, which makes the number
of scaler variables of the problem quadratic with respect
to the number of network buses. This may yield a very
high-dimensional SDP problem for a real-world network. To
address this issue, the papers [19]–[21] have leveraged the
sparsity of power networks in order to break down the large-
scale semidefinite constraint into small-sized constraints.
Similarly, the papers [22], [23] and [24] have exploited the
general technique proposed in [25] to reduce the complexity
of the SDP relaxation of the OPF problem. The simulations
performed in those papers suggest that the SDP relaxation
would fail to work properly for large-scale systems [21].

Although OPF is a fundamental problem studied exten-
sively in the literature for power systems, a real-work power
flow optimization is based on a set of coupled OPFs with
a variety of constraints and variables. The latter problem is
named security-constrained OPF (SCOPF) [26], [27]. The
SCOPF problem is important in practice, since independent
system operators tend to design an operating point that
satisfies the demand and network constraints not only under
normal operation but also under pre-specified contingencies
such as line outages. Depending on the network character-
istics, one may adopt preventive or corrective approaches
for the SCOPF problem. In the preventive formulation of
SCOPF, the under-design state of each generator (e.g., pro-
duction level) is considered identical for the pre- and post-
contingency scenarios. This reflects the fact that mechanical
facilities may not be able to respond to the changes in the
network fast. In the corrective approach, limited changes in
certain control parameters are permitted after the network
experiences a fault.

In this paper, we study the SCOPF problem—as a general
version of OPF—through a convex relaxation. First, we
propose an SDP relaxation for this problem. The existence
of a rank-1 SDP solution guarantees the recovery of a global
solution of SCOPF. We prove that the relaxation has a matrix
solution whose rank is at most the treewidth of the pre-
contingency network. The treewidth of real-world networks
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is perceived to be small due to their (almost) planarity
and sparsity [28]. For example, the treewidth of the graph
corresponding to a peak hour setup of a Polish system
with over 3000 buses is less than 25. Second, we reduce
the computational complexity of the SDP problem using a
tree decomposition method to arrive at a decomposed SDP
relaxation with a set of small-sized SDP matrices as opposed
to a full-scale SDP matrix. We show that the full-scale SDP
relaxation has a solution whose rank is upper bounded by the
ranks of the small-sized matrices of the decomposed SDP
relaxation. By working on the ranks of these small matrices,
we propose a technique to identify the problematic lines of
the network that may contribute to the failure of the SDP
relaxation for SCOPF. This diagnosis method enables us to
develop a heuristic method, named penalize SDP relaxation,
to find a near-global solution of the problem by penalizing
the loss over the problematic lines of the network in the
objective of SDP. We test our method on several benchmark
systems with as high as 3000 buses and find a solution with a
global optimality degree of at least 99% for each case. Note
that the proofs of the theorems presented here are available
in [29].

Notations: R, C, and Hn denote the sets of real numbers,
complex numbers, and n × n Hermitian matrices, respec-
tively. The m by n rectangular identity matrix whose (i, j)
entry is equal to the Kronecker delta δij is denoted by
Im×n. Notations Re{W}, Im{W}, and rank{W} denote
the real part, imaginary part, and rank of a scalar/matrix
W, respectively. The notation W � 0 means that W
is Hermitian and positive semidefinite. The notation ]x
denotes the angle of a complex number x. The notation
“i” is reserved for the imaginary unit. The superscripts (.)∗

and (.)T represent the conjugate transpose and transpose
operators respectively. Given a matrix W, its (l,m) entry
is denoted as Wlm. The subscript (·)opt is used to show the
optimal value of an optimization parameter. Given a matrix
M, its Moore Penrose pseudoinverse is denoted as M+.
Given a simple graph H, its vertex and edge sets are denoted
by VH and EH, respectively. Given two sets S1 and S2, the
notation S1\S2 denotes the set of all elements of S1 that do
not exist in S2. Given a scalar m and a real-valued set S,
define S+m as a set obtained by adding m to every element
of S. Given a Hermitian matrix M and two sets of natural
numbers S1 and S2, define M{S1,S2} as a submatrix of
M obtained through two operations: (i) removing all rows
of M whose indices do not belong to S1, and (ii) removing
all columns of M whose indices do not belong to S2. For
instance, M {{1,2}, {2,3}} is a 2×2 matrix with the entries
M12,M13,M22,M23.

II. PROBLEM FORMULATION

Consider a power network with the set of buses N :=
{1, 2, ..., n} and the set of flow lines L ⊆ N × N .
With no loss of generality, each line (l,m) ∈ L of the
network is modeled as a series admittance ylm. Suppose
that a known constant-power load with the complex value

SDk = PDk + QDk i is connected to bus k ∈ N , where
PDk , QDk ∈ R. Given a nonnegative integer c, consider a set
of c contingencies, where each contingency corresponds to an
arbitrary number of pre-specified line/generator outages. In
this work, we model a line outage by removing the line from
the base case and model a generator outage by enforcing its
output to be zero. Define C := {0, 1, . . . , c} as the set of all
pre- and post-contingencies, where the base case is treated
as contingency 0. Define L(0) = L, and L(r) as the set of
lines of the network under contingency r ∈ {1, 2, ..., c}.

Consider a contingency scenario r ∈ C. Assume that a
generator is connected to each bus k ∈ N whose unknown
complex output is denoted as S(r)

Gk
= P

(r)
Gk

+Q
(r)
Gk

i. Let fk(·)
be a convex function representing the generation cost for
generator k. The unknown complex voltage at bus k ∈ N
is denoted as V (r)

k . Furthermore, define S(r)
lm = P

(r)
lm +Q

(r)
lm i

as the unknown complex power transferred from bus l ∈ N
to the rest of the network through the line (l,m) ∈ L(r).
Define:

P
(r)
G ,

[
P

(r)
G1
, . . . , P

(r)
Gn

]T
, Q

(r)
G ,

[
Q

(r)
G1
, . . . , Q

(r)
Gn

]T
,

PD ,
[
PD1 , . . . , PDn

]T
, QD ,

[
QD1 , . . . , QDn

]T
,

V(r) ,
[
V

(r)
1 , . . . , V (r)

n

]T
.

Given the known vectors PD and QD, SCOPF minimizes the
generation cost over the unknown parameters V(r), P

(r)
G and

Q
(r)
G for r = 0, 1, ..., c subject to the power balance equations

at all buses and certain network constraints. SCOPF is
formalized below.

SCOPF problem: Minimize∑
k∈N

fk

(
P

(0)
Gk

)
(1)

over the variables P
(0)
G ,P

(1)
G , . . . ,P

(c)
G ∈ Rn, Q

(0)
G ,Q

(1)
G ,

. . . ,Q
(c)
G ∈ Rn and V(0),V(1), . . . ,V(c) ∈ Cn, subject to

P
(r)
Gk
− PDk =

∑
l∈N (r)

k

Re
{
V

(r)
k

(
V

(r)
k − V (r)

l

)∗
y∗kl

}
(2a)

Q
(r)
Gk
−QDk =

∑
l∈N (r)

k

Im
{
V

(r)
k

(
V

(r)
k − V (r)

l

)∗
y∗kl

}
(2b)

P
(r)
k; min ≤ P

(r)
Gk
≤ P (r)

k; max (2c)

Q
(r)
k; min ≤ Q

(r)
Gk
≤ Q(r)

k; max (2d)

V
(r)
k; min ≤ |V

(r)
k | ≤ V

(r)
k; max (2e)(

P
(r)
lm

)2
+
(
Q

(r)
lm

)2
≤
(
S
(r)
lm; max

)2
(2f)

|P (r)
Gk
− P (0)

Gk
| ≤ ∆P

(r)
k; max (2g)

|Q(r)
Gk
−Q(0)

Gk
| ≤ ∆Q

(r)
k; max (2h)∣∣∣|V (r)

k |
2 − |V (0)

k |
2
∣∣∣ ≤ (∆V

(r)
k; max

)2
(2i)

for every k ∈ N , r ∈ C and (l,m) ∈ L(r), where

• N (r)(k) denotes the set of all neighboring nodes of bus
k ∈ N for contingency r.
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• (2a) and (2b) are the power balance equations account-
ing for the conservation of energy at bus k.

• (2c), (2d) and (2e) restrict the active power, reactive
power and voltage magnitude at bus k for contingency
r, given the limits P (r)

k; min, P (r)
k; max, Q(r)

k; min, Q(r)
k; max,

V
(r)
k; min and V (r)

k; max.
• The constraint (2f) limits the apparent power flow |S(r)

lm |
over the line (l,m) ∈ L(r) by S(r)

lm; max.
• Given the limits ∆P

(r)
k; max, ∆Q

(r)
k; max and ∆V

(r)
k; max, the

constraints (2g), (2h) and (2i) ensure that the potentially
controllable parameters P

(r)
Gk

, Q
(r)
Gk

and |V (r)
k | vary

within permissible ranges after a contingency occurs.

Note that a generator outage can be modeled as P (r)
k; min =

P
(r)
k; max = 0.

A. Convex relaxation for SCOPF

The SCOPF problem includes quadratic constraints such
as (2a) and (2b). Nevertheless, all constraints of (2) can
be expressed linearly in terms of the entries of the matrix
variable W defined as W , VV∗, where V denotes
a column vector obtained by stacking the voltage vectors
V(0),V(1), . . . ,V(c). On the other hand, the variable V can
be dropped from the optimization problem by equivalently
replacing the consistency constraint W = VV∗ with two
new constraints: (i) W � 0, and (ii) rank{W} = 1. Observe
that Constraint (ii) is the only non-convex constraint of the
reformulated SCOPF problem. Motivated by this fact, the
SDP relaxation of SCOPF is defined as the optimization
problem reformulated in terms of W under the additional
constraint W � 0 without incorporating the rank constraint
rank{W} = 1. To formalize this relaxation, let W(r) ∈ Hn
denote the submatrix of W in the intersection of rows
rn+ 1, ..., rn+ n with columns rn+ 1, ..., rn+ n.

Relaxed SCOPF: Minimize∑
k∈N

fk

(
P

(0)
Gk

)
(3)

over the parameters P
(0)
G ,P

(1)
G , . . . ,P

(c)
G ∈ Rn, Q

(0)
G ,Q

(1)
G ,

. . . ,Q
(c)
G ∈ Rn and W ∈ Hn(c+1), subject to

P
(r)
Gk
− PDk =

∑
l∈N (r)

k

Re
{(
W

(r)
kk −W

(r)
kl

)
y∗kl

}
(4a)

Q
(r)
Gk
−QDk =

∑
l∈N (r)

k

Im
{(
W

(r)
kk −W

(r)
kl

)
y∗kl

}
(4b)

P
(r)
k; min ≤ P

(r)
Gk
≤ P (r)

k; max (4c)

Q
(r)
k; min ≤ Q

(r)
Gk
≤ Q(r)

k; max (4d)(
V

(r)
k; min

)2
≤W (r)

kk ≤
(
V

(r)
k; max

)2
(4e)(

P
(r)
lm

)2
+
(
Q

(r)
lm

)2
≤
(
S
(r)
lm; max

)2
(4f)

|P (r)
Gk
− P (0)

Gk
| ≤ ∆P

(r)
k; max (4g)

|Q(r)
Gk
−Q(0)

Gk
| ≤ ∆Q

(r)
k; max (4h)∣∣∣W (r)

kk −W
(0)
kk

∣∣∣ ≤ (∆V
(r)
k; max

)2
(4i)

W � 0 (4j)

for every k ∈ N , r ∈ C and (l,m) ∈ L(r).

The relaxed SCOPF is alternatively referred to as SDP
relaxation henceforth. Let fopt and fr−opt denote the optimal
objective values of the SCOPF and relaxed SCOPF. As
shown in [6] and [30], the relaxed SCOPF is equivalent to
the dual of the dual of the SCOPF problem and therefore
it provides a lower bound fr−opt on the globally minimum
solution fopt of the original problem (2). Hence, fopt −
fr−opt represents the duality gap for the non-convex SCOPF
problem, which is not necessarily zero or even small [14],
[15]. Zero duality gap is a favorable property because it
guarantees the existence of a rank-1 solution Wopt for the
SDP relaxation from which an optimal vector of voltage
phasors Vopt can be constructed. It has been shown in [30]
that whenever the duality gap of the classical OPF problem
is zero for a specific power network, the SCOPF problem
also possesses zero duality gap, leading to the presence of
a rank-1 solution for the relaxed SCOPF. As investigated
in [31] and [13], the duality gap for the OPF problem
(without any contingency scenarios) is highly correlated with
the topology of the network. In addition, the gap heavily
depends on the mathematical formulation of the line capacity
constraints [18]. Since a power network has a sparse graph
in general, the relaxed SCOPF problem may have infinitely
many solutions. As an extreme case, the duality gap could
be zero and yet there exist a set of rank-1 and higher-rank
solutions for the relaxed problem. To alleviate this issue, the
paper [6] suggests adding a small resistance (10−5 per unit)
to every ideal transformer with zero resistance.

Using a graph-theoretic approach combined with the SDP
relaxation, we aim to study three problems:

• Since the dimension of the matrix variable W is pro-
hibitive for a large-scale network, how can the compu-
tational complexity of the relaxed SCOPF be reduced?

• What is the rank of an optimal solution Wopt of the
relaxed SCOPF and how does it relate to the topology
of the power grid?

• If the rank of Wopt is not 1, how can a near-global solu-
tion be recovered for the non-convex SCOPF problem?

III. LOW-RANK SDP SOLUTION

In this section, the objective is twofold. First, the compu-
tational complexity of the relaxed SCOPF will be reduced.
Second, the rank of its lowest-rank solution will be studied.

A. Reduction of computational complexity

Definition 1 (Treewidth): Given a graph H = (VH, EH),
a tree T is called a tree decomposition of H if it satisfies
the following properties:
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Fig. 1: A minimal tree decomposition for a ladder
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Fig. 2: The IEEE 14-bus test case and its minimal tree decomposition

1) Every node of T corresponds to and is identified by a
subset of VH. Alternatively, each node of T is regarded
as a group of vertices of H.

2) Every vertex of H is a member of at least one node of
T .

3) Tk is a connected graph for k ∈ VH, where Tk denotes
the subgraph of T induced by all nodes of T containing
the vertex k of H.

4) If (i, j) ∈ EH, then the subgraphs Ti and Tj have at
least one node in common.

Each node of T is a bag (collection) of vertices of H
and hence it is referred to as bag. The width of T is the
cardinality of its biggest bag minus one. The treewidth of H
is the minimum width over all possible tree decompositions
of H and is denoted by tw(H).

Note that the treewidth of a tree is equal to 1. Figure 1
shows a graph H with 6 vertices named a, b, c, d, e, f ,
together with its minimal tree decomposition T . Every node
of T is a set containing three members of VH. The width of
this decomposition is therefore equal to 2. The graph of the
IEEE 14-bus system and its minimal tree decomposition are
depicted in Figure 2. As shown in Table I, the treewidth
of IEEE systems and various setups of Polish systems
with as high as 3000 buses is at most 24. This empirical
evidence signifies that real-world power grids may have a
small treewidth, which is leveraged in this work to solve the
SCOPF problem.

Definition 2 (Sparsity graph): The sparsity graph of the
relaxed SCOPF problem is defined as a graph with n(c+ 1)
vertices such that (i, j) is an edge of the graph if i 6= j,
i, j ∈ {1, 2, ..., n(c + 1)} and Wij participates in either of
the constraints (4a) and (4b).

Consider a tree decomposition of the power network in
the pre-contingency case and denote its bags (nodes) as
J (0)
1 ,J (0)

2 , ...,J (0)
p ⊆ N .

Theorem 1: The following statements hold:
i) The sparsity graph of the relaxed SCOPF problem has

a tree decomposition with p(c + 1) bags given by the
set:{
J (0)
m + nr

∣∣∣∣ m = 1, ..., p and r = 0, ..., c

}
(5)

ii) The optimal objective value of the relaxed SCOPF
problem does not change if its constraint W � 0 is
replaced by

W
{
J (0)
m + nr,J (0)

m + nr
}
� 0 (6)

or equivalently

W(r)
{
J (0)
m ,J (0)

m

}
� 0 (7)

for every r ∈ C and m ∈ {1, . . . , p}.
Define decomposed relaxed SCOPF as a convex opti-

mization obtained from the relaxed SCOPF by replacing
W � 0 with the constraints W(r)

{
J (0)
m ,J (0)

m

}
� 0 for

every r ∈ C and m ∈ {1, . . . , p}. Theorem 1 reduces the
computational cost of the SDP relaxation dramatically for a
large-scale system with a relatively small treewidth. Note that
many entries of the matrix variable W may not appear in the
objective or constraints of the decomposed relaxed SCOPF,
and those redundant entries can be eliminated. For example,
the relaxed OPF for a Polish system has about 9,000,000
scalar variables, while the decomposed relaxed OPF has only
about 100,000 parameters. As will be illustrated later, this
enables us to solve a large-scale problem efficiently.

B. Existence of low-rank solution

Let Wref ∈ Hn(c+1) denote an arbitrary solution of the
relaxed SCOPF or decomposed relaxed SCOPF. Note that if
Wref corresponds to the decomposed problem, its redundant
entries may not have been found by the numerical algorithm
and are regarded as “missing”. The following question arises:
is it possible to fine-tune the entries of Wref or design its
missing entries to arrive at a different, but lower rank, solu-
tion of the (decomposed) relaxed problem? To address this
problem, we propose an iterative algorithm that transforms
Wref into a solution Wopt whose rank is upper bounded
by the treewidth of the network. To introduce our algorithm,
consider a tree decomposition TC of the sparsity graph of the
relaxed SCOPF problem with the bags specified in (5). For
simplicity, we name the bags as J1,J2, ...,Jp(c+1).

Matrix completion algorithm:

1) Set T ′ := TC and W := Wref .
2) If T ′ has a single node, then consider Wopt as W and

terminate; otherwise continue to the next step.
3) Choose a pair of bags Jx,Jy of T ′ such that Jx is a

leaf of T ′ and Jy is its unique neighbor.
4) Define

A , W{Jx ∩ Jy,Jx ∩ Jy} (8a)

Bx , W{Jx \ Jy,Jx ∩ Jy} (8b)

By , W{Jy \ Jx,Jx ∩ Jy} (8c)
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X , W{Jx \ Jy,Jx \ Jy} ∈ Cdx×dx (8d)

Y , W{Jy \ Jx,Jy \ Jx} ∈ Cdy×dy (8e)

Sx , X−BxA
+B∗x = QxΛxQ

∗
x (8f)

Sy , Y −ByA
+B∗y = QyΛyQ

∗
y (8g)

where QxΛxQ
∗
x and QyΛyQ

∗
y denote the eigenvalue

decompositions of Sx and Sy with the diagonals of Λx

and Λy arranged in descending order. Update a part of
W as follows:

W{Jy \ Jx,Jx \ Jy} := ByA
+B∗x

+ Qy

√
Λy Idy×dx

√
Λx Q∗x

and update W{Jx \ Jy,Jy \ Jx} as well to preserve
the symmetry of W.

5) Update T ′ by merging Jx into Jy , i.e., replace Jy with
Jx ∪ Jy and then remove Jx from T ′.

6) Go back to step 2.
Theorem 2: Consider an arbitrary solution Wref of the

(decomposed) relaxed SCOPF problem. The output of the
matrix completion algorithm, denoted as Wopt, is a solution
of the (decomposed) relaxed SCOPF problem whose rank is
smaller than or equal to:

max

{
rank

{
W

(r)
ref {J

(0)
m ,J (0)

m }
} ∣∣∣∣ 1 ≤ m ≤ p, r ∈ C

}
.

Note that Theorem 2 is valid for not only relaxed SCOPF
but also decomposed relaxed SCOPF. The following two
results are the by-products of the above theorem.

Corollary 1: If the (decomposed) relaxed SCOPF prob-
lem is feasible, then it has a solution Wopt whose rank is
upper bounded by the treewidth of the power network in the
pre-contingency case.

Corollary 2: The non-convex SCOPF problem has the
same globally optimal value as that of the (decomposed)
relaxed SCOPF under the additional constraints

rank{W(r){J (0)
m ,J (0)

m }} = 1 (9)

for every r ∈ C and m ∈ {1, . . . , p}.

IV. RECOVERY OF A NEAR-GLOBAL SOLUTION

We explored the properties of the decomposed relaxed
SCOPF in the preceding section. In this part, we aim to
address two problems: (i) how to find a tree decomposition
of the power network in order to be able to formulate
the decomposed problem, (ii) how to recover a near-global
solution of the SCOPF problem through an SDP relaxation.

A. Tree decomposition algorithm

In what follows, we describe an effective algorithm for
finding a tree decomposition that is used in all of the simu-
lations offered in the next section. This algorithm combines
the greedy degree and greedy fill-in algorithms presented in
[32] in order to obtain a tree decomposition for a graph with
a low maximum clique order. The algorithm described here
designs a graph T with a set of nodes and no edges. Since
the decomposed relaxed SCOPF only needs the bags of T ,
it is unnecessary to find the edges of the tree decomposition.

Consider a graph H = (VH, EH) together with an arbitrary
vertex u of this graph. δH(u) denotes the degree of u ∈ VH.
The fill-in of u, is defined as the number of edges whose
addition to the subgraph formed by the neighbors of u makes
the resulting subgraph a clique (complete subgraph) which
is denoted by φH(u). The vertex u is called simplicial if
φH(u) = 0 (i.e., if the neighbors of u are all connected to
one another).

Greedy decomposition algorithm:
1) Consider α as an arbitrary constant and define H′ = H.
2) If H′ has a single vertex, then define T as the single

node VH and terminate; otherwise continue.
3) Choose a vertex u in H′ according to the following

rules:
• IfH′ has a simplicial node, then set u as that vertex.
• Otherwise, set u as a (non-unique) vertex of H′ that

minimizes the function φH′(u) + α× δH′(u).
4) Define U as the set of all neighboring vertices of u in
H′. Add the bag U ∪ {u} to T , and then update the
graph H′ by first connecting all vertices in U to each
other and then removing u. Jump to Step 2.

Based on [32], it is straightforward to show that a set of
edges can be added to the nodes of T to make it a tree
decomposition for H.

B. Penalization method
Consider the case where the (decomposed) relaxed SCOPF

has no rank-1 solution. Suppose that it is possible to design
a convex function g(W(0), ...,W(c)) such that the SDP
relaxation admits a rank-1 solution if the objective of the
relaxed SCOPF is replaced by this function. Then, penalizing
the objective of the relaxed SCOPF with ε× g(·) may lead
to an approximate rank-1 SDP solution and subsequently
a near-global SCOPF solution for an appropriate choice of
the penalty coefficient ε. Therefore, the main challenge is
to seek a penalization function g(·). The recent literature
of compressed sensing suggests a penalty term consisting
of a weighted sum of the diagonal entries of W [33].
However, this idea fails to work for SCOPF since all feasible
solutions of the SDP relaxation have similar diagonal values
due to tight voltage control in practice. We propose a
different penalty function in this paper. Consider a positive
semidefinite matrix X with constant (fixed) diagonal entries
X11, . . . , Xnn and variable off-diagonal entries. If we max-
imize a weighted sum of the off-diagonal entries of X with
positive weights, then it turns out that Xlm =

√
XllXmm

for all l,m ∈ {1, . . . , n}, in which case X becomes rank-1.
Motivated by this fact, we employ the idea of elevating the
off-diagonal entries of W to obtain a low-rank solution. For
a lossless network, sum of the total reactive power generation
increases the weighted sum of the real parts of the off-
diagonal entries of W. Also, penalizing the apparent power
loss over the series impedance of the lines of the network
plays a similar role for a lossy network.

Penalized SDP relaxation: This optimization is obtained
from the (decomposed) relaxed SCOPF problem by replacing
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its objective function with∑
k∈N

fk

(
P

(0)
Gk

)
+ εb

∑
k∈N
r∈C

Q
(r)
Gk

+ εl
∑

(r,l,m)∈Lprob

L
(r)
lm (10)

for given positive numbers εb, εl and a set of triples Lprob ⊆{
(r, l,m) | r ∈ C, (l,m) ∈ L(r)

}
, where L(r)

lm represents the
apparent power loss over the series impedance of line (l,m)
for contingency r.

Let Wopt and Wε denote arbitrary solutions of the SDP
and penalized SDP relaxations, respectively. Assume that
Wopt does not have rank 1, whereas Wε has rank 1. By
decomposing Wε as VεV

∗
ε , a feasible solution Vε of the

SCOPF can be obtained. In addition, the optimal value fopt
of the SCOPF problem is lower bounded by the optimal value
fr-opt of the SDP relaxation and upper bounded by fε, where
fε is defined as the total generation cost associated with
the operating point Vε. Define global optimality degree as
100− fε−fr-opt

fε
×100. This shows the closeness of the feasible

solution Vε to the unknown globally optimal solution (in
percentage). For example, if the global optimality degree is
99%, then the cost associated with the global solution of
SCOPF can be at most 1% better than the cost corresponding
to the feasible point. In summary, if the penalized SDP
relaxation has a rank-1 solution, then a feasible solution of
SCOPF together with its global optimality degree can be
computed.

The success of the penalized SDP relaxation is in part
related to the choice of Lprob. Sometimes, a good choice is
to consider this set as the collection of all lines of the system
in pre- and post-contingency cases. In what follows, we
propose an effective heuristic method for designing Lprob.
Consider a bag Ji of the tree decomposition TC together
with a matrix W. Ji is called a problematic bag associated
with W if W{Ji,Ji} does not have rank 1. Any line of
the pre- or post-contingency network corresponding to an
off-diagonal entry of W{Ji,Ji} is called a problematic
line associated with W. It follows from Theorem 2 and
Corollary 2 that the SDP relaxation is exact if there is no
problematic bags/lines associated with the solution of the
decomposed relaxed SCOPF.

Problematic line selection algorithm: Consider the penal-
ized SDP relaxation with εl = 0. Using a bisection method,
find a value for εb such that the number of problematic
lines associated with the penalized SDP solution is small
(minimum). Consider Lprob as the set of problematic lines.

Assume that the penalized SDP relaxation results in a
rank- 1 solution or a low-rank matrix solution with a domi-
nant nonzero eigenvalue. The next algorithm can be used to
find an approximate feasible solution of SCOPF.

Recovery algorithm: Given a low-rank solution Wopt of
the penalized SDP relaxation, we recover an approximate
solution V for the SCOPF according to the following pro-
cedure:

1) Set the voltage magnitude Vi equal to the square root
of the (i, i) entry of Wopt for i = 1, ..., n(c+ 1).

2) Find the phases of the entries of V through a convex
program by minimizing∑
r∈C

∑
(l,m)∈L(r)

∣∣∣](Wopt)
(r)
lm − ]V

(r)
l + ]V(r)

m

∣∣∣ (11)

over the variables ]V(0),]V(1), . . . ,]V(c) ∈
[−π, π]n, subject to

]V (r)
1 = 0, r = 0, 1, ..., c (12)

Note that the above recovery algorithm retrieves a glob-
ally optimal solution of the SCOPF problem in the case
where rank{Wopt} = 1. Under that circumstance, we have
](Wopt)

(r)
lm − ]V

(r)
l + ]V

(r)
m = 0. If the rank of Wopt is

not 1 but this matrix has a dominant nonzero eigenvalue, the
above recovery method aims to find a vector V for which
the corresponding line angle differences are as closely as
possible to those suggested by the matrix Wopt.

V. SIMULATIONS RESULTS

In what follows, we offer several simulations for OPF and
SCOPF problems. We have written a custom OPF Solver to
perform these simulations [34].

3-bus system: As our first example, consider the 3-bus
system presented in [14]. The SDP relaxation may not result
in a rank-1 solution for this system if a certain line is under
stress (i.e. the capacity constraint of the line is binding
at optimality). To address this issue, we use the penalized
SDP relaxation with the objective function (10), where the
parameter εb is set to be zero and the line under stress
is chosen for penalization. The resulting optimal cost is
reported in Figure 3(a) for different values of εl. It can be
seen that there exists a relatively large interval for εl that
makes the penalized SDP relaxation posses a rank-1 solution
with a fixed cost. This cost overlaps with the globally optimal
cost of the OPF problem. Hence, our method is able to bridge
the duality gap reported in [14].

IEEE and Polish systems: As our second example, we eval-
uate the penalization method for the OPF problem performed
over benchmark systems. The results are reported in Table I.
For each system, the following numbers are reported:

• TW: an upper bound on the treewidth of the system
• # prob. bags: number of problematic bags for the SDP

relaxation with εb = εl = 0
• Lower bound: lower bound on the globally minimum

cost of OPF
• Upper Bound: upper bound on the globally optimal cost

of OPF, corresponding to the recovered solution
• Opt. degree: global optimality degree (in percentage)
• Com. time: the total computation time (in seconds)

including those consumed towards tree decomposition,
solving the SDP relaxation, and recovering a solution
(the simulations were run on a desktop computer with
an Intel Core i7 quad-core 3.4 GHz CPU and 16 GB
RAM).
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Test α TW # prob. εb εl Lower Upper Opt. Com.
cases bags bound bound degree time

Chow’s 9 bus 0 2 2 10 0 5296.68 5296.68 %100 ≤ 5
IEEE 14 bus 0 2 0 0 0 8081.53 8081.53 %100 ≤ 5
IEEE 24 bus 0 4 0 0 0 63352.20 63352.20 %100 ≤ 5
IEEE 30 bus 0 3 1 0.1 0 576.89 576.89 %100 ≤ 5
NE 39 bus 0 3 1 10 0 41862.08 41864.40 %99.994 ≤ 5
IEEE 57 bus 0 5 0 0 0 41737.78 41737.78 %100 ≤ 5
IEEE 118 bus 0 4 61 10 0 129654.61 129660.81 %99.995 ≤ 5
IEEE 300 bus 0 6 7 0.1 100 719711.63 719725.10 %99.998 13.9
Polish 2383wp 0 23 651 3500 3000 1861510.42 1874322.65 %99.316 529
Polish 2736sp 0 23 1 1500 0 1307882.29 1308270.20 %99.970 701
Polish 2737sop 0 23 3 1000 0 777626.26 777664.02 %99.995 675
Polish 2746wop 0 23 1 1000 0 1208273.91 1208453.93 %99.985 801
Polish 2746wp 0 24 1 1000 0 1631772.83 1632384.87 %99.962 699
Polish 3012wp 1 24 605 0 10000 2587740.98 2608918.45 %99.188 814
Polish 3120sp -1.5 24 20 0 10000 2140765.92 2160800.42 %99.073 910

TABLE I: Performance of the penalization method for several benchmark systems.

Note that the permissible feasibility violation for the recov-
ered solution was set to 10−6 for all cases reported in Table I,
except for Polish 3012wp and Polish 3120sp for which the
violation level was set to 1.5×10−5. For Polish 3012wp and
Polish 3120sp, we penalized the apparent power loss over all
lines of each system. For IEEE 300 bus system, we penalized
apparent power loss over two lines: (i) line 38 between buses
9053 and 9533, (ii) line 402 between buses 7023 and 23.
These lines are problematic for the penalized SDP problem
in the case εb = 0.1 and εl = 0. Similarly, the apparent power
loss penalization for Polish 2383wp system was performed
over problematic lines for the case εb = 3500 and εl = 0,
leading to the following 9 lines: line 100 between buses 35
and 34, line 101 between buses 34 and 51, line 102 between
buses 183 and 34, line 103 between buses 183 and 35, line
104 between buses 617 and 35, line 130 between buses 51
and 50, line 134 between buses 727 and 51, line 819 between
buses 546 and 545, and line 821 between buses 727 and 545.
It can be observed that the penalized SDP relaxation was
able to find feasible solutions with global optimality degrees
above 99% for many benchmark examples.

Contingency Line Initial Terminal
number number node node

1 1 1 2
2 2 1 39
3 3 2 3
4 4 2 25
5 6 3 4
6 7 3 18
7 15 7 8
8 20 10 32
9 40 25 26

10 45 28 29

TABLE II: List of contingencies for New England system.

New England 39 bus system: Consider the New England
system under 10 contingency scenarios, each representing
the outage of one line as described in Table II. The correc-
tive active power production for each generator in case of
contingency is set to be within 2 MW away from the base

Contingency Line Initial Terminal
number number node node

1
266 19 231
388 234 236
400 7130 130

TABLE III: List of lines outages of the contingency scenario considered
for IEEE 300 bus system.

case production level. We solve the penalized SDP relaxation
by setting εb to zero and minimizing the apparent power
loss over all lines of the network. The result is depicted in
Figures 3(b) for different values of the coefficient εl. It can
be seen that a near-global solution for the SCOPF problem
is associated with the cost 45141.70,. This SCOPF cost is
7% higher than the optimal cost of the OPF problem with
no contingency.

IEEE 300 bus system: Consider the 300 bus system with
one contingency scenario associated with the simultaneous
outage of three highly congested lines of the base OPF.
These lines are listed in table III. The corrective active power
production for each generator in case of contingency is set to
be within 1 MW away from the base case production level.
As before, we solve the penalized SDP relaxation by setting
εb to zero and minimizing the apparent power loss over all
lines of the network. The result is depicted in Figures 3(c).
It can be seen that a near-global solution for the SCOPF
problem is associated with the cost 740493.80 which is 3%
different from that of the OPF problem.

VI. CONCLUSIONS

This paper studies the security-constrained optimal power
flow (SCOPF) problem by means of a semidefinite program-
ming (SDP) relaxation. The existence of a rank-1 solution
guarantees that this convex program will find a globally
optimal solution of the SCOPF problem. First, we prove
that the SDP relaxation has a solution whose rank is at
most equal to the treewidth of the power network, which is
expected to be very small for real-world systems. Second, we
propose a decomposition method to reduce the computational
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Fig. 3: (a) The 3-bus system presented in [14]; (b) contingency analysis of New England system; (c) contingency analysis of IEEE 300 bus system.

complexity of the SDP relaxation. In the case where the SDP
relaxation fails to work, we develop a graph-theoretic method
to identify the problematic lines of the network that make
SCOPF difficult to solve. By penalizing the loss over those
lines in the SDP relaxation, we develop a rank-enforcing
SDP relaxation. We test our relaxation method on several
benchmark examples and demonstrate its ability in finding
feasible solutions of SCOPF that are at least 99% globally
optimal.
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