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On Deterministic Sampling Patterns for Robust
Low-Rank Matrix Completion
Morteza Ashraphijuo, Vaneet Aggarwal , and Xiaodong Wang

Abstract—In this letter, we study the deterministic sampling pat-
terns for the completion of low-rank matrix, when corrupted with
a sparse noise, also known as robust matrix completion. We extend
the recent results on the deterministic sampling patterns in the ab-
sence of noise based on the geometric analysis on the Grassmannian
manifold. A special case where each column has a certain number
of noisy entries is considered, where our probabilistic analysis per-
forms very efficiently. Furthermore, assuming that the rank of the
original matrix is not given, we provide an analysis to determine if
the rank of a valid completion is indeed the actual rank of the data
corrupted with sparse noise by verifying some conditions.

Index Terms—Deterministic guarantees, probabilistic guaran-
tees, robust matrix completion, sampling pattern, sparse noise.

I. INTRODUCTION

THIS letter considers the problem of recovering low-rank
matrix, when corrupted with a sparse noise. This problem

is called robust matrix completion. This problem has been stud-
ied widely, see for instance [1]–[7], where probabilistic guaran-
tees for either a convex relaxation based approach or alternating
minimization based approach are provided and strong assump-
tions on the value of the entries are required (like coherence
condition). In this letter, we consider the deterministic sampling
patterns when the data can be completed with a sparse noise, and
deterministic and probabilistic guarantees for finite and unique
completability are provided.

The study of deterministic sampling patterns is motivated
by the results in [8], where Pimentel-Alarcón et al. studied the
problem for low-rank matrix completion. The necessary and suf-
ficient conditions on the sampling pattern are provided for finite
completability in [8]. Moreover, the sampling probability that
ensures finite completability is characterized using the determin-
istic analysis of the sampling pattern. In this letter, we extend
these results and analyses on the Grassmannian manifold to the
case when the sampled data are corrupted by a sparse noise.
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We further consider the case when each column has certain
number of noisy entries and provide bounds for the number of
samples required in each column. This result resolves the open
question in [3], where Cherapanamjeri et al. asked if O(r log N)
measurements are enough per column for a d × N matrix where
d << N and a fraction O(1/r) elements are noisy in each col-
umn. We answer the question in positive, further decreasing the
number of measurements in each column to O(max(r, log d)).
The main idea is to consider all possibilities of the noise sup-
port and make use of the existing fundamental conditions on the
sampling pattern for the noiseless scenario.

In many situations, the rank of the sampled matrix is un-
known, and depending on the data and the sampled entries,
there may be rank-r matrices that agree with the observed en-
tries, even if data are not rank-r. Thus, guaranteeing whether if
there exist a rank r completion of the data, the rank of original
data is indeed r and has been studied in [9] and [10]. In this
letter, we will generalize this approach and result to estimate
the rank of the sampled matrix corrupted with a sparse noise.

The rest of this letter is organized as follows. Section II
describes the model of robust low-rank matrix completion.
Section III gives the deterministic conditions on the sampling
patterns when the data have infinite, finite, or unique comple-
tions in the presence of sparse noise. These results are then
specialized in Section IV to the case when each column of the
matrix has at most g noisy entries. Furthermore, the result is ex-
tended to give probabilistic guarantees solving the open problem
in [3]. Section V gives conditions to determine whether the rank
of matrix is indeed r if there exists a valid completion (which
mismatches the observed entries on at most the given support)
of rank r. Some numerical results are provided in Section VI.
Finally, Section VII concludes this letter.

II. MODEL AND NOTATIONS

Suppose we have a rank r data matrix X ∈ Rd×N having
rank r. Suppose the data have an added noise W ∈ Rd×N such
that ||W||0 ≤ s, where ||W||0 indicates the number of nonzero
entries in W. Let Ω ∈ Rd×N be a binary matrix that indicates
the data points where the data are observed. Let AΩ for given
matrices A and Ω (where Ω is binary) be the matrix with the
elements of A corresponding to the entries where Ω has entry 1,
and is 0 otherwise. The problem for robust matrix completion
is to find the rank r matrix X when Ω and (X + W)Ω .

Let m(A) denote the number of rows in A and n(A) denote
the number of columns in A. Further, let C(Ω) be a modified
matrix from a binary matrix Ω as below.
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Consider the ith column of Ω with li sampled entries. We
construct li − r columns (corresponding to the ith column of
Ω) with binary entries such that each column has exactly r + 1
entries equal to one. Specifically, assume that x1 , . . . , xli are the
row indices of all observed entries in this column. Let C(Ω)i be
the corresponding d × (li − r) matrix to this column, which is
defined such that for any j ∈ {1, . . . , li − r}, the jth column has
the value 1 in rows {x1 , . . . , xr , xr+j} and 0s elsewhere. Finally,
define the binary matrix C(Ω) = [C(Ω)1 |C(Ω)2 . . . |C(Ω)N ].

We next define the notion of proper submatrix of C(Ω).
Definition 1: A submatrix of C(Ω) is called a proper sub-

matrix if its columns correspond to different columns of the
sampling pattern Ω.

In Section IV, we also consider the case that each column has
almost g noisy elements. In other words, each column of W has
L-0 norm less than or equal to g.

III. SAMPLING CONDITIONS FOR MATRIX COMPLETION

WITH NOISY ENTRIES

In this section, we will provide the deterministic conditions
on the sampling patterns that determine finite or unique comple-
tions, when the observed data are corrupted by a sparse noise.
The following lemma is [8, Th. 1], which provides the neces-
sary and sufficient combinatorial condition on the sampling for
finite completability of the matrix X, where it is assumed to be
noiseless, i.e., s = 0.

Lemma 1: Suppose that the matrix is noiseless, i.e., s = 0.
Assume that each column of Ω has at least r entries that are
1. For almost every X, there exist at most finitely many rank-r
completions of X if and only if the following holds. There exists
a proper submatrix Ω̆ formed with r(d − r) columns of C(Ω̆)
such that every matrix Ω̆′ formed with a subset of columns in
Ω̆ satisfies

m(Ω̆′) ≥ n(Ω̆′)/r + r. (1)

The following theorem characterizes the conditions on sam-
pling patterns, which results in finite completability for arbitrary
values of s (corrupted with a sparse noise). The main idea is to
consider all possibilities of the noise support and make use of
the existing fundamental conditions on the sampling pattern for
the noiseless scenario.

Theorem 1: (Deterministic Finite Completions) Assume that
each column of Ω has at least r + s entries that are 1. For
almost every X and W, there exist at most finitely many rank-r
completions of X if the following holds. For each ̂Ω such that
||̂Ω||0 = ||Ω|| − s and the entry of ̂Ω is zero if the corresponding
entry of Ω is zero, there exists a proper submatrix Ω̆ formed with
r(d − r) columns of C(̂Ω) such that every matrix Ω′ formed
with a subset of columns in Ω̆ satisfies

m(Ω′) ≥ n(Ω′)/r + r. (2)

Proof: Recall that in our model there exists at most s noisy
observed entries among all sampled entries (nonzero entries of
Ω). Hence, there exists ̂Ω such that ||̂Ω||0 = ||Ω|| − s and all
sampled entries corresponding to the entries of ̂Ω are noiseless.
Moreover, according to the assumption of theorem, there ex-
ists a matrix Ω̆ formed with r(d − r) columns of C(̂Ω) such

that every matrix Ω′ formed with a subset of columns in Ω̆
satisfies (2). Then, according to Lemma 1, X is finitely many
completable with probability 1. �

Remark 1: The converse statement of Theorem 1 holds prob-
abilistically and not necessarily deterministically anymore (with
probability 1). Because given that for some ̂Ω, (2) does not hold,
with some probability the noise is at the s entries where Ω is
1 and ̂Ω is 0. This probability depends on the location of the
nonzero entries of W. In general, there are

(

dN
s

)

possibilities
for the location of the noisy entries. So, the converse statement
holds true with some probability between 0 and 1 depending on
the location of noisy entries.

The following lemma is [8, Th. 2], which provides the suffi-
cient combinatorial condition on the sampling for unique com-
pletability of the matrix X, where it is assumed to be noiseless,
i.e., s = 0.

Lemma 2: Suppose that the matrix is noiseless, i.e., s = 0.
Assume that each column of Ω has at least r entries that are 1.
For almost every X , there exist at most finitely many rank-r
completions of X if and only if the following holds. There exist
disjoint proper submatrices Ω̆ and Ω̆1 formed with r(d − r) and
(d − r) columns of C(Ω̆), respectively, such that every matrix
Ω̆′ formed with a subset of columns in Ω̆ satisfies

m(Ω̆′) ≥ n(Ω̆′)/r + r (3)

and every matrix Ω̆′
1 formed with a subset of columns in Ω̆1

satisfies

m(Ω̆′
1) ≥ n(Ω̆′

1) + r. (4)

We will next show that if s + 1 entries are removed rather
than s entries and the above guarantees hold, then the support
of W (or a superset of it if the support of W is smaller than s)
can be obtained. Having identified the support of W, we get the
conditions of unique completion as follows.

Theorem 2: (Deterministic Unique Completion) Assume
that each column of Ω has at least r + s + 1 entries that are 1.
Suppose that for each ̂Ω such that ||̂Ω||0 = ||Ω|| − (s + 1) and
the entry of ̂Ω is zero if the corresponding entry of Ω is zero, if
C(̂Ω) contains two disjoint proper submatrices: Ω̆ formed with
r(d − r) columns and Ω̄ formed with (d − r) columns, such
that

1) every matrix Ω′ formed with a subset of columns in Ω̆
satisfies

m(Ω′) ≥ n(Ω′)/r + r (5)

and 2) every matrix Ω′ formed with a subset of columns in Ω̄
satisfies

m(Ω′) ≥ n(Ω′) + r. (6)

Then, almost every rank-r matrix X can be recovered from noise
where the entries of W are generically chosen.

Proof: As the first step of the proof, given condition (5),
we provide a simple algorithm, which identifies the support of
noisy entries WΩ . The algorithm of completion that we use is
the same as above, using every Ω that has s less entries. To see
this, first assume that ||WΩ ||0 = s. We note that if the chosen
set Ω is the same as value of Ω where the noise W entries are
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removed, there are finite completions by [8]. However, if the
above is not the case, the inherent rank of data with the known
entries in Ω is greater than r since the entries of a matrix with
rank r were corrupted by generic entries. We note that since the
entries have to match for Ω, and if we remove one of the noisy
entry (entry in WΩ but not in Ω) from Ω to obtain ̂Ω, there
are at most a finite number of completions fitting the missing
entries.

Similarly we can show that if ||WΩ ||0 = s − i, there are
finitely many completions since the set of s removals in Ω
contain nonzero entries of WΩ , i = 1, . . . , s − 1. Hence, for
each value of i that ||WΩ ||0 = s − i, there exists exactly one
possible support of W , which we have identified. Note that
the finite sum of finite numbers is also a finite number, and
therefore we showed the finite completability for ||WΩ ||0 ≤ s.
This finite number of completions will not match the entry at the
noisy part with probability 1. Thus, there cannot be any possible
completion with a rank-r matrix that matches all entries of Ω.
Hence, we can identify the support of the noise W, and therefore
condition (6) in the statement of the theorem guarantees unique
completability following Lemma 2. �

We now restate [8, Th. 3] as the following lemma.
Lemma 3: Suppose that the matrix is noiseless, i.e., s = 0.

Assume r ≤ d
6 and that each column of the sampled matrix is

observed in at least l entries, uniformly at random and indepen-
dently across entries, where

l > max
{

12 log
(

d

ε

)

+ 12, 2r

}

. (7)

Also, assume that r(d − r) ≤ N . Then, with probability at
least 1 − ε, the assumption on the sampling pattern given in
Lemma 1 holds, i.e., X is finitely many completable. Moreover,
(r + 1)(d − r) ≤ N ensures that with probability at least 1 − ε,
X is uniquely completable.

The uniform sampling result can be described as follows.
Theorem 3: (Probabilistic Finite and Unique Completion)

Suppose r ≤ d
6 , and each column includes at least l observed

entries, where

l − 12(r + s + 1) log(l/(r + s + 1))

> max
{

12
(

log
(

d

ε

)

+ r + s + 1
)

, 2r, 2r + s + 1
}

.

(8)

Then, with probability at least 1 − ε, almost every X will be
finitely completable if N ≥ r(d − r) and uniquely completable
if N ≥ (r + 1)(d − r).

Proof: This is a simple extension of Lemma 3 by using union
bound over all at most

(

l
r+s+1

)

choices for each column since
the property has to hold over all such choices of r + s + 1
removals in each of the columns. �

IV. SAMPLING CONDITIONS FOR COMPLETION WITH NOISY

ENTRIES IN EACH COLUMN

Having s entries in W anywhere in the data makes each col-
umn to have at least O(r + s) elements, which is large for a
large-scale matrix. We next consider a structure where each col-
umn has almost g noisy elements. In other words, each column

of W has L-0 norm less than or equal to g. Then, the Theorems 1
and 2 can be easily extended to consider different pattern on ̂Ω,
and for completion the modified Theorems 1 and 2 are described
as follows.

Theorem 4: (Deterministic Finite Completion for Column-
wise Sparse Noise) Assume that each column of Ω has at least
r + g + 1 entries that are 1. Suppose that for each ̂Ω such that
each column of ̂Ω has g + 1 less ones than that in Ω, and the
entry of ̂Ω is zero if the corresponding entry of Ω is zero, if
C(̂Ω) contains a matrix: Ω̆ formed with r(d − r) columns such
that

1) every matrix Ω′ formed with a subset of columns in Ω̆
satisfies

m(Ω′) ≥ n(Ω′)/r + r. (9)

Then, for almost every rank-r matrix X, there exist finitely
many rank-r completions, where the entries of W are generi-
cally chosen.

Theorem 5: (Deterministic Unique Completion for Colum-
nwise Sparse Noise) Assume that each column of Ω has at least
r + g + 1 entries that are 1. Suppose that for each ̂Ω such that
each column of ̂Ω has g + 1 less ones than that in Ω, and the
entry of ̂Ω is zero if the corresponding entry of Ω is zero, if
C(̂Ω) contains two disjoint proper submatrices: Ω̆ formed with
r(d − r) columns and Ω̄ formed with (d − r) columns, such
that

1) every matrix Ω′ formed with a subset of columns in Ω̆
satisfies

m(Ω′) ≥ n(Ω′)/r + r (10)

and 2) every matrix Ω′ formed with a subset of columns in Ω̄
satisfies

m(Ω′) ≥ n(Ω′) + r. (11)

Then, almost every rank-r matrix X can be recovered from noise
where the entries of W are generically chosen.

Having identified the sampling conditions on robust data com-
pletion, we now determine the uniform random sampling con-
ditions for the data completion.

Theorem 6: (Probabilistic Finite and Unique Completion for
Columnwise Sparse Noise) Suppose r ≤ d

6 , and each column
includes at least l observed entries, where

l − 12(g + 1) log(l/(g + 1))

> max
{

12
(

log
(

d

ε

)

+ g + 1
)

, 2r, r + g + 1
}

. (12)

Then, with probability at least 1 − ε, almost every X will be
finitely completable if N ≥ r(d − r) and uniquely completable
if N ≥ (r + 1)(d − r).

Proof: This is a simple extension of Lemma 3 by using union
bound over all

(

l
g+1

)

choices in the column since the property
has to hold over all such choices of g + 1 removals in each of
the columns. �

We note that for g ≈ l/r (r = ω(1)) in each column where
l entries are observed, the number of samples needed in each
column is O(max(r, log(d))). We note that this setting proposed
an open problem in [3], where Cherapanamjeri et al. asked
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if the observations of O(r log(d)) per column suffice. In this
letter, we answer this question in positive, and further reducing
the number of observations needed to O(max(r, log(d))). This
result does not necessarily need g ≈ l/r, while will work as
long as g/l = o(1) or l >> g.

V. SAMPLING CONDITIONS FOR RANK ESTIMATION

WITH NOISY ENTRIES

So far, we assumed that the rank r of the matrix is known. In
this section, we assume that the value of the rank r is not given
and we are interested in approximating it. The following lemma
is restatement of [10, Corollary 1].

Lemma 4: Suppose that the matrix is noiseless, i.e., s = 0.
Define SΩ = {1, 2, . . . , r∗}, where r∗ is the maximum num-
ber such that the assumption on the sampling pattern given in
Lemma 1 holds true, i.e., r∗ is the maximum number such that
there are finitely many completions of X of rank r∗, and let
r′ ∈ SΩ . Then, with probability 1, exactly one of the followings
holds.

1) r ∈ {1, 2, . . . , r′}.
2) For any arbitrary completion of the matrix X of rank r′′,

we have r′′ /∈ {1, 2, . . . , r′}.
The following theorem extends the above lemma to the case

of existence of sparse noise over the entire data.
Theorem 7: (Deterministic Conditions for Rank Estimation

for Robust Completion) DefineSΩ = {1, 2, . . . , r∗}, where r∗ is
the maximum number such that the assumption on the sampling
pattern given in Theorem 1 holds true and let r′ ∈ SΩ . Then,
with probability 1, exactly one of the followings holds.

1) r ∈ {1, 2, . . . , r′}.
2) For any arbitrary completion of the matrix X of rank r′′,

we have r′′ /∈ {1, 2, . . . , r′}.
Proof: According to Theorem 1, for any r′ ∈ SΩ , there exist

finitely many completions of X of rank r′. The rest of the proof
follows from Lemma 4. �

Theorem 8: (Probabilistic Conditions for Rank Estimation
for Robust Completion) Suppose r ≤ d

6 , r(d − r) ≤ N and let
r′ ∈ SΩ such that each column includes at least l observed
entries, where

l − 12(g + 1) log(l/(g + 1))

> max{12(log(
d

ε
) + g + 1), 2r′, r′ + g + 1}. (13)

Then, with probability 1, exactly one of the followings holds.
1) r ∈ {1, 2, . . . , r′}.
2) For any arbitrary completion of the matrix X of rank r′′,

we have r′′ /∈ {1, 2, . . . , r′}.
Proof: Define SΩ = {1, 2, . . . , r∗}, where r∗ is the maxi-

mum number such that the assumption on the sampling pattern
given in Theorem 1 holds true. According to Theorem 3, there
exist finitely many completions of X. Hence, r′ ≤ r∗, and there-
fore r′ ∈ SΩ . The rest of the proof follows from Theorem 7. �

Remark 2: Theorems 7 and 8 can be directly written for
noisy entries in each column, where assumption on the sam-
pling pattern given in Theorems 1 and 3 are replaced by the
assumption on the sampling pattern given in Theorems 4 and 6,
respectively.

Fig. 1. Comparison of portion of the required number of samples for fi-
nite/unique completability for different values of the number of noisy entries at
each column, i.e., g.

Remark 3: DefineSΩ = {1, 2, . . . , r∗}, where r∗ is the max-
imum number such that the assumption on the sampling pat-
tern given in Theorem 1 holds true. Assume that there exists a
completion of the matrix X of rank r′ ∈ SΩ . Then, according
to Theorem 7, with probability 1, r ≤ r′.

VI. NUMERICAL RESULTS

In this section, we consider X ∈ R600×60 000 and change the
value of rank from 1 to 100 and ε = 0.01. We consider the
uniform number of noisy entries in each column and compare
the bounds given in (7) (noiseless) and (12) (noisy) for g = 1
and g = 2. For example, g = 1 means that each column has one
noisy entry and 60 000 noisy entries in total. The corresponding
bounds result in different portions of the samples, which are
shown in Fig. 1.

VII. CONCLUSION

We studied the conditions on the sampling patterns for the
completion of low-rank matrix, when corrupted with a sparse
noise. Both general sparse noise in the matrix and columnwise
sparse noise models are considered. Using these results, an open
question in [3] is resolved with improved results. Furthermore,
assuming that the rank of the original matrix is not given, we
provide an analysis to verify if the rank of a given valid com-
pletion is indeed the actual rank of the matrix. The approach in
this letter can be easily extended to other tensor structures like
Tucker rank, tensor-train rank, canonical polyadic-rank, mul-
tiview data, since the corresponding results without noise are
given in [10]–[16].

Finding computationally efficient algorithms that achieve
close to these bounds is an open problem. Some of the exist-
ing algorithms use alternating minimization based approaches
[3], [7], which could also be extended to tensors following ap-
proaches in [17]–[19].
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