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The unit commitment (UC) problem aims to find an optimal schedule of generating units subject to
demand and operating constraints for an electricity grid. The majority of existing algorithms for the UC
problem rely on solving a series of convex relaxations by means of branch-and-bound and cutting-
planning methods. The objective of this paper is to obtain a convex model of polynomial size for prac-
tical instances of the UC problem. To this end, we develop a convex conic relaxation of the UC problem,
referred to as a strengthened semidefinite program (SDP) relaxation. This approach is based on first
deriving certain valid quadratic constraints and then relaxing them to linear matrix inequalities. These
valid inequalities are obtained by the multiplication of the linear constraints of the UC problem, such as
the flow constraints of two different lines. The performance of the proposed convex relaxation is eval-
uated on several hard instances of the UC problem. For most of the instances, globally optimal integer
solutions are obtained by solving a single convex problem. For the cases where the strengthened SDP
does not give rise to a global integer solution, we incorporate other valid inequalities. The major benefit
of the proposed method compared to the existing techniques is threefold: (i) the proposed formulation is
a single convex model with polynomial size and, hence, its global minimum can be found efficiently
using well-established first-and second-order methods by starting from any arbitrary initial state, (ii)
unlike heuristic methods and local-search algorithms that return local minima whose closeness to a
global solution cannot be measured efficiently, the proposed formulation aims at obtaining global
minima, (iii) the proposed convex model can be used in convex-hull pricing to minimize uplift payments
made to generating units in energy markets. The proposed technique is extensively tested on IEEE 9-bus,
IEEE 14-bus, IEEE 30-bus, IEEE 57-bus, IEEE 118-bus, and IEEE 300-bus systems with different settings
and over various time horizons.
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1. Introduction hard due to its nonconvex nature and its large instances are
computationally challenging to solve [1].

The unit commitment (UC) problem is concerned with finding
an optimal schedule of generating units in a power system, by
minimizing the operational cost of power generators subject to
forecasted energy demand and operating constraints. The oper-
ating constraints include physical limits and security constraints. In

a mixed-integer programming (MIP) formulation of the UC prob-

1.1. Related works

The UC problem has a vital role in the operation of electricity
grids and been studied extensively [2]. The existing optimization

lem, discrete variables model the on/off status of each generator
and the continuous variables account for the amount of production
for each generator. The objective function captures the fuel and the
start-up/shut-down costs of generating units. The UC problem is
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techniques for UC include Lagrangian relaxation (LR) methods,
branch-and-bound (BB) methods, dynamic programming (DP)
methods, simulated-annealing (SA) methods, and cutting-plane
methods [3]. The LR method provides an approximation for the
optimal value of an intractable optimization problem by solving a
simpler problem. Ongsakul et al. [4]| propose an enhanced adaptive
LR method by defining new decision variables. Dubost et al. [5] use
the solution of a dual relaxation of the UC problem in a primal
proximal-based heuristic method to attain a solution. Primal and
dual solution methods for the UC problem in hydro-thermal power
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Nomenclature

Abbreviations

BB Branch and Bound

ISO Independent System Operator
MILP Mixed-Integer Linear Programming
PTDF Power Transfer Distribution Factor
QP Quadratic Programming

SA Simulated-Annealing

uc Unit Commitment

DP Dynamic Programming

LR Lagrangian Relaxation

MIP Mixed-Integer Programming

QCQP  Quadratically-Constrained Quadratic Programming
RLT Reformulation-Linearization Technique
SDP Semidefinite Programming

VUB Variable Upper Bound

Constants

Cg Bus-to-generator incidence matrix

finax Maximum flow vector for lines

M Matrix collecting the coefficients of linear constraints

Prax Vector of upper bounds on the generation of
generators

np Number of buses

n Number of lines

T Maximum difference between the generations at two
adjacent time slots for generator i

u Vector of reliable upper bounds

a; Coefficient of the quadratic term in the cost function of
generator i

Cifixed Fixed cost of generator i

D; Minimum up-time of generator i

d; Vector of demands at time t

H Shift factor matrix

m Vector collecting the constant terms of linear
constraints

Pmin Vector of lower bounds on the generation of generators

ng Number of generators

to+1  Terminal time

S Maximum amount of generation for the start-up and
shut-down of generator i

1 Vector of reliable lower bounds

b; Coefficient of the linear term in the cost function of
generator i

Cistart ~ Start-up or shut-down cost of generator i

Functions

c(+) Total cost of UC problem

8ic(+) Power generation cost for generator i at time ¢t

cr(+) Objective function of SDP and Strengthened SDP
relaxations

hie(+) Start-up or shut-down cost for generator i at time ¢t

Indices, numbers, and sets

Xi (i,/)™ entry of a matrix X

X! ith entry of a vector x

T Set corresponding to {0,1,...,to + 1}
70 Set corresponding to {0, 1,...,t}

R Set of real numbers

K4 Set of bus indices

7 Set of generator indices

Xjj (i,j)™ entry of a matrix X

X; ith entry of a vector x

Set corresponding to {1,2,...,tp}
A1) Set of lines connected to line !

Sk Set of n x n real symmetric matrices

z Set of line indices

7 Set of generator indices with positive reliable lower
bound

Variables

X¢ Vector of all commitment statuses at time t

w Variable vector in SDP and Strengthened SDP
relaxations

P: Vector of all generator outputs at time te.7

w Variable matrix in SDP and Strengthened SDP
relaxations

systems are studied by Gollmer et al. [6]. Moreover, Bai et al. [7]
propose a decomposition procedure for solving the UC problem.
Turgeon [8] designs an algorithm based on the BB method by
recursively splitting the search space into smaller branches.
Furthermore, Rajan et al. [9] propose a set of valid inequalities (turn
on/off) instead of the simple minimum up- and down-time con-
straints to be able to solve hard cases of the UC problem by adopting
a branch-and-cut technique.

A mixed-integer linear programming (MILP) UC reformulation
was first proposed by Garver [10]. Morales-Espana et al. [11] pro-
vide new mixed-integer linear reformulations for start-up and
shut-down constraints in the UC problem, which lead to tighter
relaxations. O'Neill et al. [12] incorporate the transmission
switching problem into the N-1 reliable UC problem and use a dual
approach to solve the corresponding MILP. This method is extended
by O'Neill et al. [13] to inter-regional planning and investment in a
competitive environment. Furthermore, Ostrowski et al. [14] and
Damci-Kurt et al. [15] propose classes of strong valid inequalities,
including upper bounds for the generating powers as well as ramp-
down and -up constraints, to provide smaller feasible operating

schedules for the generators. Muckstadt et al. [16] design a BB al-
gorithm based on the LR method, which breaks down the UC
problem into several simpler UC problems with one generator.

A two-stage stochastic program is introduced by Papavasiliou
et al. [17] that takes into account the high penetration of wind
power and system component failures. Ji et al. [ 18] and Liao [19] use
a scenario generation technique and the chaotic quantum genetic
algorithm to incorporate uncertainties of wind power. Lorca et al.
[20] propose a multi-stage robust optimization-based model that
accounts for stochastic non-anticipative load profiles. Other sto-
chastic schemas are introduced by Cerisola et al. [21] and Philpott
et al. [22] that model the revenue of a power company in the UC
problem posed in electricity markets. These papers consider un-
certainties that stem from different possible outcomes of spot
markets. Furthermore, Nikzad et al. [23] and Yang et al. [24]
introduce a stochastic security-constrained method to model the
time-of-use program and wind power generation volatility,
respectively. Another approach is taken by Ferruzzi et al. [25] that
designs the optimal bidding strategy for micro grids considering
the stochasticity in the used renewable energy in day-ahead
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market by means of analog ensemble method.

More recently, a DP approach is used by Frangioni et al. [26] to
solve a single-unit commitment problem with arbitrary convex cost
functions. This work is an extension of the traditional MILP
formulation of the UC problem but only considers one generator
during the operating time horizon. The work by Madrigal et al. [27]
proposes an interior-point/cutting-plane method to solve the UC
problem, which attempts to amend a proposed set repeatedly to
ultimately find the optimal solution by solving the problem over a
tighter feasible set. Jabr [28] deploys a perspective reformulation of
the unit commitment problem with quadratic cost function, which
can be written as a second-order conic program. The paper in-
troduces a tight polyhedral approximation to avoid using interior
point methods for solving this nonlinear conic program.

Recently, we have experienced significant advances in using
conic optimization for power optimization problems. Bai et al. [29]
proposes a semidefinite programming (SDP) relaxation to solve the
AC optimal power flow (OPF) problem. Lavaei et al. [30] show that
the SDP relaxation is able to find a global minimum of OPF for a
large class of practical systems, and Sojoudi et al. [31] discover that
the success of this method is related to the underlying physics of
power systems. Farivar et al. [32] and Lavaei et al. [33] offer
different sufficient conditions under which the SDP relaxation of
OPF provides zero duality gap. Tan et al. [34] reduce the complexity
of the SDP relaxation for resistive networks by devising a distrib-
uted and computationally cheap algorithm. Moreover, Madani et al.
[35] find an upper bound on the rank of the minimum rank solution
of the SDP relaxation of the OPF problem, which is leveraged by
Madani et al. [36] to find a near globally optimal solution of OPF via
a penalized SDP technique in the case where the SDP relaxation
fails to work. Chen et al. [37] propose a method based on the
combination of SDP relaxation and branch-and-cut approaches
together with strong valid inequalities to solve the OPF problem.
Josz et al. [38] design a hierarchy of SDP-based models to find a
globally optimal solution of the OPF problem. Baradar et al. [39] and
Bahrami et al. [40] propose conic and SDP relaxations of the OPF
problem for integrated AC-DC systems, respectively. Moreover, the
UC problem combined with AC OPF has been studied by Bai et al.
[41] using the basic SDP relaxation and by Paredes et al. [42] via a
SDP-based branch-and-bound technique.

The above-mentioned papers can be categorized into three
groups: (i) methods based on a single convex model, (ii) methods
based on a series of convex models, (iii) methods based on heu-
ristics and local-search algorithms. Due to the complexity of the UC
problem, these papers suffer from a number of issues:

¢ The existing methods relying on a single SDP formulation often
fail to find a global minimum (as proven in this paper), unless
the size of the convex model is allowed to be exponentially
large.

e The existing methods relying on a series of convex problems do
not guarantee the termination within an efficient time. This
means that the number of iterations can grow exponentially for
some practical instances of the problem.

e The existing methods based on heuristics or local-search algo-
rithms produce a candidate solution without being able to
measure its closeness to a global minimum.

e Although a global description of the feasible region of the UC
problem is instrumental from both theoretical and practical
perspectives, the existing methods do not offer a geometric
analysis of the feasible region of the problem. For example,
iterative methods use a sequence of convex relaxations of the
original problem to gradually remove infeasible solutions from
the convex relaxation, which depends on the given objective
function and leads to a local description of the feasible region

(i.e., if the objective function changes, one may need to re-
calculate all the iterations to obtain a local description of the
new part of the feasible region.)

The main objective of this paper is to develop a mathematical
framework that addresses the above issues for practical instances of
the UC problem. To this end, we design a single convex model of
modest size that is able to find a global solution of the UC problem
in many cases, which can also be used to study the convex-hull of
the feasible set of this highly nonconvex problem.

In this paper, we consider the UC problem with a quadratic
objective function and linear equality and inequality constraints
with mixed-integer variables. This problem belongs to the larger set
of polynomial optimization problems that is called quadratically-
constrained quadratic programs (QCQPs). Different relaxation
methods have been proposed in the literature to remedy the un-
derlying nonconvexity of such problems. There are two main re-
laxations for QCQP, namely reformulation-linearization technique
(RLT) and SDP relaxations. The RLT relaxation, introduced by Sherali
et al. [43], is based on iteratively multiplying the linear constraints
and substituting the resulted quadratic terms with new variables. In
the SDP relaxation, the problem is first written as a rank-
constrained optimization problem, and then the rank constraint
carrying all the nonconvexity of the problem is relaxed into a conic
constraint [44]. The exactness of this relaxation depends on the
existence of a rank-1 optimal solution to the SDP relaxation.

1.2. Contributions

In this paper, we adopt a SDP relaxation scheme combined with
valid inequalities based on the Sherali-Adams RLT relaxation [43].
The SDP technique aims to find a strong convex model that returns
a global minimum of the UC problem. This mathematical pro-
gramming method has received significant attention due to
numerous applications in many fields, including combinatorial and
non-convex optimization [45], control theory [46], power systems
[30] and facility location problem [47].

In this paper, we provide a set of valid inequalities to attain a
tighter description of the feasible operating schedules for the
generators in the UC problem. In order to obtain the above-
mentioned inequalities, we use RLT to generate valid non-convex
quadratic inequalities and then relax them to valid convex in-
equalities in a lifted space. For instance, we multiply the flow
constraints over two different lines to obtain a valid non-convex
constraint and then resort to SDP for convexification. The pro-
posed convex program is called a strengthened SDP, which con-
trasts with the traditional SDP relaxation without valid inequalities.
The above procedure is used for producing valid inequalities and its
impact on the feasible set of mixed-integer optimization problems
is broadly studied in the literature (for instance, see Ref. [48] and
the references therein). In this work, we will demonstrate that the
strengthened SDP problem is able to find globally optimal discrete
solutions for many trials of benchmark systems.

Since the strengthened SDP problem is computationally pro-
hibitive for large power systems, its complexity is reduced through
relaxing the high-order SDP constraint to lower-order conic con-
straints. As will be shown in simulations, the above step signifi-
cantly reduces the complexity of the strengthened SDP problem
without affecting its solution in the test systems. We also introduce
the notion of reliable lower bound for generators and show that,
independent of the objective function, the proposed strengthened
convex model is able to recover the correct status of each genera-
tors that has a positive reliable lower bound. In the case where the
SDP relaxation is not exact, we employ a number of other valid
inequalities, including the triangle inequalities and a special case of
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the variable upper bound (VUB) ramping constraints [49]. Although
the total number of the valid inequalities deployed in this paper is
polynomial in the size of the problem, we further reduce it by
identifying a subset of implied valid inequalities and removing
them from the formulation.

One major benefit of the proposed method compared to the
ones in existing literature is that it provides a certificate on the
global optimality of the solution. More precisely, the solution ob-
tained for the UC problem is globally optimal if the rank of the
optimal solution of the strengthened SDP relaxation is equal to one.
Using this global optimality certificate, it will be shown that the
proposed method finds a global minimum of the UC problem for
almost all configurations of the benchmark systems. Another major
benefit of the proposed method is that the dual parameters ob-
tained from the proposed convex model automatically coincide
with the best set of prices that can be designed to clear the elec-
tricity market (known as convex-hull pricing) [50]. More precisely,
because of the existence of discrete decision variables in the UC
problem, it is often the case that there is no set of prices that
supports the optimal solution of the UC problem. This is due to the
fact that the prices are often determined by assuming that the
decision variables are continuous whereas the actual decision
variables do not respect this assumption. Due to this inconsistency,
there may be no set of prices that satisfy the market equilibrium
with “no arbitrage” property, which can incentivize the generators
to change their commitments. The Independent System Operators
(ISOs) overcome this issue by proposing the additional uplift pay-
ments (in the form of side-payments) to the generators. It has been
shown by Gribik et al. [51] that convex-hull pricing is one of the
most consistent pricing methods with optimal quantities in the
unit commitment problem because of its side-payment minimi-
zation property.

Similar to the methods surveyed above, this work studies the UC
problem for a linear model of the power flow equations, known as a
DC model. Since the UC problem needs to be solved before
observing the actual demand and based on the forecasted load over
the operating time horizon, the DC model is an acceptable
approximation of the power system. However, the results can be
applied to a nonlinear AC model of power systems by combining
the proposed technique for handling discrete variables with the
convexification method delineated by Lavaei et al. [30] for tackling
the nonlinearity of continuous variables. The analysis of the success
rate of the proposed convex relaxation framework for an AC model
of the UC problem is left as future work.

Notations: The symbol rank{ -} denotes the rank of a matrix and
the notation (-) ' represents the transpose operator. Vectors and
matrices are shown by bold lower case and bold upper case letters,
respectively. The notations W¥ and W;; denote the (i, j)th entry of a
matrix W. Likewise, the notations w' and w; show the ith entry of a
vector w. The symbols R and S" represent the sets of real numbers
and n x n real symmetric matrices, respectively. The relation u > v
indicates that the vector v is less than or equal to the vector u entry-
wise (the same relation is used for matrices). Given two sets of
natural numbers 77y and 77, as well as a matrix W, the notation
W{ 71, 7',} denotes the submatrix of W that is obtained by
keeping only those rows of W corresponding to the set 77y and
those columns of W corresponding to the set 77,. Given a vector w,
the notation w{ 7" } denotes the subvector of w that is obtained by
keeping only those elements of w corresponding to 7°;. The no-
tation W > 0 indicates that W is a symmetric positive-semidefinite
matrix.

2. Problem formulation

Consider a power grid with n;, buses (nodes), ng generators, and

n; lines. Assume that 2 ={1,...n,}, Z={1,...,ng} and
2 =1{1,...,n;} denote the bus set, generator set and line set,
respectively. Moreover, suppose that .7 = {0, 1, ..., ty, tp + 1} is the
set of time slots over which the UC problem should be solved. Let
pir and x;; denote the amount of generation and the status of the
generator i at time t, respectively, for all i€ # and te.7. Assume
that the initial (t =0) and terminal (t =ty + 1) statuses of all
generators are off, implying that p; = Xi.0 = Pi.ty+1 = Xit,+1 = O for
allie Z. The set of the decision variables consists of the continuous
variables p;, and the binary variables x;, for alli€ & and t€.7". Let
fq:t denote the flow of line g€ # (in an arbitrary direction) at time
te.7 . For the sake of notational simplicity, define X; as the vector of
all commitment statuses and p; as the vector of all generator out-
puts at time te.7:

T
A T A
Xt:{xl;tv"wxng:t] ) Pt:[p'l:t’-“apng;t

The objective function of the UC problem is the sum of the
operational costs of all generating units, which consist of the power
generation, start-up and shut-down costs. The power generation
cost is commonly modeled as a quadratic function with respect to
the amount of generation:

2
gi;t<pi;t7xi;t) £a; X iy + bi X Pit + Cifixed X Xicts (1)

where a;, b;,and c;. fxeq are constant coefficients for generator i.
Note that the term Cifixed X Xj¢ accounts for a fixed cost if the
generator is on and becomes zero otherwise. The start-up and shut-
down costs are both assumed to be identical and modeled as

hi;t (xi;t-H ) xi:t) £ Ci;start : (Xi;t+1 - xi:t)27 (2)

where ¢;; syt is the amount of start-up or shut-down cost. Note that
since all generators are assumed to be off at the beginning and the
end of the horizon (i.e.,, t =0and t =ty + 1), if the start-up and
shut-down costs have different values, we can precisely model the
problem using the expression (2) after setting ¢;. st €qual to the
average of those two different costs.

Remark 1. The fuel cost could be a piecewise function, and therefore
possibly nonconvex, for certain types of generators due to the valve-
point loading effect. The non-smoothness of the fuel cost is often
caused by the fact that the status of the input valve of a generator
could be changed sequentially based on the loading outputs to increase
the efficiency of the power plant [52]. Recently, much attention has
been devoted to taking the valve-point loading effect into consider-
ation for the UC and economic dispatch problems [53]. The non-
convexity of the fuel cost function can be addressed by first finding a
piecewise linear approximation of the function (with any arbitrary
precision) and then defining additional binary variables to take care of
the break points. While the focus of this work is merely on the UC
problem with quadratic objective functions (and linear functions as a
special case), the methodology to be developed in this paper could be
generalized to handle piecewise nonconvex cost functions through
new binary variables. A careful analysis of this generalization is left as
future work due to space restrictions.

The cost associated with turning on or off a generator induces a
coupling between the decision variables at different times. There
are some operational restrictions for the UC problem, such as
physical limits and security constraints. Physical limits include unit
capacity, line capacity, ramping, minimum up-time, and minimum
down-time constraints. A unit capacity constraint ensures that the
unit operates within certain limits. A line capacity constraint en-
forces the flow on each transmission line not to exceed its thermal
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limit. Due to the physical design of a generator, it may be impossible
to significantly change the production level within a short time
interval. These restrictions are referred to as ramping constraints. In
addition, each generator may have minimum up-time and down-
time constraints, which prohibit the status of a generator from
changing over a short period of time.

In order to formulate the UC problem, we need to define several
parameters below. Define the vector of demands at time t as d,
where its jh entry is equal to the demand at bus j&.% at time t€.7
(shown as dj;). Let fmax denote the maximum flow vector for all
transmission lines, where its gt entry is equal to the flow limit for
the line g€ 2 (shown as fgmax). Assume that p; max and pj. min
represent the upper and lower bounds on the generation of unit
ie 7, respectively. Furthermore, define s; as the maximum amount
of generation for the start-up and shut-down of generator i€ 7.
Moreover, r; denotes the maximum difference between the gen-
erations at two adjacent operating time slots for generator i.
Furthermore, suppose that U; and D; denote the minimum up-time
and down-time for generator i, respectively. Let H be the power
transfer distribution factors (PTDF) or shift factor matrix and
C,eR™*"s be the bus-to-generator incidence matrix. Note that
Cgji = 1 if and only if generator i is connected to bus j, and Cgj;; = 0
otherwise. Since we adopt the DC modeling of the UC problem, the
flow of each line g at time t (shown as fg.¢) can be expressed as a
linear combination of all generations at time t. Therefore, the UC
problem can be formulated as follows:

min. 8iit (pi;ta Xi;t) + Z hi;t (Xi;t+1 P Xi;t)v (33)
{xic} iey iev
{pic} te s teTo
subject to x;, {0, 1}, (3b)
Pi; min X xi;t < Dit < pi; max X xi;tv (BC)

Ng ny
> pie =) d, (3d)
i—1 =1

|H(dt — Cgpr)! < fmax, (3e)
IPici1 — Pie| < (285 —13) + (1 — $i) (Xise1 + Xie), (31)

Xitr1 — Xip < Xir, VTE{t +1,..., l‘l‘lil’l(t+ Uiv tO)}v (3g)

Xit—1 — Xt <1 =X, V7E{t+1,...,min(t + D;, tp)}, (3h)

iez;te s (3i)
where:

e 72{1,2,....tp}and 7¢2{0,1,2,...,tg}.

e (3b) imposes that status of each generator to be binary and
holds for all ie  and t€.7.

e (3¢) is the unit capacity constraint and holds for all i€ " and
te.s.

e (3d) represents the power balance equation and holds for all
iezand te.7.

e (3e) indicates the line capacity constraint and holds for all t€.7.

e (3f) formulates the ramping constraint and holds for all ie &
and te .7 .

e (3g) is the minimum up-time constraint and holds for all ie
and te.7 .

e (3h) is the minimum down-time constraint and holds for all
ie 7 and te.7 .

Note that the security constraints have not been modeled
explicitly in order to streamline the presentation. However, the
results to be presented in this work are valid in presence of linear
security constraints obtained using line outage distribution factors
[54].

Remark 2. Inequality (3f) encapsulates two types of ramping con-
straints. More precisely, it imposes the inequality |p;;,1 — pi¢| < 1 in
the case of X, 1 = X;; = 1 and the inequality |pi¢.1 — pic| < s; in the
case of Xjp1 # Xyt

Remark 3. Constraints (3c)-(3h) can all be formulated linearly in
terms of the decision variables.

3. Convex relaxation and strengthening of UC problem

In what follows, the main results of this paper will be developed.
To streamline the presentation, the proofs are moved to the ap-
pendix. As mentioned in the Introduction, the focus of this paper is
on convex formulations of the UC problem. To this goal, a convex
relaxation of the UC problem is first introduced. Subsequently, this
relaxation is strengthened with a set of valid inequalities. Through
extensive simulations on benchmark systems combined with
rigorous theoretical results, we will show that the proposed convex
formulation is indeed exact under different scenarios. To explain
the convex relaxation and strengthening steps, consider the simple
illustrative example given in Fig. D.1. The original feasible region
consists of 4 discrete points. In the convex relaxation step, the non-
convex and disjoint feasible region is embedded (relaxed) into a
convex region (depicted by the green ellipse). This convex region
contains the original feasible region, together with a new set of
infeasible points. In the second step, the convex relaxation of the
feasible region is strengthened by adding a set of valid inequalities,
namely those constraints that are guaranteed to be satisfied by the
original feasible points. The role of these valid inequalities is to
strengthen the convex representation of the original feasible region
by eliminating some of the potentially infeasible points introduced
in the convex relaxation step. The pink diamond in Fig. D.1 shows
the resulting feasible region after strengthening the convex relax-
ation via valid inequalities.

The tightest convex relaxation of a nonconvex feasible region
(known as the convex-hull of the feasible region) has an important
property: optimizing any linear function over this convex region
results in a solution that is globally optimal for the original non-
convex problem. However, finding the convex-hull can be as hard
as obtaining a global minimum of the original problem [55].
Despite this negative result, one goal of this paper is to show that it
is possible to obtain a tight convex relaxation of the UC problem
under various conditions for practical benchmark systems. This
convex model is valuable for convex-hull pricing and sensitivity
analysis in energy markets [51]. Furthermore, the convex nature of
the proposed model makes it possible to solve the problem using
standard numerical algorithms with any arbitrary initialization.
Moreover, the proposed method serves as a global optimization
technique, meaning that it aims at finding the best solution possible
for the UC problem.

In the rest of this section, a convex relaxation of the UC problem
in a lifted space will be introduced, followed by a procedure to
strengthen the convex model using a set of valid inequalities.
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Convex Relaxation

Strengthening
 ———

Fig. D.1. Convex Relaxation and Strengthening of a non-convex feasible region.

3.1. SDP relaxations

By relaxing the integrality condition (3b) to the linear
constraints

0 S Xi:t S 1, (4)

we obtain the basic (convex) quadratic programming (QP)
relaxation of the UC problem. As will be shown in Section 4, the
solution of this convex problem is almost always fractional for
benchmark systems. Motivated by this observation, the objective is
to design stronger relaxations. Consider the vector

wé[X]T,...,xt}pf,...,ptTO]T. (5)

The constraint (4) together with the constraints of the UC
problem except for (3b) can all be merged into a single linear vector
constraint Mw > m, for some constant matrix M and vector m.
Furthermore, the condition (3b) can be expressed as the quadratic
equation

Xi.t (xi;t — 1) =0. (6)
Therefore, the UC problem can be stated as
minimize c(w) (7a)
weR%o
subject to Mw > m, (7b)

wr(w,—1)=0, k=1,2,...,ngtp, (7¢)
where c(w) is equivalent to the total cost of the UC problem. It is
straightforward to verify that c(w) is a convex function with respect
tow. Note that this formulation is obtained by writing each equality
constraint of the UC problem as two inequality constraints.

Remark 4. LetO0,,;, and 1,,, denote a x b matrices with all entries
equal to 0's and 1's, respectively. Moreover, let I, be the n x n identity
matrix. Given a vector p, the notation diag{p} represents a diagonal
matrix such that the (i, i)th entry equals p;. Assume that the it entries
of the vectors pax and Py represent the upper and lower bounds on
the generation of unit i€ %, respectively. In order to elaborate on the
reformulation (7) and the structure of its parameters, note that

Ongx]
i Ing Ongxng _0‘l el
I, On, xn, OngX]
*C.hag{pmin} Iy, n,r,ng]
M — diag{Pmax } ~In, , m= Z 9 ’ (8)
07xn, Tisn, =1
-1 L
1xn 1xn
n,xngg 'ng 71'21 dj
On,><ng -HG J H.d — fiax
| —H.d — fax

in the case tg = 1.

Consider a matrix variable W and set it to ww T . The constraints
of the UC problem can all be written as inequalities in terms of W
and w. This leads to a reformulation of the UC problem, where W =
ww ' is the only non-convex constraint. An SDP relaxation of the
UC problem can be obtained by relaxing W =ww ' to the conic
constraint W>=ww . This yields the convex optimization problem

minimize ¢ (w,W) (9a)
WE]Rz"gtO
We skl
subject to Mw > m, (9b)
Wkkfwk:07 k= 1,2,...,”gt0, (9C)
W=ww', (9d)
where

cr(W, W) = > (aGWn gy (t-1)+ingto-+ng(t—1)+i
ie?y

tes
+ biwngto+ng(t—l)+i

+ CiifixedWny(t—1)+i) Z Cistart (Wh,tvingtri
7
te 7o

+ Wh e 1) ringe-1)+i — Whgtring(e-1)+i
= Wh, (1) +ingt+i)- (10)

Note that (9d) can be written as a linear matrix inequality with
respect to w and W. This problem is called the SDP relaxation of
the UC problem.

Remark 5. Note that (9) is indeed a relaxation of the UC problem.
This is due to the fact that if w, defined in (5), is an optimal solution of
the UC problem, then (w,wwT) is feasible for (9) and has the same
objective value as the optimal cost of the UC problem. Furthermore, the
proposed SDP relaxation solves the UC problem if and only if it has an
optimal solution (w*,W") for which the matrix

1 w'
v Wl
has rank 1. From a different perspective, in the case where x,’s are all
binary numbers at an optimal solution of (9), the relaxation is exact.

As will be demonstrated in Section 4, the solution of the convex
problem (9) is almost always fractional for benchmark systems. In
fact, we show in Appendix A that the optimal objective values of
SDP and QP relaxations of the UC problem are equal when tg = 1.
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3.2. Valid inequalities

Let S denote the set of feasible points of the UC problem (3). An
inequality is said to be valid if it is satisfied by all points in S. The
SDP relaxation (9) can be strengthened by adding valid inequalities
to the problem. Consider two scalar inequalities of the UC problem,
namely

u'w-2z;>0, viw—2, >0,

for fixed coefficients u, v, z; and z,. Since both of these inequalities
hold for all points w in S, the quadratic inequality

u'ww'v — (vz; +u'z)w + 212, > 0,
is also satisfied for every weS. The above quadratic inequality can

be relaxed to the linear inequality

u"WTv — (vTz; +uTz)w + 22, > 0.
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Fig. D.2. 20 load scenarios for the IEEE 9-bus system with 3 generators over one time
slot.

3.3. Strengthened SDP relaxation

In this part, we construct a set of valid inequalities via the
multiplication of all linear inequalities of the UC problem, using the
strategy delineated in Section 3.2. The resulting quadratic in-
equalities obtained from (9b) can be expressed as the matrix
constraint (Mw — m)(Mw —m)" > 0, or equivalently,

Mww ™M™ - mw™™" - Mwm” + mm” > 0.

The relaxation of this non-convex inequality yields the linear
matrix inequality

MWM™ - mw™MT - Mwm™ + mm" > 0. (11)

Replacing the non-convex constraint (7¢) in the UC formulation
(7) with the linear constraint (11) leads to a Reformulation-Line-
arization Technique (RLT) relaxation of the UC problem.
Although it has been proven in Ref. [43] that this relaxation out-
performs the basic QP relaxation, it is shown in Section 4 that this
method often fails to generate feasible solutions for the UC
problem.

The addition of the constraint (11) to the SDP relaxation (9)
leads to the convex optimization problem:

“—Strengthe‘ned SDP‘

60 70 80

Rating
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60 "<
N
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> 30¢ -
=1 R —
E20r e |
B | e
(@) - e ]
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(b) Optimality Gap

Fig. D.3. 10 line rating scenarios for the IEEE 9-bus system with 3 generators over one
time slot with the load factor 0.3.
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minimize cr(w,W) (12a)
weRrigh

WGSantO

subject to Mw > m, (12b)
MWM™ - mw™™MT - Mwm" + mm" > 0, (12c)
Wkkfwk:O, k:l,Z,...,ngtm (12d)
W=ww'. (12e)

This problem is referred to as the strengthened SDP relaxation
of the UC problem. In Appendix C, it is shown that the strength-
ened SDP (12) is exact and significantly improves the standard SDP
and RLT relaxations for most test cases.

Real-world UC problems are large-scale due to the size of power
grids and the number of time slots. Hence, the strengthened SDP
relaxation (12) would be computationally expensive for practical
systems. Later in this paper, constraint (12e) will be replaced by a
number of lower-order conic constraints without affecting the
solution.
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Fig. D.4. 20 load scenarios for the IEEE 14-bus system with 5 generators over one time
slot.

3.4. Reduced-strengthened SDP relaxation

In this subsection, we design a reduced-strengthened SDP
relaxation with conic constraints smaller than that of the
strengthened SDP relaxation.

Define the sets

V2 ng(t— 1)+ 1,ng(t— 1) +2,...,ng(t+ 1)},

7p2{ngto+t—1)+1Lng(to+t—1)+2,....ng(tg + t + 1)},

7E 7 U7,

forevery te{1,...,tp — 1}. Observe that 7'y, and 7", are the index
sets of those elements of w that correspond to
X165 s Xngits X154 15 -0 Xnge1 - AN {P1yes oo, Prgits PLie1s - Prgit+1
respectively. There are constant matrices Y1,...,Y;_q and vectors
V1, .--,¥i,—1 such that, for every te{1,...,ty — 1}, the inequality
Yw{ 7t} >y, (13)
is equivalent to the collection of those inequalities in (9b) that only
include the decision variables X;, p;;, X;.t11, and piryq for allie 2.
Note that the inequalities given in (13) forte {1, ..., o — 1} cover all
inequalities in (9b) except for the minimum up-time and down-
time constraints.
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Fig. D.5. 17 line rating scenarios for the IEEE 14-bus system with 5 generators over one
time slot with the load factor 0.8.
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To handle the minimum up- and down-time constraints, define
the set 77, £{1,...,ngty}. Note that 77, is the index set of those
elements of w that correspond to the statuses of the generators
over different time slots. There are a matrix Y¢, and a vectory,, such
that the inequality

Y W{ 7} > Vi, (14)

is equivalent to the minimum up- and down-time constraints (3g)
and (3h). Note that these constraints are inherently linear functions
of the variables x;’s.

So far, it has been shown that the condition (9b) can be replaced
by (13) and (14) for t = 1, ..., tp. Based on this fact, we introduce a
relaxation of the strengthened SDP problem as follows:

minimize c;(w, W) (15a)
WERZ"E[O
We sl
subject to Yew{ 7t} >y;, t=1,2,... t, (15b)
YW{ 7, 7Y —yw{ 7Y
1000 z z z
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Fig. D.6. 13 load scenarios for the IEEE 30-bus system with 6 generators over one time
slot.

“Yew{ 7}y, +yy{ >0,

t=1,2,....to, (15¢)
Wkk—WkZO, k:1,2,...,ngt0, (15d)
W=ww! (15e)

After this relaxation, the exactness of the proposed relaxation can
be certified if and only if the variables x;,’s take binary values at
optimality. Furthermore, the large conic constraint (15e) can be broken
down into smaller conic constraints. In particular, the conic constraint
W >ww! is equivalent to W{ 7, 7} >w{ 7 yw{ 7 }. for
t=1,2,...,ty in the absence of minimum up- and down-time con-
straints. Notice that the later constraints are defined on smaller sized
matrices that are defined based on 7. The proof of this statement can
be found in Appendix B.

Substituting (15e) with W{ 7%, 7} >w{ 7 w{ 7}T for
t=1,2,...,ty gives rise to the reduced-strengthened SDP relaxa-
tion of UC problem. It is worthwhile to mention that some of the
designed valid inequalities are redundant and implied by other
inequalities. In order to further reduce the computational
complexity of the designed relaxation, these redundant inequalities
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Fig. D.7. 10 line rating scenarios for the IEEE 30-bus system with 6 generators over one
time slot with the load factor 0.7.
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are identified in Appendix D and removed from the formulation.

One may speculate that more valid inequalities in the
strengthened SDP problem can be declared redundant and elimi-
nated by analyzing the geographical locations of generators and
lines. In particular, a question arises as to whether it is necessary to
incorporate those valid inequalities that are obtained by multi-
plying the constraints of two devices (lines or generators) that are
geographically far from each other. As will be shown in simulations
on a test system, such valid inequalities may be crucial for the
exactness of the strengthened SDP relaxation.

3.5. Triangle and VUB constraints

It will be shown in simulations that the proposed SDP re-
laxations are able to find a global solution of the UC problem for
many test systems under various conditions. However, there are
cases for which the relaxations are not exact. To further improve
the relaxations for such systems, the so-called triangle inequalities
are incorporated in the UC problem.

XitXj.t + Xkt > XitXk,t + Xjot Xk
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Fig. D.8. 15 load scenarios for the IEEE 57-bus system with 7 generators over one time

slot.

XitXjit + XitXpr + XjtXpee + 1 2 Xiop + Xjop + X,

for every i,j,ke 2 and te.7. The efficacy of these valid in-
equalities has been studied by Burer et al. [49] and Anstreicher et al.
[48]. Moreover, the proposed method is reinforced by adding the
VUB ramp constraints

Pit < Pi. max " Xi;t — (Pi; max — 5i> “(Xip — Xir—1),

DPit < Pi; max“Xit — (Pi; max — 51’) “(Xip — Xire1),

developed by Damci-Kurt et al. [15]. Note that the above valid
inequalities are a subclass of VUB ramp constraints for only two
adjacent time slots. Although the number of all VUB ramp con-
straints is exponential in the size of the UC problem, the number of
the inequalities considered above (for adjacent time slots) is linear.

4. Case studies

In this section, several case studies on IEEE benchmark systems
will be provided. The simulations are run on a laptop computer
with an Intel Core i7 quad-core 2.50 GHz CPU and 16GB RAM. The
results are reported based on a serial implementation in MATLAB
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Fig. D.9. 10 line rating scenarios for the IEEE 57-bus system with 7 generators over one
time slot with the load factor 0.5.
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using the CVX framework and MOSEK solver that utilizes an
interior-point algorithm to solve SDP problems [56]. For all test
cases, the objective function is quadratic in the generator output
and linear in the commitment status. To generate multiple UC
problems for each test case, we multiply all loads of each IEEE
system by a load factor o chosen from a discrete set {aq, a3, ..., }-
For each IEEE system, we plot four curves for k load profiles: (i) the
optimal cost of the (reduced) strengthened SDP, (ii) the optimality
gaps for three different relaxations (SDP, strengthened SDP and
RLT). As the load factor changes from a4 to a4, the optimal statuses
of the generators may change multiple times. Whenever the sta-
tuses of the generators for a load/rating scenario varies from those
of the previous one, the corresponding scenario is marked on the
curve by a red cross. Hence, if there is no mark on the SDP cost
curve for a particular load/rating scenario, it means that the sta-
tuses of the generators are the same as those in the previous load
scenario. Each red cross is accompanied by an integer number,
which can be interpreted as follows: if this number is converted
from base 10 to 2, it is the concatenation of the globally optimal
status of all generators. For example, for a case with 3 generators,
the number 5 on the SDP cost curve indicates that the first and third
generators are active while the second generator is off at a globally
optimal solution of UC (note that 5 = (101),). Moreover, for every
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Fig. D.10. 10 load scenarios for the IEEE 118-bus system with 54 generators over one
time slot.

scenario that at least one of generator statuses found by the
strengthened SDP is neither O nor 1, we write “Not Rank-1” on the
curve instead of an integer number encoding the optimal generator
statuses. To further assess the performance of the proposed re-
laxations, we redo the above experiment for each test case and
draw curves with respect to line ratings as opposed to load factors.
More precisely, we impose a constant limit on the flows of all lines
and solve various relaxations of the UC problem for different values
of this limit.

Fig. D.2(a) shows the solutions found by the strengthened SDP
for 20 load scenarios for the IEEE 9-bus system with 3 generators
over one time slot (ty = 1). The load factors are «; = 0.1 x i for
i=1,2,...,20. It can be observed that the proposed convex relax-
ation has found a global solution of the UC problem for 19 out of 20
scenarios. The load profile associated with the factor a5 is the only
unsuccessful case. After adding triangle constraints to the formu-
lation, the relaxation becomes exact and it retrieves the optimal
solution of UC problem.

We define the optimality gap for any relaxation of the UC
problem as

L » upper bound — lower bound
Optimality gap= upper bound x 100,

where "upper bound” and "lower bound” denote the globally
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Fig. D.11. 10 load scenarios for the IEEE 30-bus system with 6 generators over ty = 5
time slot.
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Fig. D.12. 10 load scenarios for the IEEE 57-bus system with 7 generators over ty = 6
time slot.

optimal cost of the UC problem (found using Gurobi solver) and the
optimal cost of the relaxation, respectively. The optimality gaps for
the SDP, RLT and strengthened SDP relaxations are compared in
Fig. D.2(b). Notice that the SDP and RLT relaxations perform very
poorly and the proposed valid inequalities are essential for
obtaining rank-1 (integer) solutions.

Fig. D.3 shows the performance of the proposed relaxations for
different line ratings for the IEEE 9-bus system over one time slot
(to = 1) with the load factor equal to 0.3. The uniform ratings of the
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lines are chosen as a; =30+5xi for i=1,2,...,10. It can be
observed that the strengthened SDP relaxation is exact in all sce-
narios. As rating of the lines decreases, the RLT relaxation becomes
exact. This is due to the fact that the reliable lower bounds of the
generators become strictly positive for small line ratings, which
leads to the exactness of both RLT and strengthened SDP
relaxations.

Fig. D.4 shows the solutions found by the strengthened SDP for
20 load scenarios for the IEEE 14-bus system with 5 generators over
one time slot. The load factors are o; = 0.1 x ifori= 1,2, ...,20. The
relaxation is exact in 19 load scenarios. More precisely, the load
scenario aqg is the only unsuccessful trial. As before, the proposed
relaxation can retrieve the exact solution for this case after adding
the triangle inequalities to the formulation.

The performance of the strengthened SDP relaxation with
respect to different line ratings for the IEEE 14-bus system is re-
ported in Fig. D.5. The uniform line ratings are o; = 15+ 5 x i for
i=1,2,...,17, where the load factor is equal to 0.8. Except for as,
the proposed relaxation is exact for all line ratings.

Fig. D.6 illustrates the results of the strengthened SDP for 13 load
scenarios for the IEEE 30-bus system with 6 generators over one
time slot. The load factors are ¢; = 0.1 xifori=1,2,...,13. It can
be observed that the proposed convex relaxation is exact and finds
the globally optimal solution of the problem for all scenarios. If the
load factor is greater than or equal to 1.4, the UC problem becomes
infeasible since the total load exceeds the total capacity of the
generators.

Fig. D.7 depicts the performance of the strengthened SDP with
respect to different line ratings for the IEEE 30-bus system. The load
factor is equal to 0.7 and the uniform line ratings are chosen as «; =
15+5xifori=1,2,...,10. There is only one case (corresponding
to «y) for which the proposed relaxation is not exact.

Fig. D.8 shows the output of the strengthened SDP for 15 load
scenarios for the IEEE 57-bus system with 7 generators over one
time slot. The load factors are ¢; = 0.1 x i for i =1,2,...,15. The
proposed convex relaxation obtains the globally optimal solution of
the problem for all scenarios. Furthermore, the UC problem be-
comes infeasible if the load factor is greater than or equal to 1.6
since the total load exceeds the total generation capacity. Further-
more, Fig. D.9 illustrates the performance of our proposed method
for the IEEE 57-bus system with the uniform line ratings «; = 30 +
5xifori=1,2,...,10. The load factor is set to 0.5. As before, the
proposed relaxation successfully recovers the exact solution for all
tested cases.

Consider 10 load scenarios for the IEEE 118-bus system with 54
generators over one time slot. The load factors are o; = 0.1 x i for
i=1,2,...,10. The results are plotted for the reduced-strengthened
SDP problem in Fig. D.10.

Fig. D.11 illustrates the results of the reduced-strengthened SDP
(15) with low-order conic constraints for 10 load scenarios for the
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Fig. D.13. IEEE 14-bus system with 5 generators over 24 time slots.
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*@9

Fig. D.14. Weighted graph corresponding to lagrange multipliers of constraints for IEEE 57-bus system.

IEEE 30-bus system with 6 generators over ty = 5 time slots. The
load factors are o; = 0.8 +0.02 x i fori =1,2,...,10. Observe that
reduced-strengthened SDP relaxation fails in only two cases. For
these two cases, the optimality gap is close to zero. Note that each
red cross in Fig. D.11a is accompanied by a vertical array of 5
numbers, each showing the commitment parameters (in base 10)
for different time instances. Fig. D.12 shows the solutions of the
relaxed strengthened SDP (15) for 10 load scenarios for the IEEE 57-
bus system with 7 generators over 6 time slots. The load factors are
a; =0.1xifori=1,2,...,10. The proposed relaxation is exact for
all load scenarios.

Consider the IEEE 300-bus system with 69 generators over one
time slot and for the single load factor of 1. The strengthened SDP
relaxation achieves the global minimum of the UC problem. The
number natural 18338481760792186850 encodes the optimal
statues of all generators in base 10. After converting this number to
a binary vector, it can be observed that 53 generators are on and 16
generators are off at optimality.

Next, consider the IEEE 14-bus system with 5 generators over 24
time slots. As before, the proposed convex model (25) achieves the

globally optimal solution of the UC problem for this scenario.
Fig. D.13 displays the total load distribution over this horizon.
Furthermore, the integer number on top of each column represents
the optimal configuration of the generators at the corresponding
time slot. The optimal cost associated with the reduced-
strengthened SDP relaxation 205838. However, the optimal cost
for the SDP relaxation without the proposed valid inequalities is
equal to 162600.

Finally, we aim to show that even if two lines are far from each
other in the network, they may still generate a valid inequality that
is crucial in finding a globally optimal solution of the UC problem.
To this end, consider the IEEE 57-bus system with the load factor 0.5
and the uniform line rating equal to 35 over one time slot (for
convenience, we drop the subscript t). At optimality, the lines (8,9),
(1,15), (7,8), and (12,13) are congested. We solve the strength-
ened SDP relaxation and consider the Lagrange multipliers corre-
sponding to the valid inequalities
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HgCgW33CgT HlT — (Hld +fi;max> HgCgW31 — (Hgd

+f8:max> Hicgw31 + (Hid +fi;max) (HSd +f8:max>
>0 (16)

for i =1,2,...,n. The above inequalities correspond to the multi-
plication of the flow constraints of the line (8,9) and every line of
the network, ie., Hg(d—Cgp) +fzmax >0 and H;(d - Cgp)+
fimax > 0. Note that the number 8 is the index of those rows of H
and fax that are associated with the line (8,9). The magnitudes of
the optimal Lagrange multipliers corresponding to the constraints
in (16) are visualized as a weighted graph in Fig. D.14. The thickness
(weight) of each blue line is proportional to the magnitude of the
optimal Lagrange multiplier for the valid inequality obtained by
multiplying the flow constraints of that line and the red line (8,9).
The weights are normalized with respect to the largest magnitude
of the Lagrange multipliers. Recall that Lagrange multipliers show
the sensitivity of the optimal objective value of the strengthened
SDP problem to infinitesimal perturbations. It can be observed that
the largest Lagrange multiplier corresponds to the line (12, 13) that
is far from the line (8,9). Moreover, Fig. D.14 shows that even
though generators 1, 2 and 3 are distant from the line (8,9), the
valid inequalities generated by their adjacent lines (paired with
(8,9)) are important.

5. Conclusion and future works

Finding a global minimum of the unit commitment (UC) prob-
lem, as a mixed-integer nonlinear optimization problem, for DC
models of power systems is a daunting challenge due to its inherent
complexity. Although this problem may be solved for several
practical instances using different heuristic or highly complex
methods developed in the literature, there is no known tight
convex model of a polynomial size for real-world cases of the UC
problem. The objective of this paper is to address this issue by
developing a convex model that is tight for most practical in-
stances. Our approach is based on developing a convex conic
relaxation for the UC problem. This is achieved by generating valid
nonlinear constraints and then relaxing them to linear matrix in-
equalities. These valid inequalities are obtained by the multiplica-
tion of the linear constraints of the UC problem, such as the flow
constraints of two different lines. The proposed technique is
extensively tested on benchmark systems to show that, except for
very few cases, this method correctly finds a globally optimal
schedule of the generators for a wide range of load profiles and line
ratings. The significance of the proposed method compared to the
existing techniques lies in the fact that it provides a solution whose
global optimality can be certified. Furthermore, the proposed
model can be solved efficiently due to its convexity. The designed
convex model can be readily employed for the convex-hull pricing
scheme, where the objective is to design a uniform price in energy
market that minimizes the uplift payments to the generating units.
The performance of the method developed in this paper is show-
cased on different IEEE benchmark systems, including IEEE 9-bus,
IEEE 14-bus, IEEE 30-bus, IEEE 57-bus, IEEE 118-bus, and IEEE 300-
bus systems.

The proposed technique can be generalized to handle the AC
model of power systems that is known to be highly nonlinear and
nonconvex. Recent results show that the AC model of power flow
equations could be described by an SDP formulation in a large set of
scenarios. As future work, we will investigate the UC problem for an
AC model of power systems by combining two SDP formulations,
one taking care of the discrete variables of UC and another one

accounting for the continuous nonlinearity of the power flow
equations.
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Appendix A. Equivalence of SDP and QP relaxations

Theorem 1. The optimal objective values of the SDP relaxation (9)
and the basic QP relaxation of the UC problem are the same if ty = 1.

Proof. Assume that (w*, W") denotes an optimal solution of the
SDP relaxation (9). First, we aim to show that w" is a feasible point
of the basic QP relaxation. Consider an index k corresponding to an
element of w associated with a generator status. The constraint (9b)
is the same as (7b). Moreover, (9d) implies that Wy, > w;‘:, which
together with the constraint (9c) leads to the relation 0 < wj < 1.
As a result, w" is a point feasible for the basic QP problem. Due to
the deﬁnitions of ¢ (w,W) and c(w) as well as the inequality
Wi, > wk , one can verify that ¢, (w*, W") > c(w"). Therefore, the
optimal cost of the SDP relaxation is greater than or equal to the
cost of the QP relaxation.

In order to complete the proof, it suffices to show that the
optimal cost of the QP relaxation is greater than or equal to the
optimal cost of the SDP relaxation. Suppose that W denotes an
optimal solution of the QP relaxation of the UC problem. One can
build a matrix W such that (w, W) is a feasible point for the SDP
relaxation with a cost equal to the optimal cost of the QP relaxation.
The constraint (9b) is a reformulation of the linear constraints and
therefore it holds true. Furthermore, the constraint 0 < wy < 1
implies that Wk < Wy. Therefore, , We can construct a non-negative
diagonal matrix Wp such that (Wo,k + wk) Wy = 0 As a result,
(W, W) is feasible for SDP relaxation, where W = ww' + W,. Note
that the only possibly required positive elements of Wy are the
diagonal elements corresponding to the statuses of generators.
Furthermore, notice that these diagonal elements do not appear in
the objective whenever ty = 1. Therefore, one can verify that
cr (W, W) = c(w). This completes the proof.

Appendix B. Decomposition of the conic constraint

Theorem 2. The conic constraint W>=ww/ in the relaxation of the
strengthened SDP problem, i.e., (15), is equivalent to the following set
of smaller conic constraints:
W7 7 =w{7gw{7 3!, t=12...f (B.1)
in the absence of minimum up- and down-time constraints.

Proof. Assume that the minimum up- and down-time con-
straints do not exist. It can be observed that in (15b), (15c), and
(15d), the decision variables at each time instance are coupled only
with the decision variables of the next and previous time slots.
Using the chordal extension technique (see Ref. [57]), it is easy to
verify that relaxing the constraint (15e) to (B.1) does not affect the
optimal cost. This is due to the fact that the tree decomposition of
the above problem is a path. The details are omitted for brevity.
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Appendix C. Exactness of RLT and strengthened SDP
relaxations

In this section, we will show that large load factors and small
line ratings can both make the RLT and strengthened SDP re-
laxations exact. The exactness is due to the added valid inequalities
and the SDP relaxation without these valid inequalities is not exact
in general. To streamline the presentation, we assume that t5 = 1
and then drop the subscript ¢t from the formulation. The results can
easily be extended to the case tg > 1. Define W as

— 1 WT 1 w;l w?:rl
W= {w W } = |wy Wy W | (C1)
w3 W3 Wis

Note that wy; and ws; correspond to x and p, and that W, W,
and W33 correspond to xx T, px ' and pp ' in the conic relaxation
of the non-convex constraint W = ww?.

Consider the last 4 sets of inequalities in Mw > m correspond-
ing to the last 2n; + 2 rows of M and min (8). It is straightforward to
verify that these constraints together with the constraint
0 < w3 < ppax define a bounded polytope, denoted as %7, which
is a convex relaxation of the feasible region of p in (3). It is clear that
Pi. min < Pi: max for every i€ % (otherwise, the UC problem is
infeasible). Moreover, the output of a generator is normally
nonnegative (otherwise, it will consume electricity). Due to these
reasons, assume that 0 < p;. pmip <Pi; max- In the rest of this sub-
section, we make the practical assumption that the fixed and start-
up costs of all generators are strictly positive.

Deﬁnition 1. For every i€{1,2,...,ng}, define the reliable lower
bound I' and the reliable upper bound u' of generator i as

I' = minimize w},,
W3 €.

u' = maximize wh;.
W3, €2,

(C2)

Moreover, define 1 and u as the vectors [I',I2,... "] and
[ul,u?, ..., u"], respectively.

Define 2" as the index set of generators with strictly positive
reliable lower bounds.

Theorem 3. Let (w, W) denote an arbitrary feasible solution of the
RLT or strengthened SDP relaxation, and x°Pt denote an arbitrary
globally optimal commitment of generators in the UC problem.
Furthermore, let (W,W) denote an optimal solution of the SDP
relaxation. The following statements hold for every ie & :

) wi, =x%=1.
21 i
e\ = t - ;
(ii) Wh, ;tx?p if U < Pimax-

Proof. The set ., can be described as M;w3; > my, where

[ 0ng><1 i
I xn, nl:max
—1[ng><ng Z dj
M, = ilxng . m; = ]:rl,b
— xn,
HCg -2 4
c =
-HG H.d — fiax
—H.d — finax

Therefore, one can rewrite M and m as

M, I”g OngX"g my Ongxl
M, . 7l”g Ongxng m; 71ng><1
M= |M;s | = *qlag{Pmin} I, | m=|m; On,x1
M4 dlag{pmax} _lng my Ongxl
M5 0(2n,+2ng+2) xTg M, ms nmy
(C3)
For notational simplicity, define
L{IJ} = MIWM]-r - minMjT - MinjT + m,-ij, (C4)

for every i,je{1,...,5}. Furthermore, L’{’;f} will be used to refer to
the (m, n)™ element of the matrix Lijy-
First, we prove Part (i) using a particular set of valid inequalities

introduced by (12c¢). It follows from L'{J&’Z} > 0 that

*pi;minwél + ng +pi;minwgz - Wgz > 0> (C-S)
or equivalently,
Pimin (Why — W, ) < why — Wi, (C6)

for every i,je{1,2,...,ng}. Likewise, the inequality Li{{u} > 0 leads
to

Wél - Wgz < Pi;max (W£1 - W32>, (C.7)
for every i,je{1,2,...,ng}. If i = j, combining (C.6) and (C.7) with
the constraint wh; = W, yields that
why = WL (C.8)

Consider the constraints ws; >1 and u > wjsq, which are
implied by Mw > m. Moreover, consider the following inequalities
foreveryie{1,2,...,ng}:

ul —wh, —uiwh, + Wi, >0, (C.9a)

—I'+wh, +uiwh, — W > 0. (C.9b)

These valid inequalities are generated by multiplying wj, — I >
0 and u' —wj, >0 with 1 —w}; > 0. According to [43], one can
show that adding (C.9a) and (C.9b) to the formulation does not
change the feasible region of the RLT relaxation (and as a result, the
strengthened SDP) since they are implied by other added valid
inequalities. However, one can combine (C.8) with (C.9a) and (C.9b)
to arrive at

ui(l - wi2]> >0, (C.10a)

[ (wg1 - 1) > 0. (C.10b)

Since i€ Z*, we have 0<I' < u'. Therefore, (C.10) implies that
wh, = 1. Furthermore, it can be inferred from 0</ that x*' = 1.
This completes the proof of Part (i).

Next, we prove Part (ii). Notice that according to Theorem 1, the
SDP relaxation is equivalent to the QP relaxation whenever ty = 1.
Since w§1 appears in the objective function of the SDP relaxation
with a positive coefficient, it can be deduced that
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(C11)

for every i€ Z. This implies that W&e{O,]} if and only if
W31 €{0, Pi.max }- However, it is easy to verify that since Ul <Pj max bY
assumption, the inequalities 0<I' < W5, < U <pj e hold. The
proof follows from (C.11).

Corollary 1. The SDP relaxation (9) is not exact if there does not exist
a globally optimal solution (x°Pt, p°Pt) of the UC problem such that
P € {0, pimax} for every ic 7.

proof. Let (W, W) denote an arbitrary solution of the SDP relax-
ation. Assume that p* & {0, pj.max } for some index i€ % Due to the
proof of Theorem 3, this means that Wh; &{0,1}. As a result,
(x°Pt p°PY) does not correspond to a global minimum of the UC

problem. This implies that the SDP relaxation is not exact.

Remark 6. Theorem 3 states that, regardless of the objective
functions of the RLT and strengthened SDP relaxations, the added
valid inequalities ensure that the relaxation correctly finds the
optimal statuses of those generators whose reliable lower bounds are
strictly positive. Furthermore, it unveils that a global minimum of the
UC problem might be recoverable by the SDP relaxation (without
valid inequalities) only in the scenario where each generator is
turned off or operates at its maximum capacity at an optimal solu-
tion of the UC problem. By fixing the limits p;. max for every i€ %, the
previous statement implies that although d could take infinitely
many values, only a finite number of them would make the SDP
relaxation exact (because 3 d; is equal to the summation of a
jez
subset of the limits pimax’s in the exact SDP case). This shows the
clear difference between the SDP and strengthened SDP relaxation.

One may speculate that the performance of the strengthened
SDP and RLT relaxations could be increased by first identifying
generators with nontrivial positive lower bounds on their pro-
ductions (via bound tightening on M;ws3; > m;) and then setting
their corresponding binary variables to 1. Theorem 3 shows that
this is indeed not the case since this process is automatically
incorporated in the above relaxations. For every i€ .2, let .7/(i)
denote the set of lines that are connected to bus i. Furthermore, for
every j€ 7, define Z; as the index set of those generators that are
connected to the same bus as generator j.

Theorem 4. Suppose that the UC problem is feasible, and that either
of the following conditions is satisfied:

Condition 1. For every generator j€ 7, the relation

d; — maximize ¢ > Pimax 0> Y. femax (C12)
ie Zj\k ke.ry(b;)

holds, where b; denotes the bus adjacent to generator j.

Condition 2. The relation

> dj> maximize ¢ > Pimax (C.13)

K ke 7 e

jex ie 2\k

holds.

Then, the RLT and strengthened SDP relaxations of the UC problem
are both exact. However, the SDP relaxation is exact only when

Z dj = Z Di;max-

jez iey

(C.14)

Proof. Assume that either of Conditions 1 and 2 is satisfied. It can
be verified that I >0 for every i€ Z, which yields that £+ = 2.
Now, it follows from Theorem 3 that the RLT and strengthened SDP
relaxations are both exact. Furthermore, if (x°Pt, p°Pt) denotes a
globally optimal solution of the UC problem, then p®* > I' >0 for
every ie 7. Therefore, it results from Corollary 1 that the SDP
relaxation could possibly be exact only when p?pt = Pi.max for all
ie 7, which lead to equation (C.14).

Consider the case where there are not any two generators
connected to the same bus. It can be inferred from Theorem 4 that
large load factors and/or small line ratings both result in the
exactness of the RLT and strengthened SDP relaxations.

Appendix D. Elimination of redundant valid inequalities

In this section, we aim to reduce the number of added valid
inequalities by identifying a subset of redundant (implied) con-
straints and removing them from the formulation. We assume that
to = 1 and drop the subscript t from the formulation. However, the
results can easily be extended to the case ty > 1. According to the
definition of the matrix M in (8), the number of linear inequalities
in the strengthened SDP problem is equal to

Ang +2n; + 2 + (4ng +2m + 2)° + ng

~—
(12b) (12¢) (12d)

= 4n} + 16n; + 16ngn; + 21ng + 100, + 6. (D.1)

On the other hand, since (12¢) is symmetric, the constraints
corresponding to the lower triangular part of (12c) are redundant
and can be removed. The number of remaining constraints amounts
to

(4ng +2n; +2)° + (4ng + 2n; + 2)
2
= 2n} + 8nZ + 8ngn; + 15ng + 7n; + 5.

+4ng +2n+ 2 +ng
(D.2)

Lemma 1. The constraint x; > 0 is implied by the inequalities
Pimin % Xi < Pi < Pimax X X, for every i€ {1, ..., ng).

Notice that Lemma 1 immediately follows from the relation
Di:min < Pi;max-

Lemma 2. (12b) is implied by (12c).
Proof. The proof can be found in Ref. [43].

Using Lemmas 1 and 2, the number of potentially required linear
inequalities will be reduced to 2n?+4.5n2 + 6ngn; + 8.5ng+
5Tll + 3.
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