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Abstract—In this paper, we consider a particular data structure

consisting of a union of several nested low-rank subspaces

with missing data entries. Given the rank of each subspace,

we treat the data completion problem, i.e., to estimate the

missing entries. Starting from the case of two-dimensional data,

i.e., matrices, we show that the union of nested subspaces

data structure leads to a structured decomposition U = XY

where the factor Y has blocks of zeros that are determined

by the rank values. Moreover, for high-dimensional data, i.e.,

tensors, we show that a similar structured CP decomposition

also exists, U =
∑r

l=1 a
l
1⊗ al

2⊗ . . .⊗ al
d, where Ad = [a1

d . . .a
r
d]

contains blocks of zeros determined by the rank values. Based on

such structured decompositions, we develop efficient alternating

minimization algorithms for both matrix and tensor completions,

by enforcing the above structures in each iteration including

the initialization. Compared with naive approaches where either

the additional rank constraints are ignored, or data completion

is performed part by part, the proposed structured alternating

minimization approaches exhibit faster convergence and higher

recovery accuracy.

Index Terms—Low-rank, matrix completion, tensor comple-

tion, union of nested subspaces, structured decomposition, alter-

nating minimization.

I. INTRODUCTION

G IVEN the ubiquitousness of multi-perspective, multi-

dimensional big data in our day-to-day lives, a com-
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mon feature shared by such datasets is the inherent sparsity or

low-rank property. On the other hand, missing and faulty data

are the norm rather than the exception. Hence a fundamental

task in many big data applications is data completion, i.e., to

recover the missing data points by exploiting the underlying

sparsity structure. In particular, the low-rank matrix comple-

tion problem [1] is a classical problem that finds applications

in various areas including compressed sensing [2–4], image

inpainting [5], network coding [6], image processing [7, 8],

data mining [9], etc. The low-rank tensor completion problem

has received more attention in the past decade and plays a

vital role in multilinear data analysis [10, 11], 3D image re-

construction [12], state estimation [13], color image inpainting

[14], video inpainting [15], hyperspectral data recovery [16],

higher-order web link analysis [17], etc.

In general, low-rank data completion techniques can be

classified into convex and non-convex approaches, and a recent

survey can be found in [18]. Specifically, convex approaches

to matrix completion are typically based on nuclear norm

minimization with theoretical optimality [19, 20]. Moreover,

non-convex approaches such as alternating minimization are

much faster than convex methods and empirically observed

to always converge to the optimum, which has also been

shown theoretically [21, 22]. Similarly, for the low-rank tensor

completion, various nuclear norm minimization methods with

theoretical performance guarantees have been introduced [23–
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26], as well as the non-convex approaches such as alternating

minimization [27–29], that make use of various tensor de-

compositions and are much faster than convex methods. For

many non-convex approaches knowing the exact or estimated

rank of sampled matrices and tensors is a requirement and this

problem is studied in [30].

Related to data completion is the problem of data clustering

in a union of subspaces with missing data. For example,

let Sk be a subspace of RN with rank rk, k = 1, . . . ,K.

Given a data matrix U ∈ RN×T possibly with missing

entries, the problem is to assign each column ut of U to

a particular subspace Sk. For example, in face recognition,

the K subspaces represent K persons and each vector ut

corresponds to the photo of a person. The clustering problem

is then to assign each photo to one of the K persons [31].

Other applications of clustering a union of low-rank data

structures include motion recognition [32], texture analysis

[33], MIMO channel estimation [34], image analysis [35], etc.

Classical approaches to subspace clustering include maximum

likelihood methods [36, 37], algebraic algorithms [38–40] and

their iterative implementations [41], and spectral clustering

of high-dimensional data based on low-rank representation

[42]. Moreover, most of these techniques can be extended to

handle missing data. For example, nuclear norm minimization

is employed in dictionary learning for spectral clustering in

[43]; and in algebraic methods, subspaces where the sampled

columns belong to are identified by analyzing a set of homo-

geneous polynomials [44].

In the union of subspace data structure mentioned above,

the subspaces S1, . . . ,SK are unrelated to each other. In this

paper, we consider a union of nested low-rank subspaces,

i.e., we assume that the subspaces are related according to

S1 ⊂ S2 ⊂ . . . ⊂ SK which reflects the hierarchical data

structure. For example, S1 can correspond to pictures of

German Shepherd dogs, S2 to pictures of dogs, and S3 to

pictures of animals. Or consider the scenario where S1 can

correspond to the news about Apple stock, S2 to news about

all technology stocks, and S3 to the news about American

stock market. In such examples, the data of the first set is a

subset of the second set and therefor the spanned space by the

basis of the first set is a subset of the spanned space by the

basis of the second set. Note that in practice, the assumption

that we can find an exact low rank basis for the mentioned

datasets may not hold but we can find low rank approximations

for them. Theoretical aspects of clustering and completion of

such union of nested subspaces data are studied in [45–47]. In

particular, the fundamental conditions on the sampling patterns

for correctly clustering are characterized for matrices and

tensors in [45] and [46], respectively. Moreover, conditions on

the sampling patterns for unique completability of the correctly

clustered data are given for matrices and tensors in [47] and

[46], respectively. However, to date there is no algorithmic

study on union of nested subspaces data.

In this paper, we develop efficient alternating minimiza-

tion based completion algorithms for union of nested sub-

spaces two-dimensional (matrix) and higher-dimensional (ten-

sor) data. For both matrix and tensor cases, first, we show

that the union of nested subspaces structure and the corre-

sponding rank constraints lead to a structured decomposition

where certain factor has blocks of zeros. Then we develop an

alternating minimization algorithm that alternatively updates

each factor in the structured decomposition. Since initialization

plays an important role in non-convex optimization, we also

propose two structured initialization methods, one is based on

random initialization and the other is based on solving several

smaller least-squares problems. Extensive simulation results

are provided to compare our proposed structured approaches

to several naive methods that are also based on alternating min-

imization. Extensive simulation results show that the proposed

structured approaches offer both faster convergence speed and
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higher data recovery accuracy, for both matrix and tensor data,

with or without noise.

The remainder of the paper is organized as follows. In

Section II, we formulate the problem of union of nested

subspaces data completion for the matrix case, outline three

naive methods for solving it based on alternating minimiza-

tion, and then propose our structured alternating minimization

algorithm. In Section III, we consider the same problem for the

tensor case and develop the corresponding structured alternat-

ing minimization algorithm. Simulation results are presented

in Section IV. And finally conclusions are drawn in Section

V.

II. COMPLETION OF UNION OF NESTED LOW-RANK

MATRICES

A. Problem Statement

Assume that K ≥ 2, n1 < n2 < · · · < nK and m are

given integers. Let U ∈ Rm×nK be a sampled matrix and

denote the matrix consisting of the first nk columns of U by

Uk ∈ Rm×nk and also define Mk ∈ Rm×(nk−nk−1) as the

matrix consisting of the (nk−nk−1) columns of Uk that does

not belong to Uk−1, k = 1, . . . ,K. This is shown in Fig. 1 and

note that U = UK . Moreover, assume that rank(Uk) = rk,

k = 1, . . . ,K. Hence, we have r1 ≤ r2 ≤ . . . ≤ rK .

Let Ω denote the set of indices corresponding to the sampled

entries, i.e., Ω = {(i, j) : U(i, j) is sampled}. Moreover,

define UΩ as the matrix obtained from sampling U according

to Ω, i.e.,

UΩ(i, j) =

 U(i, j) if (i, j) ∈ Ω,

0 if (i, j) /∈ Ω.
(1)

We are interested in retrieving the missing entries of U

using an efficient alternating minimization-based method. The

challenge is to take advantage of all K rank constraints

simultaneously.

U1

U2

m

!" # !"#$!%# !$!$

& = &"

($ (% ("

Fig. 1: The union of nested subspaces data structure, rank(Uk) = rk .

B. Naive Approaches

1) Naive Initialization Methods: Our goal is to find X ∈

Rm×rK and Y ∈ RrK×n such that U = XY. We consider

two simple methods for setting the initial values of X and

Y – SVD-based initialization and random initialization. In

the SVD-based method, we first compute the singular value

decomposition (SVD) of UΩ and pick the rK largest eigen-

values and their corresponding eigenvectors to construct the

initial matrices X0 and Y0. In particular, if UΩ = U0S0V
>
0 ,

where the number of nonzero diagonal entries of S0 can

be more than rK . Then, we define a decomposition corre-

sponding to the rK largest singular values, i.e., U0(:, 1 :

rK)S0(1 : rK , 1 : rK)V0(:, 1 : rK)> = X0Y0, where

X0 = U0(:, 1 : rK)S0(1 : rK , 1 : rK) ∈ Rm×rK and

Y0 = V0(:, 1 : rK)> ∈ RrK×nK .

On the other hand, for random initialization, we simply set

X0 and Y0 as matrices that contain i.i.d. N (0, 1) samples.

Note that the initial matrix satisfies only one rank constraint

rK for both methods.

2) Naive Alternating Minimization Methods:

(i) Naive approach 1: In this approach we simply discard the

rank constraints r1, . . . , rK−1 and complete U using only the
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constraint rank(U) = rK . Starting from the above initial X0

and Y0, in each iteration, we alternatively optimize Xi and

Yi until convergence.

In particular, at the i-th iteration, given Xi−1 and Yi−1,

we first update Xi by solving the following regularized least-

squares problem

minimizeXi∈Rm×rK ‖UΩ − (XiYi−1)Ω ‖F+λ‖Xi‖F ,

(2)

and then update Yi by solving

minimizeYi∈RrK×nK ‖UΩ − (XiYi)Ω ‖F+λ‖Yi‖F (3)

where ‖·‖F denotes the Frobenius norm and λ is a small

constant. The purpose of the regularization term is to avoid

singularity in solving the least-squares problems. The iteration

continues until it reaches convergence or until the algorithm

diverges. The solutions to (2) and (3) can be obtained row by

row and column by column, respectively. In particular, denote

E as an all-one m× nK matrix, then (2) can be solved as

Xi(j, :) = argmin
Xi(j,:)∈R1×rK

‖UΩ(j, :)−Xi(j :)Yi−1Diag [EΩ(j, :)] ‖F+λ‖Xi(j, :)‖F ,

= UΩ(j, :)Diag [EΩ(j, :)] Y>i−1(
Yi−1Diag [EΩ(j, :)] Y>i−1 + λI

)−1
, j = 1, . . . ,m, (4)

where Diag [v] denotes a diagonal matrix with the diagonal

entries being the entries of v. Similarly, (3) can be solved as

Yi(:, j) = argmin
Yi(:,j)∈RrK×1

‖UΩ(:, j)−Diag [EΩ(:, j)] XiYi(:, j)‖F+λ‖Yi(:, j)‖F ,

=
(
X>i Diag [EΩ(:, j)] Xi + λI

)−1

X>i Diag [EΩ(:, j)] UΩ(:, j), j = 1, . . . , nK . (5)

Note that the output of this simple approach, Û = XNYN

for some N , satisfies only the rank constraint rank(Û) = rK ,

but Û may not satisfy other K − 1 rank constraints.

(ii) Naive approach 2: In this approach, we break the

original problem into K independent completion problems,

i.e., completing Mk ∈ Rm×(nk−nk−1) with rank(Mk) = rk.

This method may be fast as each subproblem has a smaller

dimension. However, it may result in a solution that does not

satisfy any of the rank constraints except for the first one (for

M1), since rank (Mk) = rk does not necessarily result in

rank (Uk) = rk (except for k = 1).

(iii) Naive approach 3: In this approach, we first complete

U1 with constraint rank(U1) = r1 using the above alternating

minimization method. Then, we complete U2 = [U1|M2]

with the constraint rank(U2) = r2. Note that the U1 part

of U2 is already complete and all missing entries are in the

M2 part of U2. This is repeated and in the k-th step, we

complete the Mk part of Uk = [Uk−1|Mk] with the constraint

rank(Uk) = rk. One important issue with this method is

the error propagation when the sampling rate is low, i.e., the

erroneously recovered entries at any step will lead to further

errors in subsequent steps. However, the output of this method

satisfies all rank constraints.

C. Structured Decomposition

In this paper, we propose a structured alternating mini-

mization method for completing U such that: (1) all K rank

constraints are satisfied at each iteration and, (2) it converges

faster than the conventional alternating minimization for ma-

trix completion with a single constraint rank(U) = rK , by

exploiting the additional K − 1 rank constraints. To this end,

we make use of a structured decomposition of U that is

determined by the K rank constraints.

Definition 1. Consider a decomposition U = XY such that

X ∈ Rm×rK , Y ∈ RrK×nK , and Y(r1 + 1 : rK , 1 :

n1) = 0(rK−r1)×n1
, Y(r2 + 1 : rK , n1 + 1 : n2) =

0(rK−r2)×(n2−n1), . . . and Y(rK−1 + 1 : rK , nK−2 + 1 :
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Fig. 2: A matrix Y that satisfies the properties of a structured decomposition
given in Definition 1.

nK−1) = 0(rK−rK−1)×(nK−1−nK−2). This structure is shown

in Fig. 2 and we call such decomposition U = XY a

structured decomposition.

Lemma 1. Consider a matrix U ∈ Rm×nK that has a

structured decomposition U = XY. Then, rank(U(:, 1 :

nk)) ≤ rk, k = 1, . . . ,K.

Proof. Note that U(:, 1 : nk) = XY(:, 1 : nk). Hence, under

the structured decomposition, we conclude that U(:, 1 : nk) =

X(:, 1 : rk)Y(1 : rk, 1 : nk) (because Y(rk + 1 : rK , 1 :

nk) = 0(rK−rk)×nk
), k = 1, . . . ,K. Then, U(:, 1 : nk) = X(:

, 1 : rk)Y(1 : rk, 1 : nk) results that rank(U(:, 1 : nk)) ≤ rk,

k = 1, . . . ,K.

Lemma 2. If the matrix U ∈ Rm×nK has the union of

nested subspaces structure shown in Fig. 1, then there exists

a structured decomposition U = XY.

Proof. We need to show that there exists a basis X for U

such that the first nk columns of U belong to the subspace

span of the first rk columns of X, k = 1, . . . ,K. Note that

it is easily verified that this statement is equivalent with the

existence of a decomposition U = XY such that Y satisfies

the structure given in Definition 1. We show the mentioned

statement by induction on k. In the k-th step, we construct

Xk such that Uk′ belongs to the column span of the first

rk′ columns of Xk, k′ = 1, . . . , k. Note that for k = 1 it is

straightforward to construct X1, which is simply a basis for

U1. Induction hypothesis results in the matrix Xk with the

mentioned properties and in order to complete the induction,

we need to show the existence of a matrix Xk+1 such that

Uk′ belongs to the column span of the first rk′ columns of

Xk, k′ = 1, . . . , k + 1.

We first note that Xk belongs to the column span of Uk+1,

because according to the induction hypothesis, Xk is a basis

for Uk, and Uk is a subset of columns of Uk+1. Let Sk

denote the column span of Xk, which is an rk-dimensional

space and S ′k+1 denote the column span of Uk+1, which is

an rk+1-dimensional space. As a result of our earlier claim,

Sk is a subspace of S ′k+1. Let S ′′k denote the (rk+1 − rk)-

dimensional subspace of S ′k+1 such that the union of Sk and

S ′′k is S ′k+1.

Consider an arbitrary basis Xk′ ∈ Rm×(rk+1−rk) for the

space S ′′k . Observe that by putting together the columns

of Xk and Xk′ , i.e., Xk+1 = [Xk Xk′ ], the new matrix

Xk+1 ∈ Rm×rk+1 is a basis for the space S ′k+1. Therefore,

Uk+1 belongs to the column span of the first rk+1 columns of

Xk+1 since Xk has exactly rk+1 columns. Given the induction

hypothesis, the proof is complete as Uk′ belongs to the column

span of the first rk′ columns of Xk+1, k′ = 1, . . . , k+ 1.

D. Proposed Structured Alternating Minimization Algorithm

We are interested in imposing the structured decomposition

in the alternating minimization procedure for two reasons:

(i) we know that according to Lemma 2 there exists such a

decomposition and also, according to Lemma 1 the K rank

constraints on the original data will hold in such decomposi-

tion and therefore, it is more likely that such decomposition

results in the recovery of the original data. (ii) A structured

decomposition has many zeros and convergence may be much

faster than an unstructured decomposition.

There are two main challenges to impose a structured

decomposition in alternating minimization: (i) an efficient

initialization, and (ii) an efficient update of Y at each iteration.
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1) Structured Initialization Methods:

SVD-based structured initialization: We first discuss the SVD-

based method.

Note that MkΩ represents the matrix obtained from sam-

pling Mk according to column number nk−1 + 1 to column

number nk of Ω, i.e.,

MkΩ(i, j) =

 Mk(i, j) if (i, j + nk−1) ∈ Ω,

0 if (i, j + nk−1) /∈ Ω.
(6)

In order to obtain an initialization X0 ∈ Rm×rK and

Y0 ∈ RrK×nK , we will obtain Xk ∈ Rm×(rk−rk−1) and

Yk ∈ RrK×(nk−nk−1) for k = 1, . . . ,K, where n0 = r0 = 0.

Then X0 =
[
X1 . . .XK

]
and Y0 =

[
Y1 . . .YK

]
.

In other words, in the k-th step, we obtain rk−rk−1 columns

of the basis, i.e., Xk, and the corresponding coefficients of

these rk− rk−1 columns of the basis in Mk′ ’s, i.e., Yk. Note

that we set the coefficients corresponding to Xk in Mk′ for

k′ ≥ k as zeros to meet the structured decomposition.

As the first step, we compute the SVD of M1Ω
∈ Rm×n1

and pick the r1 largest eigenvalues and their correspond-

ing eigenvectors to construct matrices X1 ∈ Rm×r1 and

Z1 ∈ Rr1×n1 , similar to the initialization explained in

Sec. II-A for the naive approaches. Then, we define Y1 =[
Z1> 0n1×(rK−r1)

]>
∈ RrK×n1 , as shown in Fig. 3.

In the second step, we first obtain the SVD of M2Ω ∈

Rm×n2 and pick the r2−r1 largest eigenvalues and their corre-

sponding eigenvectors to construct matrices X2 ∈ Rm×(r2−r1)

and Z2 ∈ R(r2−r1)×(n2−n1). Next, we want to obtain Y2 =[
K2> Z2> 0(n2−n1)×(rK−r2)

]>
∈ RrK×(n2−n1), as shown in

Fig. 3, where K2 ∈ Rr1×(n2−n1) represents the coefficients

of X2 in M1, which is based on the projection of matrix

(M2 −X2Z2)Ω on X1. Specifically, we have

K2 = argmin
K2∈Rr1×(n2−n1)

‖
(
(M2 −X2Z2)−X1K2

)
Ω
‖F+λ‖K2‖F , (7)

!" !#$ !" !%$ !#

0(()* (+)×.+
0(()* (/)×(./* .+)

0(()* (0)×(.0* ./)

!1$ !%

2"
2#

2%

21

3#
3%

3145

6" 6# 6% 61

Fig. 3: Structure of Y0 in the SVD-based structured initialization.

which can be solved column by column similar to (5)

K2(:, j) =
(
X1>Diag [EΩ(:, j)] X1 + λI

)−1

X1>Diag [EΩ(:, j)] T2
Ω(:, j), j = 1, . . . , n2 − n1, (8)

where T2 = M2 −X2Z2.

Similarly, in the k-th step, we first obtain Xk ∈

Rm×(rk−rk−1) and Zk ∈ R(rk−rk−1)×(nk−nk−1) from the SVD

of MkΩ
∈ Rm×nk . Then, we construct

Yk =
[
Kk> Zk

>
0(nk−nk−1)×(rK−rk)

]>
∈ RrK×(nk−nk−1),

(9)

as shown in Fig. 3, where Kk ∈ Rrk−1×(nk−nk−1) is the co-

efficient of X̄k−1 = [X1 . . .Xk−1] in Mk, which is obtained

based on the projection of (Mk −XkZk)Ω on X̄k, i.e.,

Kk = argmin
Kk∈Rrk−1×(nk−nk−1)

‖
(
(Mk −XkZk)− X̄k−1Kk

)
Ω
‖F+λ‖Kk‖F . (10)

The solution is given by

Kk(:, j) =
(
X̄k−1>Diag [EΩ(:, j)] X̄k−1 + λI

)−1

X̄k−1>Diag [EΩ(:, j)] Tk
Ω(:, j), j = 1, . . . , nk − nk−1,

(11)

where Tk = Mk −XkZk.

Remark 1. In the above SVD-based structured initializa-

tion the choice of Kk in (10) plays a critical role. In
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particular, numerical experiments show that simply setting

Kk = 0rK×(nk−nk−1), for k = 2, . . . ,K, will result in a

poor initialization which significantly reduces the convergence

speed of the algorithm.

Random structured initialization: We also consider random

initialization for the proposed structured alternating minimiza-

tion where X0 contains i.i.d.N (0, 1) samples and the non-zero

entries of Y0 in Definition 1 are also i.i.d. N (0, 1) samples.

2) Structured Alternating Minimization:

Note that the initialization satisfies the structured decom-

position. Now, we need to make sure that at each iteration

of the algorithm this property still holds. In particular, in

the i-th iteration of the structured alternating minimization

procedure, given Xi−1 and Yi−1, we first update Xi according

to (4). Then, in (5) we only need to update the non-zero

entries of Yi(:, j) in the structured decomposition. That is,

for 1 ≤ k ≤ K and nk−1 + 1 ≤ j ≤ nk we have

Yi(1 : rk, j) =(
Xi(:, 1 : rk)>Diag [EΩ(:, j)] Xi(:, 1 : rk) + λI

)−1

Xi(:, 1 : rk)>Diag [EΩ(:, j)] UΩ(:, j). (12)

Finally, we summarize the proposed structured alternating

minimization algorithm for union of nested low-rank matrices

completion in Algorithm 1. Note that at each iteration of this

algorithm, including the initialization, the structured decom-

position holds and therefore all K rank constraints hold.

III. COMPLETION OF UNION OF NESTED LOW-RANK

TENSORS

In this section, we generalize the structured alternating

minimization approach to a union of nested low-rank tensor

spaces.

Algorithm 1 Structured Alternating Minimization - Matrix
Case

1: Input UΩ, r1, . . . , rK and n1, . . . , nK .
2: Initializing X0 ∈ Rm×rK and Y0 ∈ RrK×nK using either

the SVD-based or random structured initialization.
3: repeat
4: for j = 1 : m do
5: Compute Eq. (4).
6: end for
7: for k = 1 : K do
8: for j = nk−1 + 1 : nk do
9: Compute Eq. (12).

10: end for
11: end for
12: until convergence/divergence

A. Background

Recall that the CP-rank of a tensor U ∈

Rm1×m2×...md−1×md is the minimum number r such

that there exist alj ∈ Rmj for 1 ≤ j ≤ d and 1 ≤ l ≤ r and

U =
r∑
l=1

al1 ⊗ al2 ⊗ . . .⊗ ald, (13)

or equivalently,

U(x1, x2, . . . , xd) =
r∑
l=1

al1(x1)al2(x2) . . .ald(xd), (14)

where ⊗ denotes the tensor product (outer product) and

U(x1, x2, . . . , xd) denotes the entry of tensor U with coordi-

nate ~x = (x1, x2, . . . , xd) and alj(xj) denotes the xj-th entry

of vector alj . In other words, the CP-rank of a tensor U is the

minimum number of rank-1 tensors that U can be decomposed

to.

For notational convenience, define Md−1 ,

m1m2 . . .md−1. Moreover, define the matrix

Ũ ∈ RMd−1×md as the (d − 1)-th unfolding of tensor

U , such that U(~x) = Ũ(v(x1, . . . , xd−1), xd), where

v : (x1, . . . , xd−1) → {1, 2, . . . ,Md−1} is a bijective

mapping. Note that this is a vectorization mapping that

merges the first (d − 1) dimensions and therefore, there is

a corresponding inverse mapping v−1 : {1, 2, . . . ,Md−1} →

(x1, . . . , xd−1). Moreover, for a (d − 1)-dimensional
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tensor V ∈ Rm1×...×md−1 we can define a vectorization

operator vec : Rm1×...×md−1 → RMd−1 using the mapping

v(·) such that V(x1, ..., xd−1) = vec(V)(v(x1, ..., xd−1)).

We call a vector u ∈ RMd−1 a “structured column”

if vec−1(u) ∈ Rm1×...×md−1 is a rank-1 tensor, i.e.,

there exist uj ∈ Rmj for j = 1, . . . , d − 1, such that

u = vec(u1 ⊗ . . .⊗ ud−1).

Lemma 3. The CP-rank of a tensor U is equal to the

minimum number of structured columns that span all

columns of Ũ.

Proof. First we show that there exist bl1 ∈ RMd−1 and bl2 ∈

Rmd for 1 ≤ l ≤ r such that

Ũ =
r∑
l=1

bl1 ⊗ bl2. (15)

Recall the CP decomposition in (13). Then, we define Al1 =

al1 ⊗ . . . ⊗ ald−1 and bl2 = ald for 1 ≤ l ≤ l and define

bl1 = vec(Al1). Hence, there exist bl1 ∈ RMd−1 and bl2 ∈ Rmd

for 1 ≤ l ≤ r such that (15) holds. Therefore, there exist r

structured columns that span all columns of Ũ. Similarly, if

there exists (r − 1) structured columns that span all columns

of Ũ we can use vec−1 and obtain a CP-decomposition of

rank (r − 1) for U . Therefore, rank(U) = r means that r

is the minimum number of structured columns that span all

columns of Ũ.

Definition 2. According to the above lemma, rank(U) = r

concludes that there exists a set S consisting of r structured

columns whose column span (denoted by T ) includes any

column of Ũ. In other words, the column span of these r

structured columns, i.e., T , is an unfolded tensor space of

rank r. We call such r structured columns a tensor basis for

U .

B. Problem Statement

Consider a fixed number K ≥ 2 and partially sampled d-

way tensors Mk ∈ Rm1×m2×...md−1×ck , k = 1, 2, . . . ,K.

Define nk = c1 + · · ·+ ck for k = 1, . . . ,K, and c0 = n0 =

0. Let Uk ∈ Rm1×m2×...,md−1×nk , be the concatenation of

M1, . . . ,Mk along the d-th dimension, and rk denote the

CP-rank of Uk, k = 1, 2, . . . ,K. Let Ω denote the sampled

index set, i.e., Ω = {~x = (x1, . . . , xd) : U(~x) is sampled}.

Moreover, define UΩ as the tensor obtained from sampling

U = UK according to Ω, i.e.,

UΩ(~x) =

 U(~x) if ~x ∈ Ω,

0 if ~x /∈ Ω.
(16)

Moreover, we assume a union of nested tensor subspaces

structure similar to the matrix case. Specifically, assume that

there exist structured columns ul ∈ RMd−1 , l = 1, . . . , rK ,

such that Sk = {u1, . . . ,urk} is a tensor basis for Uk,

k = 1, . . . ,K. Note that we have rank(Uk) = rank(Mk) = rk,

k = 1, . . . ,K. The problem then is to complete the tensor UΩ

given the above mentioned union of nested tensor subspaces

structure, and the rank values r1, ..., rK .

C. Alternating Minimization For Tensor Completion

Recall the CP decomposition U =
∑rK
l=1 al1⊗al2⊗ . . .⊗ald,

where alj ∈ Rmj for 1 ≤ j ≤ d and 1 ≤ l ≤ rK . Define

Aj = [a1
j |. . . |a

rK
j ] ∈ Rmj×rK , j = 1, . . . , d. In alternating

minimization, given the result of the (i − 1)-th iteration

A
(i−1)
j ∈ Rmj×rK , j = 1, . . . , d, at the i-th iteration, we

update all Aj’s one by one in d steps. In particular, in the j-th

step, we solve for A
(i)
j using the latest values A

(i)
1 , . . .A

(i)
j−1,

and A
(i−1)
j+1 , . . .A

(i−1)
d by solving the following regularized
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least squares problem

min
A

(i)
j ∈R

mj×rK

∣∣∣∣∣
∣∣∣∣∣UΩ −

(
rK∑
l=1

A
(i)
1 (:, l)⊗ . . .⊗A

(i)
j−1(:, `)⊗

A
(i)
j (:, l)⊗A

(i−1)
j+1 (:, l)⊗ . . .⊗A

(i−1)
d (:, l)

)
Ω

∣∣∣∣∣∣
F

+ λ‖A(i)
j ‖F , j = 1, . . . , d. (17)

To solve (17), we first write it in matrix form. To do this,

we define an operator that reorders the dimensions of a tensor.

Consider the tensor in (13) and another tensor

U ′ =

rK∑
l=1

al1 ⊗ . . .⊗ alj−1 ⊗ alj+1 ⊗ . . .⊗ ald ⊗ alj . (18)

Then, it is clear that the only difference between these

two tensors is that the order of dimensions has changed from

1, 2, . . . , d in U to 1, 2, . . . , j−1, j+1, . . . , d, j in U ′. Denote

such a dimension reordering operation by U ′ = σj(U) ∈

Rm1×...×mj−1×mj+1×...×md×mj such that

U(x1, x2, . . . , xd) =

σj(U)(x1, x2, . . . , xj−1, xj+1, . . . , xd, xj). (19)

Then, (17) can be rewritten as

min
A

(i)
j ∈R

mj×rK

∣∣∣∣∣
∣∣∣∣∣σj(U)σj(Ω) −

(
rK∑
l=1

A
(i)
1 (:, l)⊗ . . .⊗A

(i)
j−1(:, l)

⊗A
(i−1)
j+1 (:, l)⊗ . . .⊗A

(i−1)
d (:, l)⊗A

(i)
j (:, l)

)
σj(Ω)

∣∣∣∣∣∣∣∣
F

+ λ‖A(i)
j ‖F , j = 1, . . . , d.

(20)

Now we define Γ
(i)
j ∈ Rm1...mj−1mj+1...md×rK such that

Γ
(i)
j (:, `) , vec(A

(i)
1 (:, `)⊗ . . .⊗A

(i)
j−1(:, `)⊗A

(i−1)
j+1 (:, `)

⊗ . . .⊗A
(i−1)
d (:, `)) ∈ Rm1...mj−1mj+1...md , ` = 1, . . . , rK .

(21)

Then, we can rewrite (20) using its (d− 1)-th unfolding as

min
A

(i)
j ∈R

mj×rK

∣∣∣∣∣∣∣∣σ̃j(U)
σ̃j(Ω)

−
(
Γ

(i)
j A

(i)>

j

)
σ̃j(Ω)

∣∣∣∣∣∣∣∣
F

+ λ‖A(i)
j ‖F ,

(22)

where σ̃j(U) and σ̃j(Ω) denote the (d − 1)-th unfolding of

σj(U) and σj(Ω), respectively. Note that (22) is of the same

form as (3) and hence similar to (5), we can write

A
(i)
j (l, :) = σ̃j(U)

>

σ̃j(Ω)
>(l, :)Diag

[
E
σ̃j(Ω)

(:, l)
]

Γ
(i)
j

(
(Γ

(i)
j )>Diag

[
E
σ̃j(Ω)

(:, l)
]

Γ
(i)
j + λI

)−1

, l = 1, . . . ,mj ,

(23)

where E denotes an all-one (m1 . . .mj−1mj+1 . . .md)×mj

matrix.

D. Naive Approaches

We can generalize the three naive approaches for the matrix

case to the tensor case as follows.

(i) Naive approach 1: We apply the alternating minimization

procedure described in Sec. III-C to tensor U with the only

constraint rank(U) = rK .

(ii) Naive approach 2: We break the original problem

into K independent completion problems, i.e., completing

Mk ∈ Rm1×...×md−1×(nk−nk−1) with rank(Mk) = rk,

k = 1, . . . ,K.

(iii) Naive approach 3: We first complete U1 with constraint

rank(U1) = r1 using the above alternating minimization

method. Then, we complete U2 with the constraint rank(U2) =

r2. Note that the U1 part of U2 is already complete and all

missing entries are in theM2 part of U2. This is repeated and

in the k-th step, we complete the Mk part of Uk with the

constraint rank(Uk) = rk, k = 1, . . . ,K.

Similarly to the matrix case, for each of the above naive

methods, either CP-based or random initialization can be

employed. Specifically, for CP-based initialization, we first

calculate the CP decomposition of UΩ. Then, we normalize

each vector alj in (13) to have unit norm so that the l-th

out-product has a weight of ‖al1‖...‖ald‖. Then, we choose

the leading rK rank-1 components, sorted according to the

weights, to obtain a rank-rK initialization. And for random
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!" = $"

%& ' %"

0)* ×(-./ -*)
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!& = $&−$&'"

0)./* ×(-./ -./*)

Fig. 4: A matrix Ad that satisfies the properties of a structured decompo-
sition given in Lemma 4.

initialization, we simply set entries of A
(0)
j , j = 1, ..., d as

i.i.d N (0, 1) samples.

E. Structured Decomposition

Similar to the matrix case, we develop a tensor completion

method based on alternating minimization that takes into

account all K rank constraints. First, similar to Definition

1 and Lemma 2 for the matrix case, we have the following

lemma on the existence of a structured CP decomposition for

tensor U that has a union of nested subspaces structure defined

in Sec. III.B. Recall that nk = c1 + · · ·+ ck.

Lemma 4. If the tensor U ∈ Rm1×...×md−1×md has the

union of nested tensor subspaces structure, then there exist

ald ∈ Rmd for l = 1, . . . , rK such that U =
∑rK
l=1 al1 ⊗ . . .⊗

ald−1 ⊗ ald and for any k = 1, . . . ,K, x = nk−1 + 1, . . . , nk

and l = rk + 1, . . . , rK we have ald(x) = 0. In other words,

Ad(nk−1+1 : nk, 1 : rK−rk) = 0ck×(rK−rk), k = 1, . . . ,K.

We call such CP-decomposition of U a structured decomposi-

tion (shown in Fig. 4).

Proof. Note that since each column of M̃k (the (d − 1)-th

unfolding of Mk) is chosen from the column span of Sk,

there exist Bk ∈ Rrk×ck such that M̃k = [u1 . . .urk ]Bk,

k = 1, . . . ,K. Recall that Ũ = [M̃1 . . . M̃K ]. Therefore, we

can write

Ũ = [u1 . . .urK ] [C1 . . .CK ]︸ ︷︷ ︸
[a1

d...a
rK
d ]>

, (24)

where Ck = [B>k 0ck×(rK−rk)]
> ∈ RrK×ck and

[a1
d . . .a

rK
d ]> = [C1 . . .CK ]. Hence, for any k = 1, . . . ,K

and l = rk + 1, . . . , rK we have ald(x) = 0 if nk−1 + 1 ≤

x ≤ nk.

Since ul = vec(al1 ⊗ . . . ⊗ ald−1) for l = 1, . . . , rK , (24)

can be written as

U =

rK∑
l=1

al1 ⊗ . . .⊗ ald−1 ⊗ ald, (25)

and hence, the proof is complete.

Remark 2. Note that the structure in Fig. 4 is the transposed

structure in Fig. 3.

F. Proposed Structured Alternating Minimization for Union of

Nested Tensor Subspaces

1) Structured Initialization Methods:

CP-based structured initialization: We obtain such structured

initialization in K steps: in the k-th step, k = 1, . . . ,K, we

obtain Bk
j ∈ Rmj×(rk−rk−1) for j = 1, . . . , d − 1, and Bk

d ∈

Rck×rK , and the initialization is A
(0)
j =

[
B1
j . . .B

K
j

]
, j =

1, . . . , d − 1 and A
(0)
d =

[
B1>

d . . .BK>

j

]>
. Note that here

A
(0)
j for j = 1, . . . , d−1 and A

(0)
d correspond to X0 and Y0

in Sec. II-D, respectively.

We first perform the CP-decomposition of M1Ω
∈

Rm1×...md−1×c1 and retain the r1 leading rank-1 components,

to obtain B1
j ∈ Rmj×r1 for j = 1, . . . , d − 1, and C1

d ∈

Rc1×r1 , i.e.,

M1Ω ≈
r1∑
l=1

B1
1(:, l)⊗ . . .⊗B1

d−1(:, l)⊗C1
d(:, l).(26)
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Then we define B1
d =

[
C1
d 0c1×(rK−r1)

]
∈ Rc1×rK that meets

the structure of the top block row in Fig. 4.

In the k-th step, k = 2, ...,K, we perform the CP-

decomposition of MkΩ
∈ Rm1×...md−1×ck and retain the

rk − rk−1 leading rank-1 components denoted by Bk
j ∈

Rmj×(rk−rk−1) for j = 1, . . . , d−1, and Ck
d ∈ Rck×(rk−rk−1).

Then, we define Bk
d =

[
Kk Ck

d 0ck×(rK−rk)

]
∈ Rck×rK that

meets the structure of the k-th block row in Fig. 4, where

Kk ∈ Rck×rk−1 represents the coefficients of the structured

columns 1 to rk−1 in Mk, that is calculated as follows.

Let M̄k ∈ Rm1×...md−1×ck denote the rank-(rk − rk−1)

approximation of MkΩ
, i.e.,

M̄k ,
rk−rk−1∑
l=1

Bk
1(:, l)⊗ . . .⊗Bk

d−1(:, l)⊗Ck
d(:, l).(27)

Define B̄k−1
j = [B1

j . . .B
k−1
j ] ∈ Rmj×rk−1 , j = 1, . . . , d −

1. Then Kk is the projection of tensor (Mk − M̄k) on the

structured columns 1 to rk−1, i.e.,

Kk = argmin
Kk∈Rck×rk−1

∥∥∥∥∥(Mk − M̄k

)
Ω
−

(
rk−1∑
l=1

B̄k−1
1 (:, l)

⊗ . . .⊗ B̄k−1
d−1(:, l)⊗Kk(:, l)

)
Ω

∥∥∥
F

+ λ‖Kk‖F , (28)

which is similar to (20) and can be rewritten using the (d−1)-

th unfoldings of the corresponding tensors as

Kk = argmin
Kk∈Rck×rk−1

∥∥∥(M̃k − ˜̄Mk

)
Ω̃
−
(
B̃kK

k>
)

Ω̃

∥∥∥
F

+ λ‖Kk‖F , (29)

where B̃k ∈ Rm1...md−1×rk−1 is defined as

B̃k(:, `) , vec(B̄k−1
1 (:, `)⊗ . . .⊗ B̄k−1

d−1(:, `))

∈ Rm1...md−1 , ` = 1, . . . , rk−1. (30)

And the solution is

Kk(l, :) =
(
M̃k − ˜̄Mk

)>
Ω̃>

(l, :)Diag
[
EΩ̃(:, l)

]
B̃k

(
B̃>k Diag

[
EΩ̃(:, l)

]
B̃k + λI

)−1

, l = 1, . . . , ck, (31)

where E denotes an all-one (m1 . . .md−1)×md matrix.

Random structured initialization: We also consider the random

initialization for the proposed structured alternating minimiza-

tion where A
(0)
j contains i.i.d. N (0, 1) samples for j =

1, . . . , d − 1, and the non-zero entries of A
(0)
d in Lemma 4

are also i.i.d. N (0, 1) samples.

2) Structured Alternating Minimization:

Note that the initialization satisfies the structured decompo-

sition. Now, we need to make sure that at each iteration of

the algorithm this property still holds. In particular, in the i-th

iteration of the structured alternating minimization procedure,

given A
(i−1)
j ∈ Rmj×rK for j = 1, . . . , d, we first update

A
(i)
j ∈ Rmj×rK for j = 1, . . . , d− 1 according to (23). Then,

to update A
(i)
d ∈ Rmd×rK we only need to update the non-

zero entries in the structured decomposition. That is in (23),

for 1 ≤ k ≤ K and nk−1 + 1 ≤ l ≤ nk we have

A
(i)
d (l, 1 : rk) = Ũ>

Ω̃>
(l, :)Diag

[
EΩ̃(:, l)

] ˜̄A(i)

d (:, 1 : rk)(
( ˜̄A(i)

d )>(1 : rk, :)Diag
[
EΩ̃(:, l)

] ˜̄A(i)

d (:, 1 : rk) + λI
)−1

,

(32)

where ˜̄A(i)

d ∈ Rm1...md−1×rK denotes the (d−1)-th unfolding

of Ā(i)
d = A

(i)
1 ⊗ . . . ⊗ A

(i)
d−1 ∈ Rm1×...×md−1×rK and E

denotes an all-one (m1 . . .md−1)×md matrix.

Finally, we summarize the proposed structured alternating

minimization algorithm for union of nested low-rank tensor

subspaces completion in Algorithm 2. Note that at each

iteration of this algorithm, including the initialization, the

structured decomposition holds and therefore all K rank

constraints hold.

IV. SIMULATION RESULTS

A. Matrix Case

We consider an example where K = 4, m = 1000, n1 =

300, n2 = 500, n3 = 700, n4 = 900, r1 = 50, r2 = 60,

r3 = 70 and r4 = 80. In order to generate a matrix that
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Algorithm 2 Structured Alternating Minimization - Tensor
Case

1: Input UΩ, r1, . . . , rK and n1, . . . , nK .
2: Initializing A

(0)
j ∈ Rmj×rK for j = 1, . . . , d using either

the CP-based or random structured initialization.
3: repeat
4: for j = 1 : d− 1 do
5: for l = 1 : mj do
6: Compute Eq. (23).
7: end for
8: end for
9: for k = 1 : K do

10: for l = nk−1 + 1 : nk do
11: Compute Eq. (32).
12: end for
13: end for
14: until convergence/divergence

is randomly chosen from the manifold corresponding to the

given rank constraints, we first generate X ∈ R1000×80 (r4 =

80 basis columns) with entries being i.i.d. N (0, 1) samples.

Then, we generate Y ∈ R80×900 such that it satisfies the

structured decomposition given in Definition 1, i.e., Y(51 :

80, 1 : 300) = 030×300, Y(61 : 80, 301 : 500) = 020×200

and Y(71 : 80, 501 : 700) = 010×200 and the rest of the

entries are i.i.d. N (0, 1) samples. Then, the matrix U = XY

satisfies all the rank constraints. We sample the entries of U

independently with probability 0 < p < 1. The regularization

weight is set as λ = 0.01. We define the convergence metric

as εi = ‖XiYi‖F−‖Xi−1Yi−1‖F
‖XiYi‖F and convergence is reached

if εi < 10−3. On the other hand, divergence is declared if

‖Xi‖F> 106‖X0‖F or ‖Yi‖F> 106‖Y0‖F .

1) Noiseless Matrix: We say the sampled matrix U is

recovered if the algorithm converges and the normalized error

satisfies ‖Û−U‖F
‖U‖F < 0.01, where Û denotes the completed

matrix. We consider different number of rank constraints: for

K = 4, we include all rank constraints r1, r2, r3 and r4; for

K = 3, we include rank constraints r2, r3 and r4; and for

K = 2, we include rank constraints r3 and r4. For each

case, we generate 100 random matrices from the corresponding

manifold. Then for each value of the sampling probability

p, we run different completion algorithms on these sampled

matrices and calculate the recovery rates.

First, to see the impact of multiple rank constraints on the

convergence, in Fig. 5 we illustrate the convergence behaviors

of the Naive method 1 and the structured approach, for K =

4, p = 0.3 and a particular sampled matrix. It is seen that

it takes 8 and 10 iterations for the structured approach and

the Naive 1 method, respectively, to reach the convergence

condition εi < 10−3.

2 4 6 8 10 12

Iteration Number i

10-4

10-3

10-2

10-1

i

K = 4, p = 0.3
Naive 1 (SVD)

Naive 1 (random)

Structured (SVD)

Structured (random)

Fig. 5: Convergence comparison for noiseless matrices with
K = 4 and p = 0.3.

Next the recovery rate performances of different algorithms

are compared in Figs. 6(a), 6(b), and 6(c) for K = 2, 3, and

4, respectively. A number of observations are in order. First,

for all three values of K, for both Naive methods 2 and 3,

the recovery rate is 1 for p ≥ 0.28 and it is 0 when p ≤

0.24; for both Naive method 1 and the structured approach, the

recovery rate is 1 for p ≥ 0.25; and the recovery rate is 0 for

p ≤ 0.23 for Naive 1. Hence among the three naive methods,

Naive 1 has the best recovery performance even though it

ignores all additional rank constraints. Second, the structured

approach mainly improves the region where the recovery rate

is below 1. In particular, the recovery rate is 0 for p ≤ 0.22

when K = 2, 3, whereas it becomes p ≤ 0.21 when K = 4.

Moreover, in the region where the recovery rate is below 1, i.e.,

p ∈ (0.22, 0.25), its recovery rate is higher than that of Naive
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1. Thirdly, for all three naive methods, random initialization

leads to better performance than the SVD-based initialization;

whereas for the structured approach, SVD-based initialization

performs better.

(a) K = 2.

(b) K = 3.

(c) K = 4.

Fig. 6: Recovery rate performances for noiseless matrices with
K = 2, 3, 4.

Finally, we show the average running time comparisons

among different algorithms in Fig. 7 for K = 4 and p = 0.3.

It is seen that the Naive method 3 is much slower than the

other methods, since the matrix it processes has more and more

samples over the later stages. Moreover, the Naive method 2 is

the fastest due to the smaller sizes of the matrices it processes.

The structured approach takes only slightly longer than the

Naive method 1.
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Fig. 7: Running time comparisons for noiseless matrices with
K = 4 and p = 0.3.

2) Noisy Matrix: We now consider the case that the

matrix to be completed is noisy, i.e., Z = U + N =

XY + N, where X and Y are generated the same way

as described in Sec. IV.A; and the entries of N are i.i.d.

N (0, σ2) samples. We define the signal-to-noise-ratio as

SNR = 10 log10

(
1

mnK

∑m
i=1

∑nK
j=1 U(i,j)2

σ2

)
. Moreover, we

define the signal-to-error-ratio for the recovered matrix Û

as SER = 10 log10

(
1

mnK

∑m
i=1

∑nK
j=1 U(i,j)2

1
mnK

∑m
i=1

∑nK
j=1(Û(i,j)−U(i,j))

2

)
. Each

result of (SNR, SER) is the average of 100 realizations of Z.

First, for K = 4, p = 0.3, SNR = 10dB and a particular

sampled matrix, we show the convergence behaviors of the

structured approach and the Naive method 1 in Fig. 8. By

comparing Fig. 8 and Fig. 5, we observe that for all methods, it

takes more iterations to converge in the noisy case, but still the

structured approach converges faster than the Naive method 1.

Moreover, for the structured approach, the SVD initialization
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leads to faster convergence, whereas for the Naive method 1,

random initialization converges faster.
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K = 4, p = 0.30, SNR = 10dB

Naive 1 (SVD)

Naive 1 (random)

Structured (SVD)

Structured (random)

Fig. 8: Convergence comparison for noisy matrices with K =
4, p = 0.15, and SNR = 10dB.

Next, the SER performance results are shown in Figs.

9(a) and 9(b), for p = 0.15 and p = 0.25, respectively. It

is seen that among the naive methods, the Naive method 1

still performs the best in the noisy case. But now there is a

significant gain in SER by the proposed structured approach

over the naive methods. For example, at SNR = 12dB, for

p = 0.15 and p = 0.25, the SER gains over the Naive 1

method is 3.8dB and 1.9dB, respectively. Moreover, similar to

the noiseless case, the SVD-based initialization performs better

for the structured approach whereas random initialization

performs better for the naive methods.

B. Tensor Case

For the tensor case, we consider an example where d = 4,

K = 4, m1 = m2 = m3 = 40, n1 = 25, n2 = 30,

n3 = 35, n4 = 40, r1 = 50, r2 = 60, r3 = 70 and

r4 = 80. In order to generate a tensor that is randomly

chosen from the manifold corresponding to the given rank

constraints, we first generate alj ∈ R40 (structured columns)

with entries being i.i.d. N (0, 1) samples for 1 ≤ j ≤ (d− 1)

and 1 ≤ l ≤ rK . Then, we generate ald ∈ R40 such that

it satisfies the structured decomposition given in Lemma 4,
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(a) p = 0.15.
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(b) p = 0.25.

Fig. 9: SER performances for noisy matrices with K = 4.

i.e., for any k = 1, . . . ,K, x = nk−1 + 1, . . . , nk and

l = rk + 1, . . . , rK we have ald(x) = 0, and the rest of

the entries are i.i.d. N (0, 1) samples. Therefore, the tensor

U =
∑r
l=1 al1⊗al2⊗ . . .⊗ald satisfies all the rank constraints.

Then, we sample the entries of U independently with proba-

bility 0 < p < 1. The regularization weight is set as λ = 0.01.

We define the convergence metric as εi = ‖Ui‖F−‖Ui−1‖F
‖Ui‖F

(where Ui =
∑rK
l=1 A

(i)
1 (:, l)⊗. . .⊗A

(i)
d (:, l)) and convergence

is reached if εi < 10−3. On the other hand, divergence is

declared if ‖A(i)
j ‖F> 106‖A(0)

j ‖F , for any j ∈ {1, . . . , d}.

1) Noiseless Tensor: We say the sampled tensor U is

recovered if the algorithm converges and the normalized error
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satisfies ‖Û−U‖F‖U‖F < 0.01, where Û denotes the completed

tensor. Similar to the matrix case, we consider different

number of rank constraints: K = 2, 3 and 4. For each case and

a given sampling probability p, we run different completion

algorithms on 100 random tensors from the corresponding

manifold and calculate the recovery rates.

In Fig. 10 we illustrate the convergence behaviors of the

Naive method 1 and the structured approach, for K = 4,

p = 0.2 and a particular sampled tensor. It is seen that the

convergence condition εi < 10−3 is reached after 17 and 21

iterations for the structured approach and the Naive 1 method,

respectively.
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Naive 1 (random)

Structured (CP)

Structured (random)

Fig. 10: Convergence comparison for noiseless tensors with
K = 4 and p = 0.2.

Figs. 11(a), 11(b), and 11(c) show the recovery rate per-

formances of different algorithms for K = 2, 3, and 4,

respectively. Similarly as in the matrix case, Naive 1 has the

best recovery performance among the three naive methods.

Compared with Naive 1, the structured approach mainly

improves the region where the recovery rate is below 1, i.e.,

p ∈ (0.12, 0.15). And, for all three naive methods, random

initialization perform better than the CP-based initialization;

whereas for the structured approach, CP-based initialization is

better.

Fig. 12 shows the average running time comparisons among
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Fig. 11: Recovery rate performances for noiseless tensors with
K = 2, 3, 4.
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different algorithms for K = 4 and p = 0.2. Similar to the

matrix case, the Naive method 3 is the slowest and the Naive

method 2 is the fastest. The structured approach is slightly

slower than the Naive method 1.
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Fig. 12: Running time comparisons for noiseless tensors with
K = 4 and p = 0.2.

2) Noisy Tensor: We now consider the noisy case, i.e.,

Z = U + N , where U is generated the same way as

described in Sec. IV.B; and the entries of N are i.i.d.

N (0, σ2) samples. We define the signal-to-noise-ratio as

SNR = 10 log10

(
1

m1...nd

∑m1
x1=1...

∑nd
xd=1 U(x1,...,xd)2

σ2

)
.

Moreover, we define the signal-to-error-ratio

for the recovered tensor Û as SER =

10 log10

(
1

m1...nd

∑m1
x1=1...

∑nd
xd=1 U(x1,...,xd)2

1
m1...nd

∑m1
x1=1...

∑nd
xd=1(Û(x1,...,xd)−U(x1,...,xd))

2

)
.

Each result of (SNR, SER) is the average of 100 realizations

of Z .

Fig. 13 shows the convergence behaviors of the structured

approach and the Naive method 1 for K = 4, p = 0.2, SNR =

10dB and a particular sampled tensor. Similar to the matrix

case, it takes more iterations to converge in the noisy case

for all methods, and the structured approach converges faster.

Moreover, for the structured approach, the CP initialization

leads to faster convergence, whereas for the Naive method 1,

random initialization converges faster.

Figs. 14(a) and 14(b) show the SER performances for p =

0.05 and p = 0.15, respectively. It is seen that there is a

significant gain in SER by the proposed structured approach
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Fig. 13: Convergence comparison for noisy tensors with K =
4, p = 0.15, and SNR = 10dB.

over the naive methods. For example, at SNR = 12dB, for

p = 0.05 and p = 0.15, the SER gains over the Naive (which

performs the best among naive methods) method 1 is 2.9dB

and 2dB, respectively. Moreover, similar to the noiseless case,

the CP-based initialization performs better for the structured

approach whereas random initialization performs better for the

naive methods.

V. CONCLUSIONS

In this paper, we have developed a structured alternating

minimization approach to data completion where the data has

a union of nested subspaces structure with multiple known

rank constraints. Both matrix and tensor cases are studied. Our

key observation is that the union of nested subspaces structure

leads to a structured decomposition where some factors (Y

for matrix case and Ad for tensor case) contain blocks of

zeros determined by the rank values. The proposed structured

alternating minimization algorithms for both matrix and tensor

completion enforce such structures in each iteration including

the initialization. Simulation results show that compared with

naive methods, the proposed structured approaches achieve

faster convergence and higher recovery accuracy, especially

for noisy data completion.
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Fig. 14: SER performances for noisy tensors with K = 4.
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