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1. Introduction

High-dimensional data analysis has received significant recent
attention due to the ubiquitous big data, including images and
videos, product ranking datasets, gene expression database, etc.
Many real-world high-dimensional datasets exhibit low-rank struc-
tures, i.e., the data can be represented in a much lower dimen-
sional form [1]. Efficiently exploiting such low-rank structure for
analyzing large high-dimensional datasets is one of the most ac-
tive research area in machine learning and data mining. The data
structure that we study in this work is multi-view data with two
views that are individually low rank and the concatenated matrix
formed by the two views is also low rank. With this multi-view
structure, this paper aims to complete the data in the presence of
missing entries.

With one view, the problem is a standard low-rank matrix
completion problem which has been widely studied [2,3]. For the
model of multi-view, each view can be considered separately as a
matrix completion problem. However, the low rank assumption of
the concatenation of the two views provide additional structure,
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and thus the requirement of the data may decrease. Exploring the
sampling requirements for this multi-view problem is the focus of
this paper. Multi-view learning problem has applications in signal
processing [4], multi-label image classification [5-7], data cluster-
ing [8], image retrieval [9], image synthesis [10,11], data classifi-
cation [12], rank estimation [13], multi-lingual text categorization
[14], etc.

We assume that the ranks of each view and the concatenated
data are provided, and the data at the sampled entries are known.
Using this information, a completion is any matrix that agrees with
the sampled entries and rank constraints. The multi-view data is
called finitely completable if and only if there exist only finitely
many completions. For a single view (matrix completion), multiple
optimization-based methods have been proposed including alter-
nating minimization [15], convex relaxation of rank [16-18], etc.
Moreover, there are many optimization-based analyses in the lit-
erature for multi-view learning [19-29]. Moreover, the multi-view
clustering problem using matrix decompsotion-based approaches
is studied in [30,31] and other subspace analysis-based methods in
[32,33].

The optimization-based matrix completion algorithms typically
require incoherence conditions, which constrains the values of the
entries (sampled and non-sampled) to obtain a completion with
high probability. Moreover, the fundamental completability condi-
tions that are independent of the specific completion algorithms
have also been investigated. Specifically, deterministic conditions
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on the locations of the sampled entries (sampling pattern) are ob-
tained through algebraic geometry analyses on Grassmannian man-
ifold that lead to finite/unique solutions to the matrix completion
problem [34-36]. The analysis in [34] provides the combinatorial
conditions on the location of the sampled entries for finite/unique
completability of the sampled matrix of the given rank. Such an
algorithm-independent condition can lead to a much lower sam-
pling rate than the one that is required by the optimization-based
completion algorithms. However, the analysis on Grassmannian
manifold in [34] is not capable of incorporating more than one
rank constraint. Even though the analysis for matrices have been
extended to tensors in [37,38], that extension also do not incor-
porate rank constraints for the different views. As the first step,
we study the finite completability problem for multi-view data
by proposing a geometrical analysis on the manifold structure for
such data. Moreover, other interesting related problems have been
studied using algebraic geometry analysis, including high-rank ma-
trix completion [39] and subspace clustering with missing data
[40-43].

This paper aims to provide the lower bounds on the number of
sampled entries per column such that the proposed conditions on
Q for finite/unique completability are satisfied with high probabil-
ity. This work is inspired by [34], where the analysis on Grassman-
nian manifold is proposed to solve similar problems for a single-
view matrix. Specifically, in [34] a novel approach is proposed to
consider the rank factorization of a matrix and to treat each ob-
served entry as a polynomial in terms of the entries of the compo-
nents of the rank factorization. Then, under the genericity assump-
tion, the algebraic independence among the mentioned polynomi-
als is studied. For the multi-view data completion problem, we first
follow the general approach that is similar to that in [34] to treat
the corresponding problem. Although these works have similar na-
tures, they are fundamentally different. The fact that we consider
the rank decomposition of the data that corresponds to multiple
rank constraints instead of one rank constraint, results in different
polynomial structure for each sampled entry. We mention some of
the main differences of our approach as compared to that in [34].
The different geometry of the manifold leads to a change in the ge-
ometry of the manifold structure. This further leads to a difference
in the equivalence class for the basis and the canonical basis. This
further leads to a different structure on the algebraic polynomials
which makes the analysis not directly extendable. Moreover, the
idea of using all three rank constraints simultaneously in the alge-
braic geometry approach has not been considered so far. Hence,
the manifold structure for the multi-view data is fundamentally
different from the Grassmannian manifold and we need to develop
almost every step anew.

The rest of the paper is organized as follows. In Section 2, the
notations and problem statement are provided. In Section 4, the
guarantees for finite completability are proposed where the condi-
tion is in terms of the number of samples per column. In Section 5,
the guarantees for unique completability are provided. Numerical
results are provided in Section 6 to compare the number of sam-
ples per column for finite and unique completions based on our
proposed analysis versus the existing method. We see that exploit-
ing the additional structure provided by multi-view model leads to
a significant decrease in the number of samples required for data
completion. Sections Appendix A-Appendix B provides a proof for
finite completability of example in Section 2 and describes a larger
example, respectively. Finally, Section 8 concludes the paper.

2. Problem statement and a motivating example
Let U be the sampled data that we want to study. Denote 2

as the sampling pattern matrix that is of the same size as U and
Q(x1,xp) =1 if U(x4, x,) is observed and $2(x;,x;) = 0 otherwise.

For each subset of columns U’ of U, define Ng(U’) as the number
of observed entries in U’ according to the sampling pattern 2. For
any real number x, define x* = max{0, x}. Also, I, denotes an n x n
identity matrix and 0, x ;; denotes an n x m all-zero matrix.

The matrix U € R™(M+M2) js randomly sampled. Denote a par-
tition of U as U = [U;|U,] where U; € R™™ and U, € R™™2 rep-
resent the first and second views of data, respectively. Given the
rank constraints rank(U;) = rq, rank(U,) = r, and rank(U) = r, our
goal is to characterize the geometrical conditions on the loca-
tions of the sampled entries to ensure there exist infinite, finite,
or unique completions of the sampled data U such that given rank
constraints hold true.

In [34], a necessary and sufficient condition on the sampling
pattern is given for the finite completability of a matrix U given
rank(U) = r, based on an algebraic geometry analysis on the Grass-
mannian manifold. However, this analysis cannot be used to in-
corporate the three rank constraints for the multi-view problem
since we have multiple rank constraints here. This is because the
rank decomposition corresponding to three rank constraints has a
different nature and as we will see this would change the whole
analysis.

3. Geometry of the basis

In this section, we will define an equivalence relation among all
bases of the sampled matrix U, where a basis is a set of r vectors
(r =rank(U)) that spans the column space of U. This equivalence
relation leads to the manifold structure for multi-view data to in-
corporate all three rank constraints.

First, we provide an example such that: (i) given ry, U; is in-
finitely completable; (ii) given r,, U, is infinitely completable; (iii)
given r, U is infinitely completable; and (iv) given r;, 1, and r, U
is finitely completable. This is equivalent to showing that applying
the single-view analysis to U, U;, and U, separately does not guar-
anty the finite completability of any of U, Uy, and U,, but incor-
porating all three rank constraints in the multi-view analysis guar-
anties the finite completability. In other words, if S; denotes the
set of completions of U given rank(U;) =r{, S, denotes the set
of completions of U given rank(U,) =1, and S denotes the set of
completions of U given rank(U) = r, then in the following example
|S1| = 00, |S3| =00, |S| =00 and |S; NS, N S| < oo

Before explaining the example, we provide a simple lemma,
which will be used in the example.

Lemma 1. Consider a sampled rank-r matrix X. Assume that there
exists a column or row that includes less than r sampled entries. Then,
there exist infinitely many rank-r completion of the sampled matrix.

Proof. We will prove the lemma when there exists such a col-
umn and the proof for the existence of such a row is similar. As-
sume that the first column includes less than r sampled entries.
Note that there exists at least one completion (the original sam-
pled matrix). Hence, there exists a basis V € R™ such that each
column of the sampled matrix (on the locations of the sampled
entries) can be written as linear combination of the r columns of
V. In order to complete the proof, it suffices to show that there
exist infinite many completions of the first column such that it
is a linear combination of the columns of V. Let x; denote the
first column of X and v; denote the i-th column of V,i=1,...,r.
Then, we need to show that there exist infinitely many solutions
to (X1)g = (a1vq1 + -+ arVr)g in terms of the scalars g;'s, where
(x1)g and (a;vq +--- 4+ arVvr)g represent the vectors consisting of
those entries of x; and ayv; +--- + a;v; that their corresponding
locations in the first column of the sampled matrix have been sam-
pled, respectively. Note that this system of equations includes less
than r scalar equations and each equation is in terms of r variables.



M. Ashraphijuo, X. Wang and V. Aggarwal/ Pattern Recognition 103 (2020) 107307 3

The genericity assumption and existence of at least one comple-
tion simply conclude that there exist infinitely many solutions to
(X])Q =(@vy+---+ arVr)Q. O

Consider a matrix U € R**5, where U = [U; |U;], U; € R**2 (the
first two columns) and U, € R4*3 (the last three columns). Assume
that r; =1, r, =2 and r = 2. Moreover, suppose that the sampled
entries of U are shown below.

U, U,
A /_/A_
X X X X X
X — X X X
X — X — —
- — — X X
U

We have the following observations about the number of com-
pletions of each matrix.

e Given ry = 1, Uy is infinitely completable: For any value of the
(4,1)-th entry of Uy, there exists exactly one completion of Uj.
Hence, there exist infinitely completions of U;. We can also ver-
ify infinite completability via Lemma 1 since the fourth row of
U; has no sampled entry.

Given r, =2, U, is infinitely completable: Observe that each
value of the (3,2)-th entry of U,, corresponds to one comple-
tion of U,. As a result, there are infinitely many completions of
U,. We can also verify infinite completability via Lemma 1 since
the third row of U, has only one sampled entry.

Given r = 2, U is infinitely completable: Note that for any value
of the (2,2)-th entry of U, there exists at least one completion
of U (as the second column of U is a linear combination of two
vectors and only one entry of this column is known), and there-
fore U is infinitely completable. We can also verify infinite com-
pletability via Lemma 1 since the second column of U has only
one sampled entry.

For almost every matrix U, given r; =1, =2 and r=2, U is
finitely completable: We prove this statement in Section Ap-
pendix A by applying Theorem 1 which takes advantage of a ge-
ometric analysis on the manifold structure for multi-view data
(which is not Grassmannian manifold) to incorporate all three
rank constraints simultaneously.

A larger example is provided in Section Appendix B to show the
advantage of multi-view analysis when max{r{,r,} <1 <r; +15.

As mentioned earlier, the multi-view learning problem has
many applications in various areas. Hence, such analysis (that out-
performs applying the single-view analysis multiple times) charac-
terizes the fundamental bounds for the corresponding applications.

We next construct a constraint matrix € based on € such that
each column of € represents exactly one of the polynomials in
P(R). Consider an arbitrary column of the first view U(:, i), where
ie{l,...,my}. Let ; = Ng(Uq (3, 1)) denote the number of observed
entries in the i-th column of the first view. Assumption 1 results
that [; > rq.

We construct [; — ry columns with binary entries based on the
locations of the observed entries in Uj(:, i) such that each col-
umn has exactly ry + 1 entries equal to one. Assume that xq, ... S
be the row indices of all observed entries in this column. Let SZ’]
be the corresponding n x (I; — ry) matrix to this column which is
defined as the following: for any je {1,..., l; —r1}, the j-th col-
umn has the value 1 in rows {x;,...,%r,X.,;} and zeros else-

where. Define the binary constraint matrix of the first view as
@ = [@l|@?...|Q]"] e R™K1 [34], where K; = Ng (Uy) —mqry.

Similarly, we construct the binary constraint matrix €, ¢ R™*K:
for the second view, where K; = Ng (U,) — myr,. Define the con-
straint matrix of U as @ = [£2;]€2,] e R"<Ki+K2) For any subset of
columns € of §, P(®’) denotes the subset of P() that corrse-
ponds to €.

Consider an example, where matrix U= [U;|U,] € R*** and
U; € R**2 is the first view and U, e R**2 is the second view. The
samples that are used to obtain (T;, T) are colored as red in the
following. Assume that r; =1, r, =2 and r = 2. Then, the con-
straint matrix is as the following.

U, U, Q9
N N AN —N—
X X X X 1 11 11
X — X X o 1 01 11
U: ’Q:
X — X - 01100
- — X X 00 011

Assume that €’ is an arbitrary subset of columns of the con-
straint matrix €. Then, Q/] and fl’z denote the columns that corre-
spond to the first and second views, respectively. Similarly, assume
that €’ is an arbitrary subset of columns of . Then, £} and £/,
denote the columns that correspond to the first view and second
view, respectively. Moreover, for any matrix X, c(X) denotes the
number of columns of X and g(X) denotes the number of nonzero
rows of X. A submatrix of the constraint matrix is called a proper
submatrix if its columns correspond to different columns of the
sampling pattern.

We definer] =r—rp, ,=r—rpand ' =r—r; -1, =r; + 1, —
r. Observe that r; <, 1, < rand r <r; +r,. Suppose that the ba-
sis V e R™T is such that its first r; columns constitute a basis for
the first view Uy, its last r, columns constitute a basis for the sec-
ond view U,, and all r columns of V constitute a basis for U =
[U1|U;], as shown in Fig. 1. Assume that V = [V;|V,|V3], where
V; e R™1, V, € R™" and V3 € R™"2. Then, [V4|V,] is a basis for
U; and [V,|Vs] is a basis for U,. Hence, there exist T; € R"1*™ and
T, € R™2*™2 such that

U; = [Vi|V2] Ty, (1a)

U; = [V2|V3] - To. (1b)
For any iy € {1,..., my} and i € {1,..., my}, (1) can be written

as

Ui (5, in) = [Vi[V2] - T (5, i), (2a)

Uy (2, i) = [V2|V3] - Ta (¢, Ba). (2b)

Let M(r,rq, 15, R") denote the manifold structure of subspaces
V described above for the multi-view matrix and define P, as
the uniform measure on this manifold. Moreover, define P; as the
Lebesgue measure on R™(Mi+Mm2) We assume that U is chosen
generically from M(r,rq, 5, R"), or in other words, the entries of
U are drawn independently with respect to Lebesgue measure on
M(r, 11,12, R"). Hence, any statement that holds for U, it also holds
for almost every (with probability one) data of the same size and
rank with respect to the product measure P, x ;. Note that ac-
cording to Proposition 2, each multi-view data U can be uniquely
represented in terms of a subspace V e M(r, 1y, 15, R").
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Fig. 1. A basis V for the sampled matrix U.

Note that it can be concluded from Bernstein’s theorem
[44] that in a system of n polynomials in n variables with
each consisting of a given set of monomials such that the co-
efficients are chosen with respect to the Lebesgue measure on
M(r, 11,12, R"), the n polynomials are algebraically independent
with probability one with respect to the product measure P x Py,
and therefore there exist only finitely many solutions (all given
probabilities in this paper are with respect to this product mea-
sure). However, in the structure of the polynomials in our model,
the set of involved monomials are different for different set of
polynomials, and therefore to ensure algebraically independency
we need to have for any selected subset of the original n polyno-
mials, the number of involved variables should be more than the
number of selected polynomials.

Given all observed entries {U(x1,x;) : (x1,Xy) = 1}, we are in-
terested in finding the number of possible solutions in terms of en-
tries of (V, T;, T) (infinite, finite or unique) via investigating the
algebraic independence among the polynomials. Throughout this
paper, we make the following assumption.

Assumption 1. Any column of U; includes at least r; observed en-
tries and any column of U, includes at least r, observed entries.

Observe that Assumption 1 leads to a total of at least myr; +
myr, sampled entries of U.

Lemma 2 ([45]). Given a basis V = [V1|V,|V3] in (1), if Assumption
1 holds, then there exists a unique solution (Ty, Tp) to the set of
polynomials obtained from the sampled entries, with probability one.
Moreover, if Assumption 1 does not hold, then there are infinite num-
ber of solutions (Ty, T,), with probability one.

As a result of Lemma 2, Assumption 1 is necessary and suf-
ficient for having finite (and unique) number of solutions to the
completion problem if the basis is given.

Definition 1. Observe that given V, each observed entry of U; and
U, results in a degree-1 polynomial whose involved variables are
the entries of the corresponding column of T; and T,, respectively.
We choose ry and r, observed entries of each column of U; and Us,
respectively, to obtain (T;, T,). Let P(2) denote all polynomials in
terms of the entries of V obtained through the observed entries
excluding the myr; + myr, polynomials that were used to obtain
(Tq, Ty). Note that since (T;, Ty) is already solved in terms of V,
each polynomial in P(f2) is in terms of elements of V.

Consider two bases V and V' for the matrix U with the structure
in (1). We say that V and V’ span the same space if and only if: (i)
the spans of the first r; columns of V and V' are the same, (ii) the
spans of the last r, columns of V and V' are the same, (iii) the
spans of all columns of V and V' are the same.

Therefore, V and V' span the same space if and only if: (i) each
column of V; is a linear combination of the columns of [V}|V}], (ii)
each column of V; is a linear combination of the columns of V.,
and (iii) each column of V3 is a linear combination of the columns
of [V} |V}]. The following equivalence class partitions all possible
bases such that any two bases in a class span the same space, i.e.,
the above-mentioned properties (i), (ii) and (iii) hold.

Definition 2. Define an equivalence class for all bases V € R™" of
the sampled matrix U such that two bases V and V' belong to the
same class if there exist full rank matrices A; € R"*"1, A € R"*"
and A; € R™2*"2 such that

Vi = [V} [V3] - Ay, (3a)
V, =V, Ay, (3b)
V3 = [V,|V3] - As, (30

where V=[V;|V,[V3], V' =[V}||V)|V,], Vi,V e R™T1, Vy, V) e
R and V3, Vj € R™"2,

Note that (3) leads to the fact that the dimension of the space
of all bases V in one particular class, i.e., the degree of freedom for
the bases in one particular class, is equal to nr —ryr] — 't/ — 1}, =
nr—r2—r2 —r2 4 r(r; +13).

Definition 3. (Canonical basis) As shown in Fig. 2, denote
B, =V(1:r},1:17) e R, (4a)

Bzzv(l i 141 :r§+r1)eRréXf§, (4b)

B3 = V(1 + max(r}, r5) : 1’ + max(ry. 13),

T+r ' +17) e R", (4c)

By = V(1 + max(r}, r5) : 1/ + max(rq, 13),
1:r)) e RN, (4d)

Bs = V(1 + max(r}, r5) : 1’ + max(ry. 13),
1+ . ré + Tl) S Rr’xré. (4e)
Then, we call V a canonical basis if B; = Ir;, B, = lrg’ B; =1,
B;,=0,_. and B;=0

/ N
r><r1 r><r2
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Fig. 2. A canonical basis.

Fig. 3. The canonical basis for Example 1.

Example 1. Consider an example in which U = [U;|U,] € R**7 and
U; € R*3 is the first view and U, € R*** is the second view. As-
sume that ry = 2, r, = 3 and r = 4. Then, the corresponding canon-
ical basis is as shown in Fig. 3.

Observe that r?2+12 412 —r(r;+1,)=9 of the entries are
known.

The following proposition shows the uniqueness of the canoni-
cal basis for the single-view matrix.

Proposition 1. Assume that X e RM*" is generically chosen from
the manifold of n; x ny, matrices of rank r. For almost every X, there
exists a unique basis Y e RM*" for X such that Y(1:r,1:1) =1,
where Y is a basis for X if each column of X can be written as a
linear combination of the columns of Y and Y(1: r, 1: r) represents
the submatrix of Y that consists of the first r columns and the first r
rows and I, denotes the r x r identity matrix.

Proof. Consider an arbitrary basis Y € R"*" for X. Let V denote
the set of all full rank n; x r matrices whose column span is equal
to the column span of Y’ and note that V is the set of all bases
with r columns for X. Consider an arbitrary member of set V and
denote it by Y”. Since, the column span of Y’ and the column span
of Y’ are the same, each column of Y’ can be written as a linear
combination of columns of Y/, and therefore there exists a unique
full rank Z € R™" such that Y’ = Y'Z. Note that if Z is not full rank,

we conclude Y” is not full rank as well, which contradicts the as-
sumption.

Moreover, genericity of X results that each r x r submatrix of
Y is full rank, with probability one. This is because we have X =
Y'T for some T € R™"2, and therefore the fact that the submatrix
consisting of any r rows of X is full rank results that the submatrix
consisting of any r rows of Y’ is full rank as well. Let Z; denote

the inverse of Y'(1: 1, 1: 1), i.e, Zo= (Y(1:1,1: r))_l. Therefore,
Y =Y'Z, is the unique basis for X that Y(1:r,1:1r) =1 O

The following proposition considers the multi-view data de-
scribed in this paper and shows the uniqueness of the canonical
basis.

Proposition 2. For almost every U, there exists a unique basis V ¢
R™T for U such that V satisfies the canonical pattern in Definition
3 and also its first ry columns constitute a basis for the first view Uy,
its last r, columns constitute a basis for the second view U,, and all
r columns of V constitute a basis for U = [U|U,].

Proof. Consider an arbitrary basis V' = [V} |V,|V}] for U such that
its first r; columns constitute a basis for the first view Uy, its last
r, columns constitute a basis for the second view U,, and all r
columns of V constitute a basis for U =[U;|U;]. Let V denote the
set of all such bases for U and consider an arbitrary member of
this set and denote it by V = [V|V,|V3]. Hence, according to the
earlier discussion before Definition 2, Equs. (3a)-(3c) hold. This is
because the column spans of the first r; columns of V and V', or
the column spans of the last r; columns of V and V' and also the
column spans of the all r columns of V and V' are the same.

Similar to the proof of Proposition 1, (3b) results that the
unique V, that can satisfy the pattern B; =1, in Definition 3, can
be obtained by A, equal to the inverse of matrix

V/(l +max(ry,ry) 17 +max(r], ), 1471y o1’ + ré) In order to
complete the proof, it suffices to show that there exists a unique
A; that results in satisfying the patterns B; = lr; and By = Or’xrg in
Definition 3 for Vy (the uniqueness of Aj is similar to that for A).

Let A7 € R"1*"1 denote the inverse of r; x r; matrix [V;|V;](1:
ry, 1: 7). Note that existing of the inverse is a consequence of
genericity assumption which results the submatrix consisting of
any rq; rows of Ug is full rank with probability one, and therefore
the submatrix consisting of any rq rows of [V;|V,] is full rank. Let
A; be the first r] columns of A}. Then, A; ensures that the pat-
terns By =1, and By = 0 rr in Definition 3 hold for V. Finally,

note that A; is unique. Otherwise, there exist two different inverse
matrices for the full rank r; x ry matrix [V;|V,](1: rq, 1: rq), which
is contradiction. O

Remark 1. In order to prove there are finitely many completions
for the matrix U, it suffices to prove that given T; and T,, there
are finitely many canonical bases that fit in U, where a basis fitting
in U is equivalent to the existence of a completion of U such that
each of its columns can be written as a linear combination of the
corresponding basis.

Note that patterns B; and B4 are in V;, patterns B, and Bs are
in V3, and pattern B3 is in V,. We can also easily show that any
permutation of the rows of any of these patterns satisfies the prop-
erty that in each class there exists exactly one basis with the per-
muted pattern.

4. Sampling guarantees for finite completability

In this section, we show that if the number of samples in
each column satisfies a proposed lower bound, then the conditions
stated in the statement of Theorem 1 on sampling pattern hold,
i.e., U is finitely completable with high probability.
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In order to prove this result, we will first find some results for
the algerbraic independence of the polynomials. We first note that
if Assumption 1 holds, then for almost every sampled matrix U,
there are at most finitely many bases that fit in U if and only if
there exist nr—r2 — rf - r% +r(ry +1r,) algebraically independent
polynomials in P(S2) (The detailed proof of this can be seen in
[45]). The next result provides an upper bound on the maximum
number of algebraically independent polynomials in any subset of
columns of the constraint matrix €2.

Lemma 3. Assume that Assumption 1 holds. Let ' be a proper
subset of columns of the constraint matrix . Then, the maximum
number of algebraically independent polynomials in P(') is upper
bounded by

r(g(2)) — )t + 1y (g(y) — )t
+7(g(R) —1)*. (5)

Proof. The maximum number of algebraically independent poly-
nomials in P(£') is at most equal to the number of involved vari-
ables in the polynomials. Note that each observed entry of U; re-
sults in a polynomial that involves all r; entries of a row of Vj.
As a result, the number of entries of V; that are involved in the
polynomials is exactly rlg(SvZQ). As mentioned earlier, the rows of
patterns B; and B4 in Definition 3 can be permuted such that ex-
actly one basis in each class satisfies the new pattern. Hence, it
can be permuted such that r; rows of B; and B4 are a subset of
the nonzero rows of QQ since there are at least r{ + 1 nonzero
rows (any column of the constraint matrix of the first view in-
cludes exactly r; + 1 nonzero entries). Recall that the total num-
ber of known entries of V; is the summation of the number of
entries of By and By, i.e., rjry. Therefore, the number of variables
(unknown entries) of V; that are involved in P(R) is equal to
r (ig(Svl’l) —r1)*. Note that g(flﬁ)—rl is negative if and only if
g(@) = 0.

Similarly, the number of unknown entries of V, and V5 that are
invloved in P () are 1’ (g(€') — r')* and r) (g(fl’z) — )%, respec-
tively. Therefore, the number of unknown entries of basis V that
are involved in P() is equal to r}(g(R)) — )t +ry(g($)) —
)t 1 (g@) - )t O

A set of polynomials is called minimally algebraically depen-
dent if the polynomials in that set are algebraically dependent but
the polynomials in any of its proper subsets are algebraically inde-
pendent. The next theorem gives the condition on Q that is equiv-
alent with existence of nr—r? —r2 —r2 +r(ry +1,) algebraically
independent polynomials in P(£2),thereby providing the condition
on 2 for finite completability of U.

Theorem 1. Assume that Assumption 1 holds. For almost every U,
the sampled matrix U is finite completable if and only if there exists a
proper subset of columns €' e R™™M of the constraint matrix § such
that m = nr —r2 —r2 — 12 4 r(ry + 1) and for any subset of columns
Q" of & the following inequality holds

@ Q)) — )t +15(g(Ry) — )t +
r(g(R") — )t = c(R). (6)

Proof. The result is an extension of the deterministic guarantee re-
sult in [37], using Lemma 3. The detailed proof is thus omitted. O

The proposed deterministic analysis and the condition on the
sampling pattern in Theorem 1 have a combinatorial nature such
that it takes exponential amount of time (in terms of the parame-
ters of the problem) to verify the these geometric conditions on
the sampling pattern. This combinatorial nature is consequence
of NP-hardness of the problem (otherwise the problem would be
polynomial solvable). Therefore, we are motivated to find a lower

bound on the sampling pattern such that if that inequality holds,
then we can guarantee these difficultly verifiable conditions hold
with high probability. Hence, such analysis would have a very prac-
tical value as well. To this end, we propose a combinatorial analy-
sis to find the required number of samples per column (under uni-
form sampling) such that the condition on the sampling pattern in
Theorem 1 holds.

In order to find such bound on the sampling rate, we first
provide the next lemma that will be used to prove Theorem 2.
More specifically, in Theorem 2 we consider three disjoint sets of
columns of U and apply Lemma 4 to each of them. Then, we com-
bine the three sets of columns and show that they satisfy the con-
ditions stated in the statement of Theorem 1. This lemma connects
the assumption of having a certain number of samples per column
(under uniform sampling) with a geometrical property on the lo-
cation of the sampled entries, i.e., sampling pattern.

Lemma 4. Assume that " < g and also each column of & includes
at least | nonzero entries, where

I > max {9 log (g) +3 log (’;) +6, 2r”}_ (7)

Let &' be an arbitrary set of n —r” columns of . Then, with proba-
bility at least 1 — £, every subset & of columns of Q' satisfies

g(R") 1" = c(R). (8)

Proof. Please refer to the proof of [34, Lemma 9]. Note that the
only difference is that the last inequalities of (16) and (18) in
[34] should now be upper bounded by = instead of ;—2. O

Theorem 2. Assume that the following inequalities hold

& = max{ri.ro.r), (9)
my = ry(n—r), (10)
my = ry(n—12), (11)

my+my >ri(n—ry)+r,(n—ry)
+r(n=r). (12)

Moreover, assume that each column of R includes at least | nonzero
entries, where

| > max {9 log () +3 max {log (3%)
log (3%) log(%)} +6,2r1,2r2}. (13)

Then, the multi-view data U has only finitely many possible comple-
tions with probability at least 1 — €.

Proof. Let £} be an arbitrary set of n—r; columns of ;. Note
that having (13), it is easy to see that (7) holds with k and r” re-
placed by 3r} and ry, respectively. Hence, having (9), Lemma 4 re-
sults that any subset of columns 2/ of & satisfies

8(LY) — 11 = c(L)), (14)

with probability at least 1 — 3674
by setting r=ry, as a subset of columns £} of € satisfies (14),
there exists a subset of columns €/ of the constraint matrix of the
first view €4 (corresponding columns to the columns of €/) that
satisfies (14) as well.

According to Lemma 5 below and
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Assumption (10) results that €, includes at least rj(n—rq)
columns or in other words, r; disjoint sets of columns each in-
cluding n —ry columns. All r} disjoint sets satisfy property (i) si-
multaneously with probability at least 1 — §. Therefore, there exist
ry disjoint sets of columns each including n —ry columns of the

constraint matrix of the first view €, and also all r; disjoint sets
satisfy (14), simultaneously with probability at least 1 — §. Let Q,
denote the union of the rj mentioned sets of columns.
=/ = =/
Consider any subset of columns $2; of €; and define £,; as

=/
the intersection of ; and the i-th set among the mentioned
ry sets for i=1,...,r}. Without loss of generality, assume that

=/ =/
Maxy iy {c(821 1)} = c(821 7). Then,
-/ " -/ -y
c(R) = ZC(SZ”) <1c(Ry;) <
i1
-/ -/
r(g(R ) — )T <17 (g(R)) —r)", (15)

where the second inequality follows from (14). Therefore, we
have

(@) <7 (g(@)) — ). (16)

Note that having (13), it is easy to see that (7) holds with k and
1" replaced by 3r/ and r,, respectively. Moreover, recall that 1’ =
ry + 1, —r <min{ry, r,}, and therefore, having (13), it is easy to see
that (7) holds with k and r” replaced by 3r’ and r’/, respectively.
As a result, similarly, having (9) and (11), flz includes ry(n —ry)
columns €2, that with probability at least 1 — § for any subset of

=/
it 2, we have

-/ =/
c(8;) <15 (g(Ry) —12) " (17)
Using (12),  includes r’(n—r’) columns  (disjoint from €,
and €, corresponding to S=l1 and S=22). Similar to S=Z1 and Szlz, Q
includes r’(n — r’) columns @ (disjoint from S=21 and Szlz) that with

=/
probability at least 1— § for any subset of columns of it £ we
have

(@) <r' @) - (18)

Therefore, any subset of columns of S=21 satisfies (16) and any
subset of €, satisfies (17) and any subset of satisﬁes'(ISZ sirllul-

taneously with probability at least 1 — €. Define €' = [©2,]2,|2] e
R™M  where

m=rm-r)+rin-r)+rn-r)=
nr—r2—r2 —r24r(r; +1). (19)
Let € be a subset of columns of €' and define fla’, fZ’Z’ and §2’3’

as the intersection of €’ with S=21, S=ZZ and S=2 respectively. Conse-
quently, with probability at least 1 — €

3
c(R") =) c(R) <11 @) —r)* +
i=1
5 (g(83) —12) " + 1 (g(R) — )Y, (20)
and therefore according to Theorem 1, U is finite completable with
probability at least 1 —€. O

The following lemma is taken from [37, Lemma 8]. The lemma
connects the sampling pattern and the constraint matrix (since
we eventually need to verify the geometry pattern given in
Theorem 1) by showing the equivalency of a geometrical property
on the sampling pattern and a similar geometrical property on the
constraint matrix.

Lemma 5. Let R be a given nonnegative integer. Assume that there
exists a matrix & such that it consists of n —R columns of & and
each column of &' includes at least R + 1 nonzero entries and satisfies
the following property:

e Denote an arbitrary matrix obtained by choosing any subset of the
columns of ' by . Then,

g(L") —R=c(R"). (21)

Then, there exists a matrix €' with the same size as € such
that: each column has exactly R+ 1 entries equal to one, and if
Q' (x,y) =1 then we have €'(x,y) = 1. Moreover, Q' satisfies the
above-mentioned property.

The next result finds a condition on the sampling probability
that results (13).

Lemma 6. Assume that the inequalities (9)-(12) hold. Moreover, as-
sume that each entry of U is independently observed with probability
p, where

1 n 3r;
D> o max {9 log (E) + 3 max {log (e)
3r, 3r 1
log <6>,log (e)} + 6, 2r1,2r2} +%. (22)

my+my
Then, with probability at least (1 —e)(l —exp(—@)) , Uis
finitely completable.

Proof. Consider a vector with n entries where each entry is ob-
served with probability p independently from the other entries.

The authors of [37] showed that for p> p’ = % + -, more than

T
k entries are observed with probability at least (1 - exp(—@)).

Using this result, we note that the number of observed entries of
each of the my + m, columns satisfies (13) with probability at least

(1 - exp(—g)). Hence, the proof follows using Theorem 2. O

5. Sampling guarantees for unique completability

Theorem 1 gives the necessary and sufficient condition on sam-
pling pattern for finite completability. Hence, even one sample
short of the condition in Theorem 1 results in infinite number
of completions with probability one. We first provide an exam-
ple for single-view matrix with exactly two completions to empha-
size that finite completability does not necessarily result in unique
completability (we can easily extend the example to multi-view
matrix).

Example 2. Assume that the sampled matrix U € R>** is given as
the incomplete matrix shown in Fig. 4.

Moreover, assume that rank(U) = 2. In [37], it is shown that
there exist exactly two completions of U as given by the two com-
plete matrices above.

We show that adding a mild condition to the conditions ob-
tained in the analysis for Problem (i) leads to unique completabil-
ity. To this end, we obtain multiple sets of minimally algebraically
dependent polynomials and show that the variables involved in
these polynomials can be determined uniquely, and therefore en-
tries of U can be determined uniquely.

Recall that there exists at least one completion of U since the
original multi-view matrix that is sampled satisfies the rank con-
straints. The following lemma is a re-statement of Lemma 25 in
[38]. Note that this lemma is also an adaptation of Lemma 7 in
[34] or Theorem 1 in [46].
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DN | =

|
[\
o

1 (-2 | 1 | -3 1 | -2 1| —3
-4 2 |-1| 3 —4 | 2 |-1|-10
0| 1 |-2] 2 0 | 1 |-3| 2
1 | -2 4 |-1 1 | -8| 4 | -2
-8 4 |-2| 3 |[|-8)4|-2] 2

Fig. 4. A matrix with exactly two completions.

Lemma 7. Assume that Assumption 1 holds. Let €' be an arbitrary
subset of columns of the constraint matrix . Assume that polyno-
mials in P (') are minimally algebraically dependent. Then, all vari-
ables (unknown entries) of V that are involved in P(R') can be de-
termined uniquely.

Theorem 3 below gives a sufficient conditions on sampling pat-
tern for unique completability. To be more specific, condition (i) in
the statement of Theorem 3, i.e., nr —r2 —r2 —r2 4+ r(ry + 1) alge-
braically independent polynomials in terms of the entries of V, re-
sults in finite completability. Hence, adding any single polynomial
to them results in a set of algebraically dependent polynomials and
using Lemma 7 some of the entries of basis V can be determined
uniquely. Then, conditions (ii) and (iii) result in more polynomials
such that all entries of V can be determined uniquely.

Theorem 3. Suppose that Assumption 1 holds. Moreover assume that
there exist disjoint proper subsets of columns Q' € R™™, Q/ ¢ Rxm’

and fl’z e R™m" of the constraint matrix 2 such that the following
properties hold

(i) m=nr— 12 —r? —'rg +71(ry +14) and for any subset of columns
Q" of the matrix S, (6) holds. _
(i) &7 is a subset of columns of &2 (constraint mqtrix of the first
view), m’ = n —ry and for any subset of columns S of the matrix
Q/
1

g(R)) —r1 = c(R)). (23)

(iii) fl’z is a subset of columns of §, (constraint matrix of the second
view), m"” =n —r, and for any subset of columns fl’z’ of the ma-

trix )
2()) — 1y > c(R)). (24)

Then, there exists only one completion of U that satisfies all the
three rank constraints with probability one.

Proof. According to Theorem 1, property (i) results that there are
only finitely many completions of U that satisfy the rank con-
straints. We show that having properties (ii) and (iii) results in
obtaining all entries of the basis uniquely, and therefore there
exists only one completion of U. According to Theorem 1, the
nr—12 —12 —r2 4 r(ry +r,) polynomials in P($2) are algebraically
independent. As a result, by adding any single polynomial to this
set, we will have a set of algebraically dependent polynomials.
Consider a single polynomial from P(fl;) UP(Q’z) and denote
it by po. Hence, polynomials in set pg UP() are algebraically
dependent, and therefore there exists P’(pg) < {po U P (')} such
that pg € P’(pg) and polynomials in P’(py) are minimally alge-
braically dependent. Lemma 7 results that all variables involved in
polynomials in P/(pg) can be determined uniquely. The number
entries of V that are involved in P’ (pyg) is at least r; if pg P(fl’l)
and ry if pg € P(fl/z). This is because the number of entries of V
that are involved in polynomials in P’(pg) is at least equal to the
number of entries of V that are involved in py. Hence, P'(pg) re-
sults in rq or r, polynomials that each has a unique solution.
Similarly, consider any other polynomial p; in P(fl’l) UP(Q’Z)
and note that polynomials in set p; UP (') are algebraically de-
pendent. Hence, we can repeat the above procedure for py for
polynomial p;. Repeating this procedure for any subset of poly-
nomials in P(2}) UP(2)) € P()) UP () results in r} (g(R]) —
r)T +15(g(RY) — )t + 1 (g(R4) —r')* polynomials (as this is
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the number of unknown entries involved in the polynomials
P(@;) UP(L2,)) and observe that (23) and (24) result that the
number of involved unknown entries of basis is not less than the
number of polynomials, and therefore they are independent. More-
over, observe that fe’] and fl’z are such that polynomials obtained
via this procedure cover all entries of basis. Therefore, all entries
of basis can be determined uniquely with probability one. O

The next theorem gives a probabilistic guarantee for satisfying
the conditions in the statement of Theorem 3 or in other words, a
probabilistic guarantee for unique completability. However, similar
to Theorem 2, the condition on sampling pattern is in terms of the
number of samples per column instead of the complicated condi-
tions in the statement of Theorem 3 on the structure of sampling
pattern.

Theorem 4. Assume that the following inequalities hold

g > max{ry, rp, 1'}, (25)
my = (i +1)(n-rp), (26)
my > (r; +1)(n —ry), (27)

my+my > (i +1Hm—r)+ T+ 1)Mn-r)
+r(n=r). (28)

Moreover, assume that each column of  includes at least | nonzero
entries, where

6 /
| > max {9 log (g) + 3 max {log (;’1)’
61! /
log (sz) log <6€r> } +6,2rq,2r; } (29)

Then, with probability at least 1 — €, there exists exactly one comple-
tion of U.

Proof. According to the proof of Theorem 2, (29) results that there
exists a subset of columns €’ € R™™ of the constraint matrix
such that condition (i) in the statement of Theorem 3 is satisfied,
with probability at least 1 — §. Then, assumptions (26), (27) and
(28) result that there exist n—r; columns € of €; and n—r,
columns fl’z of €, that are disjoint from €. This is easily verified
by comparing assumptions (26), (27) and assumptions (10), (11) in
Theorem 2.

Note that according to Lemma 4, (29) results that SVZ/] satisfies
condition (ii) in the statement of Theorem 3 with probability at
least 1 — £. Similarly, (29) results that fl/z satisfies condition (iii) in
the statement of Theorem 3 with probability at least 1 — &. There-
fore, all conditions in the statement of Theorem 3 are satisfied
simultaneously with probability at least 1 - § — & — §. Hence, ac-
cording to Theorem 3, there exists only one completion of U with
probability at least 1 —€. O

Remark 2. Comparing assumptions (10)-(12) for finite com-
pletability with assumptions (26)-(28) for unique completability,
we see there is a mild change, i.e., r; for finiteness is replaced by
r; + 1 for uniqueness.

Moreover, the lower bound on the number of samples per col-
umn increases mildly from (13) for finiteness to (29) for unique-
ness, i.e., the factor 3 in the log terms in (13) become 6 in (29).

Lemma 8. Assume that the inequalities (25)-(28) hold. Moreover, as-
sume that each entry of U is independently observed with probability

p, where
1 n 6r]
D> o max {9 log (E) + 3 max {log (e)
61/ 61’ 1
log (:),log (e)} +6, 2r1,2r2} +%. (30)

mq+my
Then, with probability at least (1 —e)(l —exp(—@)) , Uis

uniquely completable.

Proof. Using similar arguments as in the proof of Theorem 6, the
number of observed entries of each of the m; +m;, columns sat-

isfies (29) with probability at least (1 —exp(—%ﬁ)). Hence, the

proof follows using Theorem 4. O

6. Numerical comparisons

As we mentioned earlier, the existent matrix analysis can be
applied multiple times for each of the rank constraints individu-
ally and provide some weak condition for finite and unique com-
pletability of the data. However, one purpose of this is to provide
a stronger and more efficient way for finding such conditions us-
ing an analysis on the manifold corresponding to all the rank con-
straints together. Note that the numerical performance is only one
purpose since also the methodology of handling multiple rank con-
straints for deterministic analysis is one of the main purposes of
this work.

Here we compare the lower bound on the number of samples
per column obtained by the proposed analysis in this paper with
the bound obtained by the method in [34]. Recall that the exist-
ing method on Grassmannian manifold in [34] provides a bound
on the number of samples for finite completability for a matrix
U given rank(U) =r. Note that we can not use the analysis in
[34] for our multi-view data structure unless we obtain the bound
in [34] corresponding to U, U; and U, respectively (a trivial ap-
proach of using the analysis in [34] in our problem) and then take
the maximum of them, it results in the following bound on the
number of samples for finite completability

| > max {12 log (g) 21y, 217, Zr}. (31)

We consider a sampled data U = [U; |U,] e R>00x100000 " \yhere
U, Uy € RP00x50000 je pn =500 and my = my = 50000. In Fig. 5
we plot the bounds given in (13) for finite completability and com-
pare it with the one in (31), as a function of the value r; =r,, for
r=40, r =60 and r = 100, with € = 0.0001. Recall that r{, r, <1
and r <ry + 1. It is seen that our proposed method requires less
number of samples per column compared with the method in [34].
Note that given the large number of columns, i.e,, m =my +m; =
10°, this leads to significantly less amount of sampled data.

Note that the curves are not continuous as we need to apply
the ceiling operator to the non-integer numbers in (13) and (31).
Moreover, note that as both bounds in (13) and (31) are equal to
the maximum of two terms: (i) one is on the order of log(n) or
log(n) +log(r), and (ii) one is linear in r. Hence, by increasing the
value of r, eventually it will be a linear function of r, as seen in
Fig. 3. However, within most applications r is typically small.

In another experiment, we set the values ry =1, =40, r = 60,
mq = my = 50000, and vary the value of n from 500 to 3000 and
compare the bounds given in (13) for finite completability with the
one in (31) in Fig. 6. We note that the exploiting the multi-view
structure leads to reduced sampling requirement.

Note that we showed the difference of the bounds per column
and this difference would be much more over all columns.
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Fig. 5. Lower bounds on the number of samples per column.
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Fig. 6. Lower bounds on the number of samples per column.

7. Performance of completion algorithms
7.1. Multi-view matrix completion based on Newton’s method

Note that the bounds on the sampling rate provided in pre-
vious sections (Lemmas 6 and 8) are the information theoretic
bounds for unique/finite completability of the data. In other words,
we found algorithm-independent guarantees for data completion.

Since these fundamental bounds are obtained by analyzing the
solvability of a set of polynomial equations obtained based on the
sampled entries, it is then natural to expect that solving such a set
of polynomial equations efficiently will lead to an efficient low-
rank multi-view matrix completion algorithm, in the sense that
completion is possible under very low-sampling rate (close to the
information theoretic bound.) In fact, Newton’s method has been
employed to solve polynomial equation sets for matrix and ten-
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sor completion problems in [47]. Here we extend that method for
multi-view matrix completion.

First, we show how to obtain the set of polynomials from the
sampled entries using an example. Consider a matrix U e R3*6,
where U = [U;|U,], Uy € R3*3 (the first three columns) and U, €
R3*3 (the last three columns). Assume that r; =2, r, =2 and
r = 3. Moreover, suppose that the sampled entries of U are shown
below.

U, U
ST
14 - - — 10 -
- - - =12 5

Recall Eq. (1) and also V = [V{|V,|V3]. For this example, since
rn=2r=2and r=3, V;,V,, V3 e R3*1 and therefore they rep-
resent the first, second and the third columns of V, respectively.
Then, according to (2), we can obtain the following set of polyno-
mials from the sampled entries

VA, DT (1,2) +V(1,2)T;(2,2) — 4.5 =0,
VR, DT(1,1) +V(2,2)T1(2,1) — 1.4 =0,
V(1,2)T,(1,3) +V(1,3)5(2,3) - 1.8 = 0,
V(2,2)T,(1,2) +V(2,3)5(2,2) — 10 = 0,
V(3,2)T,(1,2) +V(3,3)5(2,2) - 1.2 =0,
V(3,2)T,(1,3) +V(3,3)L(2,3) = 5=0,

where z denotes the vector of unknowns which in this case in-
cludes the entries of Ve R™, Ty ¢ R"™ and T, € R2™2.

Let z e ROW+rimi+2m)=1 denote the vector that contains all
the (nr+rymq +rym;) elements of the decomposition (1). Note
that from (1) we know that each sampled entry of U; (U,) re-
sults in a second-order polynomial that involves r; (rp) entries
of V and r; (ry) entries of T; (Tp). As a result, we have a
set of second-order polynomial equations p;(z) =0, i=1,...,|R],
where |2| denotes the number of observed entries. Denote p(z) =
[P1(@)..... P @]

Remark 3. Note that finding z* € R(W+nmi+n2m)x1 gych that
p(z*) = 0, is equivalent to finding a completion of the data.

p(z)=0=

In order to solve p(z) =0, we use the well-known Newton'’s
method. In particular, we start with some initial zy € RE*1, where
L = (nr +rymq +ry,m3), and perform the following iteration

Zn =21 — (VP20 1)) P01), (32)

where Vp(z) € RI®I<L and its (i, j)-th element denotes the partial
derivative of p;(z) with respect to z;, and the operator T denotes
pseudoinverse.

We can easily observe that Vp(z) is a very sparse matrix. This
is because the number of involved variables in each polynomial
in p(z) is either 2r; or 2r,. The sparse structure of this matrix
enables a fast computation of its pseudoinverse, e.g., the com-
mand sparse(Vp(z)) \ p(z) in Matlab is an efficient way to calcu-

late (VP(zn1))'P(Zs_1).
7.2. Other completion methods for comparison

We will consider two alternative methods for completing the
matrix, alternating minimization, and Newton’s method for ma-
trix completion. Both make only use of the rank value r, but not
ry and ry. In the alternating minimization approach, we can use
the initialization scheme as in [15]. We compute the singular value
decomposition (SVD) of Ug, and choose the r largest eigenvalues
and their corresponding eigenvectors as the initial Vo € R™" and

Ty € R*(Mi+m2) We use the rank decomposition U = VT such that
Ve R™ and T € R™(M+M2)_ Starting with the described initial Vg
and Ty, at the k-th iteration, given V,_; and T,_;, we first update
V, by solving the following convex program

minimizey,cgm~  |[Ug — (ViTio1)gll 7

(33)
and then update T by solving

minimizey g, |Ug — (ViTe) gl 7

(34)

where || - || denotes the Frobenius norm.

Moreover, the Newton’s method for matrix completion is de-
scribed in [47], where we use only rank value r and derive the
polynomial similar to multi-view case and use Newton’s method
to find a solution.

7.2.1. Initialization

For Newton’s method, we simply use the initialization de-
scribed in Section 7.2, by noting that T; =T(1:ry,1:my) and
T, =T(r—ry+1:r1:my). Then, by putting Vg, To(1: rq, 1: my)
and To(r—r;+1:r,my+1:mqy+my) form the initialization in
Section 7.2 and construct the initialization zy for Newton’s method.

7.2.2. Stopping criterion

In both of the described approaches, we stop the algorithm
if either they converge or ||z,|| (in Newton’s method) and ||Vy]|,
I T2|l (in alternating minimization) become larger than max{10°,
108]|z¢||} and max{108, 10%|Vy ||}, max{10%, 108||T||}, respectively.
In the case of divergence, we count this as a failure of the algo-
rithm for recovering data.

7.3. Numericalexperiments for retrieving multi-view data

For the numerical experiments we consider an example where
n=100,my =50, my =50,r; =1, =5,r =6. Hence, V; € R100x1
V, € R100x4and V5 € R190x1, First, we generate random matrices
V e R100x6 T, ¢ R°*%0 and T, € R>*>0 (by choosing their entries
independently and according to uniform distribution from [1,10]).
Then, we construct U; = [V;|V3]T; € R190%30 apnd U, = [V,|V;5]T; €
R100x50 - And finally construct U = [U;|U;] € R190x100  Then, we
sample each entry independently with probability p and calculate
the normalized number of samples by multiplying the number of
samples to L = (nr 4+ rymy +r,my) and dividing it by n(m; + my).

If ”ﬂa}ﬂf < 0.01, where U denotes the obtained matrix through

the corresponding completion algorithm, we count the experiment
as a successful recovery. For each value of p, we complete 200 ma-
trices and calculate the average recovery rate of each algorithm.

Note that the alternating minimization and Newton with ma-
trix decomposition are only based on n, (m; + my),r and do not
take advantage of the other two rank values (r; and ;). However,
Newton with multi-view decomposition, which has the best per-
formance makes use of multi-view decomposition and n, my, my,
1, 11, Iy since the polynomials are derived from (1).

We have the following observations from Fig. 7:

1. The Newton’s method for multi-view requires less number of
samples for recovering the sampled data in comparison with
the other methods. For example, when the normalized num-
ber of samples is equal to 2, it gives almost 100% recovery rate,
while Newton’s method for matrix completion gives 90% recov-
ery and alternating minimization only recovers 20% of the sce-
narios. ’

2. Alternating minimization is much worse than Newton’s method
in term of the required number of samples for recovery of the
data.
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Fig. 7. Comparison of recovery rates.

3. Netwon’s method for multi-view has small advantage in com-
parison with Newton’s method for matrix, where one reason
can be because we have used the same initialization for multi-
view case.

8. Conclusions

This paper characterizes algorithm-independent conditions on
the sampling pattern for finite completability of a low-rank multi-
view matrix through an algebraic geometry analysis on the man-
ifold structure of multi-view data. Then, having the mentioned
analysis, we obtain the required number of sampled entries per
column to guarantee that it leads to finite/unique completability
with high probability. The numerical results demonstrate signifi-
cant improvements in exploiting the multi-view data structure as
compared to considering the two views separately. In other words,
we obatined algorithm-independent guarantees for data comple-
tion. One important problem that we did not study in this paper
and left it open for future is to develop an efficient algorithm that
provably achieves the deterministic and probabilistic bounds de-
rived in this paper. However, as an approach towards this goal,
we developed the non-convex algorithm in Section 7 (similar to
the approaches in [47] for matrix and tensor completion problems)
for multi-view data by taking advantage of the rank decomposition
and the manifold analysis in this work. Improving such non-convex
optimization approaches to exactly achieve the mentioned bounds
is left for future work.
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Appendix A. Proof of finite completability for the example in
Section 2

Observe that Assumption 1 holds, i.e., each column of U; in-
cludes at least one observed entry and each column of U, includes
at least two observed entries. According to the definition of the
constraint matrix, we have § = [€|€,], where

1 1 11 1
- 1 0 - 11 1
=g q| amdL=1, 4

0 0 0 1 1

Note thatrj =r—r, =0, r,=r—ry=landr =ry+r, —r=1.
As a result, nr—r2 —12 —r3 4 r(r; +1,) =5 and 2 has exactly 5
columns. Suppose that ' is an arbitrary submatrix of €. In order
to show finite completability of U, it suffices to show (6) holds.
Let ) and R/, denote the submatrix that consists of columns of

' that correspond to the first view and second view, respectively.
Note that ' =[] |£2}]. Therefore, we only need to verify

() —2)" + (g(@) - 1)* = ().
There are 3 different cases as follows:
1. g($2,) = 0: In this case, (35) reduces to (g(2}) — 1)+ = c(£}).

This is easy to verify by checking each sub-case that Q’l has

one or two columns of Q. _
2. g(R)) =3: In this case, (35) reduces to 1+ (g(&)—-1)* >
c(§2'). We consider the following two sub-cases:

(35)
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. 9’2 is the first column of $2,: Observe that in this case
() = c(fl’l) +1, and also we always have g(€') > g(SVZ’l).
Hence, similar to the Qrevious scenario, it suffices to show
that (g(}) — 1)* > c(82]) which is easy to verify.

. Q’z does not include the first column of €,: Note that
in this case c(€2) <c(,) +2, and therefore it suffices to
show that (g(fz’) -1t > c(flﬁ) + 1. This is easy to verify by
considering the fact that in this case 2() = 4 if and only if
/ includes the second column of €4, and g(£2’) = 3 other-
wise.

3. g(S'Z’z) =4: In this case, (35) reduces to 2+ (g(§') — 1)+ >
c('). Note that g(fl’z) =4 results that g(§') =4, and there-
fore (35) reduces to 5 > c(§’) which clearly always holds.

Appendix B. Example

We are interested to provide a non-trivial example to show that
applying the existing matrix analysis for multi-view data (for each
of the given rank constraints) can be very inefficient, while our
analysis provides the necessary and sufficient condition for finite
completability. This is just to show the efficiently of our analysis
and also further clarifies the complicated statement and condition
described in Theorem 1. In other words, this example shows how
loose and inefficient the matrix analysis can be for multi-view data
completion problem, while our proposed analysis is as efficient as
possible by providing the necessary and sufficient condition.

Here we provide another motivating example such that
max{ry,r;} <1 <1y +ry. Consider a matrix U € R°*10, where U =
[U1]U;], Uy € R (the first five columns) and U, € R>*> (the last
five columns). Assume that r; = 2, r, = 2 and r = 3. Moreover, sup-
pose that the sampled entries of U are shown with “ x ” below.

U U,

X X X X X X X X X X

~
U
We have the following observations about the number of com-
pletions of each matrix.

e Given r; = 2, Uy is infinitely completable: We can verify this via
Lemma 1 since the fifth row of U; has only one sampled entry.
Given ry = 2, U, is infinitely completable: We can verify this via
Lemma 1 since the fourth row of U, has only one sampled en-
try.

Given r = 3, U is infinitely completable: We can easily verify this
via Theorem 1 in [34].

For almost every matrix U, given r; =2, =2 and r=3, U is
finitely completable: Note that nr — 12 —r2 —r2 + r(ry +1,) = 10
and the constraint matrix includes exactly 10 columns. We
can prove this statement by simply applying Theorem 1 which
takes advantage of a geometric analysis on the manifold struc-
ture for multi-view data to incorporate all three rank con-
straints simultaneously.

Another approach to prove the finite completability given r; =
2, rp=2and r =3 is as follows.

Note that the determinant of any 3 x 3 submatrix of U; or U,
is 0 and due to the genericity assumption the determinant of any
2 x 2 submatrix of Uy or U, is not 0 (with probability one). Hence,
any 3 x 3 submatrix of U; or U, with 8 known entries results in
obtaining the only unknown entry uniquely. Moreover, the deter-
minant of any 4 x 4 submatrix of U is 0.

As a result, we can obtain the third and fourth rows of U
uniquely. Moreover, we can obtain the third and fifth rows of U,
uniquely. Now, we show that the rest of the entries (the fifth
row of U; and the fourth row of U,) can be obtained uniquely
as well. Define 7; = {1, 2, 3,4} and 7, = {1, 2, 7, 8}. Then, consider
the 4 x 4 submatrix U(Zy,Z,) and note that it includes only one
unknown entry, i.e., U(4, 7). Since the determinant of the 3 x 3
submatrix U(Z; \ {4}, 7 \ {7}) is not O (with probability one), we
can obtain U(4, 7) uniquely. It is easily verified that similarly the
rest of the entries can be obtained uniquely.

Finally, we provide some observations for the described exam-
ple to emphasize that removing any single sampled entry from
this example leads to infinite completability with probability one.
For example, removing U(4, 8) from the sampled entries results
in infinite completability of the fourth row of U,. Define Z; =
{1.2.3.4} and 7} = {1,2,3,6}. Note that even though the deter-
minant of the 4 x 4 submatrix U(Z;, 7)) is zero and the only un-
known entry of this submatrix is U(4, 6), we cannot obtain U(4,
6) uniquely. This is because the determinant of the 3 x 3 subma-
trix U(Z; \ {4}, 2 \ {6}) is O (with probability one). Moreover, we
can easily observe that removing U(3, 7) from the sampled entries
results in infinite completability of the third and fourth rows of U,.
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