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We consider the multi-view data completion problem, i.e., to complete a matrix U = [ U 1 | U 2 ] where the 

ranks of U, U 1 , and U 2 are given. In particular, we investigate the fundamental conditions on the sampling 

pattern, i.e., locations of the sampled entries for finite completability of such a multi-view data given the 

corresponding rank constraints. We provide a geometric analysis on the manifold structure for multi-view 

data to incorporate more than one rank constraint. We derive a probabilistic condition in terms of the 

number of samples per column that guarantees finite completability with high probability. Finally, we de- 

rive the guarantees for unique completability. Numerical results demonstrate reduced sampling complex- 

ity when the multi-view structure is taken into account as compared to when only low-rank structure of 

individual views is taken into account. Then, we propose an apporach using Newton’s method to almost 

achieve these information-theoretic bounds for mulit-view data retrieval by taking advantage of the rank 

decomposition and the analysis in this work. 
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. Introduction 

High-dimensional data analysis has received significant recent

ttention due to the ubiquitous big data, including images and

ideos, product ranking datasets, gene expression database, etc.

any real-world high-dimensional datasets exhibit low-rank struc-

ures, i.e., the data can be represented in a much lower dimen-

ional form [1] . Efficiently exploiting such low-rank structure for

nalyzing large high-dimensional datasets is one of the most ac-

ive research area in machine learning and data mining. The data

tructure that we study in this work is multi-view data with two

iews that are individually low rank and the concatenated matrix

ormed by the two views is also low rank. With this multi-view

tructure, this paper aims to complete the data in the presence of

issing entries. 

With one view, the problem is a standard low-rank matrix

ompletion problem which has been widely studied [2,3] . For the

odel of multi-view, each view can be considered separately as a

atrix completion problem. However, the low rank assumption of

he concatenation of the two views provide additional structure,
� The deterministic analysis part of this work is partially presented in ISIT 2017, 

achen, Germany. 
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nd thus the requirement of the data may decrease. Exploring the

ampling requirements for this multi-view problem is the focus of

his paper. Multi-view learning problem has applications in signal

rocessing [4] , multi-label image classification [5–7] , data cluster-

ng [8] , image retrieval [9] , image synthesis [10,11] , data classifi-

ation [12] , rank estimation [13] , multi-lingual text categorization

14] , etc. 

We assume that the ranks of each view and the concatenated

ata are provided, and the data at the sampled entries are known.

sing this information, a completion is any matrix that agrees with

he sampled entries and rank constraints. The multi-view data is

alled finitely completable if and only if there exist only finitely

any completions. For a single view (matrix completion), multiple

ptimization-based methods have been proposed including alter-

ating minimization [15] , convex relaxation of rank [16–18] , etc.

oreover, there are many optimization-based analyses in the lit-

rature for multi-view learning [19–29] . Moreover, the multi-view

lustering problem using matrix decompsotion-based approaches

s studied in [30,31] and other subspace analysis-based methods in

32,33] . 

The optimization-based matrix completion algorithms typically 

equire incoherence conditions, which constrains the values of the

ntries (sampled and non-sampled) to obtain a completion with

igh probability. Moreover, the fundamental completability condi-

ions that are independent of the specific completion algorithms

ave also been investigated. Specifically, deterministic conditions

https://doi.org/10.1016/j.patcog.2020.107307
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2020.107307&domain=pdf
mailto:ashraphijuo@ee.columbia.edu
mailto:wangx@ee.columbia.edu
mailto:vaneet@purdue.edu
https://doi.org/10.1016/j.patcog.2020.107307


2 M. Ashraphijuo, X. Wang and V. Aggarwal / Pattern Recognition 103 (2020) 107307 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F  

o  

a  

i

 

t  

r  

r  

g  

t  

o  

c

 

p  

r  

m  

c  

s  

r  

d  

a

3

 

b  

(  

r  

c

 

fi  

g  

i  

t  

a  

p  

a  

s  

o  

c  

|
 

w

L  

e  

t

P  

u  

s  

N  

p  

c  

e  

V  

e  

i  

fi  

T  

t  

(  

t  

l  

p  

t  
on the locations of the sampled entries (sampling pattern) are ob-

tained through algebraic geometry analyses on Grassmannian man-

ifold that lead to finite/unique solutions to the matrix completion

problem [34–36] . The analysis in [34] provides the combinatorial

conditions on the location of the sampled entries for finite/unique

completability of the sampled matrix of the given rank. Such an

algorithm-independent condition can lead to a much lower sam-

pling rate than the one that is required by the optimization-based

completion algorithms. However, the analysis on Grassmannian

manifold in [34] is not capable of incorporating more than one

rank constraint. Even though the analysis for matrices have been

extended to tensors in [37,38] , that extension also do not incor-

porate rank constraints for the different views. As the first step,

we study the finite completability problem for multi-view data

by proposing a geometrical analysis on the manifold structure for

such data. Moreover, other interesting related problems have been

studied using algebraic geometry analysis, including high-rank ma-

trix completion [39] and subspace clustering with missing data

[40–43] . 

This paper aims to provide the lower bounds on the number of

sampled entries per column such that the proposed conditions on

� for finite/unique completability are satisfied with high probabil-

ity. This work is inspired by [34] , where the analysis on Grassman-

nian manifold is proposed to solve similar problems for a single-

view matrix. Specifically, in [34] a novel approach is proposed to

consider the rank factorization of a matrix and to treat each ob-

served entry as a polynomial in terms of the entries of the compo-

nents of the rank factorization. Then, under the genericity assump-

tion, the algebraic independence among the mentioned polynomi-

als is studied. For the multi-view data completion problem, we first

follow the general approach that is similar to that in [34] to treat

the corresponding problem. Although these works have similar na-

tures, they are fundamentally different. The fact that we consider

the rank decomposition of the data that corresponds to multiple

rank constraints instead of one rank constraint, results in different

polynomial structure for each sampled entry. We mention some of

the main differences of our approach as compared to that in [34] .

The different geometry of the manifold leads to a change in the ge-

ometry of the manifold structure. This further leads to a difference

in the equivalence class for the basis and the canonical basis. This

further leads to a different structure on the algebraic polynomials

which makes the analysis not directly extendable. Moreover, the

idea of using all three rank constraints simultaneously in the alge-

braic geometry approach has not been considered so far. Hence,

the manifold structure for the multi-view data is fundamentally

different from the Grassmannian manifold and we need to develop

almost every step anew. 

The rest of the paper is organized as follows. In Section 2 , the

notations and problem statement are provided. In Section 4 , the

guarantees for finite completability are proposed where the condi-

tion is in terms of the number of samples per column. In Section 5 ,

the guarantees for unique completability are provided. Numerical

results are provided in Section 6 to compare the number of sam-

ples per column for finite and unique completions based on our

proposed analysis versus the existing method. We see that exploit-

ing the additional structure provided by multi-view model leads to

a significant decrease in the number of samples required for data

completion. Sections Appendix A –Appendix B provides a proof for

finite completability of example in Section 2 and describes a larger

example, respectively. Finally, Section 8 concludes the paper. 

2. Problem statement and a motivating example 

Let U be the sampled data that we want to study. Denote �
as the sampling pattern matrix that is of the same size as U and

�(x , x ) = 1 if U ( x , x ) is observed and �(x , x ) = 0 otherwise.
1 2 1 2 1 2 
or each subset of columns U 

′ of U , define N �( U 

′ ) as the number

f observed entries in U 

′ according to the sampling pattern �. For

ny real number x , define x + = max { 0 , x } . Also, I n denotes an n × n

dentity matrix and 0 n × m 

denotes an n × m all-zero matrix. 

The matrix U ∈ R 

n ×(m 1 + m 2 ) is randomly sampled. Denote a par-

ition of U as U = [ U 1 | U 2 ] where U 1 ∈ R 

n ×m 1 and U 2 ∈ R 

n ×m 2 rep-

esent the first and second views of data, respectively. Given the

ank constraints rank (U 1 ) = r 1 , rank (U 2 ) = r 2 and rank (U ) = r, our

oal is to characterize the geometrical conditions on the loca-

ions of the sampled entries to ensure there exist infinite, finite,

r unique completions of the sampled data U such that given rank

onstraints hold true. 

In [34] , a necessary and sufficient condition on the sampling

attern is given for the finite completability of a matrix U given

ank (U ) = r, based on an algebraic geometry analysis on the Grass-

annian manifold. However, this analysis cannot be used to in-

orporate the three rank constraints for the multi-view problem

ince we have multiple rank constraints here. This is because the

ank decomposition corresponding to three rank constraints has a

ifferent nature and as we will see this would change the whole

nalysis. 

. Geometry of the basis 

In this section, we will define an equivalence relation among all

ases of the sampled matrix U , where a basis is a set of r vectors

 r = rank (U ) ) that spans the column space of U . This equivalence

elation leads to the manifold structure for multi-view data to in-

orporate all three rank constraints. 

First, we provide an example such that: (i) given r 1 , U 1 is in-

nitely completable; (ii) given r 2 , U 2 is infinitely completable; (iii)

iven r , U is infinitely completable; and (iv) given r 1 , r 2 and r , U

s finitely completable. This is equivalent to showing that applying

he single-view analysis to U, U 1 , and U 2 separately does not guar-

nty the finite completability of any of U, U 1 , and U 2 , but incor-

orating all three rank constraints in the multi-view analysis guar-

nties the finite completability. In other words, if S 1 denotes the

et of completions of U given rank (U 1 ) = r 1 , S 2 denotes the set

f completions of U given rank (U 2 ) = r 2 and S denotes the set of

ompletions of U given rank (U ) = r, then in the following example

S 1 | = ∞ , |S 2 | = ∞ , |S| = ∞ and |S 1 ∩ S 2 ∩ S| < ∞ . 

Before explaining the example, we provide a simple lemma,

hich will be used in the example. 

emma 1. Consider a sampled rank-r matrix X . Assume that there

xists a column or row that includes less than r sampled entries. Then,

here exist infinitely many rank-r completion of the sampled matrix. 

roof. We will prove the lemma when there exists such a col-

mn and the proof for the existence of such a row is similar. As-

ume that the first column includes less than r sampled entries.

ote that there exists at least one completion (the original sam-

led matrix). Hence, there exists a basis V ∈ R 

n ×r such that each

olumn of the sampled matrix (on the locations of the sampled

ntries) can be written as linear combination of the r columns of

 . In order to complete the proof, it suffices to show that there

xist infinite many completions of the first column such that it

s a linear combination of the columns of V . Let x 1 denote the

rst column of X and v i denote the i -th column of V , i = 1 , . . . , r.

hen, we need to show that there exist infinitely many solutions

o ( x 1 ) � = ( a 1 v 1 + · · · + a r v r ) � in terms of the scalars a i ’s, where

 x 1 ) � and ( a 1 v 1 + · · · + a r v r ) � represent the vectors consisting of

hose entries of x 1 and a 1 v 1 + · · · + a r v r that their corresponding

ocations in the first column of the sampled matrix have been sam-

led, respectively. Note that this system of equations includes less

han r scalar equations and each equation is in terms of r variables.
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r 1 2 
he genericity assumption and existence of at least one comple-

ion simply conclude that there exist infinitely many solutions to

( x 1 ) � = ( a 1 v 1 + · · · + a r v r ) �. �

Consider a matrix U ∈ R 

4 ×5 , where U = [ U 1 | U 2 ] , U 1 ∈ R 

4 ×2 (the

rst two columns) and U 2 ∈ R 

4 ×3 (the last three columns). Assume

hat r 1 = 1 , r 2 = 2 and r = 2 . Moreover, suppose that the sampled

ntries of U are shown below. 

We have the following observations about the number of com-

letions of each matrix. 

• Given r 1 = 1 , U 1 is infinitely completable : For any value of the

(4,1)-th entry of U 1 , there exists exactly one completion of U 1 .

Hence, there exist infinitely completions of U 1 . We can also ver-

ify infinite completability via Lemma 1 since the fourth row of

U 1 has no sampled entry. 
• Given r 2 = 2 , U 2 is infinitely completable : Observe that each

value of the (3,2)-th entry of U 2 , corresponds to one comple-

tion of U 2 . As a result, there are infinitely many completions of

U 2 . We can also verify infinite completability via Lemma 1 since

the third row of U 2 has only one sampled entry. 
• Given r = 2 , U is infinitely completable : Note that for any value

of the (2,2)-th entry of U , there exists at least one completion

of U (as the second column of U is a linear combination of two

vectors and only one entry of this column is known), and there-

fore U is infinitely completable. We can also verify infinite com-

pletability via Lemma 1 since the second column of U has only

one sampled entry. 
• For almost every matrix U , given r 1 = 1 , r 2 = 2 and r = 2 , U is

finitely completable : We prove this statement in Section Ap-

pendix A by applying Theorem 1 which takes advantage of a ge-

ometric analysis on the manifold structure for multi-view data

(which is not Grassmannian manifold) to incorporate all three

rank constraints simultaneously. 

A larger example is provided in Section Appendix B to show the

dvantage of multi-view analysis when max { r 1 , r 2 } < r < r 1 + r 2 . 

As mentioned earlier, the multi-view learning problem has

any applications in various areas. Hence, such analysis (that out-

erforms applying the single-view analysis multiple times) charac-

erizes the fundamental bounds for the corresponding applications.

We next construct a constraint matrix �̆ based on � such that

ach column of �̆ represents exactly one of the polynomials in

(�) . Consider an arbitrary column of the first view U 1 (:, i ), where

 ∈ { 1 , . . . , m 1 } . Let l i = N �(U 1 ( : , i ) ) denote the number of observed

ntries in the i -th column of the first view. Assumption 1 results

hat l i ≥ r 1 . 

We construct l i − r 1 columns with binary entries based on the

ocations of the observed entries in U 1 (:, i ) such that each col-

mn has exactly r 1 + 1 entries equal to one. Assume that x 1 , . . . , x l i 
e the row indices of all observed entries in this column. Let �i 

1 
e the corresponding n × (l i − r 1 ) matrix to this column which is

efined as the following: for any j ∈ { 1 , . . . , l i − r 1 } , the j -th col-

mn has the value 1 in rows { x 1 , . . . , x r 1 , x r 1 + j } and zeros else-
here. Define the binary constraint matrix of the first view as
˘

1 = 

[
�1 

1 | �2 
1 . . . | �m 1 

1 

]
∈ R 

n ×K 1 [34] , where K 1 = N �(U 1 ) − m 1 r 1 . 

Similarly, we construct the binary constraint matrix �̆2 ∈ R 

n ×K 2 

or the second view, where K 2 = N �(U 2 ) − m 2 r 2 . Define the con-

traint matrix of U as �̆ = [ ̆�1 | ̆�2 ] ∈ R 

n ×(K 1 + K 2 ) . For any subset of

olumns �̆′ of �̆, P( ̆�′ ) denotes the subset of P(�) that corrse-

onds to �̆′ . 
Consider an example, where matrix U = [ U 1 | U 2 ] ∈ R 

4 ×4 and

 1 ∈ R 

4 ×2 is the first view and U 2 ∈ R 

4 ×2 is the second view. The

amples that are used to obtain ( T 1 , T 2 ) are colored as red in the

ollowing. Assume that r 1 = 1 , r 2 = 2 and r = 2 . Then, the con-

traint matrix is as the following. 

Assume that �̆′ is an arbitrary subset of columns of the con-

traint matrix �̆. Then, �̆′ 
1 

and �̆′ 
2 

denote the columns that corre-

pond to the first and second views, respectively. Similarly, assume

hat �′ is an arbitrary subset of columns of �. Then, �′ 
1 

and �′ 
2 

enote the columns that correspond to the first view and second

iew, respectively. Moreover, for any matrix X , c ( X ) denotes the

umber of columns of X and g ( X ) denotes the number of nonzero

ows of X . A submatrix of the constraint matrix is called a proper

ubmatrix if its columns correspond to different columns of the

ampling pattern. 

We define r ′ 
1 

= r − r 2 , r 
′ 
2 

= r − r 1 and r ′ = r − r ′ 
1 

− r ′ 
2 

= r 1 + r 2 −
. Observe that r 1 ≤ r, r 2 ≤ r and r ≤ r 1 + r 2 . Suppose that the ba-

is V ∈ R 

n ×r is such that its first r 1 columns constitute a basis for

he first view U 1 , its last r 2 columns constitute a basis for the sec-

nd view U 2 , and all r columns of V constitute a basis for U =
 U 1 | U 2 ] , as shown in Fig. 1 . Assume that V = [ V 1 | V 2 | V 3 ] , where

 1 ∈ R 

n ×r ′ 
1 , V 2 ∈ R 

n ×r ′ and V 3 ∈ R 

n ×r ′ 
2 . Then, [ V 1 | V 2 ] is a basis for

 1 and [ V 2 | V 3 ] is a basis for U 2 . Hence, there exist T 1 ∈ R 

r 1 ×m 1 and

 2 ∈ R 

r 2 ×m 2 such that 

 1 = [ V 1 | V 2 ] · T 1 , (1a)

 2 = [ V 2 | V 3 ] · T 2 . (1b)

For any i 1 ∈ { 1 , . . . , m 1 } and i 2 ∈ { 1 , . . . , m 2 } , (1) can be written

s 

 1 ( : , i 1 ) = [ V 1 | V 2 ] · T 1 ( : , i 1 ) , (2a)

 2 ( : , i 2 ) = [ V 2 | V 3 ] · T 2 ( : , i 2 ) . (2b)

Let M (r, r 1 , r 2 , R 

n ) denote the manifold structure of subspaces

 described above for the multi-view matrix and define P M 

as

he uniform measure on this manifold. Moreover, define P L as the

ebesgue measure on R 

r×(m 1 + m 2 ) . We assume that U is chosen

enerically from M (r, r 1 , r 2 , R 

n ) , or in other words, the entries of

 are drawn independently with respect to Lebesgue measure on

 (r, r 1 , r 2 , R 

n ) . Hence, any statement that holds for U , it also holds

or almost every (with probability one) data of the same size and

ank with respect to the product measure P M 

× P L . Note that ac-

ording to Proposition 2 , each multi-view data U can be uniquely

epresented in terms of a subspace V ∈ M (r, r , r , R 

n ) . 



4 M. Ashraphijuo, X. Wang and V. Aggarwal / Pattern Recognition 103 (2020) 107307 

Fig. 1. A basis V for the sampled matrix U . 
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Note that it can be concluded from Bernstein’s theorem

[44] that in a system of n polynomials in n variables with

each consisting of a given set of monomials such that the co-

efficients are chosen with respect to the Lebesgue measure on

M (r, r 1 , r 2 , R 

n ) , the n polynomials are algebraically independent

with probability one with respect to the product measure P M 

× P L ,

and therefore there exist only finitely many solutions (all given

probabilities in this paper are with respect to this product mea-

sure). However, in the structure of the polynomials in our model,

the set of involved monomials are different for different set of

polynomials, and therefore to ensure algebraically independency

we need to have for any selected subset of the original n polyno-

mials, the number of involved variables should be more than the

number of selected polynomials. 

Given all observed entries { U (x 1 , x 2 ) : �(x 1 , x 2 ) = 1 } , we are in-

terested in finding the number of possible solutions in terms of en-

tries of ( V, T 1 , T 2 ) (infinite, finite or unique) via investigating the

algebraic independence among the polynomials. Throughout this

paper, we make the following assumption. 

Assumption 1. Any column of U 1 includes at least r 1 observed en-

tries and any column of U 2 includes at least r 2 observed entries. 

Observe that Assumption 1 leads to a total of at least m 1 r 1 +
m 2 r 2 sampled entries of U . 

Lemma 2 ( [45] ) . Given a basis V = [ V 1 | V 2 | V 3 ] in (1) , if Assumption

1 holds, then there exists a unique solution ( T 1 , T 2 ) to the set of

polynomials obtained from the sampled entries, with probability one.

Moreover, if Assumption 1 does not hold, then there are infinite num-

ber of solutions ( T , T ), with probability one. 
1 2 
As a result of Lemma 2, Assumption 1 is necessary and suf-

cient for having finite (and unique) number of solutions to the

ompletion problem if the basis is given. 

efinition 1. Observe that given V , each observed entry of U 1 and

 2 results in a degree-1 polynomial whose involved variables are

he entries of the corresponding column of T 1 and T 2 , respectively.

e choose r 1 and r 2 observed entries of each column of U 1 and U 2 ,

espectively, to obtain ( T 1 , T 2 ). Let P(�) denote all polynomials in

erms of the entries of V obtained through the observed entries

xcluding the m 1 r 1 + m 2 r 2 polynomials that were used to obtain

 T 1 , T 2 ). Note that since ( T 1 , T 2 ) is already solved in terms of V ,

ach polynomial in P(�) is in terms of elements of V . 

Consider two bases V and V 

′ for the matrix U with the structure

n (1) . We say that V and V 

′ span the same space if and only if: (i)

he spans of the first r 1 columns of V and V 

′ are the same, (ii) the

pans of the last r 2 columns of V and V 

′ are the same, (iii) the

pans of all columns of V and V 

′ are the same. 

Therefore, V and V 

′ span the same space if and only if: (i) each

olumn of V 1 is a linear combination of the columns of [ V 

′ 
1 | V 

′ 
2 ] , (ii)

ach column of V 2 is a linear combination of the columns of V 

′ 
2 
,

nd (iii) each column of V 3 is a linear combination of the columns

f [ V 

′ 
2 
| V 

′ 
3 
] . The following equivalence class partitions all possible

ases such that any two bases in a class span the same space, i.e.,

he above-mentioned properties (i), (ii) and (iii) hold. 

efinition 2. Define an equivalence class for all bases V ∈ R 

n ×r of

he sampled matrix U such that two bases V and V 

′ belong to the

ame class if there exist full rank matrices A 1 ∈ R 

r 1 ×r ′ 
1 , A 2 ∈ R 

r ′ ×r ′ 

nd A 3 ∈ R 

r 2 ×r ′ 
2 such that 

 1 = [ V 

′ 
1 | V 

′ 
2 ] · A 1 , (3a)

 2 = V 

′ 
2 · A 2 , (3b)

 3 = [ V 

′ 
2 | V 

′ 
3 ] · A 3 , (3c)

here V = [ V 1 | V 2 | V 3 ] , V 

′ = [ V 

′ 
1 | V 

′ 
2 | V 

′ 
3 ] , V 1 , V 

′ 
1 ∈ R 

n ×r ′ 
1 , V 2 , V 

′ 
2 ∈

 

n ×r ′ and V 3 , V 

′ 
3 

∈ R 

n ×r ′ 
2 . 

Note that (3) leads to the fact that the dimension of the space

f all bases V in one particular class, i.e., the degree of freedom for

he bases in one particular class, is equal to nr − r 1 r 
′ 
1 − r ′ r ′ − r 2 r 

′ 
2 =

r − r 2 − r 2 
1 

− r 2 
2 

+ r(r 1 + r 2 ) . 

efinition 3. (Canonical basis) As shown in Fig. 2 , denote 

 1 = V 

(
1 : r ′ 1 , 1 : r ′ 1 

)
∈ R 

r ′ 1 ×r ′ 1 , (4a)

 2 = V 

(
1 : r ′ 2 , 1 + r 1 : r 

′ 
2 + r 1 

)
∈ R 

r ′ 2 ×r ′ 2 , (4b)

 3 = V 

(
1 + max (r ′ 1 , r ′ 2 ) : r ′ + max (r ′ 1 , r ′ 2 ) , 

1 + r ′ 1 : r ′ + r ′ 1 
)

∈ R 

r ′ ×r ′ , (4c)

 4 = V 

(
1 + max (r ′ 1 , r ′ 2 ) : r ′ + max (r ′ 1 , r ′ 2 ) , 

1 : r ′ 1 
)

∈ R 

r ′ ×r ′ 1 , (4d)

 5 = V 

(
1 + max (r ′ 1 , r ′ 2 ) : r ′ + max (r ′ 1 , r ′ 2 ) , 

1 + r 1 : r 
′ 
2 + r 1 

)
∈ R 

r ′ ×r ′ 2 . (4e)

Then, we call V a canonical basis if B 1 = I r ′ 
1 
, B 2 = I r ′ 

2 
, B 3 = I r ′ ,

 4 = 0 r ′ ×r ′ and B 5 = 0 r ′ ×r ′ . 

1 2 
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Fig. 2. A canonical basis. 

Fig. 3. The canonical basis for Example 1 . 
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xample 1. Consider an example in which U = [ U 1 | U 2 ] ∈ R 

4 ×7 and

 1 ∈ R 

4 ×3 is the first view and U 2 ∈ R 

4 ×4 is the second view. As-

ume that r 1 = 2 , r 2 = 3 and r = 4 . Then, the corresponding canon-

cal basis is as shown in Fig. 3 . 

Observe that r 2 + r 2 
1 

+ r 2 
2 

− r(r 1 + r 2 ) = 9 of the entries are

nown. 

The following proposition shows the uniqueness of the canoni-

al basis for the single-view matrix. 

roposition 1. Assume that X ∈ R 

n 1 ×n 2 is generically chosen from

he manifold of n 1 × n 2 matrices of rank r. For almost every X , there

xists a unique basis Y ∈ R 

n 1 ×r for X such that Y (1 : r, 1 : r) = I r ,

here Y is a basis for X if each column of X can be written as a

inear combination of the columns of Y and Y (1: r , 1: r ) represents

he submatrix of Y that consists of the first r columns and the first r

ows and I r denotes the r × r identity matrix. 

roof. Consider an arbitrary basis Y 

′ ∈ R 

n 1 ×r for X . Let V denote

he set of all full rank n 1 × r matrices whose column span is equal

o the column span of Y 

′ and note that V is the set of all bases

ith r columns for X . Consider an arbitrary member of set V and

enote it by Y 

′′ . Since, the column span of Y 

′ and the column span

f Y 

′′ are the same, each column of Y 

′′ can be written as a linear

ombination of columns of Y 

′ , and therefore there exists a unique

ull rank Z ∈ R 

r×r such that Y 

′′ = Y 

′ Z . Note that if Z is not full rank,
e conclude Y 

′′ is not full rank as well, which contradicts the as-

umption. 

Moreover, genericity of X results that each r × r submatrix of

 

′ is full rank, with probability one. This is because we have X =
 

′ T for some T ∈ R 

r×n 2 , and therefore the fact that the submatrix

onsisting of any r rows of X is full rank results that the submatrix

onsisting of any r rows of Y 

′ is full rank as well. Let Z 0 denote

he inverse of Y 

′ (1: r , 1: r ), i.e., Z 0 = 

(
Y 

′ (1 : r, 1 : r) 
)−1 

. Therefore,

 = Y 

′ Z 0 is the unique basis for X that Y (1 : r, 1 : r) = I r . �

The following proposition considers the multi-view data de-

cribed in this paper and shows the uniqueness of the canonical

asis. 

roposition 2. For almost every U , there exists a unique basis V ∈
 

n ×r for U such that V satisfies the canonical pattern in Definition

 and also its first r 1 columns constitute a basis for the first view U 1 ,

ts last r 2 columns constitute a basis for the second view U 2 , and all

 columns of V constitute a basis for U = [ U 1 | U 2 ] . 

roof. Consider an arbitrary basis V 

′ = [ V 

′ 
1 | V 

′ 
2 | V 

′ 
3 ] for U such that

ts first r 1 columns constitute a basis for the first view U 1 , its last

 2 columns constitute a basis for the second view U 2 , and all r

olumns of V constitute a basis for U = [ U 1 | U 2 ] . Let V denote the

et of all such bases for U and consider an arbitrary member of

his set and denote it by V = [ V 1 | V 2 | V 3 ] . Hence, according to the

arlier discussion before Definition 2 , Equs. (3a) –(3c) hold. This is

ecause the column spans of the first r 1 columns of V and V 

′ , or

he column spans of the last r 2 columns of V and V 

′ and also the

olumn spans of the all r columns of V and V 

′ are the same. 

Similar to the proof of Proposition 1 , (3b) results that the

nique V 2 that can satisfy the pattern B 3 = I r ′ in Definition 3 , can

e obtained by A 2 equal to the inverse of matrix 

V 

′ (1 + max (r ′ 1 , r ′ 2 ) : r ′ + max (r ′ 1 , r ′ 2 ) , 1 + r ′ 1 : r ′ + r ′ 1 
)
. In order to 

omplete the proof, it suffices to show that there exists a unique

 1 that results in satisfying the patterns B 1 = I r ′ 
1 

and B 4 = 0 r ′ ×r ′ 
1 

in

efinition 3 for V 1 (the uniqueness of A 3 is similar to that for A 1 ).

Let A 

′ 
1 ∈ R 

r 1 ×r 1 denote the inverse of r 1 × r 1 matrix [ V 1 | V 2 ](1:

 1 , 1: r 1 ). Note that existing of the inverse is a consequence of

enericity assumption which results the submatrix consisting of

ny r 1 rows of U 1 is full rank with probability one, and therefore

he submatrix consisting of any r 1 rows of [ V 1 | V 2 ] is full rank. Let

 1 be the first r ′ 
1 

columns of A 

′ 
1 
. Then, A 1 ensures that the pat-

erns B 1 = I r ′ 
1 

and B 4 = 0 r ′ ×r ′ 
1 

in Definition 3 hold for V 1 . Finally,

ote that A 1 is unique. Otherwise, there exist two different inverse

atrices for the full rank r 1 × r 1 matrix [ V 1 | V 2 ](1: r 1 , 1: r 1 ), which

s contradiction. �

emark 1. In order to prove there are finitely many completions

or the matrix U , it suffices to prove that given T 1 and T 2 , there

re finitely many canonical bases that fit in U , where a basis fitting

n U is equivalent to the existence of a completion of U such that

ach of its columns can be written as a linear combination of the

orresponding basis. 

Note that patterns B 1 and B 4 are in V 1 , patterns B 2 and B 5 are

n V 3 , and pattern B 3 is in V 2 . We can also easily show that any

ermutation of the rows of any of these patterns satisfies the prop-

rty that in each class there exists exactly one basis with the per-

uted pattern. 

. Sampling guarantees for finite completability 

In this section, we show that if the number of samples in

ach column satisfies a proposed lower bound, then the conditions

tated in the statement of Theorem 1 on sampling pattern hold,

.e., U is finitely completable with high probability. 
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In order to prove this result, we will first find some results for

the algerbraic independence of the polynomials. We first note that

if Assumption 1 holds, then for almost every sampled matrix U ,

there are at most finitely many bases that fit in U if and only if

there exist nr − r 2 − r 2 1 − r 2 2 + r(r 1 + r 2 ) algebraically independent

polynomials in P(�) (The detailed proof of this can be seen in

[45] ). The next result provides an upper bound on the maximum

number of algebraically independent polynomials in any subset of

columns of the constraint matrix �̆. 

Lemma 3. Assume that Assumption 1 holds. Let �̆′ be a proper

subset of columns of the constraint matrix �̆. Then, the maximum

number of algebraically independent polynomials in P( ̆�′ ) is upper

bounded by 

r ′ 1 (g( ̆�′ 
1 ) − r 1 ) 

+ + r ′ 2 (g( ̆�′ 
2 ) − r 2 ) 

+ 

+ r ′ (g( ̆�′ ) − r ′ ) + . (5)

Proof. The maximum number of algebraically independent poly-

nomials in P( ̆�′ ) is at most equal to the number of involved vari-

ables in the polynomials. Note that each observed entry of U 1 re-

sults in a polynomial that involves all r 1 entries of a row of V 1 .

As a result, the number of entries of V 1 that are involved in the

polynomials is exactly r 1 g( ̆�
′ 
1 
) . As mentioned earlier, the rows of

patterns B 1 and B 4 in Definition 3 can be permuted such that ex-

actly one basis in each class satisfies the new pattern. Hence, it

can be permuted such that r 1 rows of B 1 and B 4 are a subset of

the nonzero rows of �̆′ 
1 

since there are at least r 1 + 1 nonzero

rows (any column of the constraint matrix of the first view in-

cludes exactly r 1 + 1 nonzero entries). Recall that the total num-

ber of known entries of V 1 is the summation of the number of

entries of B 1 and B 4 , i.e., r ′ 1 r 1 . Therefore, the number of variables

(unknown entries) of V 1 that are involved in P( ̆�′ ) is equal to

r ′ 1 (g( ̆�′ 
1 ) − r 1 ) 

+ . Note that g( ̆�′ 
1 ) − r 1 is negative if and only if

g( ̆�′ 
1 ) = 0 . 

Similarly, the number of unknown entries of V 2 and V 3 that are

invloved in P( ̆�′ ) are r ′ (g( ̆�′ ) − r ′ ) + and r ′ 
2 
(g( ̆�′ 

2 
) − r 2 ) 

+ , respec-

tively. Therefore, the number of unknown entries of basis V that

are involved in P( ̆�′ ) is equal to r ′ 
1 
(g( ̆�′ 

1 
) − r 1 ) 

+ + r ′ 
2 
(g( ̆�′ 

2 
) −

r 2 ) 
+ + r ′ (g( ̆�′ ) − r ′ ) + . �

A set of polynomials is called minimally algebraically depen-

dent if the polynomials in that set are algebraically dependent but

the polynomials in any of its proper subsets are algebraically inde-

pendent. The next theorem gives the condition on �̆ that is equiv-

alent with existence of nr − r 2 − r 2 
1 

− r 2 
2 

+ r(r 1 + r 2 ) algebraically

independent polynomials in P(�) , thereby providing the condition

on �̆ for finite completability of U . 

Theorem 1. Assume that Assumption 1 holds. For almost every U ,

the sampled matrix U is finite completable if and only if there exists a

proper subset of columns �̆′ ∈ R 

n ×m of the constraint matrix �̆ such

that m = nr − r 2 − r 2 
1 

− r 2 
2 

+ r(r 1 + r 2 ) and for any subset of columns

�̆′′ of �̆′ the following inequality holds 

r ′ 1 (g( ̆�′′ 
1 ) − r 1 ) 

+ + r ′ 2 (g( ̆�′′ 
2 ) − r 2 ) 

+ + 

r ′ (g( ̆�′′ ) − r ′ ) + ≥ c( ̆�′′ ) . (6)

Proof. The result is an extension of the deterministic guarantee re-

sult in [37] , using Lemma 3 . The detailed proof is thus omitted. �

The proposed deterministic analysis and the condition on the

sampling pattern in Theorem 1 have a combinatorial nature such

that it takes exponential amount of time (in terms of the parame-

ters of the problem) to verify the these geometric conditions on

the sampling pattern. This combinatorial nature is consequence

of NP-hardness of the problem (otherwise the problem would be

polynomial solvable). Therefore, we are motivated to find a lower
ound on the sampling pattern such that if that inequality holds,

hen we can guarantee these difficultly verifiable conditions hold

ith high probability. Hence, such analysis would have a very prac-

ical value as well. To this end, we propose a combinatorial analy-

is to find the required number of samples per column (under uni-

orm sampling) such that the condition on the sampling pattern in

heorem 1 holds. 

In order to find such bound on the sampling rate, we first

rovide the next lemma that will be used to prove Theorem 2 .

ore specifically, in Theorem 2 we consider three disjoint sets of

olumns of U and apply Lemma 4 to each of them. Then, we com-

ine the three sets of columns and show that they satisfy the con-

itions stated in the statement of Theorem 1 . This lemma connects

he assumption of having a certain number of samples per column

under uniform sampling) with a geometrical property on the lo-

ation of the sampled entries, i.e., sampling pattern. 

emma 4. Assume that r ′′ ≤ n 
6 and also each column of � includes

t least l nonzero entries, where 

 > max 

{
9 log 

(
n 

ε

)
+ 3 log 

(
k 

ε

)
+ 6 , 2 r ′′ 

}
. (7)

et �′ be an arbitrary set of n − r ′′ columns of �. Then, with proba-

ility at least 1 − ε
k 
, every subset �′′ of columns of �′ satisfies 

(�′′ ) − r ′′ ≥ c(�′′ ) . (8)

roof. Please refer to the proof of [34, Lemma 9] . Note that the

nly difference is that the last inequalities of (16) and (18) in

34] should now be upper bounded by ε
rd 

instead of ε
d 2 

. �

heorem 2. Assume that the following inequalities hold 

n 

6 

≥ max { r 1 , r 2 , r ′ } , (9)

 1 ≥ r ′ 1 (n − r 1 ) , (10)

 2 ≥ r ′ 2 (n − r 2 ) , (11)

 1 + m 2 ≥ r ′ 1 (n − r 1 ) + r ′ 2 (n − r 2 ) 

+ r ′ (n − r ′ ) . (12)

oreover, assume that each column of � includes at least l nonzero

ntries, where 

l > max 

{ 

9 log 
(

n 
ε

)
+ 3 max 

{ 

log 

(
3 r ′ 1 
ε

)
, 

log 

(
3 r ′ 2 
ε

)
, log 

(
3 r ′ 
ε

)} 

+ 6 , 2 r 1 , 2 r 2 

} 

. (13)

hen, the multi-view data U has only finitely many possible comple-

ions with probability at least 1 − ε. 

roof. Let �′ 
1 

be an arbitrary set of n − r 1 columns of �1 . Note

hat having (13) , it is easy to see that (7) holds with k and r ′′ re-

laced by 3 r ′ 
1 

and r 1 , respectively. Hence, having (9) , Lemma 4 re-

ults that any subset of columns �′′ 
1 

of �′ 
1 

satisfies 

(�′′ 
1 ) − r 1 ≥ c(�′′ 

1 ) , (14)

ith probability at least 1 − ε
3 r ′ 

1 

. According to Lemma 5 below and

y setting r = r 1 , as a subset of columns �′ 
1 of �1 satisfies (14) ,

here exists a subset of columns �̆′ 
1 of the constraint matrix of the

rst view �̆1 (corresponding columns to the columns of �′ 
1 ) that

atisfies (14) as well. 
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Assumption (10) results that �1 includes at least r ′ 
1 
(n − r 1 )

olumns or in other words, r ′ 
1 

disjoint sets of columns each in-

luding n − r 1 columns. All r ′ 1 disjoint sets satisfy property (i) si-

ultaneously with probability at least 1 − ε
3 . Therefore, there exist

 

′ 
1 

disjoint sets of columns each including n − r 1 columns of the

onstraint matrix of the first view �̆1 , and also all r ′ 
1 

disjoint sets

atisfy (14) , simultaneously with probability at least 1 − ε
3 . Let ˘̄�1 

enote the union of the r ′ 
1 

mentioned sets of columns. 

Consider any subset of columns ˘̄�
′ 
1 of ˘̄�1 and define ˘̄�

′ 
1 ,i as

he intersection of ˘̄�
′ 
1 and the i -th set among the mentioned

 

′ 
1 

sets for i = 1 , . . . , r ′ 
1 
. Without loss of generality, assume that

ax 1 ≤i ≤r ′ 
1 
{ c( ̆̄�′ 

1 ,i ) } = c( ̆̄�
′ 
1 , 1 ) . Then, 

c( ̆̄�
′ 
1 ) = 

r ′ 1 ∑ 

i =1 

c( ̆̄�
′ 
1 ,i ) ≤ r ′ 1 c( ̆̄�

′ 
1 ,i ) ≤

 

′ 
1 (g( ̆̄�

′ 
1 , 1 ) − r 1 ) 

+ ≤ r ′ 1 (g( ̆̄�
′ 
1 ) − r 1 ) 

+ , (15) 

here the second inequality follows from (14) . Therefore, we

ave 

( ̆̄�
′ 
1 ) ≤ r ′ 1 (g( ̆̄�

′ 
1 ) − r 1 ) 

+ . (16) 

Note that having (13) , it is easy to see that (7) holds with k and

 

′′ replaced by 3 r ′ 
2 

and r 2 , respectively. Moreover, recall that r ′ =
 1 + r 2 − r ≤ min { r 1 , r 2 } , and therefore, having (13) , it is easy to see

hat (7) holds with k and r ′′ replaced by 3 r ′ and r ′ , respectively.

s a result, similarly, having (9) and (11) , �̆2 includes r ′ 
2 
(n − r 2 )

olumns ˘̄�2 that with probability at least 1 − ε
3 for any subset of

t ˘̄�
′ 
2 we have 

( ̆̄�
′ 
2 ) ≤ r ′ 2 (g( ̆̄�

′ 
2 ) − r 2 ) 

+ . (17) 

Using (12) , � includes r ′ (n − r ′ ) columns �̄ (disjoint from �̄1 

nd �̄2 corresponding to ˘̄�1 and 

˘̄�2 ). Similar to ˘̄�1 and 

˘̄�2 , �̆

ncludes r ′ (n − r ′ ) columns ˘̄� (disjoint from 

˘̄�1 and 

˘̄�2 ) that with

robability at least 1 − ε
3 for any subset of columns of it ˘̄�

′ 
we

ave 

( ̆̄�
′ 
) ≤ r ′ (g( ̆̄�

′ 
) − r ′ ) + . (18) 

Therefore, any subset of columns of ˘̄�1 satisfies (16) and any

ubset of ˘̄�2 satisfies (17) and any subset of ˘̄� satisfies (18) simul-

aneously with probability at least 1 − ε. Define �̆′ = [ ̆̄�1 | ̆̄�2 | ̆̄�] ∈
 

n ×m , where 

 = r ′ (n − r ′ ) + r ′ 1 (n − r 1 ) + r ′ 2 (n − r 2 ) = 

nr − r 2 − r 2 1 − r 2 2 + r(r 1 + r 2 ) . (19) 

et �̆′′ be a subset of columns of �̆′ and define �̆′′ 
1 , �̆

′′ 
2 and �̆′′ 

3 

s the intersection of �̆′ with 

˘̄�1 , 
˘̄�2 and 

˘̄�, respectively. Conse-

uently, with probability at least 1 − ε

c( ̆�′′ ) = 

3 ∑ 

i =1 

c( ̆�′′ 
i ) ≤ r ′ 1 (g( ̆�′′ 

1 ) − r 1 ) 
+ + 

r ′ 2 (g( ̆�′′ 
2 ) − r 2 ) 

+ + r ′ (g( ̆�′′ 
3 ) − r ′ ) + , (20) 

nd therefore according to Theorem 1 , U is finite completable with

robability at least 1 − ε. �

The following lemma is taken from [37, Lemma 8] . The lemma

onnects the sampling pattern and the constraint matrix (since

e eventually need to verify the geometry pattern given in

heorem 1 ) by showing the equivalency of a geometrical property

n the sampling pattern and a similar geometrical property on the

onstraint matrix. 
emma 5. Let R be a given nonnegative integer. Assume that there

xists a matrix �′ such that it consists of n − R columns of � and

ach column of �′ includes at least R + 1 nonzero entries and satisfies

he following property: 

• Denote an arbitrary matrix obtained by choosing any subset of the

columns of �′ by �′′ . Then, 

g(�′′ ) − R ≥ c(�′′ ) . (21) 

Then, there exists a matrix �̆′ with the same size as �′ such

hat: each column has exactly R + 1 entries equal to one, and if
˘ ′ (x, y ) = 1 then we have �′ (x, y ) = 1 . Moreover, �̆′ satisfies the

bove-mentioned property. 

The next result finds a condition on the sampling probability

hat results (13) . 

emma 6. Assume that the inequalities (9) –(12) hold. Moreover, as-

ume that each entry of U is independently observed with probability

, where 

p > 

1 

n 

max 

{
9 log 

(
n 

ε

)
+ 3 max 

{
log 

(
3 r ′ 1 
ε

)
, 

log 

(
3 r ′ 2 
ε

)
, log 

(
3 r ′ 
ε

)}
+ 6 , 2 r 1 , 2 r 2 

}
+ 

1 

4 
√ 

n 

. (22) 

hen, with probability at least (1 − ε) 
(

1 − exp (−
√ 

n 
2 ) 

)m 1 + m 2 

, U is

nitely completable. 

roof. Consider a vector with n entries where each entry is ob-

erved with probability p independently from the other entries.

he authors of [37] showed that for p > p ′ = 

k 
n + 

1 
4 √ 

n 
, more than

 entries are observed with probability at least 

(
1 − exp (−

√ 

n 
2 ) 

)
.

sing this result, we note that the number of observed entries of

ach of the m 1 + m 2 columns satisfies (13) with probability at least

1 − exp (−
√ 

n 
2 ) 

)
. Hence, the proof follows using Theorem 2 . �

. Sampling guarantees for unique completability 

Theorem 1 gives the necessary and sufficient condition on sam-

ling pattern for finite completability. Hence, even one sample

hort of the condition in Theorem 1 results in infinite number

f completions with probability one. We first provide an exam-

le for single-view matrix with exactly two completions to empha-

ize that finite completability does not necessarily result in unique

ompletability (we can easily extend the example to multi-view

atrix). 

xample 2. Assume that the sampled matrix U ∈ R 

5 ×4 is given as

he incomplete matrix shown in Fig. 4 . 

Moreover, assume that rank (U ) = 2 . In [37] , it is shown that

here exist exactly two completions of U as given by the two com-

lete matrices above. 

We show that adding a mild condition to the conditions ob-

ained in the analysis for Problem (i) leads to unique completabil-

ty. To this end, we obtain multiple sets of minimally algebraically

ependent polynomials and show that the variables involved in

hese polynomials can be determined uniquely, and therefore en-

ries of U can be determined uniquely. 

Recall that there exists at least one completion of U since the

riginal multi-view matrix that is sampled satisfies the rank con-

traints. The following lemma is a re-statement of Lemma 25 in

38] . Note that this lemma is also an adaptation of Lemma 7 in

34] or Theorem 1 in [46] . 
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Fig. 4. A matrix with exactly two completions. 
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Lemma 7. Assume that Assumption 1 holds. Let �̆′ be an arbitrary

subset of columns of the constraint matrix �̆. Assume that polyno-

mials in P( ̆�′ ) are minimally algebraically dependent. Then, all vari-

ables (unknown entries) of V that are involved in P( ̆�′ ) can be de-

termined uniquely. 

Theorem 3 below gives a sufficient conditions on sampling pat-

tern for unique completability. To be more specific, condition (i) in

the statement of Theorem 3 , i.e., nr − r 2 − r 2 
1 

− r 2 
2 

+ r(r 1 + r 2 ) alge-

braically independent polynomials in terms of the entries of V , re-

sults in finite completability. Hence, adding any single polynomial

to them results in a set of algebraically dependent polynomials and

using Lemma 7 some of the entries of basis V can be determined

uniquely. Then, conditions (ii) and (iii) result in more polynomials

such that all entries of V can be determined uniquely. 

Theorem 3. Suppose that Assumption 1 holds. Moreover assume that

there exist disjoint proper subsets of columns �̆′ ∈ R 

n ×m , �̆′ 
1 ∈ R 

n ×m 

′ 

and �̆′ 
2 

∈ R 

n ×m 

′′ 
of the constraint matrix �̆ such that the following

properties hold 

(i) m = nr − r 2 − r 2 1 − r 2 2 + r(r 1 + r 2 ) and for any subset of columns

�̆′′ of the matrix �̆′ , (6) holds. 

ii) �̆′ 
1 is a subset of columns of �̆1 (constraint matrix of the first

view), m 

′ = n − r 1 and for any subset of columns �̆′′ 
1 of the matrix

�̆′ 
1 

g( ̆�′′ 
1 ) − r 1 ≥ c( ̆�′′ 

1 ) . (23)

ii) �̆′ 
2 

is a subset of columns of �̆2 (constraint matrix of the second

view), m 

′′ = n − r 2 and for any subset of columns �̆′′ of the ma-

2 
trix �̆′ 
2 

g( ̆�′′ 
2 ) − r 2 ≥ c( ̆�′′ 

2 ) . (24)

Then, there exists only one completion of U that satisfies all the

hree rank constraints with probability one. 

roof. According to Theorem 1 , property (i) results that there are

nly finitely many completions of U that satisfy the rank con-

traints. We show that having properties (ii) and (iii) results in

btaining all entries of the basis uniquely, and therefore there

xists only one completion of U . According to Theorem 1 , the

r − r 2 − r 2 1 − r 2 2 + r(r 1 + r 2 ) polynomials in P( ̆�′ ) are algebraically

ndependent. As a result, by adding any single polynomial to this

et, we will have a set of algebraically dependent polynomials. 

Consider a single polynomial from P( ̆�′ 
1 
) ∪ P( ̆�′ 

2 
) and denote

t by p 0 . Hence, polynomials in set p 0 ∪ P( ̆�′ ) are algebraically

ependent, and therefore there exists P 

′ (p 0 ) ⊆ { p 0 ∪ P( ̆�′ ) } such

hat p 0 ∈ P 

′ (p 0 ) and polynomials in P 

′ (p 0 ) are minimally alge-

raically dependent. Lemma 7 results that all variables involved in

olynomials in P 

′ (p 0 ) can be determined uniquely. The number

ntries of V that are involved in P 

′ (p 0 ) is at least r 1 if p 0 ∈ P( ̆�′ 
1 
)

nd r 2 if p 0 ∈ P( ̆�′ 
2 
) . This is because the number of entries of V

hat are involved in polynomials in P 

′ (p 0 ) is at least equal to the

umber of entries of V that are involved in p 0 . Hence, P 

′ (p 0 ) re-

ults in r 1 or r 2 polynomials that each has a unique solution. 

Similarly, consider any other polynomial p 1 in P( ̆�′ 
1 
) ∪ P( ̆�′ 

2 
)

nd note that polynomials in set p 1 ∪ P( ̆�′ ) are algebraically de-

endent. Hence, we can repeat the above procedure for p 0 for

olynomial p 1 . Repeating this procedure for any subset of poly-

omials in P( ̆�′′ 
1 
) ∪ P( ̆�′′ 

2 
) ⊆ P( ̆�′ 

1 
) ∪ P( ̆�′ 

2 
) results in r ′ 

1 
(g( ̆�′′ 

1 
) −

 1 ) 
+ + r ′ (g( ̆�′′ ) − r 2 ) 

+ + r ′ (g( ̆�′′ ) − r ′ ) + polynomials (as this is

2 2 3 
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he number of unknown entries involved in the polynomials

( ̆�′ 
1 ) ∪ P( ̆�′ 

2 ) ) and observe that (23) and (24) result that the

umber of involved unknown entries of basis is not less than the

umber of polynomials, and therefore they are independent. More-

ver, observe that �̆′ 
1 and �̆′ 

2 are such that polynomials obtained

ia this procedure cover all entries of basis. Therefore, all entries

f basis can be determined uniquely with probability one. �

The next theorem gives a probabilistic guarantee for satisfying

he conditions in the statement of Theorem 3 or in other words, a

robabilistic guarantee for unique completability. However, similar

o Theorem 2 , the condition on sampling pattern is in terms of the

umber of samples per column instead of the complicated condi-

ions in the statement of Theorem 3 on the structure of sampling

attern. 

heorem 4. Assume that the following inequalities hold 

n 

6 

≥ max { r 1 , r 2 , r ′ } , (25) 

 1 ≥ (r ′ 1 + 1)(n − r 1 ) , (26) 

 2 ≥ (r ′ 2 + 1)(n − r 2 ) , (27) 

 1 + m 2 ≥ (r ′ 1 + 1)(n − r 1 ) + (r ′ 2 + 1)(n − r 2 ) 

+ r ′ (n − r ′ ) . (28) 

oreover, assume that each column of � includes at least l nonzero

ntries, where 

l > max 

{
9 log 

(
n 

ε

)
+ 3 max 

{
log 

(
6 r ′ 1 
ε

)
, 

log 

(
6 r ′ 2 
ε

)
, log 

(
6 r ′ 
ε

)}
+ 6 , 2 r 1 , 2 r 2 

}
. (29) 

hen, with probability at least 1 − ε, there exists exactly one comple-

ion of U . 

roof. According to the proof of Theorem 2 , (29) results that there

xists a subset of columns �̆′ ∈ R 

n ×m of the constraint matrix �̆
uch that condition (i) in the statement of Theorem 3 is satisfied,

ith probability at least 1 − ε
2 . Then, assumptions (26), (27) and

28) result that there exist n − r 1 columns �̆′ 
1 

of �̆1 and n − r 2 

olumns �̆′ 
2 

of �̆2 that are disjoint from �̆′ . This is easily verified

y comparing assumptions (26), (27) and assumptions (10), (11) in

heorem 2 . 

Note that according to Lemma 4 , (29) results that �̆′ 
1 

satisfies

ondition (ii) in the statement of Theorem 3 with probability at

east 1 − ε
6 . Similarly, (29) results that �̆′ 

2 satisfies condition (iii) in

he statement of Theorem 3 with probability at least 1 − ε
6 . There-

ore, all conditions in the statement of Theorem 3 are satisfied

imultaneously with probability at least 1 − ε
2 − ε

6 − ε
6 . Hence, ac-

ording to Theorem 3 , there exists only one completion of U with

robability at least 1 − ε. �

emark 2. Comparing assumptions (10) –(12) for finite com-

letability with assumptions (26) –(28) for unique completability,

e see there is a mild change, i.e., r i for finiteness is replaced by

 i + 1 for uniqueness. 

Moreover, the lower bound on the number of samples per col-

mn increases mildly from (13) for finiteness to (29) for unique-

ess, i.e., the factor 3 in the log terms in (13) become 6 in (29) . 

emma 8. Assume that the inequalities (25) –(28) hold. Moreover, as-

ume that each entry of U is independently observed with probability
, where 

p > 

1 

n 

max 

{
9 log 

(
n 

ε

)
+ 3 max 

{
log 

(
6 r ′ 1 
ε

)
, 

log 

(
6 r ′ 2 
ε

)
, log 

(
6 r ′ 
ε

)}
+ 6 , 2 r 1 , 2 r 2 

}
+ 

1 

4 
√ 

n 

. (30) 

hen, with probability at least (1 − ε) 
(

1 − exp (−
√ 

n 
2 ) 

)m 1 + m 2 

, U is

niquely completable. 

roof. Using similar arguments as in the proof of Theorem 6 , the

umber of observed entries of each of the m 1 + m 2 columns sat-

sfies (29) with probability at least 

(
1 − exp (−

√ 

n 
2 ) 

)
. Hence, the

roof follows using Theorem 4 . �

. Numerical comparisons 

As we mentioned earlier, the existent matrix analysis can be

pplied multiple times for each of the rank constraints individu-

lly and provide some weak condition for finite and unique com-

letability of the data. However, one purpose of this is to provide

 stronger and more efficient way for finding such conditions us-

ng an analysis on the manifold corresponding to all the rank con-

traints together. Note that the numerical performance is only one

urpose since also the methodology of handling multiple rank con-

traints for deterministic analysis is one of the main purposes of

his work. 

Here we compare the lower bound on the number of samples

er column obtained by the proposed analysis in this paper with

he bound obtained by the method in [34] . Recall that the exist-

ng method on Grassmannian manifold in [34] provides a bound

n the number of samples for finite completability for a matrix

 given rank (U ) = r. Note that we can not use the analysis in

34] for our multi-view data structure unless we obtain the bound

n [34] corresponding to U, U 1 and U 2 respectively (a trivial ap-

roach of using the analysis in [34] in our problem) and then take

he maximum of them, it results in the following bound on the

umber of samples for finite completability 

 > max 

{ 

12 log 

(
n 

ε

)
, 2 r 1 , 2 r 2 , 2 r 

} 

. (31) 

We consider a sampled data U = [ U 1 | U 2 ] ∈ R 

50 0 ×10 0 0 0 0 , where

 1 , U 2 ∈ R 

50 0 ×50 0 0 0 , i.e., n = 500 and m 1 = m 2 = 50 0 0 0 . In Fig. 5

e plot the bounds given in (13) for finite completability and com-

are it with the one in (31) , as a function of the value r 1 = r 2 , for

 = 40 , r = 60 and r = 10 0 , with ε = 0 . 0 0 01 . Recall that r 1 , r 2 ≤ r

nd r ≤ r 1 + r 2 . It is seen that our proposed method requires less

umber of samples per column compared with the method in [34] .

ote that given the large number of columns, i.e., m = m 1 + m 2 =
0 5 , this leads to significantly less amount of sampled data. 

Note that the curves are not continuous as we need to apply

he ceiling operator to the non-integer numbers in (13) and (31) .

oreover, note that as both bounds in (13) and (31) are equal to

he maximum of two terms: (i) one is on the order of log ( n ) or

og (n ) + log (r) , and (ii) one is linear in r . Hence, by increasing the

alue of r , eventually it will be a linear function of r , as seen in

ig. 3 . However, within most applications r is typically small. 

In another experiment, we set the values r 1 = r 2 = 40 , r = 60 ,

 1 = m 2 = 50 0 0 0 , and vary the value of n from 500 to 30 0 0 and

ompare the bounds given in (13) for finite completability with the

ne in (31) in Fig. 6 . We note that the exploiting the multi-view

tructure leads to reduced sampling requirement. 

Note that we showed the difference of the bounds per column

nd this difference would be much more over all columns. 
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Fig. 5. Lower bounds on the number of samples per column. 

Fig. 6. Lower bounds on the number of samples per column. 
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7. Performance of completion algorithms 

7.1. Multi-view matrix completion based on Newton’s method 

Note that the bounds on the sampling rate provided in pre-

vious sections ( Lemmas 6 and 8 ) are the information theoretic

bounds for unique/finite completability of the data. In other words,

we found algorithm-independent guarantees for data completion.
ince these fundamental bounds are obtained by analyzing the

olvability of a set of polynomial equations obtained based on the

ampled entries, it is then natural to expect that solving such a set

f polynomial equations efficiently will lead to an efficient low-

ank multi-view matrix completion algorithm, in the sense that

ompletion is possible under very low-sampling rate (close to the

nformation theoretic bound.) In fact, Newton’s method has been

mployed to solve polynomial equation sets for matrix and ten-
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or completion problems in [47] . Here we extend that method for

ulti-view matrix completion. 

First, we show how to obtain the set of polynomials from the

ampled entries using an example. Consider a matrix U ∈ R 

3 ×6 ,

here U = [ U 1 | U 2 ] , U 1 ∈ R 

3 ×3 (the first three columns) and U 2 ∈
 

3 ×3 (the last three columns). Assume that r 1 = 2 , r 2 = 2 and

 = 3 . Moreover, suppose that the sampled entries of U are shown

elow. 

Recall Eq. (1) and also V = [ V 1 | V 2 | V 3 ] . For this example, since

 1 = 2 , r 2 = 2 and r = 3 , V 1 , V 2 , V 3 ∈ R 

3 ×1 , and therefore they rep-

esent the first, second and the third columns of V , respectively.

hen, according to (2) , we can obtain the following set of polyno-

ials from the sampled entries 

 (z ) = 0 ⇒ 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

V (1 , 1) T 1 (1 , 2) + V (1 , 2) T 1 (2 , 2) − 4 . 5 = 0 , 

V (2 , 1) T 1 (1 , 1) + V (2 , 2) T 1 (2 , 1) − 1 . 4 = 0 , 

V (1 , 2) T 2 (1 , 3) + V (1 , 3) T 2 (2 , 3) − 1 . 8 = 0 , 

V (2 , 2) T 2 (1 , 2) + V (2 , 3) T 2 (2 , 2) − 10 = 0 , 

V (3 , 2) T 2 (1 , 2) + V (3 , 3) T 2 (2 , 2) − 1 . 2 = 0 , 

V (3 , 2) T 2 (1 , 3) + V (3 , 3) T 2 (2 , 3) − 5 = 0 , 

here z denotes the vector of unknowns which in this case in-

ludes the entries of V ∈ R 

nr , T 1 ∈ R 

r 1 m 1 and T 2 ∈ R 

r 2 m 2 . 

Let z ∈ R 

(nr+ r 1 m 1 + r 2 m 2 ) ×1 denote the vector that contains all

he (nr + r 1 m 1 + r 2 m 2 ) elements of the decomposition (1) . Note

hat from (1) we know that each sampled entry of U 1 ( U 2 ) re-

ults in a second-order polynomial that involves r 1 ( r 2 ) entries

f V and r 1 ( r 2 ) entries of T 1 ( T 2 ). As a result, we have a

et of second-order polynomial equations p i (z ) = 0 , i = 1 , . . . , | �| ,
here | �| denotes the number of observed entries. Denote p (z ) =

 p 1 (z ) , . . . , p | �| (z )]  . 

emark 3. Note that finding z ∗ ∈ R 

(nr+ r 1 m 1 + r 2 m 2 ) ×1 such that

 (z ∗) = 0 , is equivalent to finding a completion of the data. 

In order to solve p (z ) = 0 , we use the well-known Newton’s

ethod. In particular, we start with some initial z 0 ∈ R 

L ×1 , where

 = (nr + r 1 m 1 + r 2 m 2 ) , and perform the following iteration 

 n = z n −1 − ( ∇p (z n −1 ) ) 
† 
p (z n −1 ) , (32) 

here ∇p (z ) ∈ R 

| �|×L and its ( i, j )-th element denotes the partial

erivative of p i ( z ) with respect to z j , and the operator † denotes

seudoinverse. 

We can easily observe that ∇p ( z ) is a very sparse matrix. This

s because the number of involved variables in each polynomial

n p(z) is either 2 r 1 or 2 r 2 . The sparse structure of this matrix

nables a fast computation of its pseudoinverse, e.g., the com-

and sparse (∇p (z )) \ p (z ) in Matlab is an efficient way to calcu-

ate ( ∇p (z n −1 ) ) 
† 
p (z n −1 ) . 

.2. Other completion methods for comparison 

We will consider two alternative methods for completing the

atrix, alternating minimization, and Newton’s method for ma-

rix completion. Both make only use of the rank value r , but not

 1 and r 2 . In the alternating minimization approach, we can use

he initialization scheme as in [15] . We compute the singular value

ecomposition (SVD) of U �, and choose the r largest eigenvalues

nd their corresponding eigenvectors as the initial V ∈ R 

n ×r and
0 
 0 ∈ R 

r×(m 1 + m 2 ) . We use the rank decomposition U = VT such that

 ∈ R 

n ×r and T ∈ R 

r×(m 1 + m 2 ) . Starting with the described initial V 0 

nd T 0 , at the k -th iteration, given V k −1 and T k −1 , we first update

 k by solving the following convex program 

minimize V k ∈ R n 1 ×r ‖ U � − ( V k T k −1 ) �‖ F 
(33) 

nd then update T k by solving 

minimize T k ∈ R r×n 2 ‖ U � − ( V k T k ) �‖ F 
(34) 

here ‖ · ‖ F denotes the Frobenius norm. 

Moreover, the Newton’s method for matrix completion is de-

cribed in [47] , where we use only rank value r and derive the

olynomial similar to multi-view case and use Newton’s method

o find a solution. 

.2.1. Initialization 

For Newton’s method, we simply use the initialization de-

cribed in Section 7.2 , by noting that T 1 = T (1 : r 1 , 1 : m 1 ) and

 2 = T (r − r 2 + 1 : r, 1 : m 2 ) . Then, by putting V 0 , T 0 (1: r 1 , 1: m 1 )

nd T 0 (r − r 2 + 1 : r, m 1 + 1 : m 1 + m 2 ) form the initialization in

ection 7.2 and construct the initialization z 0 for Newton’s method.

.2.2. Stopping criterion 

In both of the described approaches, we stop the algorithm

f either they converge or ‖ z n ‖ (in Newton’s method) and ‖ V n ‖ ,
 T n ‖ (in alternating minimization) become larger than max{10 6 ,

0 6 ‖ z 0 ‖ } and max{10 6 , 10 6 ‖ V 0 ‖ }, max{10 6 , 10 6 ‖ T 0 ‖ }, respectively.

n the case of divergence, we count this as a failure of the algo-

ithm for recovering data. 

.3. Numericalexperiments for retrieving multi-view data 

For the numerical experiments we consider an example where

 = 100 , m 1 = 50 , m 2 = 50 , r 1 = r 2 = 5 , r = 6 . Hence, V 1 ∈ R 

100 ×1 ,

 2 ∈ R 

100 ×4 , and V 3 ∈ R 

100 ×1 . First, we generate random matrices

 ∈ R 

100 ×6 , T 1 ∈ R 

5 ×50 and T 2 ∈ R 

5 ×50 (by choosing their entries

ndependently and according to uniform distribution from [1,10]).

hen, we construct U 1 = [ V 1 | V 2 ] T 1 ∈ R 

100 ×50 and U 2 = [ V 2 | V 3 ] T 2 ∈
 

100 ×50 . And finally construct U = [ U 1 | U 2 ] ∈ R 

100 ×100 . Then, we

ample each entry independently with probability p and calculate

he normalized number of samples by multiplying the number of

amples to L = (nr + r 1 m 1 + r 2 m 2 ) and dividing it by n (m 1 + m 2 ) .

f ‖ ̂ U −U ‖ F ‖ U ‖ F < 0 . 01 , where ˆ U denotes the obtained matrix through

he corresponding completion algorithm, we count the experiment

s a successful recovery. For each value of p , we complete 200 ma-

rices and calculate the average recovery rate of each algorithm. 

Note that the alternating minimization and Newton with ma-

rix decomposition are only based on n, (m 1 + m 2 ) , r and do not

ake advantage of the other two rank values ( r 1 and r 2 ). However,

ewton with multi-view decomposition, which has the best per-

ormance makes use of multi-view decomposition and n, m 1 , m 2 ,

, r 1 , r 2 since the polynomials are derived from (1) . 

We have the following observations from Fig. 7 : 

1. The Newton’s method for multi-view requires less number of

samples for recovering the sampled data in comparison with

the other methods. For example, when the normalized num-

ber of samples is equal to 2, it gives almost 100% recovery rate,

while Newton’s method for matrix completion gives 90% recov-

ery and alternating minimization only recovers 20% of the sce-

narios. ’ 

2. Alternating minimization is much worse than Newton’s method

in term of the required number of samples for recovery of the

data. 
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Fig. 7. Comparison of recovery rates. 
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3. Netwon’s method for multi-view has small advantage in com-

parison with Newton’s method for matrix, where one reason

can be because we have used the same initialization for multi-

view case. 

8. Conclusions 

This paper characterizes algorithm-independent conditions on

the sampling pattern for finite completability of a low-rank multi-

view matrix through an algebraic geometry analysis on the man-

ifold structure of multi-view data. Then, having the mentioned

analysis, we obtain the required number of sampled entries per

column to guarantee that it leads to finite/unique completability

with high probability. The numerical results demonstrate signifi-

cant improvements in exploiting the multi-view data structure as

compared to considering the two views separately. In other words,

we obatined algorithm-independent guarantees for data comple-

tion. One important problem that we did not study in this paper

and left it open for future is to develop an efficient algorithm that

provably achieves the deterministic and probabilistic bounds de-

rived in this paper. However, as an approach towards this goal,

we developed the non-convex algorithm in Section 7 (similar to

the approaches in [47] for matrix and tensor completion problems)

for multi-view data by taking advantage of the rank decomposition

and the manifold analysis in this work. Improving such non-convex

optimization approaches to exactly achieve the mentioned bounds

is left for future work. 
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ppendix A. Proof of finite completability for the example in 

ection 2 

Observe that Assumption 1 holds, i.e., each column of U 1 in-

ludes at least one observed entry and each column of U 2 includes

t least two observed entries. According to the definition of the

onstraint matrix, we have �̆ = [ ̆�1 | ̆�2 ] , where 

˘
1 = 

⎡ 

⎢ ⎣ 

1 1 

1 0 

0 1 

0 0 

⎤ 

⎥ ⎦ 

, and �̆2 = 

⎡ 

⎢ ⎣ 

1 1 1 

1 1 1 

1 0 0 

0 1 1 

⎤ 

⎥ ⎦ 

. 

Note that r ′ 1 = r − r 2 = 0 , r ′ 2 = r − r 1 = 1 and r ′ = r 1 + r 2 − r = 1 .

s a result, nr − r 2 − r 2 1 − r 2 2 + r(r 1 + r 2 ) = 5 and �̆ has exactly 5

olumns. Suppose that �′ is an arbitrary submatrix of �. In order

o show finite completability of U , it suffices to show (6) holds.

et �′ 
1 and �′ 

2 denote the submatrix that consists of columns of

˘ ′ that correspond to the first view and second view, respectively.

ote that �̆′ = [ ̆�′ 
1 
| ̆�′ 

2 
] . Therefore, we only need to verify 

(g( ̆�′ 
2 ) − 2) + + (g( ̆�′ ) − 1) + ≥ c( ̆�′ ) . (35)

There are 3 different cases as follows: 

1. g( ̆�′ 
2 ) = 0 : In this case, (35) reduces to (g( ̆�′ 

1 ) − 1) + ≥ c( ̆�′ 
1 ) .

This is easy to verify by checking each sub-case that �̆′ 
1 has

one or two columns of �̆1 . 

2. g( ̆�′ 
2 
) = 3 : In this case, (35) reduces to 1 + (g( ̆�′ ) − 1) + ≥

c( ̆�′ ) . We consider the following two sub-cases: 

https://doi.org/10.13039/100000001
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• �̆′ 
2 

is the first column of �̆2 : Observe that in this case 

c( ̆�′ ) = c( ̆�′ 
1 
) + 1 , and also we always have g( ̆�′ ) ≥ g( ̆�′ 

1 
) .

Hence, similar to the previous scenario, it suffices to show

that (g( ̆�′ 
1 
) − 1) + ≥ c( ̆�′ 

1 
) which is easy to verify. 

• �̆′ 
2 

does not include the first column of �̆2 : Note that

in this case c( ̆�′ ) ≤ c( ̆�′ 
1 ) + 2 , and therefore it suffices to

show that (g( ̆�′ ) − 1) + ≥ c( ̆�′ 
1 ) + 1 . This is easy to verify by

considering the fact that in this case g( ̆�′ ) = 4 if and only if

�̆′ 
1 

includes the second column of �̆1 , and g( ̆�′ ) = 3 other-

wise. 

3. g( ̆�′ 
2 ) = 4 : In this case, (35) reduces to 2 + (g( ̆�′ ) − 1) + ≥

c( ̆�′ ) . Note that g( ̆�′ 
2 ) = 4 results that g( ̆�′ ) = 4 , and there-

fore (35) reduces to 5 ≥ c( ̆�′ ) which clearly always holds. 

ppendix B. Example 

We are interested to provide a non-trivial example to show that

pplying the existing matrix analysis for multi-view data (for each

f the given rank constraints) can be very inefficient, while our

nalysis provides the necessary and sufficient condition for finite

ompletability. This is just to show the efficiently of our analysis

nd also further clarifies the complicated statement and condition

escribed in Theorem 1 . In other words, this example shows how

oose and inefficient the matrix analysis can be for multi-view data

ompletion problem, while our proposed analysis is as efficient as

ossible by providing the necessary and sufficient condition. 

Here we provide another motivating example such that

ax { r 1 , r 2 } < r < r 1 + r 2 . Consider a matrix U ∈ R 

5 ×10 , where U =
 U 1 | U 2 ] , U 1 ∈ R 

5 ×5 (the first five columns) and U 2 ∈ R 

5 ×5 (the last

ve columns). Assume that r 1 = 2 , r 2 = 2 and r = 3 . Moreover, sup-

ose that the sampled entries of U are shown with “ × ” below. 

We have the following observations about the number of com-

letions of each matrix. 

• Given r 1 = 2 , U 1 is infinitely completable : We can verify this via

Lemma 1 since the fifth row of U 1 has only one sampled entry.
• Given r 2 = 2 , U 2 is infinitely completable : We can verify this via

Lemma 1 since the fourth row of U 2 has only one sampled en-

try. 
• Given r = 3 , U is infinitely completable : We can easily verify this

via Theorem 1 in [34] . 
• For almost every matrix U , given r 1 = 2 , r 2 = 2 and r = 3 , U is

finitely completable : Note that nr − r 2 − r 2 
1 

− r 2 
2 

+ r(r 1 + r 2 ) = 10

and the constraint matrix includes exactly 10 columns. We

can prove this statement by simply applying Theorem 1 which

takes advantage of a geometric analysis on the manifold struc-

ture for multi-view data to incorporate all three rank con-

straints simultaneously. 

Another approach to prove the finite completability given r 1 =
 , r = 2 and r = 3 is as follows. 
2 
Note that the determinant of any 3 × 3 submatrix of U 1 or U 2 

s 0 and due to the genericity assumption the determinant of any

 × 2 submatrix of U 1 or U 2 is not 0 (with probability one). Hence,

ny 3 × 3 submatrix of U 1 or U 2 with 8 known entries results in

btaining the only unknown entry uniquely. Moreover, the deter-

inant of any 4 × 4 submatrix of U is 0. 

As a result, we can obtain the third and fourth rows of U 1 

niquely. Moreover, we can obtain the third and fifth rows of U 2 

niquely. Now, we show that the rest of the entries (the fifth

ow of U 1 and the fourth row of U 2 ) can be obtained uniquely

s well. Define I 1 = { 1 , 2 , 3 , 4 } and I 2 = { 1 , 2 , 7 , 8 } . Then, consider

he 4 × 4 submatrix U (I 1 , I 2 ) and note that it includes only one

nknown entry, i.e., U (4, 7). Since the determinant of the 3 × 3

ubmatrix U (I 1 \ { 4 } , I 2 \ { 7 } ) is not 0 (with probability one), we

an obtain U (4, 7) uniquely. It is easily verified that similarly the

est of the entries can be obtained uniquely. 

Finally, we provide some observations for the described exam-

le to emphasize that removing any single sampled entry from

his example leads to infinite completability with probability one.

or example, removing U (4, 8) from the sampled entries results

n infinite completability of the fourth row of U 2 . Define I 1 =
 1 , 2 , 3 , 4 } and I ′ 

2 
= { 1 , 2 , 3 , 6 } . Note that even though the deter-

inant of the 4 × 4 submatrix U (I 1 , I ′ 2 ) is zero and the only un-

nown entry of this submatrix is U (4, 6), we cannot obtain U (4,

) uniquely. This is because the determinant of the 3 × 3 subma-

rix U (I 1 \ { 4 } , I ′ 2 \ { 6 } ) is 0 (with probability one). Moreover, we

an easily observe that removing U (3, 7) from the sampled entries

esults in infinite completability of the third and fourth rows of U 2 .
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