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Abstract
In this paper, we analyze the fundamental conditions for low-rank tensor completion given
the separation or tensor-train (TT) rank, i.e., ranks of TT unfoldings. We exploit the alge-
braic structure of the TT decomposition to obtain the deterministic necessary and sufficient
conditions on the locations of the samples to ensure finite completability. Specifically, we
propose an algebraic geometric analysis on the TT manifold that can incorporate the whole
rank vector simultaneously in contrast to the existing approach based on the Grassmannian
manifold that can only incorporate one rank component. Our proposed technique charac-
terizes the algebraic independence of a set of polynomials defined based on the sampling
pattern and the TT decomposition, which is instrumental to obtaining the deterministic con-
dition on the sampling pattern for finite completability. In addition, based on the proposed
analysis, assuming that the entries of the tensor are sampled independently with probability
p, we derive a lower bound on the sampling probability p, or equivalently, the number of
sampled entries that ensures finite completability with high probability. Moreover, we also
provide the deterministic and probabilistic conditions for unique completability.

Keywords Data completion · Tensor retrieval · Low-rank tensor completion ·
Tensor-train decomposition · Finite completability · Unique completability

Mathematics Subject Classification (2010) 68W01

1 Introduction

Most of the literature on low-rank data completion (either matrix or tensor) propose
optimization-based algorithms to construct a completion that matches the given samples
and rank. For example, for the two-way tensor, i.e., matrix, many algorithms have been
proposed that are based on convex relaxation of rank [3, 9–12] or alternating minimization
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[17, 21]. Similarly, for higher dimensional data a number of tensor completion algorithms
exist that are based on different convex relaxations of the tensor ranks [16, 39, 42, 46] or
other heuristics [5, 18, 25, 26, 29, 30, 48]. The low-rank tensor completion problem has
various applications, including compressed sensing [16, 27, 41], visual data reconstruction
[28, 30], seismic data processing [15, 24, 48], RF fingerprinting [29, 31], etc.

Existing works on optimization-based matrix or tensor completion usually make a set of
strong assumptions on the correlations of the values of either the sampled or non-sampled
entries (such as coherence) in order to provide a tensor that approximately fits in the sam-
pled tensor. In contrast, here we are interested in investigating fundamental conditions on
the sampling pattern that guarantee the existence of finite or unique number of completions.
Such conditions are “fundamental” in the sense that they are independent of either the opti-
mization formulation or the optimization algorithm used to compute the completion. The
matrix version of this problem has been treated in [37]. Also, the noisy scenario and the ten-
sor version of this problem have been treated in [1] and [4], respectively. In this paper, we
investigate this problem for tensors under the tensor-train (TT) rank.

There are a number of tensor decompositions available, including Tucker decomposition
or higher-order singular value decomposition [19, 23, 25], polyadic decomposition [43, 45],
tubal rank decomposition [22] and several other representations [13, 14, 36]. TT decom-
position (also known as tree-tensor decomposition) was proposed in the field of quantum
physics about 20 years ago [8, 40]. Later it was used in the area of tensor analysis [33–
35] and there are several works on the problem of tensor completion in the TT format [38,
49]. A comprehensive survey on TT decomposition and the manifold of tensors of fixed
TT rank can be found in [47] and [20] also includes a comparison between the TT and
Tucker decompositions for a better understanding of the advantages of TT decomposition.
The well-known TT-cross method proposed in [32] provides the condition for the existence
of a tensor with given TT-rank that is within a certain distance from the original tensor, as
well as an algorithm to find such a low-TT-rank approximation.

Let U denote the sampled tensor and Ω denote the binary sampling pattern tensor that
is of the same dimension and size as U . The entries of Ω that correspond to the observed
entries of U are equal to 1 and the rest of the entries are set as 0. This paper is mainly
concerned with the following three problems.

Problem (i) Given the TT rank, characterize the necessary and sufficient conditions on
the sampling pattern Ω , under which U admits only a finite number of
completions.

We define a polynomial for each sampled entry such that the variables
of the polynomial are the entries of the core tensors of the TT decomposi-
tion. Then, we propose a geometric method on the TT manifold to obtain
the maximum number of algebraically independent polynomials (among
all the defined polynomials for any of the sampled entries) in terms of the
geometric structure of the sampling pattern Ω . Finally, we show that if
the maximum number of algebraically independent polynomials meets a
threshold, which depends on the structure of the sampling pattern Ω , the
sampled tensor U is finitely completable. We emphasize the fact that the
proposed algebraic geometry analysis on the TT manifold is not a simple
generalization of the existing analysis on the Grassmannian [37] or Tucker
manifold [2] as almost every step needs to be developed anew.

Problem (ii) Given the TT rank, characterize a sufficient conditions on the sampling
pattern Ω , under which there exists only one completion of U .
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We use the developed tools for solving Problem (i) and in addition to the
condition for finite completability, we add more polynomials (samples) in
a way such that the corresponding minimally algebraically dependent set of
polynomials leads to that all involved variables can be determined uniquely.

Problem (iii) Provide a lower bound on the total number of sampled entries such that
the proposed conditions on the sampling pattern Ω for finite and unique
completability are satisfied with high probability.

Assuming that the entries of U are sampled independently with probability p, we develop
lower bounds on p such that the deterministic conditions for Problems (i) and (ii) are met
with high probability.

The remainder of this paper is organized as follows. In Section 2, the preliminaries and
problem statement are presented. Problems (i), (ii) and (iii) are treated in Sections 3, 4 and 5,
respectively. Some numerical results are provided in Section 6. Finally, Section 7 concludes
the paper.

2 Background

2.1 Preliminaries and notations

In this paper, it is assumed that a d-way tensor U ∈ R
n1×···×nd is sampled. For the sake of

simplicity in notation, define Ni �
(
�i

j=1 nj

)
and N̄i �

(
�d

j=i+1 nj

)
. Also, for any real

number x, define x+ � max{0, x}.
Define the matrix Ũ(i) ∈ R

Ni×N̄i as the i-th TT unfolding of the tensor U , such
that U(x) = Ũ(i)(M̃i(x1, . . . , xi), M̃−i (xi+1, . . . , xd)), where M̃i : (x1, . . . , xi) →
{1, 2, . . . , Ni} and M̃−i : (xi+1, . . . , xd) → {1, 2, . . . , N̄i} are two bijective mappings and
U(x) represents an entry of tensor U with coordinate x = (x1, . . . , xd).

The separation or tensor-train (TT) rank of a tensor is defined as rank(U) =
(r1, . . . , rd−1) where ri = rank(Ũ(i)), i = 1, . . . , d − 1. Note that ri ≤ max{Ni, N̄i} in
general and also r1 is simply the conventional matrix rank when d = 2. The TT decompo-
sition of a tensor U with TT-rank of rank(U) = (r1, . . . , rd−1) consists of d “core tensors”
U (i) ∈ R

ri−1×ni×ri for i = 2, . . . , d − 1, U (1) ∈ R
n1×r1 , and U (d) ∈ R

rd−1×nd and for each
entry of the tensor we have

U(x) =
r1∑

k1=1

· · ·
rd−1∑

kd−1=1

U (1)(x1, k1)

(
d−1∏
i=2

U (i)(ki−1, xi , ki)

)
U (d)(kd−1, xd). (1)

For notational simplicity, we denoteU = (U (1), . . . ,U (d)). Given the order d and dimension
sizes n1, . . . , nd , the space of all tensors of fixed TT rank vector r = (r1, . . . , rd−1) is a
embedded manifold of dimension [20]

d∑
i=1

ri−1niri −
d−1∑
i=1

r2i , (2)

where r0 = rd � 1. As U (1) and U (d) are two-way tensors, we can also denote them by U(1)

and U(d) in this paper.
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Denote Ω as the binary sampling pattern tensor that is of the same size as U and Ω(x) =
1 if U(x) is observed and Ω(x) = 0 otherwise. X(1 : m, :) denotes the first m rows of the
matrix X and X� denotes the transpose of X.

Let U(i) be the i-th Tucker unfolding of the tensor U , i.e., the matrix U(i) has ni rows
and Nd

ni
columns such that U(x) = U(i)(xi,Mi(x1, . . . , xi−1, xi+1, . . . , xd)), where Mi :

(x1, . . . , xi−1, xi+1, . . . , xd) → {1, 2, . . . , Nd

ni
} is a bijective mapping. Observe that for any

arbitrary tensor A, the first Tucker unfolding and the first TT unfolding are the same, i.e.,
A(1) = Ã(1).

2.2 Summary of results andmain steps of analysis

An executive summary of the steps in our finite completability analysis is as follows:

(i) Deterministic analysis (Section 3) - Necessary and sufficient conditions on the
sampling pattern Ω:

(ii) Probabilistic analysis (Section 4) - Minimum uniform sampling rate p to ensure finite
completability:

Moreover, in Section 5, for unique completability, we obtain a deterministic sufficient
condition in Theorem 4, which has one additional constraint in comparison with Theorem 1
(i.e., (33)). And we provide the corresponding probabilistic condition in Theorem 5 which
requires slightly more samples in comparison with Theorem 3.

3 Deterministic conditions for finite completability

This section characterizes the connection between the sampling pattern and the num-
ber of solutions of a low-rank tensor completion problem. In Section 3.1, we define a
polynomial based on each observed entry. Then, given the rank vector, we transform the
problem of finite completability of U into the problem of including enough number of
algebraically independent polynomials among the polynomials defined for the observed
entries. In Section 3.2, we construct a constraint tensor based on the sampling pattern Ω .
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This tensor is useful for analyzing the algebraic independency of a subset of polynomi-
als among all defined polynomials. In Section 3.3, we show the relationship between the
number of algebraically independent polynomials in the mentioned set of polynomials and
finite completability of the sampled tensor.

Note that as we showed in [2], for matrix and tensor completion problems, finite com-
pletability does not necessarily imply unique completability. In particular, we found an
example such that there are exactly two completions of the sampled data of the given rank.

3.1 Geometry of TTmanifold

Define P1 as the Lebesgue measure on R
n1×r1 , P2 as the Lebesgue measure on R

r1×n2×r2 ,
. . . and Pd as the Lebesgue measure on R

rd−1×nd . We assume that U is chosen generically
from the manifold corresponding to (r1, . . . , rd−1), or in other words, the entries of U are
drawn independently with respect to Lebesgue measure on the corresponding manifold.
Hence, any statement that holds for this “generic” U , it holds with probability one with
respect to the product measure P1 × P2 × · · · × Pd .

Here, we briefly mention two facts. Recall that r0 = rd = 1.

– Fact 1: As it can be seen from (1), any observed entry U(x) results in an equation that
involves ri−1ri entries of U (i), i = 1, . . . , d . Considering the entries of U as variables
(right-hand side of (1)), each observed entry results in a polynomial in terms of these
variables. We can further visualize this fact by looking at the following equation

U(x) =
r1∑

k1=1
· · ·

rd−1∑
kd−1=1

(
U (1)(x1, k1) . . .U (i)(ki−2, xi−1, ki−1)

)

U (i)(ki−1, xi, ki)
(
U (i)(ki , xi+1, ki+1) . . .U (d)(kd−1, xd)

)
, (3)

where all entries U (i)(ki−1, xi , ki) are involved for 1 ≤ ki−1 ≤ ri−1 and 1 ≤ ki ≤ ri .
– Fact 2: As it can be seen from (1), for any observed entry U(x), the value of xi specifies

the “slice” of U (i) or in other words the location of the ri−1ri entries of U (i) that are
involved in the corresponding polynomial, i = 1, . . . , d . In other words, the value of xi

specifies the row number of the second Tucker unfolding of U (i) whose ri−1ri entries
are involved in the corresponding polynomial, i = 2, . . . , d . Note that the value of
x1 specifies the row number of the first Tucker unfolding of U (1) whose r1 entries are
involved in the corresponding polynomial.

Note that it can be concluded from Bernstein’s theorem [44] (also used in [37] and [4])
that in a system of n polynomials in n variables with each consisting of a given set of
monomials such that the coefficients are chosen generically (i.e., according to the Lebesgue
measure on TT-manifold), the n polynomials are algebraically independent with proba-
bility one with respect to the corresponding product measure, and therefore there exist
only finitely many solutions (all given probabilities in this paper are with respect to this
product measure). However, in the structure of the polynomials in our model, the set of
involved monomials are different for different set of polynomials, and therefore to ensure
algebraically independency we need to have for any selected subset of the original n poly-
nomials, the number of involved variables should be more than the number of selected
polynomials.

Given all observed entries {U(x) : Ω(x) = 1}, we are interested in finding the number of
possible solutions in terms of entries of U (infinite or finite) via investigating the algebraic
independence among these polynomials. Note that in this paper the dimension of the TT
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manifold is a lower bound on the number of samples, otherwise there are infinitely many
completions with probability one.

Assumption 1 Each column of Ũ(d−1) includes at least rd−1 observed entries.

Remark 1 Note that given U (1), . . . ,U (d−1), polynomials in (1) are degree-1 in terms of the
entries of U (d). Hence, Assumption 1 results in ndrd−1 degree-1 polynomials in terms of
the entries of U (d). As a result, the entries of U (d) can be determined uniquely in terms of
the entries of (U (1), . . . ,U (d−1)).

Remark 2 It is easily verified that as a result of Remark 1, Assumption 1 is necessary for
finite completability and therefore, we need Assumption 1 in the rest of this paper.

Definition 1 Let x
l,v
1 , x

l,v
2 , . . . , x

l,v
d for 1 ≤ l ≤ nd and 1 ≤ v ≤ rd−1 denote the coordi-

nates of the rd−1 sampled entries belonging to the l-th slice, i.e., the l-th column of Ũ(d−1),
that we consider for Assumption 1.

Definition 2 LetP(Ω) denote the set of polynomials corresponding to the observed entries
as in (1) excluding the ndrd−1 observed entries of Assumption 1. Note that since U (d) is
already solved in terms of (U (1), . . . ,U (d−1)), each polynomial in P(Ω) is in terms of
elements of (U (1), . . . ,U (d−1)).

The following lemma provides the necessary and sufficient condition on P(Ω) for finite
completability of the sampled tensor U .

Lemma 1 Suppose that Assumption 1 holds. With probability one, there exist only finitely
many completions of U if and only if there existm = ∑d−1

i=1 ri−1niri−∑d−1
i=1 r2i algebraically

independent polynomials in P(Ω).

Proof Given U (1), . . . ,U (d−1) of the TT decomposition of the sampled tensor U , assump-
tion 1 results that there exists only one possible U (d). Let P(Ω) = {p1, . . . , pm} and
define Si as the set of all tuples (U (1), . . . ,U (d−1)) that satisfy polynomial restrictions
{p1, . . . , pi}, i = 0, . . . , m (S0 is the set of all tuples (U (1), . . . ,U (d−1)) without any poly-
nomial restriction). Note that dim(S0) = ∑d−1

i=1 ri−1niri − ∑d−1
i=1 r2i as we assume U (d) is

given [20].
Observe that each algebraically independent polynomial reduces the dimension (degree

of freedom) of the set of solutions by one. In other words, dim(Si ) = dim(Si−1) if
the maximum number of algebraically independent polynomials in sets {p1, . . . , pi} and
{p1, . . . , pi−1} are the same and dim(Si ) = dim(Si−1) − 1 otherwise. Moreover, with
probability one, |Sm| is finite if and only if there are dim(S0) algebraically independent
polynomial restrictions on the entries of U (1), . . . ,U (d−1), i.e., |Sm| is finite if and only
if dim(Sm) = 0. Hence, there are finitely many completions of the sampled tensor U if
and only if there exist

∑d−1
i=1 ri−1niri − ∑d−1

i=1 r2i algebraically independent polynomials in
P(Ω).

3.2 Constraint tensor

In order to ensure that Lemma 1 holds, we need
∑d−1

i=1 ri−1niri − ∑d−1
i=1 r2i algebraically

independent polynomials in P(Ω), i.e., among all polynomials excluding the polynomials
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corresponding to the sampled entries of Assumption 1. Then, in order to count the number of
algebraically independent polynomials, we construct the “constraint tensor” Ω̆ based on the
sampling pattern tensor Ω such that each (d − 1)-dimensional slice of Ω̆ includes rd−1 + 1
entries equal to one (i.e., rd−1 + 1 non-zero entries). Moreover, these rd−1 + 1 non-zero
entries are located such that one of them represents the location of one of the sampled entries
corresponding to a polynomial in P(Ω), and the other rd−1 non-zero entries represent the
location of the rd−1 sampled entries in the same column of Ũ(d−1) (from Assumption 1)
that have been used for obtaining U (d). This structure helps us to characterize the number of
involved variables in a subset of polynomials based on the geometry of non-zero entries of
Ω̆ , and we count the number of algebraically independent polynomials based on the number
of involved variables in the corresponding polynomials. Then, we characterize the geometri-
cal pattern on Ω̆ that is equivalent with existence of

∑d−1
i=1 ri−1niri −∑d−1

i=1 r2i algebraically
independent polynomials (excluding the polynomials corresponding to the sampled entries
of Assumption 1).

In the following, we provide a procedure to construct a binary tensor Ω̆ based on Ω

such that P(Ω̆) = P(Ω) and each polynomial can be represented by one d-way slice of Ω̆

that belongs to R
n1×···×nd−1×1. Using Ω̆ , we are able to recognize the observed entries that

have been used to obtain the U (d) in terms of the entries of U (1), . . . ,U (d−1), and we can
easily verify if two polynomials in P(Ω) are in terms of the same set of variables. Then, in
Section 3.3, we characterize the relationship between the maximum number of algebraically
independent polynomials in P(Ω̆) and Ω̆ .

For each slice Y of the sampled tensor U , let NΩ(Y) denote the number of sam-
pled entries in Y . Specifically, consider any slice Y ∈ R

n1×n2×···×nd−1×1 of the tensor
U . Then, Y contributes NΩ(Y) − rd−1 polynomial equations in terms of the entries of
U (1), . . . ,U (d−1) among all NΩ(U) − rd−1nd polynomials in P(Ω).

Note that the sampled tensor U includes nd slices, each belonging to R
n1×n2×···×nd−1×1.

Let Yi denote these nd slices for 1 ≤ i ≤ nd . Define a binary valued tensor Y̆i ∈
R

n1×n2×···×nd−1×ki , where ki = NΩ(Yi )− rd−1 and its entries are described as follows. We
can look at Y̆i as ki slices each belongs to R

n1×n2×···×nd−1×1. For each of the mentioned ki

slices in Y̆i , we set the entries corresponding to the rd−1 observed entries that are used to
obtain U (d) equal to 1. In other words, for each of the mentioned ki slices in Y̆i , we set the
rd−1 entries with coordinates (x

i,l
1 , x

i,l
2 , . . . , x

i,l
d−1, 1) for 1 ≤ l ≤ rd−1 equal to 1. For each

of the ki observed entries (those remained after excluding the rd−1 sampled entries of Y̆i),
we pick one of the ki tensors of Y̆i and set its corresponding entry (the same location as that
specific observed entry) equal to 1 and set the rest of the entries equal to 0. In the case that
ki = 0 we simply ignore Y̆i , i.e., Y̆i = ∅.

By putting together all nd tensors in dimension d , we construct a binary valued tensor
Ω̆ ∈ R

n1×n2×···×nd−1×K , where K = ∑nd

i=1ki = NΩ(U)−rd−1nd and call it the constraint
tensor. Observe that each slice of the constraint tensor that belongs to R

n1×n2×···×nd−1×1,
i.e., each column of the (d − 1)-th TT unfolding of Ω̆ , includes exactly rd−1 + 1 nonzero
entries, where rd−1 of them correspond to the rd−1 observed entries that are used to obtain
U (d) and the other one corresponds to one of the other ki observed entries.

Note that each slice of Ω̆ that belongs to R
n1×···×nd−1×1 represents one of the polyno-

mials in P(Ω) besides showing the polynomials that have been used to obtain U (d). More
specifically, consider a slice of Ω̆ that belongs to R

n1×···×nd−1×1 with rd−1 + 1 nonzero
entries. As we can observe from Facts 1 and 2 exactly rd−1 of them correspond to the
observed entries that have been used to obtain the corresponding column of U (d). As a
result, the rd−1 entries of each column of U (d) can be obtained in terms of the entries of
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U (1), . . . ,U (d−1) using the corresponding rd−1 sampled entries. Hence, this slice repre-
sents a polynomial after replacing entries of U (d) by the expressions in terms of entries of
U (1), . . . ,U (d−1), i.e., a polynomial in P(Ω).

The structure of the constraint tensor in this paper is similar the one in [4]. Note that the
purpose of introducing the constraint tensor in this paper is being able to characterize the
geometric pattern provided in Theorem 1. The constraint tensor is helpful to consider all
the dependencies among polynomials and provide a relatively simple pattern as provided in
Theorem 1. Due to the notational and fundamental differences between this paper and [4]
we reintroduced the constraint tensor instead of referring to [4].

3.3 Algebraic independence

In Lemma 1, we obtained the required number of algebraically independent polynomials in
P(Ω) for finite completability, and therefore we can certify finite completability based on
the maximum number of algebraically independent polynomials in P(Ω) = P(Ω̆). In this
subsection, a sampling pattern on the constraint tensor is proposed to obtain the maximum
number of algebraically independent polynomials in P(Ω̆) based on the structure of the
nonzero entries of Ω̆ .

Definition 3 Let Ω̆ ′ ∈ R
n1×n2×···×nd−1×t be a subtensor of the constraint tensor Ω̆ . Let

mi(Ω̆
′) denote the number of nonzero rows of �̆′

(i). Also, let P(Ω̆ ′) denote the set of

polynomials that correspond to nonzero entries of Ω̆ ′.

Recall Facts 1 and 2 regarding the number of involved entries of core tensors of the
TT decomposition in a set of polynomials. According to Lemma 17, some of the entries
of U (i)’s are known, i.e., (P1, . . . ,Pd−1) that satisfy properties (i) and (ii) in Definition 4.
Therefore, in order to find the number of variables (unknown entries of U (i)’s) in a set of
polynomials, we should subtract the number of known entries in the corresponding pattern
from the total number of involved entries.

For any subtensor Ω̆ ′ ∈ R
n1×n2×···×nd−1×t of the constraint tensor, the next lemma gives

an upper bound on the number of algebraically independent polynomials in the set P(Ω̆ ′).
Recall that P(Ω̆ ′) includes exactly t polynomials.

Lemma 2 Suppose that Assumption 1 holds. For any subtensor Ω̆ ′ ∈ R
n1×n2×···×nd−1×t

of the constraint tensor, the maximum number of algebraically independent polynomials in
P(Ω̆ ′) is upper bounded by

d−1∑
i=1

(
ri−1rimi(Ω̆

′) − r2i

)+
. (4)

Proof Recall Fact 1 which states that any of the t polynomials in P(Ω̆ ′) involves exactly
ri−1ri entries of U (i), i = 1, 2, . . . , d . Moreover, we use Fact 2 in order to find the number
of entries of tuple (U (1), . . . ,U (d−1)) that are involved in at least one of the polynomials
in P(Ω̆ ′). Note that according to Fact 2, if an entry (x1, . . . , xd) is observed such that
xi = l, then all ri−1ri entries of the l-th row of the second (first) Tucker unfolding of
U (i) are involved in the polynomial corresponding to this observed entry, i = 2, . . . , d − 1
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(i = 1). Hence, it is easily verified that the total number of involved entries of the tuple
(U (1), . . . ,U (d−1)) in the t polynomials in P(Ω̆ ′) is

∑d−1
i=1 ri−1rimi(Ω̆

′).
On the other hand, among the

∑d−1
i=1 ri−1rimi(Ω̆

′) known entries corresponding to
(P1, . . . ,Pd−1) in TT decomposition, some of them are involved in polynomials of P(Ω̆ ′).
Among all TT decompositions, consider the one that has the maximum number of known
entries (resulted from the degree of freedom of TT decomposition) that are involved in the
polynomials in P(Ω̆ ′). For U (i), this number (the maximum number of known entries) is
min{r2i , ri−1rimi(Ω̆

′)}. Hence, the number of variables that are involved in the set of poly-

nomials P(Ω̆ ′) is
∑d−1

i=1

(
ri−1rimi(Ω̆

′) − r2i

)+
. The proof is complete since the number of

algebraically independent polynomials in a subset of polynomials of P(Ω̆ ′) is at most equal
to the total number of variables that are involved in the corresponding polynomials.

We are interested in obtaining the maximum number of algebraically independent poly-
nomials in P(Ω̆ ′) as Lemma 2 only provides an upper bound. A subset of polynomials
P(Ω̆ ′) is minimally algebraically dependent if the polynomials in P(Ω̆ ′) are algebraically
dependent but polynomials in every of its proper subset are algebraically independent. The
next lemma is Lemma 7 in [4] and will be used to determine if the polynomials in the set
P(Ω̆ ′) are algebraically dependent.

Lemma 3 Suppose that Assumption 1 holds. Suppose that Ω̆ ′ ∈ R
n1×n2×···×nd−1×t is a sub-

tensor of the constraint tensor such that P(Ω̆ ′) is minimally algebraically dependent. Then,
with probability one, the number of variables that are involved in the set of polynomials
P(Ω̆ ′) is t − 1.

The next lemma characterizes a relationship between the number of algebraically
independent polynomials in P(Ω̆) and the structure of the nonzero entries of Ω̆ .

Lemma 4 Suppose that Assumption 1 holds and consider a subtensor Ω̆ ′ ∈
R

n1×n2×···×nd−1×t of the constraint tensor Ω̆ . The polynomials in the set P(Ω̆ ′) are alge-
braically dependent if and only if

∑d−1
i=1

(
ri−1rimi(Ω̆

′′) − r2i

)+
< t ′ for some subtensor

Ω̆ ′′ ∈ R
n1×n2×···×nd−1×t ′ of Ω̆ ′.

Proof First assume that
∑d−1

i=1

(
ri−1rimi(Ω̆

′′) − r2i

)+
< t ′ for some subtensor Ω̆ ′′ ∈

R
n1×n2×···×nd−1×t ′ of the tensor Ω̆ ′. Recall that t ′ is the number of polynomials in P(Ω̆ ′).

On the other hand, according to Lemma 2,
∑d−1

i=1

(
ri−1rimi(Ω̆

′′) − r2i

)+
is the maximum

number of algebraically independent polynomials, and therefore the polynomials in P(Ω̆ ′′)
are not algebraically independent.

Now, assume that the polynomials in set P(Ω̆ ′) are algebraically dependent. Then,
there exists a subset of the polynomials that are minimally algebraically dependent.
According to Lemma 3, if Ω̆ ′′ ∈ R

n1×n2×···×nd−1×t ′ is the corresponding subtensor to
this minimally algebraically dependent set of polynomials, the number of variables that
are involved in P(Ω̆ ′′) = {p1, , p2 . . . , pt ′ } is equal to t ′ − 1. On the other hand,∑d−1

i=1

(
ri−1rimi(Ω̆

′′) − r2i

)+
is the minimum possible number of involved variables in
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P(Ω̆ ′′) since
∑d−1

i=1 min{r2i , ri−1rimi(Ω̆
′′)} is the maximum number of known entries that

are involved in P(Ω̆ ′′). Hence, we have
∑d−1

i=1

(
ri−1rimi(Ω̆

′′) − r2i

)+ ≤ t − 1.

Finally, the following theorem characterizes the necessary and sufficient condition on
the sampling patterns for finite completability of the sampled tensor U given its TT rank.

Theorem 1 Suppose that Assumption 1 holds. Given that U is chosen generically from the
corresponding TT manifold then with probability one the following statement holds true.
There are only finitely many tensors that fit in the sampled tensor U , and have TT rank
(r1, r2, . . . , rd−1) if the following two conditions hold:

(i) there exists a subtensor Ω̆ ′ ∈ R
n1×n2×···×nd−1×M of the constraint tensor such that

M = ∑d−1
i=1 ri−1niri − ∑d−1

i=1 r2i , and
(ii) for any t ∈ {1, . . . ,M} and any subtensor Ω̆ ′′ ∈ R

n1×n2×···×nd−1×t of the tensor Ω̆ ′,
the following inequality holds

d−1∑
i=1

(
ri−1rimi(Ω̆

′′) − r2i

)+ ≥ t . (5)

Proof As a result of Lemma 4, the polynomials in P(Ω̆ ′) are algebraically independent if
and only if condition (ii) in the statement of the theorem holds. On the other hand, Lemma
1 concludes that with probability one, there are finitely many completions of U if and only
if there exist

∑d−1
i=1 ri−1niri − ∑d−1

i=1 r2i algebraically independent polynomials in P(Ω̆).
Therefore, with probability one, there are finitely many completions of U if and only if
conditions (i) and (ii) hold.

Note that the condition given in Theorem 1 is combinatorial in nature and hard to verify
in practice. In the next section, we provide a lower bound on the number of samples so
that the combinatorial condition given in Theorem 1 hold true with high probability (not
deterministically, i.e., with probability one anymore).

4 Probabilistic conditions for finite completability

In this section, consider a d-way sampled tensor U ∈ R

d︷ ︸︸ ︷
n × · · · × n with TT rank vector

r = (r1, . . . , rd−1). Assume that the entries of U are independently sampled with probabil-
ity p. Under a set of mild assumptions, we bound the sampling probability, or equivalently,
the number of needed samples such that the corresponding constraint tensor satisfies con-
ditions (i) and (ii) in the statement of Theorem 1 with high probability. In other words,
satisfying the bound on the number of samples guarantees that the sampled tensor U is
finitely completable with high probability. Assume that the entries of the sampling pattern
are assumed to be independent from the entries of the tensor as well as from each other and
the entries of the tensor U are sampled independently with probability p.

We note that this problem was considered for the matrix case in [37]. Hence, one may
apply the result of this problem for matrix on each TT unfolding (since TT unfolding ranks
are given), which is discussed in Section 4.1. Then, in Section 4.2, we will develop a
combinatorial method in terms of the number of samples to verify if Theorem 1 holds.
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4.1 TT Unfolding approach

In this section, we apply the analysis in [37] for each of the TT unfoldings to obtain a
bound on the number of samples that ensures finite/unique completability. First, we restate
Theorem 3 in [37], which is the basis of the TT unfolding approach.

Theorem 2 Consider an n × N matrix with the given rank r and let 0 < ε < 1 be given.
Suppose r ≤ n

6 and that each column of the sampled matrix is observed in at least l entries,
distributed uniformly at random and independently across entries, where

l > max
{
12 log

(n

ε

)
+ 12, 2r

}
. (6)

Also, assume that r(n − r) ≤ N . Then, with probability at least 1 − ε, the sampled matrix
will be finitely completable.

Observe that in the case that 1 < r < n − 1, the assumption r(n − r) ≤ N results that
n < N which is very important to check when we apply this theorem. We can simply apply
Theorem 2 to each TT unfolding of the sampled tensor to obtain the following.

Corollary 1 Assume that i ≤ d−1
2 , 1 < ri ≤ ni

6 and let 0 < ε < 1 be given. Note that
ni ≤ rin

d−i and nd−i > ri(n
i −ri) hold. Suppose that each column of the i-th TT unfolding

of the sampled tensor is observed in at least l entries, distributed uniformly at random and
independently across entries, where

l > max

{
12 log

(
ni

ε

)
+ 12, 2ri

}
. (7)

Then, since ni ≤ rin
d−i and according to Theorem 2, with probability at least 1 −

ε, the sampled tensor (TT unfolding matrix) is finitely completable. This results in

nd−i max
{
12 log

(
ni

ε

)
+ 12, 2ri

}
samples in total.

Now, assume that i ≥ d+1
2 and 1 < ri ≤ nd−i

6 . Note that nd−i ≤ rin
i and ni >

ri(n
d−i − ri) hold. Suppose that each row of the i-th TT unfolding of the sampled tensor

is observed in at least l entries, distributed uniformly at random and independently across
entries, where

l > max

{
12 log

(
nd−i

ε

)
+ 12, 2ri

}
. (8)

Then, since nd−i ≤ rin
i and according to Theorem 2, with probability at least 1 −

ε, the sampled tensor (TT unfolding matrix) is finitely completable. This results in

ni max
{
12 log

(
nd−i

ε

)
+ 12, 2ri

}
samples in total.

Assume that i = d
2 and 1 < ri . Then, as the i-th TT unfolding of the sampled tensor is

an ni ×ni matrix, we can simply verify that Theorem 2 is not applicable due the assumption
r(n − r) ≤ N .
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Remark 3 Consider a tensor U that satisfies 1 < ri ≤ ni

6 for i ≤ d−1
2 and 1 < ri ≤ nd−i

6
for i ≥ d+1

2 . According to Corollary 1, the sampled tensor U requires more than

n	 d+1
2 
 max

{
12 log

(
n� d−1

2 �

ε

)
+ 12, 2r� d−1

2 �

}
(9)

samples to be finitely completable with probability at least 1 − ε.

4.2 TT approach

In this section, we are interested in obtaining a better bound on the number of samples than
the one given in Section 4.1 based on our deterministic analysis of the TT manifold. In this
approach, instead of simply using Theorem 2 which is taken from [37], we are interested in
finding the number of sampled entries which ensures conditions (i) and (ii) in the statement
of Theorem 1 to hold with high probability. In particular, in this section, under the uniform
sampling assumption, we find a lower bound on the number of samples to ensure that all
the combinatorial patterns in Theorem 1 (i.e., conditions (i) and (ii)) hold with high prob-
ability, and consequently the tensor admits only a finite number of completions with high
probability.

According to the above-mentioned target for this section, we are interested in finding a
lower bound on the number of sampled entries to ensure that inequalities similar to con-
dition (ii) in the statement of Theorem 1 hold true. The following lemma serves the role
of connecting the number of sampled entries to such inequalities and will be used later to
obtain Lemma 7.

Lemma 5 Assume that r ′ ≤ n
6 and also each column of Ω(1) (first Tucker unfolding of Ω)

includes at least l nonzero entries, where

l > max

{
9 log

(n

ε

)
+ 3 log

(
k

ε

)
+ 6, 2r ′

}
. (10)

Let Ω ′
(1) be an arbitrary set of n − r ′ columns of Ω(1) and 0 < ε < 1 be given. Then, with

probability at least 1 − ε
k
, every subset Ω ′′

(1) of columns of Ω
′
(1) satisfies

m1(Ω
′′) − r ′ ≥ t, (11)

where t is the number of columns of Ω ′′
(1) and m1(Ω

′′) is the number of nonzero rows of
Ω ′′

(1).

Proof Please refer to the proof of [37, Lemma 9]. Note that the only difference is that the
last inequalities of (16) and (18) in [37] should now be upper bounded by ε

rd
instead of

ε

d2
.

Note that (11) is still very different from the inequalities required for condition (ii) in
Theorem 1. Hence, in this section, starting from (11) we will obtain inequalities that are
more similar to inequalities in condition (ii) in Theorem 1.

The following lemma provides a bound on the number of sampled entries in each column
of the j -th TT unfolding of the sampled tensor such that the i-th Tucker unfolding of the
subtensor corresponding to a columns of the j -th TT unfolding includes more than the RHS
of (10) observed entries of Ω with different values of the i-th coordinate.
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Lemma 6 Assume that r ′ ≤ n
6 and let j ∈ {1, 2, . . . , d − 1} be a fixed number and also

0 < ε < 1 be given. Consider an arbitrary set Ω̃ ′
(j) of n − r ′ columns of Ω̃(j) (j -th TT

unfolding of Ω). Assume that n > max{200,∑d−1
k=1rk−1rk}, and also each column of Ω̃(j)

includes at least l nonzero entries, where

l > max

{
27 log

(n

ε

)
+ 9 log

(
2r

ε

)
+ 18, 6r ′

}
, (12)

where r ≤ ∑d−1
k=1rk−1rk (recall that r0 = rd = 1). Then, with probability at least 1 − ε

2r ,

each column of Ω̃ ′
(j) includes more than l0 � max

{
9 log

(
n
ε

) + 3 log
(
2r
ε

)
+ 6, 2r ′

}

observed entries of Ω with different values of the i-th coordinate, i.e., the i-th Tucker
unfolding of the tensor Ω ′ that corresponds to Ω̃ ′

(j) includes more than l0 nonzero rows,
1 ≤ i ≤ j .

Proof Each column of Ω̃ ′
(j) includes nj entries and they can be represented by (x1, . . . , xj )

for 1 ≤ xk ≤ n and 1 ≤ k ≤ j , where xk denotes the k-th coordinate of the corresponding
entry. Let P(ζ ) be the probability that at least one of the columns of Ω̃ ′

(j) includes at most
l0 observed entries of Ω with different values of the i-th coordinate. Also, let P(ζs) denote
the probability that the s-th column of Ω̃ ′

(j) includes at most l0 observed entries of Ω with
different values of the i-th coordinate, 1 ≤ s ≤ n−r ′. Then, we have P(ζ ) ≤ (n−r ′)P (ζ1).

By assumption, each column of Ω̃ ′
(j) includes more than 3l0 observed entries. In the case

that the first column of Ω̃ ′
(j) includes at most l0 observed entries of Ω with different values

of the i-th coordinate, we conclude the set of i-th coordinates of all observed entries of this
column (which are more than 3l0 entries) belong to a set with at most l0 numbers. As it is
assumed to have the uniform random sampling, we have

P(ζ1) ≤
(

n

l0

) (
l0

n

)3l0
. (13)

Furthermore, we have
(

n

l0

)
= n(n − 1) . . . (n − l0 + 1)

l0! ≤ nl0

l0! ≤
(

ne

l0

)l0

, (14)

where the last inequality holds since el0 = ∑∞
k=0

l0
k

k! ≥ l0
l0

l0! . Having (13) and (14), we can
conclude

P(ζ1) ≤ el0

(
l0

n

)2l0
=

(
e
1
2 l0

n

)2l0

, (15)

and therefore

log (P (ζ )) ≤ log
(
(n − r ′)P (ζ1)

) (a)
< 2l0

(
1

2
+ log(l0) − log(n)

)
+ log(n)

(b)≤ 2l0

(
1

2
+log(l0)−log(n)

)
+ 1

9
l0=2l0

(
13

18
+log(l0)−log(n)

)
− l0

3
, (16)

where (a) follows from the fact that log(n − r ′) < log(n) and (b) follows from l0 ≥
9 log(n) − 9 log(ε) ≥ 9 log(n) which is easy to verify having the definition of l0. On the
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other hand, we have

− l0

3
≤ −3 log

(n

ε

)
− log

(
2r

ε

)
− 2 = 4 log(ε) − 3 log(n) − log(2r) − 2

(c)
< log(ε) − log(2r) = log

( ε

2r

)
, (17)

where (c) follows from 3 log(ε) − 3 log(n) − 2 < 0 since log(ε) < 0 < log(n). Moreover,
for the term 13

18 + log(l0) − log(n), there are following two possibilities:

(i) l0 = 2r ′: We conclude 13
18 + log(l0) − log(n) < log(2.06) + log(2r ′) − log(n) =

log
(
4.12 r ′

n

)
< 0, where the last inequality is a simple result of the assumption r ′ ≤ n

6 .

(ii) l0 = 9 log
(

n
ε

) + 3 log
(
2r
ε

)
+ 6: Recall that r ≤ ∑d−1

k=1rk−1rk < n, and therefore

l0 ≤ 12 log(n) + 6 + 3 log(2). Then, having the assumption 200 < n, we simply
conclude 13

18 + log(l0) − log(n) ≤ 13
18 + log(12 log(n) + 6 + 3 log(2)) − log(n) < 0.

Therefore, the assumptions max{200,∑d−1
k=1rk−1rk} < n and r ′ ≤ n

6 result in

13

18
+ log(l0) − log(n) ≤ 0. (18)

Having (16), (17), and (18) result that log (P (ζ )) < log
(

ε
2r

)
, and the proof is

complete.

The following lemma exploits Lemma 5 and Lemma 6 to provide a bound on the number
of sampled entries in each column of the j -th TT unfolding of the sampled tensor such that
the i-th Tucker unfolding of the subtensor corresponding to a subset of columns of the j -th
TT unfolding satisfies the property in the statement of Lemma 5 with high probability.

Lemma 7 Let j ∈ {1, 2, . . . , d − 1} be a fixed number and 0 < ε < 1 be given. Assume
that r ′

i ≤ n
6 , where i ∈ {1, . . . , j}. Consider an arbitrary set Ω̃ ′

(j) of n− r ′
i columns of Ω̃(j).

Assume that n > max{200,∑d−1
k=1rk−1rk}, and also each column of Ω̃(j) includes at least l

nonzero entries, where

l > max

{
27 log

(n

ε

)
+ 9 log

(
2r

ε

)
+ 18, 6r ′

i

}
, (19)

where r ≤ ∑d−1
k=1rk−1rk (recall that r0 = rd = 1). Then, with probability at least 1 − ε

r
,

every subset Ω̃ ′′
(j) of columns of Ω̃

′
(j) satisfies

mi(Ω
′′) − r ′

i ≥ t, (20)

where t is the number of columns of Ω̃ ′′
(j) and Ω ′′ is the corresponding tensor such that Ω̃ ′′

(j)

is the j -th TT unfolding of Ω ′′.

Proof Each column of Ω̃(j) includes nj entries and they can be represented by (x1, . . . , xj )

for 1 ≤ xk ≤ n and 1 ≤ k ≤ j , where xk denotes the k-th coordinate of the corresponding
entry. According to Lemma 6, with probability at least 1− ε

2r , each column of Ω̃(j) includes

more than max
{
9 log

(
n
ε

) + 3 log
(
2r
ε

)
+ 6, 2r ′

}
observed entries with different values of

the i-th coordinate. Therefore, according to Lemma 5, with probability at least
(
1 − ε

2r

)2,
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every subset Ω̃ ′′
(j) of columns of Ω̃ ′

(j) satisfies (20). The proof is complete as
(
1 − ε

2r

)2 ≥
1 − ε

r
.

Note that we are interested in obtaining a condition in terms of the number of samples to
ensure finite completability, i.e., to certify the given conditions on the constraint tensor Ω̆

(not the sampling patternΩ) in Theorem 1 hold, with high probability. However, it is clear to
observe given that the number of samples satisfies some inequalities, it is less complicated to
verify the mentioned combinatorial conditions on the sampling pattern. Then, the following
lemma connects the conditions in terms of the number of samples and the combinatorial
conditions on the constraint tensor. In particular, the following lemma states that, if the
property in Lemma 5 holds for the sampling pattern Ω , then it will be satisfied for Ω̆ as
well. The following lemma is taken from [4, Lemma 18].

Lemma 8 Let r ′ be a given nonnegative integer and 1 ≤ i ≤ j ≤ d − 1. Assume that there
exists an nj × (n − r ′) matrix Ω̃ ′

(j) composed of n − r ′ columns of Ω̃(j) such that each

column of Ω̃ ′
(j) includes at least r

′ + 1 nonzero entries and satisfies the following property:

– Denote an nj × t matrix (for any 1 ≤ t ≤ n − r ′) composed of any t columns of Ω̃ ′
(j)

by Ω̃ ′′
(j). Then

mi(Ω
′′) − r ′ ≥ t . (21)

Then, there exists an nj × (n − r ′) matrix ˜̆
�

′
(j) such that: each column has exactly r ′ + 1

entries equal to one, and, if ˜̆
�

′
(j)(x, y) = 1, then we have Ω̃ ′

(j)(x, y) = 1. Moreover, ˜̆
�

′
(j)

satisfies the above-mentioned property.

The following lemma makes use of Lemma 8 to extend the result of Lemma 7 to some
combinatorial properties on the constraint tensor.

Lemma 9 Assume that 1 ≤ i ≤ j ≤ d − 1 and consider r ′ matrices Ω̃ ′
(j)k

each composed

from n − r ′
i columns of Ω̃(j) indexed by disjoint sets for 1 ≤ k ≤ r ′, where r ′

i ≤ n
6 and

r ′ ≤ r ≤ ∑d−1
k=1rk−1rk . Let 0 < ε < 1 be given and Ω̃ ′

(j) denote the union of all r ′

sets of columns Ω̃ ′
(j)k

’s, and therefore it includes r ′(n − r ′
i ) columns. Assume that n >

max{200,∑d−1
k=1rk−1rk}, and also each column of Ω̃(j) includes at least l nonzero entries,

where

l > max

{
27 log

(n

ε

)
+ 9 log

(
2r

ε

)
+ 18, 6r ′

i

}
. (22)

Then, there exists an nj × r ′(n − r ′
i ) matrix

˜̆
Ω

′
(j) such that each column has exactly r ′

i + 1

entries equal to one, and if ˜̆
Ω

′
(j)(x, y) = 1 then we have Ω̃ ′

(j)(x, y) = 1 and also it satisfies

the following property: with probability at least 1 − εr ′
r
, every subset ˜̆

Ω
′′
(j) of columns of

˜̆
Ω

′
(j) satisfies the following inequality

r ′ (mi(Ω̆
′′) − r ′

i

)
≥ t, (23)

where t is the number of columns of ˜̆
Ω

′′
(j) and Ω̆ ′′ is the corresponding tensor such that

˜̆
Ω

′′
(j) is the j -th TT unfolding of Ω̆ ′′.
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Proof Consider any subset Ω̃ ′′
(j)k

of columns of Ω̃ ′
(j)k

and consider its corresponding tensor

Ω ′′
k such that the j -th TT unfolding of Ω ′′

j is Ω̃ ′′
(j)k

. First of all, according to Lemma 7, Ω ′′
k

satisfies the following inequality with probability at least 1 − ε
r

mi(Ω
′′
k ) − r ′

i ≥ tk, (24)

where tk is the number of columns of Ω̃ ′′
(j)k

.

According to Lemma 8, there exists an nj × (n− r ′
i ) matrix ˜̆

Ω
′
(j)k

such that each column

has exactly r ′
i +1 entries equal to one, and if ˜̆

Ω
′
(j)k

(x, y) = 1 then we have Ω̃ ′
(j)k

(x, y) = 1
and also it satisfies the following property: with probability at least 1 − ε

r
, every subset

˜̆
Ω

′′
(j)k

of columns of ˜̆
Ω

′
(j)k

satisfies (24). Define the union of the columns of ˜̆
Ω

′
(j)k

’s as
˜̆
Ω

′
(j) = [˜̆Ω ′

(j)1
|˜̆Ω ′

(j)2
| . . . |˜̆Ω ′

(j)r′ ]. In order to complete the proof it suffices to show that

with probability at least 1 − ε, the tensor Ω̆ ′′ corresponding to any subset ˜̆
Ω

′′
(j) of columns

of ˜̆
Ω

′
(j) satisfies (23).

Let ˜̆
Ω

′′
(j)k

denote those columns of ˜̆
Ω

′′
(j) that belong to

˜̆
Ω

′
(j)k

and define sk as the number

of columns of ˜̆
Ω

′′
(j)k

, 1 ≤ k ≤ r ′, and define s as the number of columns of ˜̆
Ω

′′
(j). Without

loss of generality, assume that s1 ≥ s2 ≥ · · · ≥ sr ′ . Also, assume that all Ω ′′
k ’s satisfy (24).

Hence, we have

s =
r ′∑

k=1

sk ≤ r ′s1 ≤ r ′ (mi(Ω̆
′′
1 ) − r ′

i

)
≤ r ′ (mi(Ω̆

′′) − r ′
i

)
. (25)

Observe that each Ω ′′
k satisfies (24) with probability at least 1 − ε

r
. Therefore, all Ω ′′

k ’s

(1 ≤ k ≤ r ′) satisfy (24) with probability at least 1 − εr ′
r
.

Finally, the following theorem exploits Lemma 9 and Theorem 1 to obtain a bound on
the number of sampled entries to ensure finite completability of the sampled tensor, with
high probability.

Theorem 3 Define m = ∑d−2
k=1rk−1rk , M = n

∑d−2
k=1rk−1rk − ∑d−2

k=1r
2
k and r ′ =

max
{

r1
r0

, . . . ,
rd−2
rd−3

}
. Assume that n > max{m, 200} and r ′ ≤ min{ n

6 , rd−2} hold and also

let 0 < ε < 1 be given. Moreover, assume that each column of Ω̃(d−2) includes at least l

nonzero entries, where

l > max

{
27 log

(n

ε

)
+ 9 log

(
2M

ε

)
+ 18, 6rd−2

}
. (26)

Then, with probability at least 1 − ε, the sampled tensor admits only a finite number of
completions with separation rank (r1, r2, . . . , rd−1).

Proof Define the (d −1)-way tensor U ′ ∈ R

d−2︷ ︸︸ ︷
n × · · · × n×n2 which is obtained through merg-

ing the (d − 1)-th and d-th dimensions of the tensor U . Observe that the finiteness of the
number of completions of the tensor U ′ with rank vector (r1, r2, . . . , rd−2) ensures the
finiteness of the number of completions of the tensor U with rank vector (r1, r2, . . . , rd−1).
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According to Theorem 1, it suffices to show that with probability at least 1 − ε, condi-
tions (i) and (ii) in the statement of Theorem 1 hold for the tensor U ′ with rank vector
(r1, r2, . . . , rd−2).

Note that the assumption m < n results that M < n2, and therefore Ω̃(d−2) has least
M columns. Hence, for any 1 ≤ i ≤ d − 2 we can choose ri−1rin − r2i arbitrary columns
of Ω̃(d−2) and denote it by Ω̃ ′

(d−2)i
such that Ω̃ ′

(d−2)i
’s are composed from columns of

Ω̃(d−2) indexed by disjoint sets. Define r ′
i = 	 ri

ri−1

 and note that the assumption r ′ ≤ rd−2

results in that r ′
i ≤ rd−2. As a result, the assumption r ′

i ≤ rd−2 and (26) results in l >

max
{
27 log

(
n
ε

) + 9 log
(
2M
ε

)
+ 18, 6r ′

i

}
. Therefore, according to Lemma 9, there exists

a matrix ˜̆
Ω

′
(d−2)i

with nd−2 rows and ri−1ri

(
n − ri

ri−1

)
= ri−1rin − r2i columns such that:

each column has exactly r ′
i + 1 entries equal to one, and if ˜̆

Ω
′
(d−2)i

(x, y) = 1 then we

have Ω̃ ′
(d−2)i

(x, y) = 1 and also it satisfies the following property: with probability at least

1 − εri−1ri
M

, every subset ˜̆
Ω

′′
(d−2)i

of columns of ˜̆
Ω

′
(d−2)i

satisfies the following

ri−1rimi(Ω̆
′′
i ) − r2i ≥ t, (27)

where t is the number of columns of ˜̆
Ω

′′
(d−2)i

and Ω̆ ′′
i is the corresponding tensor such that

˜̆
Ω

′′
(d−2)i

is the (d −2)-th TT unfolding of Ω̆ ′′
i . Moreover, as we have r ′

i ≤ rd−2, by changing

rd−2 − r ′
i entries from zero to one in each column, we can assume that ˜̆

Ω
′
(d−2)i

has exactly

ri−1rin− r2i columns of the (d − 2)-th TT unfolding of the constraint tensor �̆ and satisfies
the above properties. Let Ω̆ ′

i denote the subtensor of the constraint tensor corresponding to
˜̆
Ω

′
(d−2)i

.

Let ˜̆
Ω

′
(d−2) = [˜̆Ω ′

(d−2)1
| . . . |˜̆Ω ′

(d−2)d−2
] denote the union of ˜̆

Ω
′
(d−2)i

’s and Ω̆ ′ denote
its corresponding subtensor of the constraint tensor. Hence, Ω̆ ′ satisfies condition (i)
in the statement of Theorem 1 for tensor U ′ with rank vector (r1, r2, . . . , rd−2) since
˜̆
Ω

′
(d−2) has

∑d−2
k=1rk−1rkn − ∑d−2

k=1r
2
k columns. Furthermore, with probability at least

1 − ε
M

∑d−2
k=1rk−1rk = 1 − ε, any subtensor Ω̆ ′′ ∈ R

d−2︷ ︸︸ ︷
n × · · · × n×t of tensor Ω̆ ′ satisfies

d−2∑
i=1

(
ri−1rimi(Ω̆

′′) − r2i

)+ ≥
d−2∑
i=1

(
ri−1rimi(Ω̆

′′
i ) − r2i

)+ ≥
d−2∑
i=1

ti = t, (28)

where Ω̆ ′′
i ∈ R

d−2︷ ︸︸ ︷
n × · · · × n×ti are such that Ω̆ ′′ = [Ω̆ ′′

1 | . . . |Ω̆ ′′
d−2] and Ω̆ ′′

i is a subtensor of

Ω̆ ′
i , 1 ≤ i ≤ d − 2. The proof is complete as condition (ii) in the statement of Theorem 1

holds.

Remark 4 A tensor U that satisfies the properties in the statement of Theorem 3 requires

n2 max

{
27 log

(n

ε

)
+ 9 log

(
2M

ε

)
+ 18, 6rd−2

}
(29)
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samples to be finitely completable with probability at least 1 − ε since Ω̃(d−2) has n2

columns, withM = n
∑d−2

k=1rk−1rk−∑d−2
k=1r

2
k , in contrast to the number of samples required

by the TT unfolding approach given in Remark 3.

The following lemma is taken from [2] and is used in Lemma 2 to derive a lower bound
on the sampling probability that results (26) with high probability.

Lemma 10 Consider a vector with n entries where each entry is observed with probability
p independently from the other entries. If p > p′ = k

n
+ 1

4√n
, then with probability at least(

1 − exp(−
√

n
2 )

)
, more than k entries are observed.

Corollary 2 Define m = ∑d−2
k=1rk−1rk , M = n

∑d−2
k=1rk−1rk − ∑d−2

k=1r
2
k and r ′ =

max
{

r1
r0

, . . . ,
rd−2
rd−3

}
. Assume that n > max{m, 200} and r ′ ≤ min{ n

6 , rd−2} hold and also

let 0 < ε < 1 be given. Moreover, assume that the sampling probability satisfies

p >
1

nd−2
max

{
27 log

(n

ε

)
+ 9 log

(
2M

ε

)
+ 18, 6rd−2

}
+ 1

4
√

nd−2
(30)

Then, with probability at least (1 − ε)
(
1 − exp

(
−

√
nd−2

2

))n2

, U is finitely completable.

Proof According to Lemma 10, assumption (30) results that each column of Ω̃(d−2)
includes at least l nonzero entries, where l satisfies (26) with probability at least(
1 − exp

(
−

√
nd−2

2

))
. Therefore, with probability at least

(
1 − exp

(
−

√
nd−2

2

))n2

, all n2

columns of Ω̃(d−2) satisfy (26). Hence, according to Theorem 3, with probability at least

(1 − ε)
(
1 − exp

(
−

√
nd−2

2

))n2

, U is finitely completable.

5 Deterministic and probabilistic conditions for unique completability

As we showed in [2], for matrix and tensor completion problems, finite completability
does not necessarily imply unique completability. Theorem 1 and Theorem 3 character-
ize the deterministic and probabilistic conditions on the sampling pattern Ω for finite
completability, respectively. In this section, we add some additional mild restrictions on
Ω and the number of samples to ensure unique completability. To this end, we obtain
multiple sets of minimally algebraically dependent polynomials and show that the vari-
ables involved in these polynomials can be determined uniquely, and therefore entries
of U can be determined uniquely. The following lemma is a re-statement of Lemma 25
in [4].

Lemma 11 Suppose that Assumption 1 holds. Let Ω̆ ′ ∈ R
n1×n2×···×nd−1×t be an arbitrary

subtensor of the constraint tensor Ω̆ . Assume that polynomials inP(Ω̆ ′) are minimally alge-
braically dependent. Then, all variables (unknown entries) of U (1), U (2), . . . , and U (d−1)

that are involved in P(Ω̆ ′) can be determined uniquely.
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In the following theorem, we use the fundamental analysis and techniques proposed in
previous sections (for finite completability) to extend the result of Theorem 1 to unique
completability. In particular, we characterize a sufficient condition on the constraint tensor
to ensure reduce the number of completions from a finite number to one, with probabil-
ity one. We explain the key point behind the proof of the following theorem. Condition (i)
results in

∑d−1
i=1 ri−1niri − ∑d−1

i=1 r2i algebraically independent polynomials in terms of the
entries of U (1), U (2), . . . , and U (d−1), i.e., results in finite completability. As a result, adding
any single polynomial to these

∑d−1
i=1 ri−1niri − ∑d−1

i=1 r2i algebraically independent poly-
nomials results in a set of algebraically dependent polynomials and according to Lemma 11
some of the entries of U (1), U (2), . . . , and U (d−1) can be determined uniquely. Then, condi-
tion (ii) results in more polynomials such that all entries of U (1), U (2), . . . , and U (d−1) can
be determined uniquely.

Theorem 4 Suppose that Assumption 1 holds. Also, assume that there exist disjoint subten-
sors Ω̆ ′ ∈ R

n1×n2×···×nd−1×M and Ω̆ ′i ∈ R
n1×n2×···×nd−1×Mi (for 1 ≤ i ≤ d − 1) of the

constraint tensor such that the following conditions hold:

(i) M = ∑d−1
k=1rk−1nkrk − ∑d−1

k=1r
2
k , and for any t ∈ {1, . . . , M} and any subtensor

Ω̆ ′′ ∈ R
n1×n2×···×nd−1×t of the tensor Ω̆ ′, the following inequality holds

d−1∑
k=1

(
rk−1rkmk(Ω̆

′′) − r2k

)+ ≥ t . (31)

(ii) for each i ∈ {1, . . . , d − 1} we have Mi = ni − � ri
ri−1

�, and for any ti ∈ {1, . . . ,Mi}
and any subtensor Ω̆ ′′i ∈ R

n1×n2×···×nd−1×ti of the tensor Ω̆ ′i , the following inequality
holds

mi(Ω̆
′′) − ri

ri−1
≥ ti − ri

ri−1
(ti − Mi + 1)+. (32)

Then, with probability one, there exists only a unique tensor that fits in the sampled
tensor U , and has TT rank (r1, r2, . . . , rd−1).

Proof According to the proof of Theorem 1, P(Ω̆ ′) includes M = ∑d−1
i=1 ri−1niri −∑d−1

i=1 r2i algebraically independent polynomials which results the finite completability of
the sampled tensor U and let {p1, . . . , pM } denote these M algebraically independent poly-
nomials. Also, M is the number of total variables among the polynomials, and therefore
adding any polynomial p0 to {p1, . . . , pM } results in a set of algebraically dependent
polynomials. As a result, there exists a set of polynomials P(Ω̆ ′′) such that P(Ω̆ ′′) ⊂
{p1, . . . , pM } and also polynomials in P(Ω̆ ′′) ∪ p0 are minimally algebraically dependent
polynomials. Hence, according to Lemma 11, all the variables involved in the polynomials
P(Ω̆ ′′) ∪ p0 can be determined uniquely. As a result, all variables involved in p0 can be
determined uniquely.

We can repeat the above procedure for any polynomial p0 ∈ P(Ω̆ ′i ) to determine the
involved variables uniquely with the help of {p1, . . . , pM }, i = 1, . . . , d − 1. Hence, we
obtain

∑d−1
k=1rk−1rk polynomials but some of the entries of TT decomposition are elements

of the Qi matrices (in the statement of Lemma 17). In order to complete the proof, we need
to show that condition (ii) with the above procedure using {p1, . . . , pM } results in obtaining
all variables uniquely. In particular, we show that polynomials in P(Ω̆ ′i ) result in obtaining
all variables of the i-th element of TT decomposition uniquely.
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Note that since ti ≤ Mi , we have (ti−Mi+1)+ = 1 if ti−Mi = 0 and (ti−Mi+1)+ = 0
otherwise. Hence, if ti < Mi condition (ii) can be written as

ri−1rimi(Ω̆
′′) − ri

2 ≥ ri−1ri ti , (33)

which certifies the algebraically independence of the corresponding polynomials obtained
by the mentioned procedure. Observe that we need ri−1rini − r2i algebraically independent
polynomials and in the case that ti = Mi , condition (ii) results in ri−1rini −r2i algebraically
independent polynomials.

Theorem 4 provides the deterministic condition on the sampling pattern Ω for unique
completability. Using Theorem 4 we provide a bound on the number of samples to ensure
unique completability with high probability. We first need to extended some of the lemmas
in Section 4 to obtain a condition on the number of samples to ensure condition (ii) in the
statement of Theorem 4 holds with high probability. Note that Condition (i) is the same
condition for finite completability and we already have the corresponding bound.

In the rest of this section, for the sake of simplicity, as in Section 4 we consider the

sampled tensor U ∈ R

d︷ ︸︸ ︷
n × · · · × n.

Lemma 12 Assume that r ′ ≤ n
6 and also each column of Ω(1) (first Tucker unfolding of Ω)

includes at least l nonzero entries, where

l > max

{
21 log

(n

ε

)
+ 3 log

(
k

ε

)
+ 6, 2r ′

}
. (34)

Let Ω ′
(1) be an arbitrary set of n − r ′ + 1 columns of Ω(1) and 0 < ε < 1 be given. Then,

with probability at least 1 − ε
k
, every proper subset Ω ′′

(1) of columns of Ω
′
(1) satisfies

m1(Ω
′′) − r ′ ≥ t, (35)

where t is the number of columns of Ω ′′
(1) and m1(Ω

′′) is the number of nonzero rows of
Ω ′′

(1).

Proof Note that (34) results the following

l > max

{
9 log

(
n
ε
n

)
+ 3 log

(
k
ε
n

)
+ 6, 2r ′

}
. (36)

Consider n − r ′ columns of Ω ′
(1). According to Lemma 5, with probability at least 1 − ε

nk
,

any subset of columns Ω ′′
(1) of these n − r ′ particular columns of Ω ′

(1) satisfies (35). Since
there are n possible subsets of columns of Ω ′

(1) with n − r ′ columns, with probability at
least 1 − ε

k
, every proper subset Ω ′′

(1) of columns of Ω ′
(1) satisfies (35).

Lemma 13 Assume that r ′ ≤ n
6 and let j ∈ {1, 2, . . . , d − 1} be a fixed number and also

0 < ε < 1 be given. Consider an arbitrary set Ω̃ ′
(j) of n − r ′ columns of Ω̃(j) (j -th TT

unfolding of Ω). Assume that n > max{400,∑d−1
k=1rk−1rk}, and also each column of Ω̃(j)

includes at least l nonzero entries, where

l > max

{
63 log

(n

ε

)
+ 9 log

(
2r

ε

)
+ 18, 6r ′

}
, (37)
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where r ≤ ∑d−1
k=1rk−1rk (recall that r0 = rd = 1). Then, with probability at least 1 − ε

2r ,

each column of Ω̃ ′
(j) includes more thanmax

{
21 log

(
n
ε

) + 3 log
(
2r
ε

)
+ 6, 2r ′

}
observed

entries of Ω with different values of the i-th coordinate, 1 ≤ i ≤ j .

Proof The proof is similar to the proof of Lemma 6 and the only difference is in the
calculations of P(ζ ), where for this lemma n > 400 is needed instead of n > 200.

Lemma 14 Let j ∈ {1, 2, . . . , d − 1} be a fixed number and also 0 < ε < 1 be
given. Assume that r ′

i ≤ n
6 , where r ′

i is rational and non-integer and also i ∈ {1, . . . , j}.
Consider a matrix Ω̃ ′

(j) composed from n − �r ′
i� arbitrary columns of Ω̃(j). Assume that

n > max{400,∑d−1
k=1rk−1rk}, and also each column of Ω̃(j) includes at least l nonzero

entries, where

l > max

{
63 log

(n

ε

)
+ 9 log

(
2r

ε

)
+ 18, 6	r ′

i

}

, (38)

where r ≤ ∑d−1
k=1rk−1rk (recall that r0 = rd = 1). Then, with probability at least 1 − ε

r
,

every proper subset Ω̃ ′′
(j) of columns of Ω̃

′
(j) satisfies

mi(Ω
′′) − 	r ′

i
 ≥ t, (39)

where t is the number of columns of Ω̃ ′′
(j) and Ω ′′ is the corresponding tensor such that Ω̃ ′′

(j)

is the j -th TT unfolding of Ω ′′.

Proof Each column of Ω̃(j) includes nj entries and they can be represented by (x1, . . . , xj )

for 1 ≤ xk ≤ n and 1 ≤ k ≤ j , where xk denotes the k-th coordinate of the correspond-
ing entry. According to Lemma 13, with probability at least 1 − ε

2r , each column of Ω̃(j)

includes more than max
{
21 log

(
n
ε

) + 3 log
(
2r
ε

)
+ 6, 2	r ′

i

}
observed entries with dif-

ferent values of the i-th coordinate. Therefore, as 	r ′
i
 = �r ′

i� + 1 and according to Lemma

12, with probability at least
(
1 − ε

2r

)2 which is more than 1 − ε
r
, every proper subset Ω̃ ′′

(j)

of columns of Ω̃ ′
(j) satisfies (39).

Theorem 5 Define m = ∑d−2
k=1rk−1rk , M = n

∑d−2
k=1rk−1rk − ∑d−2

k=1r
2
k and r ′ =

max
{

r1
r0

, . . . ,
rd−2
rd−3

}
. Assume that n > max{m + d, 400} and r ′ ≤ min{ n

6 , rd−2} hold and

also let 0 < ε < 1 be given. Moreover, assume that each column of Ω̃(d−2) includes at least
l nonzero entries, where

l > max

{
63 log

(
4n

ε

)
+ 9 log

(
8M

ε

)
+ 18, 6rd−2

}
. (40)

Then, with probability at least 1− ε, there exists only one completion of the sampled tensor
U with rank vector (r1, r2, . . . , rd−1).

Proof According to Theorem 3, with probability at least 1− ε
4 , condition (i) in the statement

of Theorem 4 holds true. Moreover, as M > d and according to Lemma 14, with probability
at least 1− ε

2d , condition (ii) is satisfied for each i. Therefore, with probability at least 1−ε,
conditions (i) and (ii) in the statement of Theorem 4 hold.
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Remark 5 A tensor U that satisfies the properties in the statement of Theorem 5 requires

n2 max

{
63 log

(
4n

ε

)
+ 9 log

(
8M

ε

)
+ 18, 6rd−2

}
(41)

samples to be uniquely completable with probability at least 1 − ε since Ω̃(d−2) has n2

columns, where M = n
∑d−2

k=1rk−1rk−∑d−2
k=1r

2
k . Note that the number of samples given in

Theorem 3 of [37] results in both finite and unique completability, and therefore the number
of samples required by the TT unfolding approach given in Remark 3 is for both finite and
unique completability.

Corollary 3 Define m = ∑d−2
k=1rk−1rk , M = n

∑d−2
k=1rk−1rk − ∑d−2

k=1r
2
k and r ′ =

max
{

r1
r0

, . . . ,
rd−2
rd−3

}
. Assume that n > max{m + d, 400} and r ′ ≤ min{ n

6 , rd−2} hold and

also let 0 < ε < 1 be given. Moreover, assume that the sampling probability satisfies

p >
1

nd−2
max

{
63 log

(
4n

ε

)
+ 9 log

(
8M

ε

)
+ 18, 6rd−2

}
+ 1

4
√

nd−2
(42)

Then, with probability at least (1 − ε)
(
1 − exp(−

√
nd−2

2 )
)n2

, U is uniquely completable.

Proof Using Theorem 5, the proof is similar to the proof of Lemma 2.

6 Numerical comparisons

In this section, we compute the total number of samples that is required for finite-
ness/uniqueness using an example to compare the TT unfolding approach and the TT

Fig. 1 Lower bounds on the number of samples for a 7-way tensor with rank vector (r, 2r, 3r, 3r, 2r, r)
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Fig. 2 Lower bounds on the number of samples for a 7-way tensor with rank vector (r, r2, r3, r3, r2, r)

approach. In this numerical example, we consider a 7-way tensor U (d = 7) such
that each dimension size is n = 103. We also consider the TT rank (r1, r2, . . . , r6) =
(r, 2r, 3r, 3r, 2r, r) and (r1, r2, . . . , r6) = (r, r2, r3, r3, r2, r) in Figs. 1 and 2, respectively.
Figures 1 and 2 plot the bounds given in Remark 3 (TT unfolding approach for either
finite or unique completability), Remark 4 (TT approach for finite completability), and
Remark 5 (TT approach for unique completability) for the corresponding rank vector, where
ε = 0.001. We change the value of r from 1 to 80 which is denoted by “rank” in Fig. 1 and
from 1 to 20 in Fig. 2. It is seen that the number of samples required by the proposed TT
approach is substantially lower than that is required by the TT unfolding approach.

Note that our probabilistic conditions in Theorems 3 and 5 provides lower bounds on
the number of samples to guarantee finite and unique completability with high probability
under uniform sampling. Although O(D), where D is the dimension of the TT-manifold,
is an intuitive lower bound on the number of samples needed for completion, there is no
theoretical guarantee.

Therefore, Figs. 1 and 2 indicate that our probabilistic conditions are tight (close to the
absolute lower bound O(D)) in some cases (e.g., all cases in Fig. 2 and when r ≥ 70 in
Fig. 1), and there might be room for potential improvement in other cases (e.g., when r ≤ 50
in Fig. 1).

7 Conclusions

This paper characterizes fundamental conditions on the sampling pattern for finite com-
pletability of a low TT rank and partially sampled tensor through a new algebraic geometry
analysis on the TT manifold. We defined a polynomial based on each sampled entry and
exploited the structure of the TT decomposition to study the algebraic independence of these
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polynomials based on the locations of the samples. We also developed a canonical struc-
ture on the TT decomposition, which can be treated as an equivalence class that partitions
all TT decompositions of one particular tensor to different classes. This equivalence class
is helpful to study the algebraic independence of the defined polynomials. Using the devel-
oped tools on the TT manifold, we characterized the maximum number of algebraically
independent polynomials among all the defined polynomials in terms of a simple geometric
structure of the sampling pattern. Our analysis results in the following fundamental con-
ditions for low-TT-rank tensor completion: (i) The necessary and sufficient deterministic
conditions on the sampling pattern, under which there are only finite completions given
the TT rank, (ii) Deterministic sufficient conditions on the sampling pattern, under which
there exists exactly one completion given the TT rank, (iii) Lower bounds on the number of
samples that leads to finite/unique completability with high probability. Although this work
provides only lower bounds on the sampling rate to ensure unique (finite) completability, in
[7], we developed completion algorithms based on Newton’s method to solve the system of
polynomials resulted from the rank decomposition and the sampled entries. It was observed
that the proposed approach performs much better than the conventional completion meth-
ods such as alternating minimization and nuclear norm minimization when the sampling
rate is very low and close to the lower bound given by the probabilistic analysis. Moreover,
the analysis in this work has been used in [6] to approximate the TT-rank of a sampled
tensor.

Acknowledgments This work was supported in part by the U.S. National Science Foundation under Grant
CCF-1814803 and in part by the U.S. Office of Naval Research under Grant N000141712827.

Appendix: A Canonical Decomposition and The Degree of Freedom

We are interested in providing a structure on the decomposition U such that there is one
decomposition among all possible decompositions of the sampled tensor U that captures the
structure. Before describing such a structure on TT decomposition, we start with a similar
structure for matrix decomposition.

Lemma 15 LetX denote a generically chosen matrix from the manifold of n1×n2 matrices
of rank r . Then, there exists a unique decomposition X = YZ such that Y ∈ R

n1×r , Z ∈
R

r×n2 and Y(1 : r, 1 : r) = Ir , where Y(1 : r, 1 : r) represents the submatrix of Y consists
of the first r columns and the first r rows and Ir denotes the r × r identity matrix.

Proof Weshow that there exists exactly one decomposition X = YZ such that Y(1 : r, 1 :
r) = Ir with probability one. Considering the first r rows of X = YZ, we conclude X(1 :
r, :) = IrZ = Z. Therefore, we need to show that there exists exactly one Y(r + 1 : n1, :)
such that X(r + 1 : n1, :) = Y(r + 1 : n1, :)Z or equivalently X(r + 1 : n1, :)� = X(1 : r, :
)�Y(r+1 : n1, :)�. It suffices to show that each column ofY(r+1 : n1, :) can be determined
uniquely having x = X(1 : r, :)�y where x ∈ R

n2×1 and y ∈ R
r×1. As X is a generically

chosen n1×n2 matrix of rank r , we have rank (X(1 : r, :)) = r with probability one. Hence,
x(1 : r) = X(1 : r, 1 : r)�y results in r independent degree-1 equations in terms of the r

variables (entries of y), and therefore y has exactly one solution with probability one.
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Remark 6 Note that the genericity assumption is necessary as we can find counter examples
for Lemma 15 in the absence of genericity assumption, e.g., it is easily verified that the
following decomposition is not possible:

Remark 7 Assume that Q ∈ R
r×r is an arbitrary given full rank matrix. Then, for any

submatrix1 P ∈ R
r×r of Y, Lemma 15 also holds if we replace Y(1 : r, 1 : r) = Ir by

P = Q in the statement. The proof is similar to the proof of Lemma 15 and thus it is omitted.

As mentioned earlier, similar to the matrix case, we are interested in obtaining a struc-
ture on TT decomposition of a tensor such that there exists one decomposition among all
possible TT decompositions of a tensor that captures the structure. Hence, we define the fol-
lowing structure on the decomposition in order to characterize a condition on the sampling
pattern to study the algebraic independency of the above-mentioned polynomials.

Definition 4 Consider any d−1 submatrices P1, . . . ,Pd−1 ofU(1),U(2)
(2),U

(3)
(2), . . . , U

(d−1)
(2) ,

respectively such that (i) Pi ∈ R
ri×ri , i = 1, . . . , d − 1, (ii) the ri columns of U(i)

(2) corre-

sponding to columns of Pi belong to ri distinct rows of U
(i)
(3), i = 2, . . . , d − 1. Then, U is

said to have a proper structure if Pi is full rank, i = 1, . . . , d .2

Define the matrices Pcan
1 , . . . ,Pcan

d−1 such that for any 1 ≤ xi ≤ ri and any 1 ≤ x′
i ≤ ri

we have:
Pcan

i (xi , ki) = U (i)(1, xi, ki) ∈ R
ri×ri , i = 2, . . . , d − 1, (43)

and
Pcan
1 (x1, k1) = U (1)(x1, k1) ∈ R

r1×r1 . (44)
It is easy to verify that Pcan

1 , . . . ,Pcan
d−1 satisfy properties (i) and (ii) in Definition 4.

Definition 5 (Canonical basis) We call U a canonical decomposition if for i = 1, . . . , d
we have Pcan

i = Iri , where Iri is the ri × ri identity matrix.

Lemma 16 Consider the TT decomposition in (1). Then, U(1) ∈ R
n1×r1 , U(d) ∈ R

rd−1×nd ,
U(i)

(1) ∈ R
ri−1×niri and U(i)

(3) ∈ R
ri×ri−1ni , i = 2, . . . , d − 1, are full rank matrices.

Proof In general, besides the separation rank (r1, . . . , rd−1), we may be able to obtain
a TT decomposition for other vectors (r ′

1, . . . , r
′
d−1) as well. However, according to [20]

among all possible TT decomposition for different values of r ′
i ’s, r ′

i = rank(Ũ(i)) = ri ,
i = 1, . . . , d − 1, is minimal, in the sense that there does not exist any decomposition with

1Specified by a subset of rows and a subset of columns (not necessarily consecutive).
2Since U (1) and U (d) are two-way tensors, i.e., matrices we also denote them by U(1) and U(d). Moreover,

since U (i) is a three-way tensor, Ũ(i)
(2) = U(i)�

(3) , i = 2, . . . , d − 1.
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r ′
i ’s such that r ′

i ≤ ri for i = 1, . . . , d − 1 and r ′
i < ri for at least one i ∈ {1, . . . , d − 1}.

By contradiction, assume that U(i+1)
(1) is not full rank. Then, rank

(
Ũ(i)

(2)U
(i+1)
(1)

)
< ri .

Let X denote the matrix Ũ(i)
(2)U

(i+1)
(1) . Since rank (X) = r ′

i < ri , there exists a decompo-

sition X = Ũ(i)′
(2)U

(i+1)′
(1) such that Ũ(i)′

(2) ∈ R
ri−1ni×r ′

i and also U(i+1)′
(1) ∈ R

r ′
i×ni+1ri+1 . Hence,

the existence of the TT decomposition with U (i) and U (i+1) replaced by U (i)′ and U (i+1)′

contradicts the above-mentioned minimum property of the separation rank. Note that for a
three-way tensor, the second TT unfolding is the transpose of the third Tucker unfolding, and

therefore rank
(
Ũ(i)

(2)

)
= rank

(
U(i)

(3)

)
and the rest of the cases can be verified similarly.

Lemma 17 Assume that Qi ∈ Rri×ri is an arbitrary given full rank matrix, 1 ≤ i ≤ d − 1.
Consider a set of matrices P1, . . . ,Pd−1 that satisfy properties (i) and (ii) in Definition 4.
Then, there exists exactly one decomposition U of the sampled tensor U such that Pi = Qi ,
i = 1, . . . , d − 1.

Proof Consider an arbitrary decomposition U of the sampled tensor U . Let A(i) =
U (i)U (i+1) ∈ R

ri−1×ni×ni+1×ri+1 , i = 1, . . . , d − 1, where the above multiplication is
the same tensor multiplication in TT decomposition (1). Note that for a three-way ten-
sor, the second TT unfolding is the transpose of the third Tucker unfolding, and therefore

their ranks are the same. According to Lemma 16, rank
(
U(1)

) = rank
(
U(2)

(1)

)
= r1,

rank
(
Ũ(2)

(2)

)
= rank

(
U(3)

(1)

)
= r2, . . . , and rank

(
Ũ(d−1)

(2)

)
= rank

(
U(d)

) = rd−1.

As a result, we have rank
(
U(1)U(2)

(1)

)
= r1, rank

(
Ũ(2)

(2)U
(3)
(1)

)
= r2, . . . ,

rank
(
Ũ(d−1)

(2) U(d)
)

= rd−1. Observe that Ũ
(i)
(2)U

(i+1)
(1) = Ã(i)

(2), and therefore rank
(
Ã(i)

(2)

)
= ri

for i = 2, . . . , d − 2 and similarly rank
(
Ã(1)

(1)

)
= r1 and rank

(
Ã(d)

(2)

)
= rd . According to

Lemma 15 and Remark 7, for an n1 ×n2 matrix X of rank r there exists a unique decompo-
sition X = X1X2 such that X1 ∈ R

n1×r and X2 ∈ R
r×n2 and an arbitrary r × r submatrix

of X1 is equal to the given r × r full rank matrix.
We claim that there exist (V (i),V (i+1)) such that V (i)V (i+1) = A(i) and the correspond-

ing submatrix Pi is equal to the given full rank matrix Qi , i = 1, . . . , d − 1. We repeat
this procedure for each i = 1, . . . , d − 1 and update two core tensors of TT decompo-
sition (V (i),V (i+1)) at iteration i and at the end, we obtain a TT decomposition that has
the mentioned structure in the statement of Lemma 17. In the following we show the exis-
tence of such (V (i),V (i+1)) at each iteration. At step one, we find (V (1),V (2)) such that
V (1)V (2) = A(1) and the corresponding submatrix P1 of V (1) is equal to Q1. We update the
decomposition with U (1) and U (2) replaced by V (1) and V (2), and therefore we obtain a new
decomposition U

1 of the sampled tensor U such that the submatrix of V (1) corresponding
to P1 is equal to Q1. Then, in step 2 we consider A(2) and similarly we update the sec-
ond and third factor of the decomposition obtained in the last step. Eventually after d − 1
steps, we obtain a decomposition of the sampled tensor U that Pi = Qi , i = 1, . . . , d − 1.
To show the uniqueness of such decomposition, we show that each core tensor of the TT
decomposition can be determined uniquely. Remark 7 for rank component r1 results that
U (1) and the multiplication of the rest of the core tensors of the TT decomposition can be
determined uniquely. By repeating this procedure for other rank components the uniqueness
of such decomposition can be verified by showing the uniqueness of the core tensors one
by one.
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Lemma 17 leads to the fact that given U (d), the dimension of all tuples
(U (1), . . . ,U (d−1)) that satisfy TT decomposition is

∑d−1
i=1 ri−1niri − ∑d−1

i=1 r2i , as∑d−1
i=1 ri−1niri is the total number of entries of (U (1), . . . ,U (d−1)) and

∑d−1
i=1 r2i is the total

number of the entries of the pattern or structure that is equivalent to the uniqueness of TT
decomposition. We make the following assumption which will be referred to, when it is
needed.

Note that for Lemma 17, we need the strong low-rankness assumption ri ≤ ni . However,
these results are also consequences of the analysis in [20]. The purpose is to present a simple
and intuitive proof.
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