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Deterministic and Probabilistic Conditions for Finite
Completability of Low-Tucker-Rank Tensor

Morteza Ashraphijuo , Vaneet Aggarwal , Senior Member, IEEE, and Xiaodong Wang , Fellow, IEEE

Abstract— We investigate the fundamental conditions on the
sampling pattern, i.e., locations of the sampled entries, for finite
completability of a low-rank tensor given some components of
its Tucker rank. In order to find the deterministic necessary
and sufficient conditions, we propose an algebraic geometric
analysis on the Tucker manifold, which allows us to incorporate
multiple rank components in the proposed analysis in contrast
with the conventional geometric approaches on the Grassmannian
manifold. This analysis characterizes the algebraic independence
of a set of polynomials defined based on the sampling pattern,
which is closely related to finite completability of the sampled
tensor, where finite completability simply means that the number
of possible completions of the sampled tensor is finite. Prob-
abilistic conditions are then studied and a lower bound on
the sampling probability is given, which guarantees that the
proposed deterministic conditions on the sampling patterns for
finite completability hold with high probability. Furthermore,
using the proposed geometric approach for finite completability,
we propose a sufficient condition on the sampling pattern that
ensures there exists exactly one completion of the sampled tensor.

Index Terms— Low-rank tensor completion, finite completion,
unique completion, Grassmannian manifold, Tucker manifold,
extended Hall’s theorem.

I. INTRODUCTION

TENSORS are generalizations of vectors and matrices: a
vector is a first-order tensor and a matrix is a second-

order tensor. Most data around us are better represented with
multiple dimensions to capture the correlations across different
attributes. For example, a colored image can be considered as
a third-order tensor, two of the dimensions (rows and columns)
being spatial, and the third being spectral (color); while a
colored video sequence can be considered as a fourth-order
tensor, with time being the fourth dimension besides spatial
and spectral dimensions. Similarly, a colored 3-D MRI image
across time can be considered as a fifth-order tensor. In many

Manuscript received December 5, 2016; revised May 2, 2019; accepted
May 9, 2019. Date of publication May 28, 2019; date of current version
August 16, 2019. This work was supported in part by the U.S. National
Science Foundation (NSF) under Grant CCF-1814803, and in part by the
U.S. Office of Naval Research (ONR) under Grant N000141410667. This
work was presented in part at ISIT 2017, Aachen, Germany.

M. Ashraphijuo and X. Wang are with the Department of Electrical
Engineering, Columbia University, Columbia, NY 10025 USA (e-mail:
ashraphijuo@ee.columbia.edu; wangx@ee.columbia.edu).

V. Aggarwal is with the School of Industrial Engineering, Purdue University,
West Lafayette, IN 47907 USA, and also with the School of Electrical and
Computer Engineering, Purdue University, West Lafayette, IN 47907 USA
(e-mail: vaneet@purdue.edu).

Communicated by N. Kiyavash, Associate Editor for Statistical Learning.
Color versions of one or more of the figures in this paper are available

online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIT.2019.2919568

applications, part of the data may be missing. This paper
investigates the fundamental conditions on the locations of
the non-missing entries such that the multi-dimensional data
can be recovered in finite and/or unique choices. In particular,
we investigate deterministic and probabilistic conditions on
the sampling pattern for finite or unique solution to a low-
rank tensor completion problem given the sampled tensor and
some of its Tucker rank components, i.e., ranks of some of its
matricizations.

There are numerous applications of low-rank data
completion in various areas including image or signal
processing [1], [2], data mining [3], network coding [4], com-
pressed sensing [5]–[7], reconstructing the visual data [8], [9],
seismic data processing [10]–[12], RF fingerprinting [13], [14],
and reconstruction of cellular data [15].

The majority of the literature on matrix and ten-
sor completion are concerned with developing various
optimization-based algorithms under some assumptions such
as incoherence [16], etc., to construct a completion. In par-
ticular, low-rank matrix completion has been widely stud-
ied and many algorithms based on convex relaxation of
rank [17]–[19], non-convex optimization [20] and alternating
minimization [16], etc., have been proposed. Also, a gener-
alization of the low-rank matrix completion, which is com-
pletion from several low-rank sources has attracted attention
recently [21]–[24]. For the tensor completion problem various
solutions have been proposed that are based on convex relax-
ation of rank constraints [7], [10], [25]–[28], alternating min-
imization [9], [12], [29] and other heuristics [14], [30]–[32].

In the existing literature on optimization-based matrix
or tensor completions, in addition to meeting the lower
bound on the sampling probability, conditions such as
incoherence [16], [32], [33], which constrains the values of
the matrix or tensor entries, are required to obtain a completion
with high probability. On the other hand, fundamental com-
pletability conditions that are independent of the specific com-
pletion algorithms have also been investigated. In [34]–[37]
deterministic conditions on the locations of the sampled entries
(sampling pattern) have been studied through algebraic geom-
etry approaches on Grassmannian manifold that lead to finite
and unique solutions to the matrix completion problem, where
finite completability simply means that the number of possible
completions of the sampled tensor is finite. Specifically, in [34]
a deterministic sampling pattern is proposed that is necessary
and sufficient for finite completability of the sampled matrix
of the given rank. Such an algorithm-independent condition
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can lead to a much lower sampling rate than that is required
by the optimization-based completion algorithms. For exam-
ple, the required number of samples per column in [16] is
on the order of O(log(n)r2.5 log(‖X‖F )), where X is the
unknown matrix with n rows and of rank r , while the required
number of samples per column in [34] is on the order of
O(max{log(n), r}). The analysis on Grassmannian manifold
in [34] is not capable of incorporating more than one rank
constraint, and therefore this method is not efficient for solving
the same problem for a tensor given multiple rank components.
In this paper, we propose a geometric analysis on Tucker
manifold to obtain deterministic and probabilistic conditions
that lead to finite or unique completability for low-rank tensors
when multiple rank components are given. Moreover, other
related problems have been studied using algebraic geom-
etry analysis, including high-rank matrix completion [38],
rank estimation [39], and subspace clustering with missing
data [24], [40]–[44].

This work is inspired by [34], where the analysis on
Grassmannian manifold is proposed for a single-view matrix.
Specifically, in [34] a novel approach is proposed to consider
the rank factorization of a matrix and to treat each observed
entry as a polynomial in terms of the entries of the com-
ponents of the rank factorization. Then, under the genericity
assumption, the algebraic independence among the mentioned
polynomials is studied. In this paper, we consider the low-
Tucker-rank tensor and follow the general approach that is
similar to that in [34]. We mention some of the main differ-
ences: (i) geometry of the manifold, (ii) the equivalence class
for the core tensor and consequently (iii) the canonical core
tensor, (iv) structure of the polynomials, etc. are fundamentally
different from those in [34]. Moreover, (v) the idea of using
more than one rank constraint simultaneously in the algebraic
geometry approach is also new. Hence, the manifold structure
for the low-Tucker-rank tensor is fundamentally different from
the Grassmannian manifold and we need to develop almost
every step anew.

Tucker decomposition is a well-known method to repre-
sent a tensor [30], [45], [46]. In this paper, we use this
decomposition to represent the sparsity of a tensor and use
Tucker rank to model the low-rank structure of the tensor.
There are several other well-known decompositions of a tensor
as well, including polyadic decomposition [47], [48], tensor-
train decomposition [49], [50], hierarchical Tucker represen-
tation [51], [52], tubal rank decomposition [53] and others.

This paper focuses on the low-rank tensor completion
problem, given a portion of the rank vector of the tensor.
Specifically, we investigate the following three problems:
• Problem (i): Characterizing the necessary and sufficient

conditions on the sampling pattern to have finitely many
tensor completions for the given rank.
To solve this fundamental problem, we propose a geomet-
ric analysis framework on Tucker manifold. Specifically,
we obtain a set of polynomials based on the location of
the sampled entries in tensor and use Bernstein’s theo-
rem [54], [55] to identify the condition on the sampling
pattern for ensuring sufficient number of algebraically

independent polynomials in the mentioned set. Given any
nonempty proper subset of the Tucker rank vector, this
analysis leads to the necessary and sufficient condition
on the sampling patterns for finite completability of the
tensor. Given the entire Tucker rank vector this condition
is sufficient for finite completability.

• Problem (ii): Characterizing conditions on the sampling
pattern to ensure that there is exactly one completion for
the given rank.
We use our proposed geometric analysis for finite com-
pletability of low-rank tensors to obtain a sufficient
conditions on the sampling patterns to ensure unique
completability, which is milder than the sufficient con-
dition for unique completability obtained through matri-
cization analysis and applying the matrix method in [34].

• Problem (iii): If the elements in the tensor are sampled
independently with probability p, what are the conditions
on p such that the conditions in Problems (i) and (ii) are
satisfied with high probability?
We bound the number of needed samples to ensure the
proposed sampling patterns for finite and unique tensor
completability hold with high probability. Even though
we follow a similar approach to [34] for the matrix
case, we develop a generalization of Hall’s theorem for
bipartite graphs which is needed to prove the correctness
of the bounds for both the tensor and the matrix cases.
Moreover, it is seen that our proposed analysis on Tucker
manifold leads to a much lower sampling rate than the
corresponding analysis on Grassmannian manifold for
both finite and unique tensor completions.

The remainder of this paper is organized as follows.
In Section II, some preliminaries and notations are presented,
and also an example is given that illustrates the advantage
of tensor analysis over analyzing matricizations of a tensor.
In Section III, Problem (i) is studied and the sampling patterns
that ensure finite completions are found using tensor algebra.
In Section IV, we study Problem (iii) for the case of finite
completion and the key to solving this problem is the proof of
the generalized Hall’s theorem, which is an independent result
in graph theory. Section V considers Problem (ii) to give a
sufficient condition on the sampling pattern for unique com-
pletability. Further, Problem (iii) for unique completion is also
studied. Some numerical results are provided in Section VI to
compare the sampling rates for finite and unique completions
based on our proposed tensor analysis versus the matricization
method. Finally, Section VII concludes the paper.

II. BACKGROUND

A. Preliminaries and Notations
In this paper, it is assumed that a d th-order tensor

U ∈ R
n1×···×nd is chosen generically from the manifold

of n1 × · · · × nd tensors of the given Tucker rank (will
be explained rigorously later). For the sake of simplicity
in notation, define N �

(
�d

j=1 n j

)
and N−i � N

ni
.

Also, for any real number x , define x+ � max{0, x}. Let
U(i) ∈ R

ni×N−i be the i -th matricization of the tensor U
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such that U(�x) = U(i)(xi ,M(i)(x1, . . . , xi−1, xi+1, . . . , xd)),
where M(i) is an arbitrary bijective mapping M(i) :
(x1, . . . , xi−1, xi+1, . . . , xd) → {1, 2, . . . , N−i } and U(�x)
represents an entry of the tensor U with coordinate �x =
(x1, . . . , xd ).

Given U ∈ R
n1×···×nd and X ∈ R

ni×n′i , U ′ � U ×i X ∈
R

n1×···×ni−1×n′i×ni+1×···×nd is defined as

U ′(x1, · · · , xi−1, ki , xi+1, · · · , xd) �
ni∑

xi=1

U(x1, · · · , xi−1, xi , xi+1, · · · , xd )X(xi , ki ). (1)

Throughout this paper, we use Tucker rank as the rank of
a tensor, which is defined as rank(U) = (r1, . . . , rd ) where
ri = rank(U(i)). The Tucker decomposition of a tensor U is
given by

U = C ×d
i=1 Ti , (2)

where C ∈ R
r1×···×rd is the core tensor and Ti ∈ R

ri×ni are d
orthogonal matrices. Then, (2) can be written as

U(�x) =
r1∑

k1=1

· · ·
rd∑

kd=1

C(k1, . . . , kd )T1(k1, x1) . . . Td (kd , xd).

(3)

The space of fixed Tucker-rank tensors is a manifold
and the dimension of this manifold is shown in [30] to
be

∑d
i=1

(
ni × ri − r2

i

) + �d
i=1 ri . Denote � as the binary

sampling pattern tensor that is of the same size as U and
�(�x) = 1 if U(�x) is observed and �(�x) = 0 otherwise.
For each subtensor U ′ of the tensor U , define N�(U ′) as the
number of observed entries in U ′ according to the sampling
pattern �.

B. Problem Statement and a Motivating Example
We are interested in finding deterministic conditions on

the sampling pattern tensor � under which there are infinite,
finite, or unique completions of the sampled tensor U that
satisfy rank(U) = (r1, r2, . . . , rd ). Moreover, we are interested
in finding probabilistic sampling strategies that ensure the
obtained conditions for finite and unique completability hold,
respectively, with high probability. The matrix version of this
problem has been treated in [34]. In this paper, we investigate
this problem for general order tensors.

In this subsection, we intend to compare the following two
approaches in an example to emphasize the necessity of our
analysis for general order tensors: (i) analyzing each matriciza-
tion individually with the rank constraint of the corresponding
matricization, (ii) analyzing via Tucker decomposition. In par-
ticular, we will show via an example that analyzing each of
the matricizations separately is not enough to guarantee finite
completability when multiple rank components are given.
On the other hand, we show that for the same example
Tucker decomposition ensures finite completability. Hence,
this example illustrates that matricization analysis does not
take advantage of the full information of given Tucker rank
and thus fails to provide a necessary and sufficient condition

for finite completability when more than one component of
the rank vector is given.

Consider a 3rd-order tensor U ∈ R
2×2×2 with Tucker rank

(1, 1, 1). First, we show that having any 4 entries of U ,
there are infinitely many completions of any matricization
with the corresponding rank constraint. Hence, along each
dimension there exist a set of infinite completions given
the corresponding rank constraint. Note that the analysis on
Grassmannian manifold in [34] is not capable of incorporating
more than one rank constraint. However, as we show it is
possible that the intersection of the mentioned three infinite
sets is a finite set and that is why we need an analysis that
is able to incorporate more than one rank constraint. Without
loss of generality, it suffices to show the claim only for its first
matricization. Therefore, the claim reduces to the following
statement:

Statement: Having any 4 entries of a rank-1 matrix
U ∈ R

2×4, there are infinitely many completions for it.
In order to prove the above statement, we need to consider

the following four possible scenarios:
(i) The 4 observed entries are in a row. In this case, clearly,

there are infinitely many completions for the other row
as it can be any scalar multiplied by the first row.

(ii) The 4 observed entries are such that there is a column
in which there is no observed entries. In this case, there
are infinitely many completions for this column as it can
be any scalar multiplied by the other columns.

(iii) The 4 observed entries are such that there is one
observed entry in each column, and also each row
has exactly two observed entries. Assume that the two
observed entries in the second row are the pair (a, b).
In this case, for every pair (ka, kb) as the value of the
two non-observed entries of the first row (where k is
an arbitrary scalar) there is a unique completion for the
rest of the entries. As a result, there are infinitely many
completions for this matrix.

(iv) The 4 observed entries are such that there is one
observed entry in each column, and also the first and sec-
ond rows have 3 and 1 observed entries, respectively.
In this case, for each value of the only non-observed
entry of the first row there is a unique completion.
Therefore, there are infinitely many completions for this
matrix.

Assume that the entries U(1, 1, 1), U(2, 1, 1), U(1, 2, 1),
and U(1, 1, 2) are observed. Now, we take advantage of all
elements of Tucker rank simultaneously, in order to show
there are only finitely many tensor completions. Using Tucker
decomposition (2), and given the rank is (1, 1, 1), without loss
of generality, assume that the scalar C = 1 and T1 = (x, x ′),
T2 = (y, y ′) and T3 = (z, z′), and then the following
equalities hold

U(1, 1, 1) = xyz, U(2, 2, 1) = x ′y ′z,
U(2, 1, 1) = x ′yz, U(2, 1, 2) = x ′yz′,
U(1, 2, 1) = xy ′z, U(1, 2, 2) = xy ′z′,
U(1, 1, 2) = xyz′, U(2, 2, 2) = x ′y ′z′. (4)
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The unknown entries can be determined uniquely in terms of
the 4 observed entires as

U(2, 2, 1) = x ′y ′z = U(2, 1, 1)U(1, 2, 1)

U(1, 1, 1)
,

U(2, 1, 2) = x ′yz′ = U(2, 1, 1)U(1, 1, 2)

U(1, 1, 1)
,

U(1, 2, 2) = xy ′z′ = U(1, 2, 1)U(1, 1, 2)

U(1, 1, 1)
,

U(2, 2, 2) = x ′y ′z′ = U(2, 1, 1)U(1, 2, 1)U(1, 1, 2)

U(1, 1, 1)U(1, 1, 1)
. (5)

Therefore, considering the Tucker decomposition, there is only
one (finite) completion(s) having this particular 4 observed
entries as above. Note that only given r2 = r3 = 1, it can
be verified using Tucker decomposition similarly that the
completion is still unique.

III. DETERMINISTIC CONDITIONS

FOR FINITE COMPLETABILITY

This section characterizes the connection between the sam-
pling pattern and the number of solutions of a low-rank tensor
completion. In Section III-A, we define a polynomial based
on each observed entry. Then, for a given subset of the rank
components we transform the problem of finite completability
of U to the problem of finite completability of the core tensor
in the Tucker decomposition of U . In Section III-B, we pro-
pose a geometric analysis on Tucker manifold, by defining
a structure for the core tensor of the Tucker decomposition
such that we can determine if two core tensors span the same
space. In Section III-C, we construct a constraint tensor based
on the sampling pattern �. This tensor is useful for analyz-
ing the algebraic independency of a subset of polynomials
among all defined polynomials. In Section III-D, we show the
relationship between the number of algebraically independent
polynomials in the mentioned set of polynomials and finite
completability of the sampled tensor. Finally, Section III-E
characterizes finite completability in terms of the sampling
pattern instead of the algebraic variety for the defined set of
polynomials.

A. Condition for Finite Completability Given the Core Tensor
Assume that the sampled tensor is U ∈ R

n1×n2×···×nd

and rank components {r j+1, . . . , rd } are given, where j ∈
{1, 2, . . . , d − 1} is an arbitrary fixed number. Without loss of
generality assume that r j+1 ≥ · · · ≥ rd throughout the paper.
Define P0 as the Lebesgue measure on R

r1×r2×···×rd and Pi

as the Lebesgue measure on R
r1×n1 , i = 1, . . . , d . We assume

that U is chosen generically from the manifold corresponding
to rank vector (r1, . . . , rd ), or in other words, the entries of U
are drawn independently with respect to Lebesgue measure on
the corresponding manifold. Hence, any statement that holds
for U , it basically holds for almost every (with probability
one) tensor of the same size and Tucker-rank with respect to
the product measure P0 × P1 × · · · × Pd .

Let the d th-order tensor C ∈ R
n1×n2×···×n j×r j+1×r j+2×···×rd

be a core tensor of the sampled tensor U ∈ R
n1×n2×···×nd .

Fig. 1. Tucker decomposition with j = 1 and d = 3.

Then, there exist full-rank matrices Ti ’s with Ti ∈ R
ri×ni

such that

U = C ×d
i= j+1 Ti , (6)

or equivalently

U(�x) =
r j+1∑

k j+1=1

· · ·
rd∑

kd=1

C(x1, . . . , x j , k j+1, . . . , kd )

T j+1(k j+1, x j+1) . . . Td (kd , xd). (7)

For notational simplicity, define T = (T j+1, . . . , Td ).
Figure 1 represents a Tucker decomposition for a 3rd-order
tensor given the second and third components of its rank
vector.

Here, we briefly mention some key points to highlight the
fundamentals of our proposed analysis.
• Note 1: As it can be seen from (7), any observed entry
U(�x) results in an equation that involves �d

i= j+1ri entries
of C and also ri entries of Ti , i = j + 1, . . . , d .
Considering the entries of core tensor C and tuple T as
variables (right-hand side of (7)), each observed entry
results in a polynomial in terms of these variables.

• Note 2: For any observed entry U(�x), the tuple
(x1, . . . , x j ) specifies the coordinates of the �d

i= j+1ri

entries of C that are involved in the corresponding poly-
nomial.

• Note 3: For any observed entry U(�x), the value of xi spec-
ifies the column of the ri entries of Ti that are involved
in the corresponding polynomial, i = j + 1, . . . , d .

• Note 4: Given all observed entries {U(�x) : �(�x) = 1},
we are interested in finding the number of possible
solutions in terms of entries of (C, T) (infinite, finite
or unique) via investigating the algebraic independence
among these polynomials.

• Note 5: Note that it can be concluded from Bernstein’s
theorem [54] that in a system of n polynomials in n
variables with each consisting of a given set of mono-
mials, the n polynomials are algebraically independent
with probability one with respect to the corresponding
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probability measure, and therefore there exist only finitely
many solutions. However, in the structure of the polyno-
mials in our model, the set of involved monomials are
different for different set of polynomials, and therefore
to ensure algebraically independency we need to have
for any selected subset of the original n polynomials,
the number of involved variables should be more than
the number of selected polynomials.

Given C, we are interested to find a subset of the mentioned
polynomials that guarantees tuple T can be determined finitely.
The following definition will be used to determine the number
of involved variables in a set of polynomials.

Definition 1: For any i ∈ { j + 1, . . . , d} and nonempty
Si ⊆ {1, . . . , ni }, define U (Si ) as a set containing the locations
of the entries of |Si | rows (corresponding to the elements
of Si ) of U(i). Moreover, define U (S j+1,...,Sd ) = U (S j+1) ∪
· · · ∪ U (Sd ). Let τ be a subset of the locations of the entries
of U . Then, U (S j+1,...,Sd ) is called the minimal hull of τ if any
U (Si ) includes exactly only those rows of U(i) that include at
least one of the locations of the entries in τ .

Example 1. Consider a tensor U ∈ R
4×4×4 with j = 1,

r2 = 2 and r3 = 3. Then we have

U(�x) =
2∑

k2=1

3∑
k3=1

C(x1, k2, k3)T2(k2, x2)T3(k3, x3). (8)

where C ∈ R
4×2×3, T2 ∈ R

2×4 and T3 ∈ R
3×4. Define τ =

{(1, 2, 2), (2, 2, 3), (3, 4, 2)}. Hence, Among the four rows of
the second matricization of U , i.e. U(2), row numbers 2 and
4 include at least one entry in τ (and row numbers 2 and 3
for U(3)). Then, for S2 = {2, 4} S3 = {2, 3}, U (S2,S3) is the
minimal hull of τ . Note that due to the definition, the minimal
hull is unique.

Remark 1. Consider any set of polynomials {p1, . . . , pk} in
form of (7). Given the core tensor C these polynomials are in
terms of entries of T and let τ be the set of corresponding
entries to these polynomials in U and U (S j+1,...,Sd ) be the
minimal hull of τ . Let S denote the set of all variables (entries
of T) that are involved in at least one of the polynomials
{p1, . . . , pk}. Recall that according to Note 3, if an entry
of Ti is involved in a polynomial, all entries of the column
that includes that entry are also involved in that polynomial.
Therefore, |S| =∑d

i= j+1 |Si |ri .

Note that each observed entry results in a scalar equation
of the form of (7). Given the core tensor C, we need at
least

∑d
i= j+1 (niri ) polynomials to ensure the number of

possible tuples T is not infinite since the number of vari-
ables (entries of T) is

∑d
i= j+1 (niri ) in total. On the other

hand, the
∑d

i= j+1 (niri ) mentioned polynomials should be
algebraically independent to ensure the finiteness of tuples
T since any algebraically independent polynomial reduces
the dimension of the set of solutions by one. To ensure
this independency, any subset of t polynomials of the set
of polynomials corresponding to the

∑d
i= j+1 (niri ) observed

entries, should involve at least t variables. The following

assumption will be used frequently as we show it satisfies
the mentioned property.
Assumption A j : Anywhere that this assumption is stated,

there exist
∑d

i= j+1 (niri ) observed entries such that for
any nonempty Si ⊆ {1, . . . , ni } for i ∈ { j + 1, . . . , d},
U (S j+1,...,Sd ) includes at most

∑d
i= j+1 |Si |ri of the mentioned∑d

i= j+1 (niri ) observed entries.

Example 2. Consider a tensor U ∈ R
3×3×3 with j = 1,

r2 = 1 and r3 = 2. Define the following two sets of observed
entries each including

∑d
i= j+1 (niri ) = 9 entries

I1 = {(1, 1, 1), (1, 2, 1), (1, 1, 3), (2, 1, 1),

(2, 2, 1), (2, 2, 3), (2, 3, 1), (2, 3, 2), (3, 1, 1)},
I2 = {(1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 1, 3),

(2, 2, 2), (2, 2, 3), (2, 3, 1), (2, 3, 2), (3, 3, 3)}.
First, we can show that I1 does not satisfy Assumption A1.
For S2 = {1, 2} and S3 = {1} we have

{(1, 1, 1), (1, 2, 1), (2, 1, 1), (2, 2, 1), (3, 1, 1)} ⊂ U (S2,S3).

Hence, U (S2,S3) includes 5 entries belonging to I1 and∑d
i= j+1 |Si |ri = 4 < 5. Therefore, I1 does not satisfy

Assumption A1 since there exists (S2,S3) that violates the
mentioned condition.

Second, it is easy to verify that I2 satisfies Assumption A1
by checking all possible pairs (S2,S3).

Remark 2. Assume that each column of U(1) includes at least
one observed entry, and also

∑d
i= j+1 (niri ) < n j+1 . . . nd , for

some j ∈ {1, . . . , d − 1}. Then, for any tuple (x2, x3, . . . , xd)
that xi ∈ {1, . . . , ni }, there exists at least one observed entry
among the set

{(1, x2, x3, . . . , xd), (2, x2, x3, . . . , xd), . . . ,

(n1, x2, x3, . . . , xd )}. (9)

Hence, there exist
∑d

i= j+1 (niri ) observed entries that sat-
isfy Assumption A j . This is because all possible tuples
(x j+1, . . . , xd) are available to be selected. For example,
assuming that each column of U(1) includes at least one
observed entry and

∑d
i=2 (niri ) < n2 . . . nd, we can choose∑d

i=2 (niri ) < n2 . . . nd = N−1 observed entries in different
columns of U(1) to satisfy Assumption A1, by choosing either
zero or one observed entry in each column.

Given the core tensor, the following lemma characterizes
the necessary and sufficient condition on observed entries that
leads to finite completability.

Lemma 1. Assume that in (6) the core tensor C ∈
R

n1×···×n j×r j+1×···×rd is given and Ti ∈ R
ri×ni are variables.

Then, for almost every U with probability one, there are at
most finitely many possible tuples T that satisfy (6) if and
only if Assumption A j holds.

Proof: The
∑d

i= j+1 (niri ) observed entries results in∑d
i= j+1 (niri ) scalar polynomials in terms of entries of T as

in (6)-(7). We claim that any subset of these
∑d

i= j+1 (niri )
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polynomials with t members involves at least t variables in
total. Then, by Note 5, the sufficiency holds.

In order to prove the necessity, by contradiction, assume that
there exists a subset of polynomials {p1, . . . , pt } that involves
at most t − 1 variables in total. Let τ be the subset of entries
of U that result in polynomials {p1, . . . , pt } and denote the
minimal hull of τ by U (S j+1,...,Sd ). Observe that according
to Remark 1,

∑d
i= j+1 |Si |ri ≤ t − 1. On the other hand,

Assumption A j results that the number of polynomials in
{p1, . . . , pt } is at most

∑d
i= j+1 |Si |ri , i.e., t ≤∑d

i= j+1 |Si |ri .
Hence, we have a contradiction, which completes the proof of
the lemma.

Remark 3. Assumption A j results that given a core tensor
there are finitely many tuples T such that (6) holds. Conse-
quently, in what follows without loss of generality, we analyze
the finite completability of core tensor C for one particular
tuple T among all finitely many tuples.

Since
∑d

i= j+1 (niri ) entries of the sampled tensor U are
used to determine T, in what follows we will use the polynomi-
als corresponding to the set of the rest N�(U)−∑d

i= j+1 (niri )
observed entries, denoted by P(�), to obtain C. Note that since
T is already solved in terms of C, each polynomial in P(�)
is in terms of elements of C.

B. Geometry of Tucker Manifold
We need to define the following equivalence class in order

to characterize a condition on the sampling pattern to study
the algebraic independency of the polynomials in P(�). This
equivalence class leads to a geometric structure for core
tensors which specifies exactly one core tensor among all core
tensors that span the same space.

Definition 1. Define an equivalence class for all core tensors
C ∈ R

n1×n2×···×n j×r j+1×···×rd of the sampled tensor U such
that two core tensors C1 and C2 belong to the same class if
and only if there exist full rank matrices Di ∈ R

ri×ri , i =
j + 1, . . . , d, such that

C2 = C1 ×d
i= j+1 Di . (10)

A subtensor Y ∈ R
n1×n2×···×n j×1×···×1 of U can be repre-

sented by a core tensor C if there exist vectors θi ∈ R
ri×1,

i = j + 1, . . . , d , such that

Y = C ×d
i= j+1 θi . (11)

According to Definition 1, it is easy to verify that two core
tensors are in the same class if and only if one of them can
represent each subtensor in R

n1×n2×···×n j×1×···×1 of the other
one.

Definition 2. Let Ni = n1 n2 . . . ni , N̄i = ni+1ni+2 . . . nd

and define the matrix Ũ(i) ∈ R
Ni×N̄i as the i -th unfolding

of the tensor U , such that U(�x) = Ũ(i)(M̄(i)(x1, . . . , xi ),¯̄M(i)(xi+1, . . . , xd)), where M̄(i) and ¯̄M(i) are two bijective

mappings M̄(i) : (x1, . . . , xi ) → {1, 2, . . . , Ni } and ¯̄M(i) :
(xi+1, . . . , xd)→ {1, 2, . . . , N̄i }.

We make the following assumption which will be
referred to, when it is needed.

Fig. 2. Two proper structures in C̃(1). (a) Example of canonical core tensor.
(b) A proper structure.

Assumption B j : n1 n2 . . . n j ≥∑d
i= j+1 ri .

Consider an arbitrary entry C(�x) of core tensor C. Note that
the tuple (x j+1, . . . , xd) specifies the column number of this
entry in C̃( j ). Furthermore, xi specifies the row number of this
entry in C(i). Consequently, each column of C̃( j ) indexed by
(x j+1, . . . , xd) belongs to the x th

i row of C(i) for i ≥ j + 1.
We are interested in providing a structure on the core tensor

C such that exactly one core tensor in any class satisfies it.
We present this structure on C̃( j ) ( j -th unfolding of C).

Definition 3. Consider any (d − j) disjoint submatrices1

(P j+1, . . . , Pd) of C̃( j ) such that (i) Pi ∈ R
ri×ri , i = j +

1, . . . , d, (ii) the
∑d

i= j+1 ri rows of C̃( j ) corresponding to
rows of these submatrices are disjoint, (iii) the ri columns of
C̃( j ) corresponding to columns of Pi belong to ri disjoint rows
of C(i), i = j + 1, . . . , d. Then, C is said to have a proper
structure if Pi = Iri , i = j + 1, . . . , d.

Assumption B j ensures the existence of a proper structure
since the number of rows in C̃( j ) should be at least

∑d
i= j+1 ri .

Note that given a proper structure there exists one core tensor
in each class that satisfies it. Moreover, we can permute the
rows of Pi ’s and obtain another proper structure. Consider the
following specific structure. Define

Pcan
i (x ′1, xi ) = C(x1, 1, . . . , 1︸ ︷︷ ︸

i−2

, xi , 1, . . . , 1︸ ︷︷ ︸
d−i

) ∈ R
ri×ri ,

i = j + 1, . . . , d, (12)

where x ′1 = x1−∑i−1
s= j+1 rs , 1+∑i−1

s= j+1 rs ≤ x1 ≤∑i
s= j+1 rs

and 1 ≤ xi ≤ ri . It is easily verified all three properties in
Definition 3 are satisfied by Pcan

i , i = j + 1, . . . , d .

Definition 4. (Canonical core tensor) We call C a canonical
core tensor if for i ≥ j + 1 we have Pcan

i = Iri , where Iri is
the ri × ri identity matrix.

Example 3. Assume U ∈ R
7×3×4, j = 1, r2 = 2

and r3 = 3. For simplicity in representing the canonical
core tensor, we consider bijective mappings M̄(i) and ¯̄M(i)

(in Definition 2) that result in the structure of C̃(1) shown
in Figure 2(a). Observe that any permutation of rows of C̃(1)

results in a proper structure, e.g., Figure 2(b). However, only
those permutations of columns of C̃(1) that satisfy property
(iii) in Definition 3 result in a proper structure.

1Specified by a subset of rows and a subset of columns (not necessarily
consecutive).
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Note that (10) leads to the fact that the dimension of all core
tensors C that span different spaces (without any polynomial
restrictions in P(�)) is equal to

(
�

j
i=1ni

) (
�d

i= j+1ri

)
−(∑d

i= j+1 r2
i

)
, as the total number of entries of Di ’s is

equal to
(∑d

i= j+1 r2
i

)
. Moreover, observe that a core tensor

with a proper structure has
(∑d

i= j+1 r2
i

)
known entries,

and therefore the number of unknown entries is equal to(
�

j
i=1ni

) (
�d

i= j+1ri

)
−

(∑d
i= j+1 r2

i

)
.

Remark 4. In order to prove there are finitely many comple-
tions for tensor U , it suffices to prove that there are finitely
many canonical core tensors that fit in U .

Suppose C has a proper structure. Let g j+1(x) denote the
maximum number of known entries among any x rows of C̃( j ).
As will be seen in Section III-C, g j+1(x) plays an important
role in expressing the maximum number of algebraically
independent polynomials in a subset of P(�). Note that in
exactly ri rows of C̃( j ) there are exactly ri known entries,
i.e., entries of Pi , i = j +1, . . . , d . Also, there are

∑d
i= j+1 ri

rows that include known entries in C̃( j ), i.e., rows of Pi ,
i = j + 1, . . . , d .

Recall the assumption r j+1 ≥ · · · ≥ rd . Therefore, as long
as x ≤ r j+1, the maximum number of known entries is
g j+1(x) = r j+1x by selecting the x rows of C̃( j ) to cover any
x rows of P j+1. On the other hand, if r j+1 ≤ x ≤ r j+1+r j+2,
the maximum number of known entries is g j+1(x) = r2

j+1 +
r j+2(x−r j+1) by selecting the x rows of C̃( j ) to cover all rows
of P j+1 and any (x − r j+1) rows of P j+2. Then, in general
we have

g j+1(x) =
d∑

i= j+1

min

⎧⎨
⎩ri ,

⎛
⎝x −

i−1∑
i ′= j+1

ri ′

⎞
⎠
+⎫⎬
⎭ ri . (13)

C. Constraint Tensor

In the following, we propose a procedure to construct a
( j+1)th-order binary tensor �̆ based on � such that P(�̆) =
P(�). Using �̆, we are able to recognize the observed entries
that have been used to obtain the tuple T, and we can easily
verify if two polynomials in P(�) are in terms of the same
set of variables. Then, in Section III-D, we characterize the
relationship between the maximum number of algebraically
independent polynomials in P(�̆) and �̆.

For any subtensor Y ∈ R
n1×n2×···×n j×1×···×1 of the ten-

sor U , there exist row vectors θi ∈ R
ri×1, i = j + 1, . . . , d ,

such that (11) holds or equivalently

Y(x1, . . . , x j , �1d− j )

=
r j+1∑

k j+1=1

· · ·
rd∑

kd=1

C(x1, . . . , x j , k j+1, . . . , kd)

× θ j+1(k j+1, 1) . . . θd(kd , 1), (14)

where �1d− j is an all-1 (d − j)-dimensional row vector.

For each subtensor Y of the sampled tensor U , let N�(YT)
denote the number of sampled entries in Y that have been used
to obtain the tuple T. Then, Y contributes N�(Y)− N�(YT)
polynomial equations in terms of the entries of the core tensor
C among all N�(U)−∑d

i= j+1 (niri ) polynomials in P(�).
The sampled tensor U includes n j+1n j+2 · · · nd subten-

sors that belong to R
n1×n2×···×n j×1×···×1 and we label these

subtensors by Y(t j+1,...,td ) where (t j+1, . . . , td ) represents the
coordinate of the subtensor. Define a binary valued ten-

sor Y̆(t j+1,··· ,td ) ∈ R
n1×n2×···×n j×

d− j︷ ︸︸ ︷
1× · · · × 1×k , where k =

N�(Y(t j+1,...,td ))−N�(YT

(t j+1,...,td )) and its entries are described

as the following. We can look at Y̆(t j+1,··· ,td ) as k tensors each
belongs to R

n1×n2×···×n j×1×···×1. For each of the mentioned k
tensors in Y̆(t j+1,··· ,td ) we set the entries corresponding to the
N�(YT

(t j+1,...,td )) observed entries that are used to obtain T in
(6) equal to 1. For each of the other k observed entries, we pick
one of the k tensors of Y̆(t j+1,··· ,td ) and set its corresponding
entry (the same location as that specific observed entry) equal
to 1 and set the rest of the entries equal to 0.

For the sake of simplicity in notation, we treat ten-
sors Y̆(t j+1,··· ,td ) as a member of R

n1×n2×···×n j×k instead of

R
n1×n2×···×n j×

d− j︷ ︸︸ ︷
1× · · · × 1×k . Now, by putting together all

n j+1n j+2 · · · nd tensors in dimension ( j + 1), we construct
a binary valued tensor �̆ ∈ R

n1×n2×···×n j×K j , where K j =
N�(U) − ∑d

i= j+1 (niri ) and call it the constraint tensor.
In order to shed some light on the above procedure we give
an illustrative example in the following.

Example 4. Consider an example in which d = 3, j = 2,
r3 = 2 and U ∈ R

3×2×2. Assume that �(x, y, z) = 1 if
(x, y, z) ∈ S and �(x, y, z) = 0 otherwise, where

S = {(1, 1, 1), (1, 2, 1), (2, 2, 1), (3, 1, 1), (1, 1, 2),

(2, 1, 2), (3, 2, 2)},
represents the set of observed entries. Also, assume that
N�(YT

(1)) = N�(YT

(2)) = 2 and the entries that we use
to obtain T are (1, 1, 1), (1, 2, 1), (1, 1, 2) and (3, 2, 2).
Hence, Y̆(1) ∈ R

3×2×1×2, Y̆(2) ∈ R
3×2×1×1, and therefore

the constraint tensor �̆ belongs to R
3×2×3.

Note that Y̆(1)(1, 1, 1, 1) = Y̆(1)(1, 1, 1, 2) = Y̆(1)(1, 2,

1, 1) = Y̆(1)(1, 2, 1, 2) = 1, and also for the two
other observed entires we have Y̆(1)(2, 2, 1, 1) = 1 and
Y̆(1)(3, 1, 1, 2) = 1 and the rest of the entries of Y̆(1) are
equal to zero. Moreover, Y̆(2)(1, 1, 1, 1) = Y̆(2)(2, 1, 1, 1) =
Y̆(2)(3, 2, 1, 1) = 1 and the rest of the entries of Y̆(2) are equal
to zero.

Then, �̆(x, y, z) = 1 if (x, y, z) ∈ S ′ and �̆(x, y, z) = 0
otherwise, where

S̆ = {(1, 1, 1), (1, 2, 1), (2, 2, 1), (1, 1, 2), (1, 2, 2),

(3, 1, 2), (1, 1, 3), (3, 2, 3), (2, 1, 3)}.

Note that each subtensor of �̆ that belongs to R
n1×···×n j×1

represents one of the polynomials in P(�) besides showing the
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polynomials that have been used to obtain T. More specifically,
consider a subtensor of �̆ that belongs to R

n1×···×n j×1 with
l+1 nonzero entries. Observe that exactly l of them correspond
to the observed entries that have been used to obtain T.
Hence, this subtensor represents a polynomial after replacing
entries of T by the expressions in terms of entries of C,
i.e., a polynomial in P(�).

Recall that the tuple (x j+1, . . . , xd) specifies the column
number of entry C(�x) in C̃( j ). Hence, if the i -th column of
�̆( j+1) is nonzero, then there exists a polynomial in P(�) that
involves all entries of core tensor corresponding to the entries
of the i -th row of C̃( j ).

D. Algebraic Independence
In this subsection, we derive the required number of alge-

braically independent polynomials in P(�) for finite com-
pletability. Then, a sampling pattern on the constraint tensor
is proposed to obtain the maximum number of algebraically
independent polynomials in P(�̆).

The following lemma determines the required number of
algebraically independent polynomials in P(�) that is needed
to ensure finite completability of the core tensor.

Lemma 2. Assume that Assumptions A j and B j hold. For
almost every U , there exist only finitely many completions of U
if and only if there exist

(
�

j
i=1ni

) (
�d

i= j+1ri

)
−

(∑d
i= j+1 r2

i

)

algebraically independent polynomials in P(�).

Proof: Assume that C ∈ R
n1×n2×···×n j×r j+1×···×rd is a

core tensor for the sampled tensor U . Since assumption A j

holds, Lemma 1 results that there exist finitely many tuples
T such that (6) holds. However, according to Remark 3,
it suffices to assume T is fixed and then prove the statement.
Let P(�) = {p1, . . . , pm} and define Si as the set of all
core tensors that satisfy polynomial restrictions {p1, . . . , pi },
i = 0, . . . , m (S0 is the set of all core tensors without any
polynomial restriction).

Observe that each algebraically independent polynomial
reduces the dimension (degree of freedom) of the set of
solutions by one. In other words, dim(Si ) = dim(Si−1) if
the maximum number of algebraically independent polyno-
mials in sets {p1, . . . , pi } and {p1, . . . , pi−1} are the same
and dim(Si ) = dim(Si−1) − 1 otherwise. Moreover, with
probability one, |Sm | is finite if and only if there are dim(C) =
dim(S0) algebraically independent polynomial restrictions on
the entries of the core tensor C, i.e., |Sm | is finite if and
only if dim(Sm) = 0 [34]. Hence, there are finitely many
completions of the sampled tensor U if and only if there exist
dim(C) =

(
�

j
i=1ni

) (
�d

i= j+1ri

)
−

(∑d
i= j+1 r2

i

)
algebraically

independent polynomials in P(�).
As a result of Lemma 2, we can certify finite completability

based on the maximum number of algebraically independent
polynomials in P(�) = P(�̆).

Definition 5. Let �̆
′ ∈ R

n1×n2×···×n j×t be a subtensor of the
constraint tensor �̆. Let mi (�̆

′
) denote the number of nonzero

columns of �̆
′
(i). Also, let P(�̆

′
) denote the set of polynomials

that correspond to nonzero entries of �̆
′
.

Recall Note 2 regarding the number of involved entries
of core tensor in a set of polynomials. However, as men-
tioned earlier, some of the entries of C are known,
i.e., (P j+1, . . . , Pd ). Therefore, in order to find the number
of variables (unknown entries of C) in a set of polynomials,
we should subtract the number of known entries in the corre-
sponding pattern from the total number of involved entries.

For any subtensor �̆
′ ∈ R

n1×n2×···×n j×t of the constraint
tensor, the next theorem states an upper bound on the number
of algebraically independent polynomials in the set P(�̆

′
).

Recall that P(�̆
′
) includes exactly t polynomials.

Theorem 1. Assume that Assumption B j holds. For any
subtensor �̆

′ ∈ R
n1×n2×···×n j×t of the constraint tensor,

the maximum number of algebraically independent polynomi-
als in P(�̆

′
) is no more than

(
�d

i= j+1ri

)
m j+1(�̆

′
)− g j+1(m j+1(�̆

′
)), (15)

where g j+1(·) is given in (13).

Proof: Observe that the number of algebraically inde-
pendent polynomials in a subset of polynomials of P(�̆

′
)

is at most equal to the total number of variables that are
involved in the corresponding polynomials. According to (7),
for each observed entry U(�x), we have a polynomial in terms
of �d

i= j+1ri entries of the core tensor C corresponding to
the first j coordinates of the location of the observed entry.
Therefore, the number of such variables in P(�̆

′
) will be

�d
i= j+1ri times the number of different tuples (x1, . . . , x j )

among the corresponding observed entries. The number of
nonzero columns of �̆

′
( j+1) is exactly equal to the number

such tuples. Therefore, the number of involved entries of C
(known and unknown) in polynomials in P(�̆

′
) is equal to(

�d
i= j+1ri

)
m j+1(�̆

′
)

On the other hand, among the
∑d

i= j+1 r2
i known entries

corresponding to (P j+1, . . . , Pd) in C̃( j ), g j+1(m j+1(�̆
′
)) of

them are involved in polynomials of P(�̆
′
). This is because

entries of the i -th row of C̃( j ) are involved in a polynomials
if and only if the i -th column of �̆

′
( j+1) includes at least

one nonzero entry. Hence, the number of variables that are
involved in the set of polynomials P(�̆

′
) is given by (15) for

a particular proper structure and proof is complete as (15) is
an upper bound for the number of algebraically independent
polynomials.

We are also interested in finding a condition on �̆
′

which results that P(�̆
′
) is minimally algebraically dependent,

i.e., the polynomials in P(�̆
′
) are algebraically dependent but

polynomials in every of its proper subset are algebraically
independent. This can help obtain the maximum number of
algebraically independent polynomials in P(�̆

′
) as Theorem 1

only provides an upper bound. The next lemma will be used
in Theorem 2 in order to find a condition on �̆

′
which

results that the set of polynomials in P(�̆
′
) is minimally alge-

braically dependent. The following lemma is a re-statement of
Lemma 7 in [56].
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Lemma 3. Assume that Assumption B j holds. Suppose that
�̆
′ ∈ R

n1×n2×···×n j×t is a subtensor of the constraint tensor
such that P(�̆

′
) is minimally algebraically dependent. Then,

for almost every U , the number of variables that are involved
in the set of polynomials P(�̆

′
) is t − 1.

Finally, the next theorem provides a relationship between
the exact number of algebraically independent polynomials in
P(�̆) and a geometric property on �̆.

Theorem 2. Assume that Assumption B j holds. The polyno-
mials in the set P(�̆) are algebraically dependent if and only
if

(
�d

i= j+1ri

)
m j+1(�̆

′
) − g j+1(m j+1(�̆

′
)) < t for some

subtensor �̆
′ ∈ R

n1×n2×···×n j×t of the constraint tensor �̆.

Proof: If the polynomials in set P(�̆) are algebraically
dependent, then there exists a subset of the polynomials
that are minimally algebraically dependent. According to
Lemma 3, if �̆

′ ∈ R
n1×n2×···×n j×t is the corresponding

subtensor to this minimally algebraically dependent set of
polynomials, the number of variables that are involved in
P(�̆

′
) = {p1, , p2 . . . , pt} is equal to t − 1. On the

other hand,
(
�d

i= j+1ri

)
m j+1(�̆

′
) − g j+1(m j+1(�̆

′
)) is the

minimum possible number of involved variables in P(�̆
′
)

since g j+1(m j+1(�̆
′
)) is the maximum number of known

entries of core tensor that are involved in P(�̆
′
). Therefore,(

�d
i= j+1ri

)
m j+1(�̆

′
)− g j+1(m j+1(�̆

′
)) ≤ t − 1.

In order to prove the other side of the statement, assume
that

(
�d

i= j+1ri

)
m j+1(�̆

′
) − g j+1(m j+1(�̆

′
)) < t for some

subtensor �̆
′ ∈ R

n1×n2×···×n j×t of the constraint tensor �̆.
Recall that t is the number of polynomials in P(�̆

′
). On the

other hand, according to Theorem 1,
(
�d

i= j+1ri

)
m j+1(�̆

′
)−

g j+1(m j+1(�̆
′
)) is the maximum number of algebraically

independent polynomials, and therefore the polynomials in
P(�̆

′
) are not algebraically independent and it completes the

proof.

E. Finite Completability Using Analysis
on Tucker Manifold

Theorem 2 together with Lemma 2 can lead to a necessary
and sufficient condition on the constraint tensor �̆ in order to
ensure that there are finitely many completions for the sampled
tensor U , as stated by the next theorem.

Theorem 3. Assume that Assumptions A j and B j hold. Then,
for almost every U , there are only finitely many tensors that fit
in the sampled tensor U , and have tensor rank components ri

for i = j+1, . . . , d if and only if the following two conditions
hold:

(i) there exists a subtensor �̆
′ ∈ R

n1×n2×···×n j×n of the
constraint tensor such that n =

(
�

j
i=1ni

) (
�d

i= j+1ri

)
−(∑d

i= j+1 r2
i

)
, and

(ii) for any t ∈ {1, . . . , n} and any subtensor �̆
′′ ∈

R
n1×n2×···×n j×t of the tensor �̆

′
(in condition (i)), the

following inequality holds
(
�d

i= j+1ri

)
m j+1(�̆

′′
)− g j+1(m j+1(�̆

′′
)) ≥ t . (16)

Proof: According to Lemma 2, for almost every U , there
are finitely many completions of U if and only if there exist(
�

j
i=1ni

) (
�d

i= j+1ri

)
−

(∑d
i= j+1 r2

i

)
algebraically indepen-

dent polynomials in P(�̆). On the other hand, according
to Theorem 2 we conclude that a set of polynomials are
algebraically independent if and only if condition (ii) in the
statement of the theorem holds. Hence, for almost every U ,
there are finitely many completions of U if and only if
conditions (i) and (ii) hold.

Remark 5. As a sanity check, we next show that when d = 2
(matrix case), Theorem 3 reduces to Theorem 1 in [34].
To see this, note that for d = 2, we only have one rank
component and denote it by r . Then, Condition (i) states
that there exists a submatrix �̆′ ∈ R

n1×(n1r−r2) (basically
n = n1r − r2 in Condition (i)) of the constraint matrix �̆.
And Condition (ii) on the property of submatrix �̆′ becomes:
for any t ∈ {1, . . . , n1r − r2} and any submatrix �̆

′′ ∈ R
n1×t

of the matrix �̆
′
, the following inequality holds

rm1(�̆
′′
)− g1(m1(�̆

′′
)) ≥ t . (17)

Note that due to the way that we constructed the constraint
matrix (tensor) each column of �̆

′′
has exactly r + 1 non-

zero entries. Therefore, �̆
′′

has at least r + 1 non-zero rows,
i.e., m1(�̆

′′
) ≥ r + 1. Then, according to the definition of g1

in (13), g1(m1(�̆
′′
)) = r min{r, m1(�̆

′′
)− 0} = r2. Therefore,

(17) becomes

rm1(�̆
′′
)− r2 ≥ t, (18)

or equivalently,

m1(�̆
′′
) ≥ t/r + r. (19)

Hence, Theorem 3 for d = 2 is exactly the same as
Theorem 1 in [34].

There are a few observations based on Theorem 3:
• In theorem 3, we characterize all of the sampling patterns

that ensure there are only finitely many completions such
that if only one single sample from that pattern is missed,
then there are infinitely many completions.

• If we use the Grassmannian analysis on each dimension
individually, we will only obtain a sufficient condition
on the sampling patterns for finite completability, given
multiple rank constraints. However, our proposed analysis
on Tucker manifold results in a necessary and sufficient
condition on the sampling patterns for finite completabil-
ity when multiple rank components are given. Hence, our
proposed analysis on Tucker manifold in general requires
much less number of samples to ensure finite completabil-
ity in comparison with the analysis on Grassmannian
manifold when more than one rank component is given.

• It is also important to observe the advantage of the
proposed method as we decrease the value of j since
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we are incorporating more rank components. Intuitively,
for the case of j = 1, the polynomials obtained in
(6) involve much more variables in comparison with the
low-order analysis on Grassmannian manifold, i.e., j =
d − 1. Therefore, the case of j = 1 requires much
less number of samples in order to have sufficient num-
ber of algebraically independent polynomials for finite
completability.

• Note that our analysis is not valid when j = 0 (given
all rank components) since the defined proper structure
does not have meaning any more as zero unfolding does
not exist, and therefore we are not able to characterize the
necessary and sufficient condition on sampling pattern for
finite completability. However, if all rank components are
given we can simply ignore one of them and characterize
the necessary and sufficient condition for j = 1 which
results in a sufficient condition for j = 0.

If the number of completions given (r j+1, . . . , rd ) is finite,
it can be concluded that the number of completions given
(r j , . . . , rd ) is finite as well. Therefore, this property should
be verifiable through the geometric property (16) proposed
in Theorem 3. In the following lemma, using the pigeonhole
principle, we show this result without analyzing the algebraic
variety.

Lemma 4. Assume that Assumptions A j , B j , A j−1 and B j−1
hold. Suppose that the sampling pattern is such that the
properties (i) and (ii) in the statement of Theorem 3 hold for j .
Then, the properties (i) and (ii) in the statement of Theorem 3
hold for j − 1.

Proof: The proof is given in Appendix A.

IV. PROBABILISTIC CONDITIONS

FOR FINITE COMPLETABILITY

In this section, two different lower bounds on the sam-
pling probability are proposed and analyzed to ensure finite
completability. The first bound is obtained by applying
[34, Theorem 3] and the second bound is obtained through the
proposed geometric approach in Theorem 3. We will observe
later that our proposed analysis on Tucker manifold leads to
a better lower bound through numerical analysis.

Here we briefly outline the key steps of the second
approach. Lemmas 6 and 7 each provides a lower bound on
the sampling probability that results in a geometric property
for �, i.e., inequalities (23) and (30), respectively. Then,
Theorem 5 takes advantage of the above lemmas to propose
a bound on the sampling probability to guarantee property
(16) for �. Finally, Lemma 8 shows that (16) also holds
for the constraint tensor �̆. In order to show Lemma 8 we
develop a generalization of Hall’s Theorem on bipartite graphs
in Theorem 6.

We use the approach similar to [34, Lemma 9] in order
to apply Theorem 3 and obtain a lower bound on the sam-
pling probability to ensure that there are only finitely many
completions. According to our earlier discussion, Theorem 3
for the case of j = 1 results in the mildest condition on the
sampling patterns for ensuring finite completability. In other

words, setting j = 1 in Theorem 3 results in a tighter lower
bound.

A. Lower Bound on Sampling Probability Based
on Analysis on Grassmannian Manifold

We first state a lemma, whose corollary (Corollary 1) is
used extensively in this section in order to find a lower bound
on the sampling probability to guarantee a lower bound on the
number of sampled entries with high probability.

Lemma 5. Consider a vector with ni entries and assume each
entry is observed with probability p and independently from
the other entries. Then, with probability at least 1−exp(− ni

2c2 )

at least (p − 1
c )ni entries are observed.

Proof: Azuma’s inequality states that for a martingale
{Xk : k = 0, 1, 2, ...} that |Xk − Xk−1| ≤ 1 holds, we have
P(Xn − E[Xn] > t) ≤ exp

(−t2

2n

)
and P(E[Xn] − Xn > t) ≤

exp
(−t2

2n

)
[57]. Therefore, using Azuma’s inequality and the

fact that sampling has Bernoulli distribution with parameter p,
it can be seen that with probability at most exp(− t2

2ni
) the

number of observed entries is less than ni p−t . Now, by setting
t equal to ni

c the proof is complete.

Corollary 1. Consider a vector with ni entries where each
entry is observed with probability p independently from the
other entries. If p > p′ = 2ri

ni
+ 1

4√ni
, with probability at

least
(

1− exp(−
√

ni
2 )

)
, more than 2ri entries are observed.

Similarly, if p > p′′ = 12 log(
eni
ε )

ni
+ 1

4√ni
, with probability

at least
(

1− exp(−
√

ni
2 )

)
, more than 12 log( eni

ε ) entries are
observed.

Proof: Both parts follow by setting c = 4
√

ni in Lemma 5.

The following theorem uses the matrix result for single rank
constraint and provides a sufficient condition on the sampling
pattern for finite completabilitily of tensor. We will assume
that

ri ≤ ni

6
, N−i ≥ ri (ni − ri ) for i = 1, 2, . . . , d. (20)

Theorem 4. Consider a randomly sampled tensor U with
Tucker rank (r1, · · · , rd ). Suppose that the inequalities in (20)
hold. Moreover, assume that the sampling probability satisfies

p > min
1≤i≤d

(
max

(
2ri

ni
,

12 log( eni
ε )

ni

)
+ 1

4
√

ni

)
. (21)

Then, there are only finitely many completions of the sampled
tensor U with the given rank vector with probability at least
(1− 2ε).

Proof: Denote � = arg min1≤i≤d

(
max

(
2ri
ni

,
12 log(

eni
ε )

ni

)

+ 1
4√ni

)
. By (21) and using Corollary 1, with probability

almost one the number of observed entries at each column
of U(�) is at least max{2r�, 12 log( en�

ε )}. Then, with (20)
and using [34, Theorem 3], it follows that there are finitely
many matrix completions for the observed entries of U(�) with
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rank r�. As a result, there are finitely many tensors with the
�-th component of rank being r� that agree with the observed
entries. The proof is complete since the set of tensors that are
a completion with the rank vector (r1, . . . , rd ) is a subset of
the set of tensors whose finiteness is shown above.

B. Lower Bound on Sampling Probability Based
on Analysis on Tucker Manifold

We are interested in taking advantage of Theorem 3 to
obtain another lower bound on the sampling probability for
finite completability. We assume j = 1, and therefore the
constraint tensor �̆ is a second-order tensor, i.e., an n1 × K1
matrix.

Lemma 6. Consider an arbitrary set �′(1) of n1 − 1 columns
of �(1) (first matricization of �). Assume that each column of
�(1) includes at least l nonzero entries, where

l > 6 log (n1)+ 2 log

(
k

ε

)
+ 4. (22)

Then, with probability at least 1 − ε
k , every subset �′′(1) of

columns of �′(1) satisfies

m2(�
′′
(1))− 1 ≥ t, (23)

where t is the number of columns of �′′(1) and m2(�
′′
(1)) is

the number of nonzero rows of �′′(1) (observe that second
matricization of a matrix is its transpose).

Proof: The proof is similar to the proof of [34, Lemma 9]
with some delicate modifications to improve the result for this
case. Note that (22) can be rewritten as

l > 2 log

(
n1k

ε

)
+ 4 log(n1)+ 4 (24)

> log

(
n1e2k

ε

)
+ 2. (25)

Define E as the event that for some submatrix �′′(1) ∈ R
n1×t

of the matrix �′(1) (23) does not hold. We are interested in
finding an upper bound on the probability of E . Then, from
the proof of [34, Lemma 9] and by setting r = 1 in inequalities
(12) and (13) in [34], we have

P(E) <

n1
2∑

n=l

(
n1

n

)2 (
n

n1

)ln1

+
n1
2∑

n=1

(
n1

n1 − n

)2 (
n1 − n

n1

)l(n1−n)

. (26)

Note that(
s

q

)
= s(s − 1) . . . (s − q + 1)

q! ≤ sq

q! ≤
(

se

q

)q

, (27)

where the last inequality holds since eq = ∑∞
i=0

qi

i! ≤ qq

q! .
Applying (27) to each term of the first summation of (26) we
obtain (

n1

n

)2 (
n

n1

)ln1

< e2n
(

n

n1

)(l−2)n

≤
(

e22−l+2
)n

<
ε

n1k
, (28)

where the last inequality follows from (25). This directly
results that the first summation in (26) is less than ε

2k .
Moreover, again by applying (27) to each term of the second

summation in (26) we obtain
(

n1

n1 − n

)2 (
n1 − n

n1

)l(n1−n)

=
(

n1

n

)2 (
n1 − n

n1

)l(n1−n)

< (n1e)2n
(

n1 − n

n1

) ln1
2

≤ (n1e)2ne−
ln
2 =

(
e2 log n1+2− l

2

)n
<

ε

n1k
, (29)

where the last inequality follows from (24). This directly
results that the second summation in (26) is less than ε

2k and
that completes the proof.

Lemma 7. Consider an arbitrary set �′(1) of n1 columns of
�(1) (first matricization of �). Assume that each column of
�(1) includes at least l nonzero entries, where l > 6 log (n1)+
2 log

( 2k
ε

)+ 4. Then, with probability at least 1− ε
2 k , every

subset �′′(1) of columns of �′(1) satisfies

m2(�
′′
(1)) ≥ t, (30)

where t is the number of columns of �′′(1) and m2(�
′′
(1)) is the

number of nonzero rows of �′′(1).

Proof: By setting r = 0 in inequalities (12) and (13)
in [34], we have

P(E) <

n1
2∑

n=l

(
n1

n

)2 (
n

n1

)l(n1+1)

+
n1
2∑

n=1

(
n1

n1 − n

)2 (
n1 − n

n1

)l(n1−n+1)

. (31)

Since n < n1 it then follows that P(E) < RHS of (31) <
RHS of (26) < ε

2k , where the last inequality follows from
Lemma 6.

The next theorem gives a lower bound on the number of
needed samples to ensure finite completability for tensor U .
More specifically, we show under some mild assumptions if
(32) holds, all conditions and assumptions in the statement of
Theorem 3 hold with high probability, and therefore the tensor
is finitely completable.

Theorem 5. Assume that
∑d

i=2 (niri ) < n2 . . . nd,
∑d

i=2 r2
i ≤

�d
i=2ri , �d

i=2ni ≥ n1�
d
i=2ri −∑d

i=2 r2
i , and Assumption B1

hold. Furthermore, assume that each column of U(1) includes
at least l observed entries, where

l > 6 log (n1)+
2 max

{
log

(
2
∑d

i=2 r2
i

ε

)
, log

(
2�d

i=2ri−2
∑d

i=2 r2
i

ε

)}
+ 4. (32)

Then, with probability at least 1 − ε, there exist only finitely
many completions, given the rank components r2, . . . , rd .

Proof: Since each column of �(1) includes at least
one nonzero entry, there exist

∑d
i=2 niri entries in different

columns such that they satisfy Assumption A1 (as mentioned
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in Remark 2). Also, �(1) has �d
i=2ni columns and by assump-

tion �d
i=2ni ≥ n1�

d
i=2ri − ∑d

i=2 r2
i , therefore there exist

�d
i=2ri disjoint sets S1, . . . ,S�d

i=2ri
such that each S� consists

of n1 − 1 columns of �(1) for 1 ≤ � ≤∑d
i=2 r2

i and each S�

consists of n1 columns of �(1) for
∑d

i=2 r2
i +1 ≤ � ≤ �d

i=2ri .
Note that by (32), we have l > 6 log (n1) +

2 log

(
2
∑d

i=2 r2
i

ε

)
+4. Using Lemma 6, with k = 2

∑d
i=2 r2

i , for

each 1 ≤ � ≤∑d
i=2 r2

i , with probability at least 1− ε

2
∑d

i=2 r2
i

,

(23) holds for every subset of columns of S�. Hence, with
probability at least 1 − ε

2 , (23) holds for every subset of
columns of S� for 1 ≤ � ≤ ∑d

i=2 r2
i , simultaneously.

According to Remark 8 and Lemma 8 below and by setting
r = 1, as a subset of columns S� of �(1) satisfies (23),
there exist a subset of columns S̆� of the constraint matrix
�̆ (corresponding columns to the columns of S�) that satisfies

(23) as well, for 1 ≤ � ≤∑d
i=2 r2

i . Denote S̆(0) = ∪
∑d

i=2 r2
i

�=1 S̆�.
Consider any subset of columns of S̆(0) and denote it by S̆ ′.

Let S̆ ′� denote the columns of S̆ ′ that belong in S̆� and,
without loss of generality, assume that |S̆ ′1| ≥ · · · ≥ |S̆ ′∑d

i=2 r2
i
|,

where |S̆ ′�| denotes the number of columns of S̆ ′�. As a result,
we obtain

|S̆ ′|=
∑d

i=2 r2
i∑

�=1

|S̆ ′�|≤
(

d∑
i=2

r2
i

)
|S̆ ′1| ≤

(
d∑

i=2

r2
i

)
(m2(S̆ ′1)− 1)

≤
(

d∑
i=2

r2
i

)
(m2(S̆ ′)−1),

(33)

and consequently

|S̆ ′| ≤
(

d∑
i=2

r2
i

)
m2(S̆ ′)−

d∑
i=2

r2
i , ∀ S̆ ′ ⊆ S̆(0). (34)

Moreover, by (32), we have l > 6 log (n1) +
2 log

(
2�d

i=2ri−2
∑d

i=2 r2
i

ε

)
+ 4. Using Lemma 7, with k =

2�d
i=2ri − 2

∑d
i=2 r2

i , for each
∑d

i=2 r2
i + 1 ≤ � ≤ �d

i=2ri ,
with probability at least 1 − ε

2�d
i=2ri−2

∑d
i=2 r2

i

, (30) holds for

every subset of columns of S�. As a result, with probability
at least 1 − ε

2 , (30) holds for every subset of columns of S�

for
∑d

i=2 r2
i + 1 ≤ � ≤ �d

i=2ri , simultaneously. According to
Remark 8 and Lemma 8 below and by setting r = 0, as a
subset of columns S� of �(1) satisfies (30), the corresponding
subset of columns S̆� of the constraint matrix �̆ satisfies
(30) as well,

∑d
i=2 r2

i + 1 ≤ � ≤ �d
i=2ri . Denote S̆(1) =

∪�d
i=2ri

�=∑d
i=2 r2

i +1
S̆�. Similarly, we have

|S̆ ′| ≤
(

�d
i=2ri −

d∑
i=2

r2
i

)
m2(S̆ ′), ∀ S̆ ′ ⊆ S̆(1). (35)

For any subset of columns �̆
′′

of �̆
′ = S̆(0) ∪ S̆(1) we

define S̆(0)′ and S̆(1)′ as the set of columns of �̆
′′

that belong
to S̆(0) and S̆(1), respectively. Observe that as �̆

′
has exactly

∑�d
i=2ri

i=1 |Si | = n1�
d
i=2ri −∑d

i=2 r2
i columns, condition (i) of

Theorem 3 for j = 1 is satisfied. Then, by (34), (35) and
the assumption that

∑d
i=2 r2

i ≤ �d
i=2ri , we have (recall |�̆′′|

denotes the number of columns of �̆
′′

here)

|�̆′′| = |S̆(0)′ | + |S̆(1)′ | ≤
(

d∑
i=2

r2
i

)
m2(S̆(0)′)−

d∑
i=2

r2
i +

(
�d

i=2ri −
d∑

i=2

r2
i

)
m2(S̆(1)′) ≤

(
�d

i=2ri

)
m2(�̆

′′
)−

d∑
i=2

r2
i ≤

(
�d

i=2ri

)
m2(�̆

′′
)− g2(m2(�̆

′′
)).

(36)

Therefore, any subset of columns of �̆
′

satisfies (16) (condi-
tion (ii) of Theorem 3 for j = 1), with probability at least
1− ε. Then, according to Theorem 3, with probability at least
1− ε, there are only finitely many completions that fit in the
sampled tensor U , given the rank components r2, . . . , rd .

Remark 6. In the case that only a subset of rank components
are given, e.g, r j+1, . . . , rd , we can treat the first j dimensions
of the tensor as one single dimension, and therefore the above
result is still applicable. In particular, assume that each column
of Ũ( j ) ( j -th unfolding) includes at least l observed entries,
where (recall N j = n1 . . . n j )

l > 6 log
(
N j

)+ 2 max

{
log

(
2

∑d
i= j+1 r2

i

ε

)
,

log

(
2�d

i= j+1ri − 2
∑d

i= j+1 r2
i

ε

)}
+ 4. (37)

Given that
∑d

i= j+1 r2
i ≤ �d

i= j+1ri , �d
i= j+1ni ≥

N j �
d
i= j+1ri − ∑d

i= j+1 r2
i , and Assumption B j hold, with

probability at least 1 − ε, there exist only finitely many
completions, given the rank components r j+1, . . . , rd .

Remark 7. Assume that there exist only finitely many
completions, given the rank components r j+1, . . . , rd , where
j ≥ 1. Then, there exist only finitely many completions of
rank (r1, . . . , rd ).

As in the proof of Theorem 5 we referred to Lemma 8,
we need to show that if a subset of columns of �(1) satisfies
(23) or (30), the same property holds for a corresponding
subset of columns of the constraint matrix �̆.

Remark 8. Recall that for each column of �(1) that has k+r
nonzero entries and r of them have been used to obtain T,
there exist k columns in the constraint matrix �̆, each with
exactly r + 1 nonzero entries.

Recall that as we showed after stating Assumption A j ,
we can choose

∑d
i=2 niri nonzero entries of �(1) to obtain T,

i.e., to satisfy Assumption A1 such that in each column of
�(1) either we choose one or zero nonzero entry. In that case,
each column of �̆ includes 0+1 or 1+1 nonzero entries. As a
result, in the proof of Theorem 5, we only need Lemma 8 for
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r = 0 and r = 1. However the general statement is needed to
complete a proof in [34], as we explain in Remark 10.

Consequently, the matrix �̆
′

defined in Lemma 8 for r =
0 and r = 1 corresponds to the columns of the constraint
matrix �̆.

Lemma 8. Let r be a given nonnegative integer. Assume that
there exists an n1 × (n1 − r) matrix �′ composed of n1 − r
columns of �(1) such that each column of �′ includes at least
r + 1 nonzero entries and satisfies the following property2:
• Denote an n1 × t matrix (for any 1 ≤ t ≤ n1 − r)

composed of any t columns of �′ by �′′. Then

m2(�
′′)− r ≥ t, (38)

where m2(�
′′) is the number of nonzero rows of �′′.

Then, there exists an n1 × (n1 − r) matrix �̆
′

such that: each
column has exactly r+1 entries equal to one, and if �̆

′
(x, y) =

1 then we have �′(x, y) = 1. Moreover, �̆
′

satisfies the above-
mentioned property.

Proof: Let �′ denote a n1× (n1 − r) matrix that consists
of n1−r columns of �(1) and satisfies the mentioned property
in the statement of the lemma. Note that the given property
in the statement of the lemma is equivalent to the following
statement
• The matrix obtained by choosing any subset of the

columns of �′ includes at least r+ t nonzero rows, where
t is the number of the selected columns of �′.

Consider a bipartite graph G with the two sets of nodes
T1 with n1 − r nodes corresponding to the columns and T2
with n1 nodes corresponding to the rows. We add an edge
between the i -th node of T1 and the i ′-th node of T2 if and
only if the (i, i ′)-th entry of �′ is equal to one. For a set
of nodes S, let N(S) denote the set of their neighbors. Note
that according to the assumption, any subset of the columns
of �′ includes at least r + t nonzero rows (r + t edges in the
defined graph), where t is the number of the selected columns
of �τ . Therefore, every subset of nodes of T1 has the following
property

N(S) ≥ |S| + r. (39)

The statement of the lemma is equivalent to proving that there
exists a spanning subgraph G′ of G such that every node of
T1 is of degree r +1, and also for each subset of nodes of T1,
(39) holds in G′.

First consider the scenario that r = 0. Then, according
to Hall’s theorem [58], there is a perfect matching (since
inequality (39) holds). Observe that a perfect matching in the
described graph is exactly equivalent to what we are looking
for when r = 0. For other values of r > 0, the proof is a direct
result of Theorem 6 which is a generalization of the Hall’s
theorem. An example of such spanning subgraph for a graph
with n1 = 6 and r = 1 is shown in Figure 3. In Figure 3(a)
a bipartite graph is given such that (39) holds for r = 1.
Figure 3(b) gives an spanning subgraph of the given graph
in Figure 3(a) such that degree of each node in T1 is equal to
2 and still (39) holds for r = 1.

2This property is exactly property (ii) in [34].

Fig. 3. An example of the corresponding bipartite graph with r = 1 and
n1 = 6. (a) The original graph. (b) The spanning subgraph.

Theorem 6. (Generalized Hall’s Theorem) Consider a bipar-
tite graph G with two sets of nodes, T1 with x nodes and T2
with x+r nodes, where x , r ∈ N. Suppose that for each subset
S of T1 the following inequality holds

|N(S)| ≥ |S| + r. (40)

Then, there exists a spanning subgraph G′ of G such that every
node of T1 is of degree r+1, and also for each subset of nodes
of T1, the inequality (40) holds in G′ as well.

Proof: The proof is given in Appendix B.

Corollary 2. Assume that
∑d

i= j+1 r2
i ≤ �d

i= j+1ri ,

�d
i= j+1ni ≥ N j �

d
i= j+1ri −∑d

i= j+1 r2
i , and Assumption B j

hold. Furthermore, assume that we observe each entry of U
with probability p, where

p >
1

N j

(
6 log

(
N j

)+ 2 log

(
max

{
2

∑d
i= j+1 r2

i

ε
,

2�d
i= j+1ri − 2

∑d
i= j+1 r2

i

ε

})
+ 4

)
+ 1

4
√

N j
. (41)
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Then, with probability at least 1 − 2ε, there are only
finitely many completions for U , given the rank components
r j+1, . . . , rd .

Proof: The proof is straightforward given Theorem 5 and
Corollary 1.

Remark 9. In Theorem 4 which is obtained by applying the
analysis in [34], the number of needed samples per column
of the i -th matricization to guarantee finite completability
with high probability is on the order of O(max{log(ni ), ri }).
Therefore, the number of needed samples in total is on
the order of O(N−i max{log(ni ), ri }). On the other hand,
in Theorem 5 for the case of d > 2 (order of the tensor
is at least 3), the number of needed samples per column for
the i -th unfolding becomes O(max{log(Ni ), log(ri+1 . . . rd )}),
and the number of needed samples in total is on the
order of O( N

Ni
max{log(Ni ), log(ri+1 . . . rd)}), if ri+1 . . .

rd < N
Ni

2 .
As an example, consider the case that ni = n, i = 1, . . . , d .

Also, assume that ri = r , i = j + 1, . . . , d , where r ≤ √n.
The matricization analysis requires O(nd−1 max{log(n), r})
samples for any j . However, according to Theorem 5, if j = d

3

it requires O(n
2d
3 log(n

d
3 )) samples for finite completability.

Note that under the assumption r j+1 . . . rd < N
N j

2 , i.e., rd− j <

nd−2 j , j = d
3 results in the best possible bound as r = √n

since increasing j violates the assumption.

Remark 10. We note that the proof in [34, Theorem 3]
is incomplete and Lemma 8 is needed to complete that
proof.

First, observe that sampling pattern matrix � represents the
observed entries and it has at least l nonzero elements per
column. On the other hand, �̆ represents the constraint matrix
defined in [34] and it has exactly (r + 1) nonzero elements
per column, where r is the given rank.

Secondly, observe that in [34, Lemma 1] each O�τ is a subset
of the constraint matrix �̆ (not a subset of �).

Finally, in the proof and statement of [34, Lemma 9] the
authors consider a subset of �. However, in the proof of
[34, Theorem 3] they refer to [34, Lemma 1], which considers
the columns as the subsets of �̆. Now, considering �̆ instead
of � in [34, Lemma 9], the equation below the equation (11)
in [34] does not hold. This is because the assumption right
below equation (11) in [34] that �̆ has at least l nonzero
elements per column is incorrect (this is a property of � but
not necessarily �̆).

As a result, a part of the proof in [34, Theorem 3] is missing
which is Lemma 8 in this paper.

V. DETERMINISTIC AND PROBABILISTIC GUARANTEES

FOR UNIQUE COMPLETABILITY

In this section, we first provide an example with exactly two
completions to emphasize that finite completability does not
necessarily result in unique completability. Then, we provide
the conditions on the sampling pattern to guarantee unique
completability.

Example 5. Assume that the sampled matrix U ∈ R
5×4 is

given as the incomplete matrix on the left below:

1 1 − 1
2−4 2 −1

0 1 2
1 4

4 −2 3
2

⇒

1 − 21
32 1 − 1

2
−4 2 −1 3

4
0 1 − 24

5 2
1 − 41

32 4 − 7
4

−8 4 −2 3
2

and

1 −2 1 − 1
2−4 2 −1 −10

0 1 − 1
2 2

1 −8 4 − 25
2

− 39
21 4 −2 3

2

Moreover, assume that rank(U) = 2. In Appendix C, it is
shown that there exist exactly two completions of U as given
by the two complete matrices on the right.

The following assumptions is a stronger version of Assump-
tion A j to ensure that there exists only one tuple T given the
core tensor.
Assumption A+j : Anywhere that this assumption is stated,

there exist
∑d

i= j+1 (ni (ri + 1)) observed entries such that for
any Si ⊆ {1, . . . , ni } for i ∈ { j + 1, . . . , d}, U (S j+1,...,Sd )

includes at most
∑d

i= j+1 |Si |(ri + 1) of the mentioned∑d
i= j+1 (ni (ri + 1)) observed entries.

Remark 11. In Lemma 1 we showed that Assumption A j

results that tuple T can be determined finitely. Note that
Assumption A+j implies Assumption A j and therefore using

only
∑d

i= j+1 (niri ) of the observed entries tuple T can be
determined finitely. Moreover, observe that the rest of the
sampled entries result in a set of polynomials that involve
any of variables at least once and according to Note 5, tuple
T can be determined uniquely, with probability one.

The following lemma is a re-statement of Lemma 25 in [56]
(also an adaptation of Lemma 7 in [34]) and gives the
conditions under which a subset of entries of the core tensor
C can be determined uniquely.

Lemma 9. Assume that Assumption B j holds. Suppose that
�̆
′ ∈ R

n1×n2×···×n j×t is a subtensor of the constraint tensor
such that P(�̆

′
) is minimally algebraically dependent. Then,

for almost every U , all variables that are involved in the set
of polynomials P(�̆

′
) can be uniquely determined.

Proof: According to Lemma 3, the number of involved
variables in polynomials in P(�̆

′
) = {p1, p2, . . . , pt } is t − 1

and are denoted by {x1, . . . , xt−1}. Moreover, as mentioned
in the proof of Lemma 3, P(�̆

′
)\pi is a set of algebraically

independent polynomials and the number of involved variables
is t − 1, i = 1, . . . , t . Consider an arbitrary variable x1

that is involved in polynomials in P(�̆
′
) and without loss of

generality, assume that x1 is involved in p1.
On the other hand, as mentioned all variables {x1, . . . , xt−1}

are involved in algebraically independent polynomials in
P(�̆

′
)\p1. Hence, according to Note 5, tuple (x1, . . . , xt−1)
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can be determined finitely. Given that one of these finitely
many tuples (x1, . . . , xt−1) satisfy polynomial equation p1,
according to Note 5, with probability one there does not
exist another tuple (x1, . . . , xt−1) among them that satisfies
polynomial equation p1. This is because with probability zero
a tuple satisfy a polynomial equation in which the coefficients
are chosen generically, and also the fact that the number of
such tuples is finite.

The next theorem provides two conditions on the sampling
pattern to ensure unique completability. The first one is as
the same as the condition proposed in Theorem 3 for finite
completability. The second condition takes advantage of finite
completability and leads to the unique core tensor.

Theorem 7. Suppose that assumptions A+j and B j hold.

Also, assume that there exist two disjoint subtensors �̆
′ ∈

R
n1×n2×···×n j×n and �̆

′
0 ∈ R

n1×n2×···×n j×n0 of the constraint

tensor such that n =
(
�

j
i=1ni

) (
�d

i= j+1ri

)
−

(∑d
i= j+1 r2

i

)

and n0 =
(
�

j
i=1ni

)
− �

∑d
i= j+1 r2

i

�d
i= j+1ri

� with the following condi-

tions:
(i) For any t ∈ {1, . . . , n} and any subtensor �̆

′′ ∈
R

n1×n2×···×n j×t of the tensor �̆
′
, the following inequality holds(

�d
i= j+1ri

)
m j+1(�̆

′′
)− g j+1(m j+1(�̆

′′
)) ≥ t . (42)

(ii) For any t ′ ∈ {1, . . . , n0} and any subtensor �̆
′′
0 ∈

R
n1×n2×···×n j×t ′ of the tensor �̆

′
0, the following inequality

holds (
�d

i= j+1ri

)
m j+1(�̆

′′
0)− g j+1(m j+1(�̆

′′
0)) ≥

(
�d

i= j+1ri

)
t ′ −

⎛
⎝

d∑
i= j+1

r2
i

⎞
⎠(

t ′ − n0 + 1
)+

. (43)

Then, for almost every U with probability one, there exists
exactly one tensor that fits in the sampled tensor, and also
rank(U(i)) = ri , i = j + 1, . . . , d. Therefore there is a unique
completion of the sampled tensor with rank of (r1, r2, . . . , rd ).

Proof: As mentioned Assumption A+j results that T can be
determined uniquely. In order to complete the proof it suffices
to show the core tensor C can be determined uniquely as
well. As defined earlier, P(�̆

′
) and P(�̆

′
0) denote the set of

polynomials obtained from the sampled entries corresponding
to �̆

′
and �̆

′
0, respectively. According to Theorem 3, P(�̆

′
)

results in finite completability of the sampled tensor U , and
also n algebraically independent polynomials. Hence, adding
any of the polynomials in P(�̆

′
0) to P(�̆

′
) results in an alge-

braically dependent set of polynomials. Using n algebraically
independent polynomials in P(�̆

′
) and polynomials in P(�̆

′
0),

we show all entries of core tensor can be determined uniquely.
Let p0 denote an arbitrary polynomial in P(�̆

′
0). Consider

P ′(p0) ⊂ P(�̆
′
) such that P ′(p0) ∪ p0 is a minimally alge-

braically dependent set of polynomials. Let tuple (x1, . . . , x j )
denote the first j coordinates of the corresponding observed
entry to polynomial p0. Then, according to Note 2, all
�d

i= j+1ri entries of core tensor C with the first j coordinates as
(x1, . . . , x j ) are involved in polynomial p0, and therefore they

can be determined uniquely, according to Lemma 9. However,
a subset of these �d

i= j+1ri entries of core tensor may be the
elements of the proper structure which are known entries.

Similarly, repeating this procedure for any subtensor �̆
′′
0 ∈

R
n1×n2×···×n j×t ′ of the tensor �̆

′
0 results in

(
�d

i= j+1ri

)
t ′

polynomials in terms of the
(
�d

i= j+1ri

)
m j+1(�̆

′′
0) −

g j+1(m j+1(�̆
′′
0)) unknown entries of the core tensor. Observe

that according to Note 5, these polynomials are algebraically
independent if
(
�d

i= j+1ri

)
m j+1(�̆

′′
0)− g j+1(m j+1(�̆

′′
0)) ≥

(
�d

i= j+1ri

)
t ′,

(44)

for any subtensor �̆
′′
0 ∈ R

n1×n2×···×n j×t ′ of the tensor �̆
′
0.

In order to include dim(C) =
(
�

j
i=1ni

) (
�d

i= j+1ri

)
−(∑d

i= j+1 r2
i

)
algebraically independent polynomials,

�̆
′
0 should include at least n0 columns otherwise for any

subtensor �̆
′′
0 ∈ R

n1×n2×···×n j×t ′ of the tensor �̆
′
0 we have

dim(C) >
(
�d

i= j+1ri

)
t ′ since t ′ < n0. Therefore, inequality

(43) results that all n variables (unknown entries) of the core
tensor can be determined uniquely.

We are also interested to obtain a lower bound on the
sampling probability, which ensures the unique completability.
The following lemma leads to Lemma 11 that characterizes
the number of required sampled entries to ensure the unique
completability with high probability.

Lemma 10. Consider an arbitrary set �′(1) of n1 columns
of �(1) (first matricization of �). Assume that each column of
�(1) includes at least l nonzero entries, where l > 6 log (n1)+
2 log

(
n1 k

ε

)
+ 4. Then, with probability at least 1− ε

k every

proper subset �′′(1) of columns of �′(1) satisfies

m2(�
′′
(1))− 1 ≥ t, (45)

where t is the number of columns of �′′(1) and m2(�
′′
(1)) is the

number of nonzero rows of �′′(1).

Proof: According to Lemma 6, every subset �′′(1) of
columns of �′(1) with n1 − 1 columns satisfies property (45)
with probability at least 1− ε

n1 k . There are exactly n1 subsets
with n1−1 columns, and therefore property (45) holds for all
of them with probability at least 1− ε

k .

Lemma 11. Assume that
∑d

i=2 (niri ) < n2 . . . nd ,
∑d

i=2 r2
i ≤

�d
i=2ri , �d

i=2ni ≥ n1(�
d
i=2ri +1)−∑d

i=2 r2
i , and Assumption

B1 hold. Furthermore, assume that each column of U(1)

includes at least l observed entries, where

l > 6 log (n1)+ 2 max

{
log

(∑d
i=2 r2

i

ε

)
,

log

(
�d

i=2ri −∑d
i=2 r2

i

ε

)
, log

(n1

ε

)}
+ 8. (46)

Then, with probability at least 1 − ε, there exists only one
completion of rank (r1, · · · , rd ).
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Proof: Observe that since �d
i=2ni ≥ n1(�

d
i=2ri + 1) −∑d

i=2 r2
i there exist n1

(
�d

i=2ri
)−

(∑d
i=2 r2

i

)
and n1 disjoint

columns in �(1) denoted by �̆
′

and �̆
′
0, respectively. In order

to show unique completability, it suffices to show �̆
′

and �̆
′
0

satisfy properties (i) and (ii) in the statement of Theorem 7,
respectively, with probability at least 1− ε

2 .
Note that having (46), it is easy to see that (32) holds with ε

replaced by ε
2 . Therefore, according to Theorem 5, �̆

′
satisfies

property (i) in the statement of Theorem 7 with probability at
least 1− ε

2 .
On the other hand,

∑d
i=2 r2

i ≤ �d
i=2ri and according to

Lemma 10 (with k = 2), with probability at least 1− ε
2 , any

subset of columns of �̆
′
0 satisfies (45). For any proper subset

of column �̆
′′
0 of �̆

′
0, we have m2(�̆

′′
0)−1 ≥ t ′ or equivalently

(t ′ is the number of columns of �̆
′′
0)

(
�d

i= j+1ri

)
m j+1(�̆

′′
0)−�d

i=2ri ≥
(
�d

i= j+1ri

)
t ′, (47)

which results in (43) as g j+1(m j+1(�̆
′′
0)) ≤

∑d
i=2 r2

i ≤
�d

i=2ri and
(
t ′ − n0 + 1

)+ = 0. Hence, in order to show prop-
erty (ii) in the statement of Theorem 7 holds with probability
at least 1 − ε

2 (which completes the proof) we only need to

show that (43) holds when �̆
′′
0 = �̆

′
0.

Note that m j+1(�̆
′′
0) ≤ m j+1(�̆

′
0). Therefore, as m2(�̆

′′
0)−

1 ≥ t ′ holds for any proper subset of column �̆
′′
0 of �̆

′
0,

we have m j+1(�̆
′
0) ≥ n1 (by setting t ′ = n1 − 1). Then, (43)

holds as g j+1(m j+1(�̆
′
0)) ≤

∑d
i=2 r2

i and
(
t ′ − n0 + 1

)+ = 1.

Finally, in the following, we use Corollary 1 and the above
lemma to propose a lower bound on the sampling probability
to guarantee the unique completability with high probability.

Corollary 3. Assume that
∑d

i= j+1 r2
i ≤ �d

i= j+1ri ,

�d
i= j+1ni ≥ N j (�

d
i= j+1ri +1)−∑d

i= j+1 r2
i , and Assumption

B j hold. Furthermore, assume that we observe each entry of
the tensor U with probability p, where

p >
1

N j

(
6 log

(
N j

)+ 2 log

(
max

{∑d
i= j+1 r2

i

ε
,

�d
i= j+1ri −∑d

i= j+1 r2
i

ε
,

N j

ε

})
+ 8

)
+ 1

4
√

N j
. (48)

Then, with probability at least 1 − 2ε, there exists only one
completion for U , given the rank components r j+1, . . . , rd .

Proof: The proof is straightforward given Lemma 11 and
Corollary 1.

VI. NUMERICAL COMPARISONS

In order to show the advantage of our proposed method over
matrix analysis, we compare the lower bound on the sampling
probability obtained by matricization analysis with the bound
obtained by tensor analysis.

In the first example, numerical comparisons are performed
on a 4th-order tensor U ∈ R

900×900×900×900. Figure 4 plots
the bounds given in (21) (Grassmannian manifold) and (41)

Fig. 4. Lower bounds on sampling probability for a 4th-order tensor.

Fig. 5. Lower bounds on sampling probability for a 6th-order tensor.

(Tucker manifold) for finite completability, where r1 = · · · =
r4 = r , and ε = 0.0001. As the second example, we consider a
6th-order tensor U ∈ R

900×900×900×900×900×900. Figure 5 plots
the bounds given in (21) (Grassmannian manifold) and (41)
(Tucker manifold) for finite completability, where r3 = r4 =
r5 = r4 = r , and ε = 0.0001. In this example, a significant
reduction in the sampling probability is seen for the tensor
model.

We have the following observations:
• In Figure 4, the bound obtained through the analysis on

Tucker manifold is less than the bound obtained through
the low-order analysis on Grassmannian manifold. This
improvement significantly increases as the value of the
rank increases.

• In Figure 4, the restriction r ≤ n
6 in the analysis on Grass-

mannian manifold makes the bound valid only for r ≤
150 (and that is why the corresponding curve is dotted for
r > 150 in Figure 4). On the other hand, the restriction
r(d − 1) ≤ n in our proposed approach ensures the
validity of the bound for r ≤ 300. Similarly, in Figure 5,
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the restriction �d
i= j+1ni ≥ N j �

d
i= j+1ri −∑d

i= j+1 r2
i in

the analysis on Tucker manifold makes the bound valid
only for r ≤ 30.

• Since the bounds for finite completability (48) and unique
completability (41) result in almost the same curves in
the above examples, we only plot bounds for finite com-
pletability in the figures. In general, the main difference
between (41) and (48) is an additional term log

(
N j
ε

)
in

the second term inside of maximum operator.

VII. CONCLUSIONS

This paper aims to find fundamental conditions on the sam-
pling pattern for finite completability of a low-rank partially
sampled tensor. To solve this problem, a novel geometric
approach on Tucker manifold is proposed. Specifically, a set of
polynomials based on the location of the sampled entries are
first defined, and then using Bernstein’s theorem and analysis
on Tucker manifold, a relationship between a geometric pat-
tern on the sampled entries and the number of algebraically
independent polynomials among all of the defined polynomials
is characterized. Moreover, an extension to Hall’s theorem in
graph theory is provided which is key to obtaining probabilistic
conditions for finite and unique completabilities. Using these
developed tools, we have addressed three problems in this
paper: (i) Characterizing the necessary and sufficient condi-
tions on the sampling pattern to have finitely many tensor
completions for the given rank, (ii) Characterizing conditions
on the sampling pattern to ensure that there is exactly one
completion for the given rank, (iii) Lower bounding the
sampling probability such that the conditions in Problems (i)
and (ii) are satisfied with high probability.

Finally, through numerical examples it is seen that our
proposed analysis on Tucker manifold for finite tensor com-
pletability leads to a much lower sampling rate than the matri-
cization approach that is based on analysis on Grassmannian
manifold.

APPENDIX A
PROOF OF LEMMA 4

As mentioned before, finiteness of the number of comple-
tions given (r j+1, . . . , rd ) results finiteness of the number of
completions given (r j , . . . , rd ). We are interested to show this
statement holds in Theorem 3, i.e, satisfying the properties (i)
and (ii) for j in the statement of Theorem 3 results in satisfying
the properties (i) and (ii) for j − 1. Before we present this
result, the following notation is introduced for the simplicity.

Definition 6. Let set S be a set of d-tuples such that each
element of S consists of d natural numbers (x1, . . . , xd).
Define f j (S) as the number of different tuples of the first
j components of the elements of S.

For example, let S = {(2, 2, 1), (2, 3, 3), (2, 2, 2), (1, 2, 1),
(2, 3, 1)}. Then, according to the definition f2(S) =
|{(2, 2), (2, 3), (1, 2)}| = 3.

Now, we are ready to provide the proof of lemma. It is easy
to see that Lemma 4 is exactly equivalent to the following
statement:

Assume that we sample a tensor U ∈ R
n1×n2×···×nd .

Suppose that there exist n =
(
�

j
i=1ni

) (
�d

i= j+1ri

)
−(∑d

i= j+1 r2
i

)
of the sampled entries such that any subset of

them (called S) with t observed entires (for any 1 ≤ t ≤ n)
satisfies the following inequality

(
�d

i= j+1ri

)
f j (S)− g j+1( f j (S)) ≥ t . (49)

Then, there exist n′ =
(
�

j−1
i=1 ni

) (
�d

i= j ri

)
−

(∑d
i= j r2

i

)
of

the sampled entries such that any subset of them (called S ′)
with t observed entires (for any 1 ≤ t ≤ n′) satisfies the
following inequality

(
�d

i= j ri

)
f j−1(S ′)− g j ( f j−1(S ′)) ≥ t . (50)

Therefore, it suffices to show the above statement. For
r j = 1, the statement can be easily verified, and therefore
we consider the case of r j > 1 in the rest of proof. Also
recall the assumption n j >

∑d
i=1 ri . We partition all of the

sampled entries into n j groups such that group i includes all
of the sampled entries that j -th component of their coordinate
is equal to i . Let Si denote the i -th group. Observe that
every subset of the sampled entries of each group satisfies
inequality (49). Moreover, according to pigeonhole principle
we know that between the defined n j groups there exist r j

groups (without loss of generality assume S1, . . . ,Sr j ) such
that

∑r j
i=1 |Si | ≥ r j

n j
n.

Since r j
n j

n =
(
�

j−1
i=1 ni

) (
�d

i= j ri

)
− r j

n j

(∑d
i= j+1 r2

i

)
≥ n′,

we only need to show that any subset of the elements of
the groups S1, . . . ,Sr j satisfies inequality (50). Consider an
arbitrary subset of the elements of groups S1, . . . ,Sr j and
denote it by S ′. Assume that S ′i denotes the elements of S ′
that belong in Si for 1 ≤ i ≤ r j . Recall that every subset
of the sampled entries of each group satisfies inequality (49).
Moreover, due to the fact that in each group the j -th compo-
nent of the coordinates are the same, for each subset of the
entries of a group Si we have f j (S ′i ) = f j−1(S ′i ). As a result,
we have

(
�d

i= j+1ri

)
f j−1(S ′i )− g j+1( f j−1(S ′i )) ≥ |S ′i |. (51)

Without loss of generality, assume f j (S ′1) ≥ f j (S ′2) ≥
. . . ≥ f j (S ′r j

). Also, observe that for each 1 ≤ i ≤ r j we
have f j (S ′i ) ≤ f j (S ′). Therefore, by adding up the above
inequalities for 1 ≤ i ≤ r j we have

(
�d

i= j ri

)
f j−1(S ′1)− g j+1( f j−1(S ′1))r j ≥ |S ′|. (52)

For the case that 1 < r j <
∑d

i= j+1 r2
i holds, we can see that

r j

(∑d
i= j+1 r2

i

)
≥ ∑d

i= j r2
i also holds, and therefore using

(52) we can obtain
(
�d

i= j ri

)
f j−1(S ′)− g j ( f j−1(S ′)) ≥ |S ′|, (53)

which completes the proof. If r j ≥∑d
i= j+1 r2

i similarly using
the above inequality and by ignoring r2

j of entries proof can
be completed.
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APPENDIX B
PROOF OF THEOREM 6

The proof of this theorem is based on strong induction
on x . For x = 1 the theorem is easy to verify. Assume that
the statement of the theorem holds for 1 ≤ x ≤ x0. Then,
it suffices to show that the statement also holds for the case
that x = x0 + 1. There are two different scenarios that we
need to show the statement holds for separately.

Scenario 1. There exists a proper and nonempty subset of
nodes S1 of T1 such that |N(S1)| = |S1| + r :

Consider the induced subgraph of G with the set of nodes
S1 ∪ N(S1) and denote it by G1. Induction hypothesis results
in a spanning subgraph G′1 of G1 that satisfies the desired prop-
erties in the statement of the theorem for the corresponding
subgraph G1.

Now, consider the induced subgraph of G with the set of
nodes {T1 ∪ T2} \ {S1} and denote it by G2. Since |N(S1)| =
|S1|+r , we conclude that for each subset of nodes of {T1}\{S1}
we have |N(S)∩{T2 \ N(S1)}| ≥ |S|. The reason is that if we
choose a set of nodes including the members of S ⊂ {T1}\{S1}
plus all nodes in S1 and use the assumption in the statement
of the theorem, it results that |N(S) ∩ {T2 \ N(S1)}| ≥ |S|.
Moreover, induction hypothesis results that there exists a
spanning subgraph that satisfies the desired properties in the
statement of the theorem for the corresponding subgraph G2.
Now, Lemma 12 results that there exists a spanning subgraph
G′2 of the graph G2 so that every node of T1 \ S1 is of degree
r+1, and also for each subset of nodes of T1\S1, the inequality
(40) holds and in addition, G′2 includes a perfect matching
between the nodes in T1 \ S1 and T2 \ N(S1).

Now, consider a spanning subgraph G′ of the graph G that
only includes all edges of G′1 and G′2. We can easily observe
that every node of T1 is of degree r + 1. Moreover, for each
subset of nodes of S1 the inequality (40) holds, and also for
each subset of nodes of T1 \ S1 the inequality (40) holds.
Now, consider a subset of nodes S of T1. It suffices to show
the inequality (40) holds for S.

Define S ′ = S ∩ S1 and S ′′ = S ∩ {T1 \ S1}. Since for
each subset of nodes of S1 the inequality (40) holds, we have
|N(S) ∩ N(S1)| ≥ |S ′| + r . On the other hand, G′ includes a
perfect matching between the nodes in T1\S1 and T2 \ N(S1),
and therefore |N(S) ∩ {T2 \ N(S1)}| ≥ |S ′′|. As a result,
|N(S)| ≥ |S ′| + r + |S ′′| = |S| + r and the proof is complete
for this scenario.

Scenario 2: For any proper and nonempty subset of nodes
of T1 we have |N(S)| ≥ |S| + r + 1:

Consider an arbitrary node v1 and observe that |N(v1)| ≥
r + 1. Define S1 = T1 \ {v1} and let G1 denote the induced
subgraph of G with set of nodes S1∪T2 (which is all nodes of
graph G except for the node v1). Induction hypothesis results
that there exists a spanning subgraph G′1 of the graph G1 such
that every node of S1 is of degree r + 1, and also for each
subset of nodes of S1, the inequality (40) holds. Now, consider
a spanning subgraph G′ of the graph G that includes only all
edges of G′1, and also r + 1 random edges among all edges
that are connected to v1. It is clear that G′ satisfies all of the
desired properties mentioned in the statement of the theorem.

In order to complete the proof of Theorem 6, we need the
following lemma as it was mentioned before.

Lemma 12. Consider a bipartite graph G with the two sets
of nodes, T1 with x nodes and T2 with x+ r+ y nodes, where
x, y, r ∈ N. Suppose that for each subset of the nodes of T1
we have

|N(S)| ≥ |S| + r. (54)

Moreover, assume that there exists a subset of nodes S0 of
T2 such that |S0| = x, and also for every subset of nodes
S of T1 we have |N(S) ∩ S0| ≥ |S|. Assume that there
exists a spanning subgraph G0 of G such that every node
of T1 is of degree r + 1, and also for each subset of nodes
of T1, the inequality (54) holds. Then, there exists a spanning
subgraph G′ of G such that every node of T1 is of degree r+1,
and also for each subset of nodes of T1, the inequality (54)
holds and in addition, G′ includes a perfect matching between
the nodes in T1 and S0.

Proof: We prove the lemma using strong induction on x .
For x = 1 the lemma is easy to verify. Assume that the
statement of lemma holds for 1 ≤ x ≤ x0. Then, we only
need to show that lemma holds for the case that x = x0 + 1.
There are two scenarios and we prove the statement for these
two scenarios separately as follows.

Scenario 1: There exists a proper and nonempty subset of
nodes S1 of T1 such that |N(S1) ∩ S0| = |S1|:

For simplicity in notation, define S ′1 � T1 \ S1. In this
scenario, we use the induction hypothesis for S1 and S ′1
separately (since |S1| ≤ x0 and |S ′1| ≤ x0). Define the sets
S ′0 = N(S1) ∩ S0 and S ′′0 = S0 \ S ′0. Consider the induced
subgraph G1 of the graph G where the set of vertices of G1 is
T2 ∪ S1. Assumption of the lemma results that there exists
a spanning subgraph of G1 such that every node of S1 is
of degree r + 1, and also for each subset of nodes of S1,
the inequality (54) holds (by considering all the edges of
the induced subgraph with vertices T2 ∪ S1 that also exist
in G0). Induction hypothesis results that there exists a spanning
subgraph G′0 of G1 such that every node of S1 is of degree r+1,
and also for each subset of nodes of S1, the inequality (54)
holds and in addition, G′0 includes a perfect matching between
nodes of S1 and nodes of S ′0.

Consider the induced subgraph G′1 of the graph G where the
set of vertices of G2 is T2∪S ′1. Again, assumption of the lemma
results that there exists a spanning subgraph of G′1 such that
every node of S ′1 is of degree r + 1, and also for each subset
of nodes of S ′1, the inequality (54) holds (by considering all
the edges of the induced subgraph with vertices T2 ∪ S ′1 that
also exist in G0). Also, observe that since |N(S1)∩S0| = |S1|,
for every subset of nodes S of S ′1 we have |N(S)∩S ′′0 | ≥ |S|.
As a result, induction hypothesis results that there exists a
spanning subgraph G′′0 of G′1 such that every node of S ′1 is
of degree r + 1, and also for each subset of nodes of S ′1,
the inequality (54) holds. In addition, G′′0 includes a perfect
matching between nodes of S ′1 and nodes of S ′′0 .

Now, consider a spanning subgraph G′ of the graph G that
only includes all edges of G′0 and G′′0 . It can be verified that
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G′ satisfies all of the desired properties in the statement of the
lemma and therefore the proof is complete for this case.

Scenario 2: For any proper and nonempty subset of nodes
of T1 we have |N(S) ∩ S0| ≥ |S| + 1:

In this case, consider an arbitrary vertex of T1 and denote it
by v0, and also define S1 = T1\{v0}. Hence, we have |N(S1)∩
S0| ≥ |S1|+1 and since for any S we have |N(S)∩S0| ≤ |S0|
we conclude that |N(S1)∩S0| = |S1| + 1. Also, according to
the assumptions of the lemma we know N(v0) ≥ r + 1 and
|N(v0) ∩ S0| ≥ 1. We choose an arbitrary node among the
nodes in |N(v0) ∩ S0| and denote it by u0. Construct a graph
G′′0 with nodes T2 ∪ {v0} and r + 1 edges among edges that
are connected to v0 including the edge between v0 and u0,
i.e., (v0, u0).

Now, consider the induced subgraph G1 of the graph G
where the set of vertices of G1 is T2 ∪ S1, i.e., all nodes in
G except for the node v0. Assumption of the lemma results
that there exists a spanning subgraph of G1 such that every
node of S1 is of degree r + 1, and also for each subset of
nodes of S1, the inequality (54) holds (by considering all edges
of the induced subgraph with vertices T2 ∪ S1 that also exist
in G0). Induction hypothesis results that there exists a spanning
subgraph G′0 of G1 such that every node of S1 is of degree r+1,
and also for each subset of nodes of S1, the inequality (54)
holds and in addition, G′0 includes a perfect matching between
nodes of S1 and nodes of S0 \ {u0}.

Finally, consider a spanning subgraph G′ of the graph G
that only includes all edges of G′0 and G′′0 . The constructed
graph G′ satisfies all of the mentioned properties in the
lemma.

APPENDIX C
PROOF OF CLAIM IN EXAMPLE 5

In the following we show that given the rank-2 sampled
matrix in Example 5, there are exactly two completions. Note
that the following decomposition always holds for some values
of r1, r2, . . . , r6 and x1, x2, . . . , x8:

1 1 − 1
2−4 2 −1

0 1 2
1 4

4 −2 3
2

=

1 0
0 1
r1 r2

r3 r4

r5 r6

×

x1 x2 x3 x4

x5 x6 x7 x8

Note that the 2 × 2 identity matrix in the above decom-
position represents canonical basis defined in Definition 12.
The first two rows of U in the above decomposition result the
following:

1 = x1, (55a)

1 = x3, (55b)

−1

2
= x4, (55c)

−4 = x5, (55d)

2 = x6, (55e)

−1 = x7. (55f)

Then, the decomposition can be simplified as

0 1 2
1 4

4 −2 3
2

=
r1 r2

r3 r4

r5 r6

×

1 x2 1 − 1
2−4 2 −1 x8

Therefore, we have following system of equations

0 = r1 − 4r2, (56a)

1 = x2r1 + 2r2, (56b)

2 = −1

2
r1 + x8r2, (56c)

1 = r3 − 4r4, (56d)

4 = r3 − r4, (56e)

4 = x2r5 + 2r6, (56f)

−2 = r5 − r6, (56g)
3

2
= −1

2
r5 + x8r6. (56h)

Observe that r3 = 5 and r4 = 1 can be determined uniquely
from (56d) and (56e). Note that r1 = 4r2 and r5 = (r6 − 2)
can be concluded from (56a) and (56g), respectively. Then,
by substituting r1 ← 4r2 in (56b) and (56c) and substituting
r5 ← (r6 − 2) in (56f) and (56h) we obtain:

1 = 4x2r2 + 2r2, (57a)

2 = −2r2 + x8r2, (57b)

4 = x2(r6 − 2)+ 2r6, (57c)
3

2
= −1

2
(r6 − 2)+ x8r6. (57d)

Similarly, r2 = 2
x8−2 and r6 = 1

2x8−1 can be concluded from
(57b) and (57d), respectively. Hence, substituting r2 ← 2

x8−2 ,
r6 ← 1

2x8−1 in (57a) and (57c) results in the following system
of equations

x8 = 8x2 + 6, (58a)

8x8 − 4 = x2 − 2x2(2x8 − 1)+ 2. (58b)

Finally, (58a) results x8 = 8x2 + 6, and therefore substituting
x8← 8x2 + 6 in (58b) results

8(8x2 + 6)− 4 = x2 − 2x2(2(8x2 + 6)− 1)+ 2, (59)

which can be simplified as

32x2
2 + 85x2 + 42 = 0. (60)

Therefore, x2 ∈ {−2,− 21
32 }. Given x2, all other variables can

be determined uniquely recursively as above, and the following
completions of U can be obtained as the only possible rank-2
completions of U.

1 − 21
32 1 − 1

2
−4 2 −1 3

4
0 1 − 24

5 2
1 − 41

32 4 − 7
4

−8 4 −2 3
2

=

1 0
0 1
− 32

5 − 8
5

5 1
0 2

×

1 − 21
32 1 − 1

2
−4 2 −1 3

4



ASHRAPHIJUO et al.: DETERMINISTIC AND PROBABILISTIC CONDITIONS FOR FINITE COMPLETABILITY 5399

and

1 −2 1 − 1
2−4 2 −1 −10

0 1 − 1
2 2

1 −8 4 − 25
2

− 39
21 4 −2 3

2

=

1 0
0 1
− 2

3 − 1
6

5 1
− 43

21 − 1
21

×

1 −2 1 − 1
2−4 2 −1 −10
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