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Low-Rank Data Completion With Very Low
Sampling Rate Using Newton’s Method

Morteza Ashraphijuo , Xiaodong Wang , Fellow, IEEE, and Junwei Zhang

Abstract—Newton’s method is a widely applicable and empiri-
cally efficient method for finding the solution to a set of equations.
The recently developed algebraic geometry analyses provide
information-theoretic bounds on the sampling rate to ensure the
existence of a unique completion. A remained open question from
these works is to retrieve the sampled data when the sampling
rate is very close to the mentioned information-theoretic bounds.
This paper is concerned with proposing algorithms to retrieve the
sampled data when the sampling rate is too small and close to
the mentioned information-theoretic bounds. Hence, we propose a
new approach for recovering a partially sampled low-rank matrix
or tensor when the number of samples is only slightly more than
the dimension of the corresponding manifold, by solving a set of
polynomial equations using Newton’s method. In particular, we
consider low-rank matrix completion, matrix sensing, and tensor
completion. Each observed entry contributes one polynomial equa-
tion in terms of the factors in the rank factorization of the data. By
exploiting the specific structures of the resulting set of polynomial
equations, we analytically characterize the convergence regions of
the Newton’s method for matrix completion and matrix sensing.
Through extensive numerical results, we show that the proposed
approach outperforms the well-known methods such as nuclear
norm minimization and alternating minimization in terms of the
success rate of data recovery (noiseless case) and peak signal-
to-noise ratio (noisy case), especially when the sampling rate is
very low.

Index Terms—Low-rank matrix completion, rank factorization,
matrix sensing, low-rank tensor completion, sampling rate, poly-
nomial equations, convergence analysis.

I. INTRODUCTION

THIS paper is concerned with the problem of reconstructing
a partially sampled low-rank matrix or tensor, i.e., the low-

rank data completion problem, which has many applications in
various areas of engineering and applied science including im-
age or signal processing [1], [2], network coding [3], control
[4], data mining [5], data clustering [6]–[9], recommender sys-
tems and collaborative filtering [10], [11], etc. There are various
techniques for tackling the low-rank data completion problem,

Manuscript received November 27, 2017; revised July 8, 2018 and January 10,
2019; accepted February 5, 2019. Date of publication February 18, 2019; date
of current version March 1, 2019. The associate editor coordinating the review
of this manuscript and approving it for publication was Prof. Xinming Huang.
This work was supported in part by the U.S. National Science Foundation under
Grant CCF-1814803 and in part by the U.S. Office of Naval Research under
Grant N000141410667. (Corresponding author: Xiaodong Wang.)

M. Ashraphijuo and X. Wang are with the Department of Electrical Engineer-
ing, Columbia University, New York, NY 10027 USA (e-mail:, ashraphijuo@
ee.columbia.edu; wangx@ee.columbia.edu).

J. Zhang is with the School of Computer Science, Carnegie Mellon University,
Pittsburgh, PA 15213 USA (e-mail:,junweiz@andrew.cmu.edu).

Digital Object Identifier 10.1109/TSP.2019.2899315

including convex relaxations of rank [1], [12]–[18], alternating
minimization [19]–[23], augmented Lagrangian method [24],
generalized round-rank [25], [26], algebraic geometric analyses
[27]–[34] and other heuristics [35]–[40]. Among them, the nu-
clear norm minimization method is the most effective and robust
solution, although its complexity is very high [13]. On the other
hand, the alternating minimization method is very fast, but with
less satisfactory performance. The matrix sensing problem is a
generalization of the matrix completion problem, where a set of
linear matrix equations instead of a set of entries are given. A
review on matrix sensing problem and its applications can be
found in [41].

The recently developed algebraic geometric analyses in [27]–
[31] make use of the rank decomposition and transform the
data completion problem to the problem of solving a system of
polynomial equations. In particular, each observed entry cor-
responds to a polynomial in terms of the entries of the factors
in the rank factorization of the data. Therefore, any solution to
the set of polynomial equations results in a completion of the
data of the given rank constraint. As a result, the problem of
low-rank matrix completion can be translated to finding a root
for a system of semi-homogeneous polynomials. In addition,
the mentioned works provide information-theoretic bounds on
the sampling rate to ensure the existence of a unique completion
with a very high probability. A remained open question from
the above-mentioned works is whether we can retrieve the sam-
pled data when the sampling rate is very close to the obtained
information-theoretic bounds on the sampling rate. This work
is concerned with proposing algorithms to retrieve the sampled
data when the sampling rate is too small and close to the men-
tioned information-theoretic bounds.

In this paper, we propose to use Newton’s method to solve
the set of polynomial equations and to obtain the completion of
the data. This can be done for any well-known data structure by
using the rank factorization as we will show. By exploiting the
structure of the polynomials, we can analytically characterize
the convergence region of the proposed Newton’s method for
matrix completion and matrix sensing. In particular, our method
is extremely efficient in comparison with the existing methods
in the literature, when the sampling rate is too low. This can
be also easily extended to homotopy methods. In the numerical
experiments, we use the successful recovery rate and the peak
signal-to-noise ratio as performance metrics for noiseless and
noisy cases, respectively. We show that the proposed Newton’s
method outperforms the existing nuclear norm minimization and
alternating minimization methods especially when the sampling
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rate is very low, i.e., when the number of samples is close to the
dimension of the corresponding manifold. Note that alternating
minimization is much faster than nuclear norm minimization,
but nuclear norm minimization requires fewer samples to suc-
cessfully recover the data. Our proposed approach outperforms
nuclear norm minimization in terms of both speed and the num-
ber of samples for successful completion and it outperforms
alternating minimization in terms of the number of required
samples. We also provide numerical experiments on real-world
datasets such as the MovieLens dataset and show that the pro-
posed Newton’s method outperforms both existing methods.

The remainder of this paper is organized as follows. In
Section II, the Newton’s method for matrix completion is pro-
posed. In Section III, we characterize the convergence region
of the proposed Newton’s matrix completion algorithm. In
Section IV, we provide numerical results to compare the pro-
posed method with existing matrix completion algorithms. In
Section V, we extend the proposed framework and propose
Newton’ method for solving matrix sensing and tensor comple-
tion problems. Finally, Section VI concludes the paper.

II. MATRIX COMPLETION

A. Background

Let U ∈ Rn1 ×n2 denote a rank-r matrix that is partially ob-
served. Denote Ω as the set of indices (i, j) such that U(i, j)
is observed. Moreover, define UΩ as the matrix obtained from
sampling U according to Ω, i.e.,

UΩ(i, j) =
{

U(i, j) if (i, j) ∈ Ω,

0 if (i, j) /∈ Ω.
(1)

The matrix completion problem is to recover the original
rank-r matrix U given its sampled version UΩ . Alternating
minimization [19] and nuclear norm minimization [12] are two
well-known methods for matrix completion.

In the alternating minimization approach, we write U = XY
such that X ∈ Rn1 ×r and Y ∈ Rr×n2 . Starting with some initial
X0 and Y0 , at the k-th iteration, given Xk−1 and Yk−1 , we first
update Xk by solving the following convex program

minimize
Xk ∈Rn 1 ×r

‖UΩ − (XkYk−1)Ω ‖F, (2)

and then update Yk by solving

minimize
Yk ∈Rr ×n 2

‖UΩ − (XkYk )Ω ‖F, (3)

where ‖ · ‖F denotes the Frobenius norm. The iteration contin-
ues until both errors are below certain threshold.

On the other hand, in the nuclear norm minimization ap-
proach, we do not make use of the rank constraint and solve the
following relaxed problem which is a convex program

minimize
U ′∈Rn 1 ×n 2

‖U′‖∗

subject to U′
Ω = UΩ , (4)

where ‖ · ‖∗ denotes the matrix nuclear norm, i.e., the sum of
singular values.

In this paper, we compare our approach for low-rank data
completion with two well-known approaches, i.e., nuclear norm

minimization and alternating minimization. All these three ap-
proaches are different only in terms of formulation, which re-
sults in different performances. For example, as we will show
in the paper, among the three of them alternating minimization
is the fastest and our approach is slightly slower but nuclear
norm minimization (the only convex formulation) is very slow.
However, our formulation requires much less number of sam-
ples to recover the original sampled data in comparisons with
the two other formulations. Note that one of the advantages
of nuclear norm minimization approach in comparison with
the non-convex approaches like alternating minimization and
our proposed method is the fact that the only required input
is the observed partial matrix and not the value of the rank.
Whereas, in the mentioned non-convex approaches, the value
of the rank is required. On the other hand, generally, these non-
convex approaches are much faster than the convex approaches
like nuclear norm minimization. For the alternating minimiza-
tion formulation, we use the numerical method in [19] and for
the nuclear norm minimization we used both CVX toolbox and
also the online implementation [42].

Our method and the described alternating minimization
method are both solving the same problem, i.e., Low Rank
Matrix Completion (LRMC) problem, and they are only two
different numerical methods.

B. Matrix Completion via Solving Polynomial Equations

The dimension of the manifold of n1 × n2 matrices of rank
r is r(n1 + n2 − r). X ∈ Rn1 ×r is called a basis of U if each
column of U can be written as a linear combination of the
columns of X. The following lemma gives a unique canonical
decomposition of U.

Lemma 1: Let U denote a generically chosen matrix from
the manifold of n1 × n2 matrices of rank r. Then, there exists
a unique decomposition U = XY such that X ∈ Rn1 ×r , Y ∈
Rr×n2 and X(1 : r, 1 : r) = Ir , where X(1 : r, 1 : r) represents
the submatrix of X consisting of the first r columns and the first
r rows and Ir denotes the r × r identity matrix.

Proof: We show that there exists exactly one decomposition
U = XY such that X(1 : r, 1 : r) = Ir with probability one.
Considering the first r rows of U=XY, we conclude U(1 : r, :)
= IrY=Y. Therefore, we need to show that there exists exactly
one X(r + 1 : n1 , :) such that U(r + 1 : n1 , :) = X(r + 1 :
n1 , :)Y or equivalently U(r+1 : n1 , :)�=U(1 : r, :)�X(r+1:
n1 , :)�. It suffices to show that each column of X(r + 1 : n1 , :)
can be determined uniquely having u=U(1 : r, :)�x where u ∈
Rn2 ×1 and x ∈ Rr×1 . As U is a generically chosen n1 × n2 ma-
trix of rank r, we have rank (U(1 : r, :)) = r with probability
one. Hence, u(1 : r) = U(1 : r, 1 : r)�x results in r indepen-
dent degree-1 equations in terms of the r variables (entries of x),
and therefore x has exactly one solution with probability one.�

Remark 1: The above lemma holds true for any permutation
of rows of the identity matrix among all n1 rows of the basis
matrix X.

Remark 2: This structure is only for simplifying the obtained
system of polynomial equations. Note that we only use this
structure when U is a generically chosen matrix from the man-
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ifold of n1 × n2 matrices of rank r. Otherwise, we do not use
this structure.

Consider a rank decomposition of the original matrix, i.e.,
U = XY, where X ∈ Rn1 ×r and Y ∈ Rr×n2 . Note that each
observed entry of U results in a polynomial in terms of the
entries of X and Y as follows

r∑
k=1

X(i, k)Y(k, j) − U(i, j) = 0, for (i, j) ∈ Ω. (5)

Given the canonical structure, to recover U we need to solve
for the D = r(n1 + n2 − r) unknown entries of (X,Y) from
the set of second-order polynomial equations in (5). An illus-
trative example is provided next to show how to obtain such an
equation set.

Example 1: In this example, we want to show the process
of obtaining the mentioned polynomials based on the given
sampled entries. Consider a 4 × 3 matrix U of rank 2 with the
following observed entries

UΩ =

⎡
⎢⎢⎣

4 7.3 0
0 0 0
1 8.3 22.1
0 12.1 0

⎤
⎥⎥⎦ .

Since rank(U) = 2, the canonical decomposition is

U =

⎡
⎢⎢⎣

1 0
0 1
x1 x2
x3 x4

⎤
⎥⎥⎦
[

y1 y3 y5
y2 y4 y6

]
.

Denote z = [x1 , . . . , x4 , y1 , . . . , y6 ]� ∈ R10 and then the
corresponding system of second-order polynomial equations is

p(z) = 0 ⇒

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

y1 − 4 = 0,
y3 − 7.3 = 0,
x1y1 + x2y2 − 1 = 0,
x1y3 + x2y4 − 8.3 = 0,
x1y5 + x2y6 − 22.1 = 0,
x3y3 + x4y4 − 12.1 = 0.

Moreover, we can simplify the polynomials by permuting the
rows of the identity matrix mentioned in Remark 2 as follows

U =

⎡
⎢⎢⎣

1 0
x1 x2
0 1
x3 x4

⎤
⎥⎥⎦
[

y1 y3 y5
y2 y4 y6

]
.

Then, the corresponding system of second-order polynomial
equations becomes

p̄(z) = 0 ⇒

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

y1 − 4 = 0,
y3 − 7.3 = 0,
y2 − 1 = 0,
y4 − 8.3 = 0,
y6 − 22.1 = 0,
x3y3 + x4y4 − 12.1 = 0.

It is easy to see that compared with p(z), p̄(z) has more
first-order equations and therefore it is easier to solve.

C. The Algorithm

1) Locations of Unknowns in X: We choose the r rows with
the most number of samples in UΩ and permute the rows of the
identity matrix in X to those rows to have as many linear (i.e.,
first-order) polynomials as possible.

2) Newton’s Method for Solving p(z) = 0: Define the vec-
tor z ∈ RD×1 such that it contains all the D unknown elements
of the decomposition. For example, if we choose X(1 : r, 1 :
r) = Ir , then we have z = vec(X(r + 1 : n1 , :),Y), where
vec(·) denotes the vectorization operator. Then, it follows from
(5) that each observed entry results in a polynomial that involves
r entries of X and r entries of Y. Hence, we have a set of
second-order polynomial equations pi(z) = 0, i = 1, . . . , |Ω|,
where |Ω| denotes the number of observed entries. Denote
p(z) = [p1(z), . . . , p|Ω |(z)]�.

In order to solve p(z) = 0, we use the simple Newton’s
method. In particular, we start with some initial z0 ∈ RD×1 ,
and perform the following iteration

zn = zn−1 − (∇p(zn−1))
† p(zn−1), (6)

where ∇p(z) ∈ R|Ω |×D and its (i, j)-th element denotes the
partial derivate of pi(z) with respect to zj , i.e., ∂pi (z)

∂zj
and the

operator † denotes pseudoinverse. Equivalently,

∇p(zn ) = [∇p1(zn )� . . .∇p|Ω |(zn )�]� ∈ R|Ω |×D , (7)

where

∇pi(zn ) =
[

∂pi

∂z1
, . . . ,

∂pi

∂zD

]
∈ R1×D , (8)

for i = 1, . . . , |Ω|. We assume that |Ω| ≥ D and ∇p(z0) is full
column-rank. Corollary1 in Section III states that under mild
assumptions if ∇p(z0) is full column-rank and z0 falls into a
certain ball around z∗, then ∇p(zn ) is also full column-rank,
n = 1, 2, . . . .

Note that the matrix ∇p(z) has a very sparse structure. This
is because the number of involved variables in each polynomial
is either r or 2r (depending on the location of canonical pat-
tern). Such sparsity enables a fast computation of its inverse
or pseudoinverse, e.g., the command sparse(∇p(z)) \ p(z) in
Matlab is an efficient way to calculate (∇p(zn−1))

† p(zn−1).
For instance, for the example p̃(z) described earlier we have

∇p̄(z) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1
0 0 y3 y4 0 0 x3 x4 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

3) Initialization: We can use the initialization scheme for
alternating minimization as in [19]. Consider the singular value
decomposition UΩ = U0S0V�

0 , where the number of nonzero
entries of S0 can be more than r. Now, we define a decompos-
tion corresponding to the r largest singular values, i.e., U0(:,
1 : r)S0(1 : r, 1 : r)V0(:, 1 : r)� = LR, where L = U0(:, 1 :
r)S0(1 : r, 1 : r) ∈ Rn1 ×r and R = V0(:, 1 : r)� ∈ Rr×n2 .
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We choose the r rows of UΩ with the most number of sam-
ples and permute the rows of the identity matrix in the basis
matrix X to those rows to increase the number of linear polyno-
mials as much as possible. Let I = {i1 , . . . , ir} denote the in-
dices corresponding to these r rows. Let L′ = L (L(I, 1 : r))−1

and R′ = L(I, 1 : r)R. Finally, we set (X0 ,Y0) = (L′,R′) as
the initial value in Newton’s method. As we will observe in the
numerical results, this initialization significantly increases the
efficiency and decreases the number of required observations
for successful recovery. We denote the initialization procedure
described above as Init(UΩ).

As an alternative initialization method, we start by applying
the nuclear norm minimization to UΩ and obtain a completion
Ũ. Then, we apply the above-mentioned initialization procedure
using Ũ to obtain (X0 ,Y0) = Init(Ũ).

4) Stopping Criterion: For the non-convex approaches
(Newton and alternating minimization), we stop the program
if either ‖zn‖ converges or ‖zn‖ becomes larger than max{106 ,
106‖z0‖}. When ‖zn‖ becomes larger than max{106 , 106

‖z0‖}, we count it as failure of the algorithm for recovering
data (divergence).

III. CONVERGENCE ANALYSIS

Since the equations p(z) = 0 involve only polynomials
which are differentiable, the following classical convergence
result on Newton’s method holds for our proposed algorithm.
Let z∗ denote the solution to p(z) = 0. Moreover, define the
error vector at iteration n as en = zn − z∗ ∈ RD .

Proposition 1: [43] Consider a system of polynomial equa-
tions p(z) = 0. There exists ε > 0 such that if ‖e0‖2 < ε, then
we have ‖en‖2 → 0 as n → ∞.

However, in the above classical result, the exact characteri-
zation of the convergence neighborhood, i.e., ε, is not specified.
In this section, we will give an explicit expression for ε by
exploiting the specific structure of the polynomial set p.

We will first derive a relationship between ‖en‖2 and
‖en+1‖2 through the smallest singular value of a submatrix
of ∇p(z∗). Then, by bounding ‖e0‖2 in terms of this smallest
singular value, we can ensure ‖en‖2 → 0 as n → ∞.

From Newton’s update given in (6) we can write

p(zn ) + ∇p(zn )(zn+1 − zn ) = 0. (9)

On the other hand, using Taylor’s expansion and the fact that
the polynomials in p are twice differentiable at any point, we
have

p(zn ) + ∇p(zn )(z∗ − zn ) + h(tn ) = p(z∗) = 0, (10)

for some tn belonging to a ball centered at z∗ and of radius
|z∗ − zn |, where

h(tn )

=
[
1
2
(z∗ − zn )�∇2p1(tn )(z∗ − zn ), . . . ,

1
2
(z∗ − zn)�∇2p|Ω |(tn)(z∗ − zn)

]�
∈ R|Ω |×1 , (11)

with∇2pi =[ ∂ 2 pi

∂ zj ∂ zj ′
](j,j ′) ∈ RD×D , for 1 ≤ j, j′ ≤ D and i =

1, . . . , |Ω|.
Using (9) and (10), we conclude that

∇p(zn )(z∗ − zn+1) + h(tn ) = 0. (12)

Note that for the proposed algorithm all polynomials are of
the form (5). Consider polynomial pi and assume that it cor-
responds to the observed entry (i′, j′) ∈ Ω of U. Then, pi in-
volves X(i′, �′),Y(�′, j′) for �′ = 1, . . . , r. Note that X(i′, :)
either corresponds to r variables in z, or it is a constant vector
corresponding to a row of the identity submatrix in the canonical
structure. Hence, ∇2pi is a binary matrix that is independent of
tn , where there are 1’s at entries corresponding to the variables
X(i′, �′) and Y(�′, j′), and zeros everywhere else.

Denote ei
Y ,n ∈ Rr as the components of en that corresponds

to the r variables Y(�′, j′) in pi , �′ = 1, . . . , r. Moreover, define
ei

X,n ∈ Rr as follows: if X(i′, �′) is a variable in z, then ei
X,n (�′)

is the component of en corresponding to this variable in pi ;
otherwise ei

X,n (�′) = 0, �′ = 1, . . . , r.
Then it is easily verified that 1

2 (z∗ − zn )�∇2pi(tn )(z∗ −
zn ) = (ei

X,n )�ei
Y ,n . Hence

h(tn ) =
[(

e1
X,n

)� e1
Y ,n , . . . ,

(
e|Ω |

X,n

)�
e|Ω |

Y ,n

]�
∈ R|Ω |. (13)

Therefore, (12) can be simplified as

∇p(zn )en+1 =
[(

e1
X,n

)� e1
Y ,n , . . . ,

(
e|Ω |

X,n

)�
e|Ω |

Y ,n

]�
. (14)

Assume that ∇p(zn ) ∈ R|Ω |×D is full column-rank. Hence,
there exists a set of D polynomials p̃ = {pi1 , . . . , piD

} such
that

∇p̃(zn )en+1 =
[(

ei1
X,n

)�
ei1

Y ,n , . . . ,
(
eiD

X,n

)�
eiD

Y ,n

]�
, (15)

or

en+1 = (∇p̃(zn))
−1

[(
ei1

X,n

)�
ei1

Y ,n , . . . ,
(
eiD

X,n

)�
eiD

Y ,n

]�
,

(16)

where ∇p̃(zn ) ∈ RD×D is a full-rank matrix.
It then follows that

‖en+1‖2

=

∣∣∣∣∣
∣∣∣∣∣(∇p̃(zn ))−1

[(
ei1

X,n

)�
ei1

Y ,n , . . . ,
(
eiD

X,n

)�
eiD

Y ,n

]�∣∣∣∣∣
∣∣∣∣∣
2

≤ σmax((∇p̃(zn ))−1)

×
∣∣∣∣∣
∣∣∣∣∣
[(

ei1
X,n

)�
ei1

Y ,n , . . . ,
(
eiD

X,n

)�
eiD

Y ,n

]�∣∣∣∣∣
∣∣∣∣∣
2

=
1

σmin((∇p̃(zn )))

×
∣∣∣∣∣
∣∣∣∣∣
[(

ei1
X,n

)�
ei1

Y ,n , . . . ,
(
eiD

X,n

)�
eiD

Y ,n

]�∣∣∣∣∣
∣∣∣∣∣
2

. (17)

We can now state our convergence result.
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Theorem 1: Consider the matrix T such that T−1∇p̃(z∗)T
= Σ∗ is the diagonal matrix consisting of the singular values of
the full-rank matrix ∇p̃(z∗) and define δ = ‖T−1‖F‖T‖F. As-

sume that ‖e0‖2 ≤ min{
√

σmin((∇p̃(z∗)))
2δ

√
D

, σmin((∇p̃(z∗)))
8r

√
D

}. Then,
we have ‖en‖2 → 0 as n → ∞.

Proof: Since each polynomial pi(z) is second-order as given
in (5), ∇pi(z) is a vector with entries either equal to zero or one
of the elements of z. For example, if z ∈ R6 and pi(z) = z1z4 +
z2z5 − 4 = 0, then we have ∇pi(z) = [z4 , z5 , 0, z1 , z2 , 0]. De-
fine En = ∇p̃(zn ) −∇p̃(z∗). It is easy to observe that each
element of En is either zero or one element of the error vector
en . As a result, ‖∇pi(zn ) −∇pi(z∗)‖2 ≤ ‖en‖2 , and therefore
‖En‖F ≤ √

D‖en‖2 . Hence, ∇p̃(zn ) = ∇p̃(z∗) + En , where
‖En‖F ≤ √

D‖en‖2 .
The perturbation analysis [44] results that for any eigenvalue

λ of ∇p̃(zn ), there exists i ∈ {1, . . . , D} such that

|λ − λi | ≤ ‖T−1‖F‖T‖F‖En‖F, (18)

where λi’s are the eigenvalues of ∇p̃(z∗) and T−1∇p̃(z∗)T =
Σ∗ is the diagonal matrix consisting of the singular val-
ues of ∇p̃(z∗). Recall that ‖En‖F ≤ √

D‖en‖2 , and accord-

ing to the assumption we have ‖en‖2 ≤
√

σmin((∇p̃(z∗)))
2δ

√
D

, with

δ = ‖T−1‖F‖T‖F. Therefore, for any eigenvalue λ of ∇p̃(zn ),
there exists i ∈ {1, . . . , D} such that

|λ − λi | ≤
√

σmin((∇p̃(z∗)))
2

=
1
2

min
1≤j≤D

|λj |. (19)

It simply follows from (19) that for any eigenvalue λ of ∇p̃(zn )
we have |λ| ≥ 1

2 min1≤j≤D |λj |, and therefore

σmin((∇p̃(zn ))) ≥ σmin((∇p̃(z∗)))
4

. (20)

Therefore, ∇p̃(zn ) is full-rank, i.e., ∇p(zn ) is full column-
rank. Then, using (17) we conclude

‖en+1‖2 ≤ 4
σmin((∇p̃(z∗)))

×
∣∣∣∣∣
∣∣∣∣∣
[(

ei1
X,n

)�
ei1

Y ,n , . . . ,
(
eiD

X,n

)�
eiD

Y ,n

]�∣∣∣∣∣
∣∣∣∣∣
2

.

(21)

On the other hand, by definition, each element of ei
X,n and

ei
Y ,n is either 0 or an element of en . Hence we can write∣∣∣∣∣

∣∣∣∣∣
[(

ei1
X,n

)�
ei1

Y ,n , . . . ,
(
eiD

X,n

)�
eiD

Y ,n

]�∣∣∣∣∣
∣∣∣∣∣
2

≤
√

Dr2

(
max

1≤j≤D
{|en (j)|}

)4

, (22)

where en (j) denotes the j-th element of the vector en . As a
result, we have

‖en+1‖2
(a)
≤ 4r

√
D‖en‖2

2

σmin((∇p̃(z∗)))
(b)
<

‖en‖2

2
, (23)

Fig. 1. Comparison of recovery rates for U ∈ R500×500 of rank 3.

where (a) follows from the fact that (max1≤j≤D{|en (j)|})2 ≤
‖en‖2

2 and (b) follows from the assumption that ‖en‖2 ≤
σmin((∇p̃(z∗)))

8r
√

D
.

Starting from e0 that satisfies the condition in the statement of
the theorem, we have ‖e1‖2 ≤ ‖e0 ‖2

2 . Hence e1 also statisfies the

condition and ‖e2‖2 ≤ ‖e1 ‖2
2 , and so on. Therefore ‖en‖2 → 0

as n → ∞. �
Corollary 1: Consider the matrix T such that T−1∇p̃(z∗)

T = Σ∗ is the diagonal matrix consisting of the singular values
of the full-rank matrix ∇p̃(z∗) and define δ = ‖T−1‖F‖T‖F.

Assume that ‖e0‖2 ≤min{
√

σmin((∇p̃(z∗)))
2δ

√
D

, σmin((∇p̃(z∗)))
8r

√
D

}. Then,
∇p̃(zn ) is full-rank, i = 1, 2, . . . . Hence, ∇p(zn ) is full
column-rank, i = 1, 2, . . . .

Proof: The proof is straightforward since (20) simply results
that σmin((∇p̃(zn ))) > 0. �

IV. NUMERICAL RESULTS

A. Noiseless Matrix

Here, we are interested in generating a random low-rank ma-
trix to randomly sample it by a sampling probability and com-
pare the proposed algorithms with the existing algorithms in
the literature. To this end, we first generate X ∈ Rn1 ×r and
Y ∈ Rr×n2 by choosing each entry of them uniformly from
some interval on real numbers, e.g., [1, 10]. Then, we generate
a random n1 × n2 matrix of rank r, i.e., U = XY. We sample
each entry independently with probability 0 < p < 1. We say

the sampled matrix U is recovered if ‖Û−U‖F
‖U‖F < 0.01, where Û

denotes the obtained matrix through the corresponding comple-
tion algorithm. For each value of p, we complete 200 matrices
and calculate the average recovery rate of each algorithm.

For the first example, we consider a 500 × 500 matrix of rank
3. The dimension of the manifold is D = n1r + n2r − r2 =
2991. Since there are D unknowns, at least D samples are
needed and therefore D

n1 n2
= 2991

250000 = 0.011964 is the abso-
lute lower bound on the sampling rate. Figure 1 shows the
recovery rate of different completion algorithms in terms of
the normalized sampling rate p

D/(n1 n2 ) . We have the following
observations:

� Our proposed Newton’s method with initialization Init (Ũ)
outperforms all other methods in the sense of requiring the
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Fig. 2. Comparison of running time for completing U∈R500×500 of rank 3.

Fig. 3. Comparison of recovery rates for U ∈ R200×200 of rank 10.

least number of samples to recover the original matrix
U. Newton’s method with initialization Init(UΩ) is the
second best and outperforms nuclear norm minimization
and alternating minimization.

� With 2D samples the proposed Newton’s method can
achieve recovery rates of 0.9 and 0.65 using the initial-
izations Init(Ũ) and Init(UΩ), respectively; whereas the
recovery rate is zero for the conventional methods (i.e.,
nuclear norm minimization and alternating minimization).

� The average number of samples required for a recovery rate
of at least 90% is 2.3D, 3.25D and 4.25D using Newton’s
method with initialization Init(UΩ), nuclear norm mini-
mization and alternating minimization, respectively. This
leads to 3.25−2.3

3.25 × 100% = 29.2% and 4.25−2.3
4.25 = 45.8%

reductions in the required number of samples, respectively.
We also show the average running time for each algorithm

in Figure 2. It is seen that alternating minimization is the
fastest method with running time almost independent of the
sample size. The proposed Newton’s method with initialization
Init(UΩ) is significantly faster than nuclear norm minimization
especially when the sample size is large.

For the second example, we consider a 200 × 200 matrix
of rank 10. The dimension is D = n1r + n2r − r2 = 3900 and
the lower bound on the sampling rate is D

n1 n2
= 3900

40000 = 0.0975.
Figure 3 shows the recovery rates for different completion al-
gorithms. We have the following observations:

� Newton’s method with Init(UΩ) outperforms nuclear
norm minimization and alternating minimization. The

average number of samples required for a recovery
rate of at least 90% is 1.9D, 2.125D and 2.2D using
Newton’s method with Init(UΩ), nuclear norm mini-
mization and alternating minimization, respectively. This
leads to 2.125−1.9

2.125 × 100% = 10.5% and 2.2−1.9
2.2 = 13.6%

reductions in the required number of samples, respectively.
� Using Newton’s method with Init(Ũ), we are able to re-

cover the data with 1.3D samples with probability of al-
most one, whereas 2D, 2.15D, 2.25D samples are re-
quired for Newton’s method with Init(UΩ), nuclear norm
minimization and alternating minimization, respectively.
This leads to 2−1.3

2 × 100% = 35%, 2.15−1.3
2.15 × 100% =

39.5% and 2.25−1.3
2.25 × 100% = 42.2% reductions in the

required number of samples, respectively.
In these comparisons, we have compared the non-convex ap-

proaches that are able to incorporate and take advantage of the
rank value with nuclear norm minimization. Note that the calcu-
lated time for Newton’s method with Init(Ũ) includes the time
spent for solving the nuclear norm minimization.

B. Noisy Matrix

1) Additive Gaussian Noise: We first generate a random ma-
trix U ∈ Rn1 ×n2 of rank r and then we add a noise matrix E
to U, where E consists of i.i.d. N (0, σ2) entries. We sample
each entry of E + U with probability p. We use the peak signal-
to-noise ratio (PSNR) as the completion performance metric,
defined as

PSNR
(
Û,U

)
= 20 log10 (M)

− 10 log10

⎛
⎝ 1

n1n2

n1∑
i=1

n2∑
j=1

(
Û(i, j) − U(i, j)

)2

⎞
⎠, (24)

where M denotes upper bound of the entries in U (since
U = XY and each element of X and Y is uniform in [1, 10],
we have M = 100r here).

We consider U ∈ R500×500 of rank 3 with D = n1r + n2r −
r2 = 2991 and D

n1 n2
= 0.011964. The PSNR performances of

different completion algorithms are shown in Figures 4(a) and
4(b) for two SNR (defined as 10 log10

(
σU

σ

)
, where σU denotes

the variance of each entry of U) values 17 dB and 12.5 dB,
respectively. As we can observe, for the non-convex approaches
(Newton’s method and alternating minimization) performance
becomes less stable as we decrease SNR. However, for moderate
SNR, Newton’s method mainly outperforms alternating mini-
mization and nuclear norm minimization with small number of
samples.

2) Netflix Rating Table Real Data (Recommendation Sys-
tems): The “MovieLens-1M” dataset found online at “grou-
plens” website includes 6040 rows representing the users and
3706 columns representing the movies and each entry is be-
tween 1 and 5, which represents the rating of a particular user
for a particular movie from Netflix rating table. For each sin-
gle experiment we choose a random 2000 × 2000 submatrix
of this dataset and sample each entry with probability p. Note
that for the non-convex approaches, i.e., Newton’s method and
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TABLE I
COMPARISON OF RMSE FOR MOVIELENS DATA

Fig. 4. Comparison of PSNR for U ∈ R500×500 of rank 3.

alternating minimization, we need a rank value. We start with
a small number, e.g., r = 1 and if the algorithm diverges, we
increase r and repeat this trial a few times.

We use the root-mean-square error (RMSE) for the unob-
served entries as the performance metric, given by

RMSE
(
Û,U

)
=

√
1
|Ω̄|

∑
(i,j )∈Ω̄

(
Û(i, j) − U(i, j)

)2
,

(25)

where Ω̄ denotes the set of unobserved entries. For each value
of p, we repeat the experiment 20 times and obtain the aver-
age RMSE. For this example, Newton’s method with the two
different initializations give the same solution. The results are
summarized in Table I. It is seen that the proposed Newton’s
method outperforms both alternating minimization and nuclear
norm minimization.

In this example, the average running times of one experiment
for Newton’s method with Init(UΩ), alternating minimization,
nuclear norm minimization and Newton’s method with Init(Ũ)
are 12, 9, 457 and 470 seconds, respectively.

V. EXTENSIONS

A. Matrix Sensing

Denote the inner product between two n1 × n2 matrices
U and M as 〈U,M〉 =

∑n1
i=1

∑n2
j=1 U(i, j)M(i, j). The ma-

trix sensing problem is to recover a low-rank matrix U with
rank(U) = r, given a set of linear measurements 〈U,Mi〉 =
bi , i = 1, . . . , L, where L denotes the total number of mea-
surements. Hence we have a set of L polynomial equations
p(z) = 0, whose elements are pi(z) = 〈XY,Mi〉 − bi .

In the alternating minimization approach, we again write
U = XY such that X ∈ Rn1 ×r and Y ∈ Rr×n2 . Starting with
some initial X0 and Y0 (Init(UM ) described later), at the k-th
iteration, given Xk−1 and Yk−1 , we first update Xk by solving
the following convex program

minimize
Xk ∈Rn 1 ×r

√∑L

i=1
(〈XkYk−1 ,Mi〉 − bi)

2 , (26)

and then update Yk by solving

minimize
Yk ∈Rr ×n 2

√∑L

i=1
(〈XkYk ,Mi〉 − bi)

2 . (27)

The iteration continues until both errors are below certain thresh-
old. In the nuclear norm minimization approach, we solve the
following relaxed convex problem

minimize
U ′∈Rn 1 ×n 2

‖U′‖∗

subject to 〈U′,Mi〉 = bi , i = 1, . . . , L. (28)

Similar to the algorithm described in Section II-C, we can use
Newton’s method to solve the system of polynomial equations
p(z) = 0. We use the same initialization for alternating mini-
mization as in [19] for the matrix sensing problem. We define
the matrix UM =

∑L
i=1 biMi . Then, we apply the initialization

procedure described in Section II-C using UM instead of UΩ
and denote this initialization by Init(UM ).

Or we can first obtain a completion Ũ by using the nu-
clear norm minimization method, and then apply the initializa-
tion procedure in Section II-C using Ũ to obtain (X0 ,Y0) =
Init(Ũ).

Similar to Theorem 1, we can characterize the convergence
region of the Newton’s algorithm for matrix sensing as follows.

Theorem 2: Consider the matrix T such that T−1∇p̃(z∗)
T = Σ∗ is the diagonal matrix consisting of the singular values
of∇p̃(z∗) and define δ = ‖T−1‖F‖T‖F. Suppose that the num-
ber of non-zero elements of Mi (denoted by Ki), i.e., ‖Mi‖0 ,
is upper bounded by a constant number K, i = 1, . . . , L. As-

sume that ‖e0‖2 ≤ min{
√

σmin((∇p̃(z∗)))
2δ

√
D

, σmin((∇p̃(z∗)))
8rK 2

√
D

}. Then,
we have ‖en‖2 → 0 as n → ∞.
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Proof: The proof is similar to the proof of Theorem 1 with
the only difference that each polynomial in this scenario can be
written as a linear combination of at most K polynomials in the
matrix completion scenario. It is easily verified that for matrix
sensing (12) holds true. Moreover, instead of (13) we have the
following

h(tn ) =
[(

w1
X,n

)� w1
Y ,n , . . . ,

(
wL

X,n

)�
wL

Y ,n

]�
∈ RL , (29)

where wi
X,n =

∑Ki

j=1 ej
X,n ∈ Rr for each of the Ki involved

polynomials in the i-th linear measurement. Recall that we have
Ki ≤ K. Therefore, (21) becomes as follows

‖en+1‖2 ≤ 4
σmin((∇p̃(zn )))

×
∣∣∣∣∣
∣∣∣∣∣
[(

wi1
X,n

)�
wi1

Y ,n , . . . ,
(
wiD

X,n

)�
wiD

Y ,n

]�∣∣∣∣∣
∣∣∣∣∣
2

.

(30)

Note that since Ki ≤ K, each element of h(tn ) changes
to the summation of at most K terms in the form
of (e1

X,n )�e1
Y ,n . As a result, the RHS of (22) becomes√

Dr2K4 (max1≤j≤D{|en (j)|})4 , i.e., we have
∣∣∣∣∣
∣∣∣∣∣
[(

wi1
X,n

)�
wi1

Y ,n , . . . ,
(
wiD

X,n

)�
wiD

Y ,n

]�∣∣∣∣∣
∣∣∣∣∣
2

≤
√

Dr2K4

(
max

1≤j≤D
{|en (j)|}

)4

. (31)

Therefore (23) changes to

‖en+1‖2 ≤ K2 4r
√

D‖en‖2
2

σmin((∇p̃(z∗)))
(a)
<

‖en‖2

2
, (32)

where (a) follows from the modified assumption on ‖e0‖2 . �
1) Column-Wise Measurements: In the first experiment, we

assume that each matrix Mi has only one non-zero column,
which is chosen uniformly from the n2 columns. The n1 el-
ements of the non-zero column are i.i.d. uniformly chosen
from the interval [−1, 1]. We say the matrix U is recovered if
‖Û−U‖F
‖U‖F < 0.01, where Û denotes the output of the correspond-

ing algorithm. For each value of L, we repeat the experiment
200 times and calculate the average recovery rates of different
algorithms.

For the first example, we consider a 50 × 50 matrix U of
rank 3. The dimension of corresponding manifold D = n1r
+ n2r − r2 = 291. Figure 5 shows the recovery rates of differ-
ent algorithms in terms of the normalized sample size L

D . It is
seen that the Newton’s method with both initialization schemes
outperforms the nuclear norm minimization and alternating min-
imization.

In these comparisons, we have compared the non-convex ap-
proaches that are able to incorporate and take advantage of the
rank value with nuclear norm minimization. Note that the calcu-
lated time for Newton’s method with Init(Ũ) includes the time
spent for solving the nuclear norm minimization.

Fig. 5. Comparison of recovery rates for U ∈ R50×50 of rank 3.

Fig. 6. Comparison of recovery rates for U ∈ R400×400 of rank 3.

For the second numerical experiment, we consider randomly
generatedU ∈ R400×400 of rank 3 and hence D = n1r + n2r −
r2 = 2391. Since nuclear norm minimization is significantly
slower than Newton’s method with Init(UM ) and alternating
minimization (it almost gets stuck using a regular laptop) for this
experiment, we only compare the two non-convex algorithms in
Figure 6. Again the Newton’s method significantly outperforms
alternating minimization.

In this example, the average running times of one experiment
for Newton’s method with Init(UM ) and alternating minimiza-
tion are 702 and 129 seconds, respectively (we stopped nuclear
norm minimization after 2 hours, as it takes a very long time to
run on a regular computer).

Then we add a noise matrix E ∈ R400×400 to U, where E
consists of i.i.d. N (0, σ2) entries. Again, we use the PSNR as
the performance metric for matrix sensing problem. The PSNR
performances of different algorithms are shown in Figure 7 for
SNR = 18 dB.

2) Random Measurements: In this experiment, each entry of
Mi is non-zero with probability p′ independent of other entries.
And nonzero entries are chosen uniformly from the interval
[−1, 1].

We consider U ∈ R200×200 of rank 3. Note that D = n1r +
n2r − r2 = 1191. Observe that p′ = 1

200 results in an average
C = p′n1n2 = 200 nonzero entries, which is the number of
entries of each column. In order to observe the impact of p′ on
the recovery rate, we provide the results for p′ = 2 × 1

200 and
p′ = 0.5 × 1

200 for different values of L. Since nuclear norm
minimization is significantly slower than Newton’s method and
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Fig. 7. Comparison of PSNR for U ∈ R400×400 of rank 3 for SNR = 18 dB.

Fig. 8. Recovery rate for U ∈ R200×200 of rank 3.

alternating minimization for this example, we only compare the
latter two methods in Figures 8(a) and 8(b).

B. Tensor Completion

Assume that a d-way tensor U ∈ Rn1 ×···×nd is sampled. The
CP rank of a tensor U is defined as the minimum number r such
that there exist al

i ∈ Rni for 1 ≤ i ≤ d and 1 ≤ l ≤ r, such that

U =
r∑

l=1

al
1 ⊗ al

2 ⊗ · · · ⊗ al
d , (33)

or equivalently,

U(x1 , x2 , . . . , xd) =
r∑

l=1

al
1(x1)al

2(x2) . . . al
d(xd), (34)

where ⊗ denotes the tensor product (outer product) and al
i(xi)

denotes the xi-th entry of vector al
i . Note that al

1 ⊗ al
2 ⊗ · · · ⊗

al
d ∈ Rn1 ×···×nd is a rank-1 tensor, l = 1, 2, . . . , r. Denote Ω

as the set of indices such that �x ∈ Ω if U(�x) is observed,
where U(�x) represents an entry of tensor U with coordinate
�x = (x1 , . . . , xd). Moreover, define UΩ as the tensor obtained
from sampling U according to Ω, i.e.,

UΩ(�x) =
{U(�x) if �x ∈ Ω,

0 if �x /∈ Ω.
(35)

In the alternating minimization approach, we writeU =
∑r

l=1
al

1 ⊗ al
2 ⊗ · · · ⊗ al

d such that al
i ∈ Rni for 1 ≤ i ≤ d and 1 ≤

l ≤ r. Starting with some initial al
i0

∈ Rni for 1 ≤ i ≤ d and
1 ≤ l ≤ r (described later), at the k-th iteration, we update all
al

i,k ’s by solving the following convex programs

minimize
a l ′

i ′ , k ∈Rn i

∣∣∣∣∣
∣∣∣∣∣UΩ −

(
r∑

l=1

al
1,k ( 1 , l )

⊗ al
2,k ( 2 , l )

⊗ · · · ⊗ al
d,k (d , l )

)

Ω

∣∣∣∣∣
∣∣∣∣∣
F

,

(36)

where k(i,l) = k if i ≤ i′ and l ≤ l′ and k(i,l) = k − 1 other-
wise. The iteration continues until both errors are below certain
threshold.

Define z ∈ R(n1 + ...+nd )r as the vector that contains al
i for

1 ≤ i ≤ d and 1 ≤ l ≤ r. Then the set of observed entries result
in a set of |Ω| r-th order polynomial equations p such that each
polynomial has the form

pi(z) =
r∑

l=1

al
1(x1)al

2(x2) . . . al
d(xd) − U(�x), �x ∈ Ω.

(37)

Again we can apply Newton’s method described in
Section II-C to solve the set of equations p(z) = 0. In partic-
ular, for initialization, we use the Matlab toolbox “Tensorlab”
found online to calculate the CP decomposition of UΩ and the
leading r rank-1 components to obtain z0 .

1) Noiseless Data: For the numerical experiments, we con-
siderU ∈ R100×100×100 of rank 3 (by generating random vectors
al

i ∈ R100 for 1 ≤ i ≤ 3 and 1 ≤ l ≤ 3) and hence the number
of unknowns is D = n1r + n2r + n3r = 900. The lower bound
on the sampling probability is D

n1 n2 n3
= 900

106 = 0.0009. Figure 9
shows the recovery rate comparison between Newton’s method
and alternating minimization, as a function of the normalized
sampling rate p

D/(n1 n2 n3 ) .
Note that the average number of samples required for a re-

covery rate of at least 50% is 14.9D and 17D using New-
ton’s method with Init(UΩ) and alternating minimization, re-
spectively. This leads to 17−14.9

17 × 100% = 12.3% reduction
in the required number of samples. Moreover, the average
running times of one experiment for Newton’s method with
Init(UΩ) and alternating minimization are 152 and 72 seconds,
respectively.

2) Noisy Data: We again consider a tensor U ∈
R100×100×100 of rank 3. Then, we add a noise tensor E to U ,
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Fig. 9. Comparison of recovery rates for U ∈ R100×100×100 of rank 3.

Fig. 10. Comparison of PSNR for U ∈ R100×100×100 of rank 3 for SNR
= 22.4 dB.

where E consists of i.i.d. N (0, σ2) entries. We sample each
entry of E + U with probability p and use the PSNR as the
performance metric of each algorithm in recovering the data U .
Figure 10 shows the PSNR of different algorithms in terms of the
normalized sampling probability p

D/(n1 n2 n3 ) = p
0.0009 for SNR

= 22.4 dB. As we can observe, Newton’s method outperforms
alternating minimization.

VI. CONCLUSIONS

We have studied the problem of retrieving a partially sam-
pled low-rank data, when the sampling rate is very close to the
information-theoretic bounds on the sampling rate for existence
of a unique solution, i.e., we have considered the problem of
low-rank data completion where the number of samples is com-
parable to the dimension of the corresponding manifold. By
using rank factorization, each observed entry gives a polyno-
mial equation of the factor entries and the solution to the set
of such polynomial equations constitutes a completion of the
data. We have proposed to employ Newton’s method to solve
the set of polynomial equations. The convergence regions of the
proposed Newton’s methods for matrix completion and matrix
sensing are analytically characterized. Extensive numerical re-
sults have been provided to demonstrate that the proposed New-
ton’s method for data completion outperforms the well-known
existing methods, such as nuclear norm minimization and al-
ternating minimization, especially when the sampling rate is
very low, i.e., comparable to the normalized dimension of the
corresponding manifold. Our numerical experiments include

both noiseless and noisy made up low-rank data (both two-
dimensional data and higher dimensions) and also real-world
low-rank data. Moreover, the proposed method is significantly
faster than nuclear norm minimization but slower than alter-
nating minimization. Hence, our proposed method is the most
efficient when the sampling rate is very low and almost close
to the information-theoretic bounds for existence of a unique
completion of the sampled data.
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