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Abstract
This paper is concerned with investigating the fundamental conditions on the locations of
the sampled entries, i.e., sampling pattern, for finite completability of a matrix that repre-
sents the union of several subspaces with given ranks. In contrast with the existing analysis
on Grassmannian manifold for the conventional matrix completion, we propose a geometric
analysis on the manifold structure for the union of several subspaces to incorporate all given
rank constraints simultaneously. In order to obtain the deterministic conditions on the sam-
pling pattern, we characterizes the algebraic independence of a set of polynomials defined
based on the sampling pattern, which is closely related to finite completion. We also give
a probabilistic condition in terms of the number of samples per column, i.e., the sampling
probability, which leads to finite completability with high probability. Furthermore, using
the proposed geometric analysis for finite completability, we characterize sufficient condi-
tions on the sampling pattern that ensure there exists only one completion for the sampled
data.

Keywords Low-rank data completion · Matrix completion · Manifold ·
Union of subspaces · Finite completability · Unique completability
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1 Introduction

Low-rank matrix completion has received significant recent attention and finds applications
in various areas including image or signal processing [12, 13, 24], data mining [15], network
coding [23], power systems [20, 21], etc., and one of the main reasons of such versatility
is that matrices consisting of the real-world data typically possess a low-rank structure.
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Recently, several approaches are proposed to tackle a more complicated version of the
low-rank matrix completion problem named the union of low-rank subspaces completion
problem, where each column belongs to a subspace among multiple low-rank subspaces,
and therefore the whole matrix belongs to the union of those multiple low-rank subspaces
[17, 19]. Also, in many applications, the subspace clustering problem is of importance [10,
16, 30–32, 35]. However, in this paper, we consider the completion problem and not sub-
space clustering, where we assume that the subspace that each column is chosen from is
specified.

In general, the existing methods in the literature on low-rank matrix and tensor comple-
tion can be categorized into several approaches, including those based on convex relaxation
of matrix rank [3, 11–14] or different convex relaxations of tensor ranks [18, 25, 36, 37,
39], those based on alternating minimization [29, 40], and other heuristics [2, 9, 22, 26–28].
Note that the optimization-based approaches to low-rank data completion require strong
assumptions on the correlations of the values of all entries (such as coherence). On the
other hand, recently, fundamental conditions on the sampling pattern (independent from the
values of entries) that guarantee the existence of finite or unique number of completions,
have been investigated for single-view and multi-view matrix completion [5, 7, 34], low
canonical polyadic (CP) rank tensor completion [4], low Tucker rank tensor completion [1],
data clustering [6, 33], and rank determination for low-rank data completion [8]. In this
paper, we study these fundamental conditions for matrices obtained from the union of sev-
eral low-rank subspaces, i.e., we propose a geometric analysis on the manifold structure for
union of low-rank subspaces to study the mentioned problem. This work is inspired by [34],
where the analysis on Grassmannian manifold is proposed to solve similar problems for a
matrix. Specifically, in [34] a novel approach is proposed to consider the rank factorization
of a matrix and to treat each observed entry as a polynomial in terms of the entries of the
components of the rank factorization. Then, the algebraic independence among the men-
tioned polynomials is studied. In this paper, we consider the union of subspaces with special
structure. One may apply the method in [34] on each of the subspaces, but we propose an
efficient method to obtain stronger conditions on the sampling pattern by incorporating all
the rank constraints at the same time instead of applying the matrix analysis several times
separately.

The remainder of this paper is organized as follows. In Section 2, the preliminaries and
problem statements are presented. In Section 3, the deterministic sampling patterns that
ensure finite completability are found. In Section 4, we provide the sampling probability that
ensures the obtained deterministic sampling patterns in Section 3 hold with high probability.
The deterministic sampling patterns and the sampling probability that ensure unique com-
pletability are characterized in Section 5. Some numerical results are provided in Section 6.
Finally, Section 7 concludes the paper.

2 Preliminaries

2.1 Problem statement

Assume that k ≥ 2 is a fixed integer and n1 < n2 < · · · < nk are given integers. Let
U ∈ R

m×nk be a sampled matrix and denote the matrix consisting of the first ni columns
of U by Ui , i = 1, . . . , k. Hence, note that U = Uk and this is shown in Fig. 1. Moreover,
assume that rank(Ui ) = ri , i = 1, . . . , k. For notational simplicity assume n0 = r0 = 0 and
U0 = ∅. Let Gr(ri ,Rm) denote the Grassmannian of ri-dimensional subspaces of Rm such
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Fig. 1 The structure of the
sampled matrix U

that the space corresponding to ri is a subspace of the space corresponding to ri+1. Assume
that PGi

denotes the uniform measure on Gr(ri ,Rm) and Pθi
denotes the Lebesgue measure

on R
ri×si , where si = ni − ni−1 for i = 1, . . . , k. In this paper, we assume that the first n1

columns of U are chosen generically from the manifold of m × n1 matrices of rank r1, i.e.,
the entries of the first n1 columns of U are drawn independently with respect to Lebesgue
measure on the corresponding manifold. And in general the columns number ni−1 + 1 to ni

of U are chosen generically from the manifold of m × (ni − ni−1) matrices of rank ri , i.e.,
the entries of the columns number ni−1 +1 to ni of U are drawn independently with respect
to Lebesgue measure Pθi

on the corresponding manifold, i = 2, . . . , k. Also, in this paper
the probability measure is �k

i=1PGi
Pθi

.
Note that the problem of union of two low-rank subspaces (k = 2) is different from the

multi-view matrix completion studied in [7], as the multi-view matrix completion has one
extra rank constraint that is independent from one of the rank constraints.

Let � denote the binary sampling pattern matrix that is of the same size as U. The entries
of � that correspond to the observed entries of U are equal to 1 and the rest of the entries are
set as 0. Assume that the entries of U are sampled independently with probability p. This
paper is mainly concerned with treating the following three problems.

Problem (i): Given the rank constraints rank(Ui ) = ri , i = 1, . . . , k, characterize the
conditions on the sampling pattern �, under which there exist at most finitely many
completions of U with probability one.

Problem (ii): Given the rank constraints rank(Ui ) = ri , i = 1, . . . , k, characterize suffi-
cient conditions on the sampling pattern �, under which there exist only one completion
of U with probability one.

Problem (iii): Provide a lower bound on the sampling probability p such that the
deterministic conditions on the sampling pattern � for finite/unique completability
for Problems (i) and (ii) are satisfied with high probability (not with probability one
anymore).
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2.2 Amotivating example

Note that applying the existing analysis on the Grassmannian manifold for each of the
rank constraints individually results in a “weak” sufficient condition for finite/unique com-
pletability. Next, we provide an example to motivate our proposed analysis in this paper
and to emphasize the exigency of our proposed analysis. Assume that k = 2, U1 ∈ R

4×2,
U2 ∈ R

4×4, r1 = 1 and r2 = 2. Moreover, assume that

� =

⎡
⎢⎢⎣
1 1 1 1
1 0 1 1
1 0 1 1
0 0 1 1

⎤
⎥⎥⎦ .

Then, we compare the following two approaches on this example: (i) applying the exist-
ing analysis on the Grassmannian manifold for each of the rank constraints individually, and
(ii) applying our proposed analysis to take advantage of all rank constraints simultaneously.

Approach (i): We show that U1 and U2 are infinitely many completable under the rank
constraints r1 = 1 and r2 = 2, respectively.

First, considerU1 under the constraint rank(U1) = 1. Observe that for any arbitrary value
of U1(4, 1), the second column of U1 can be obtained uniquely. Hence, there are infinitely
many completions of U1. Second, consider U2 under the constraint rank(U2) = 2. Observe
that for any arbitrary value of U2(2, 2), the second column of U2 can be obtained uniquely.
Hence, there are infinitely many completions of U2.

Approach (ii): We show that U1 and U2 are finitely many completable under the two rank
constraints r1 = 1 and r2 = 2 simultaneously (this claim can be later verified using
Theorem 1 as well). Genericity assumption results that the third and fourth columns of
U2 are linearly independent, i.e., rank(U2(:, 3 : 4)) = 2, and therefore U2(:, 3 : 4) is a
basis for U. Note that U2(:, 3 : 4) is given, and therefore having U2(1, 1) and U2(2, 1)
we can obtain the first column of U2 uniquely. Now that the first column of U2 (which
is also the first column of U1) is obtained uniquely, using the fact rank(U1) = 1 we
can obtain the second column of U1 uniquely. Hence, the sampled matrix U is uniquely
completable.

Hence, this example illustrates that collapsing the problem of completability of U into
several matrices analyses (for each rank constraint individually) results in loss of infor-
mation and thus motivates the investigation of the manifold corresponding to the rank
constraints rank(Ui ) = ri for i = 1, . . . , k.

3 Deterministic conditions for finite completability

In Section 3.1, we study the geometry of the manifold corresponding to the union of sub-
spaces to define an equivalence class to classify the bases such that each basis of the sampled
data belongs to exactly one of the defined classes. To this end we characterize the canoni-
cal structure of the bases and show the uniqueness of canonical basis for the sampled data
with probability one. In Section 3.2, we define a polynomial based on each observed entry
and through studying the geometry of the manifold corresponding to the rank constraints,
we transform the problem of finite completability of U to the problem of including a cer-
tain number of algebraically independent polynomials among the defined polynomials for
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the observed entries. In Section 3.3, a binary matrix is constructed based on the sampling
pattern �, which allows us to study the algebraic independence of a subset of polynomials
among all defined polynomials based on the samples. Finally, in Section 3.4, we character-
ize the condition on the sampling pattern for finite completability of the sampled data given
the rank constraints.

3.1 Geometry

For each U, there exist infinitely many rank decompositions, i.e., V ∈ R
m×rk and T ∈

R
rk×nk such that U = VT. However, we are interested in obtaining the canonical basis V

such that there exists exactly one rank decomposition with canonical basis. In other words,
we want a pattern on the basis that plays role as an equivalence class such that there exists
exactly one basis V for U in each class. We start by the following lemma which will be used
characterize such an equivalence class.

Lemma 1 There exists a matrix V ∈ R
m×rk such that Ui belongs to the column span of the

first ri columns of V, i = 1, . . . , k. Note that V is a basis for U and we call such basis an
“appropriate basis”.

Proof We construct such a matrix V by induction on i. In other words, in the i-th step,
we construct Vi such that Us belongs to the column span of the first rs columns of Vi ,
s = 1, . . . , i. Note that for i = 1 it is straightforward to construct V1, which is simply a
basis for U1. Induction hypothesis results in the matrix Vi with the mentioned properties
and in order to complete the induction, we need to show the existence of a matrix Vi+1 such
that Us belongs to the column span of the first rs columns of Vi , s = 1, . . . , i + 1.

We first claim that Vi belongs to the column span of Ui+1. Note that according to the
induction hypothesis, Vi is a basis for Ui and also Ui is a subset of columns of Ui+1, which
proves our claim. Let Si denote the column span of Vi , which is an ri-dimensional space
and S ′

i+1 denote the column span of Ui+1, which is an ri+1-dimensional space. As a result
of our earlier claim, Si is a subspace of S ′

i+1. Let S ′′
i denote the (ri+1 − ri)-dimensional

subspace of S ′
i+1 such that the union of Si and S ′′

i is S ′
i+1.

Consider an arbitrary basis Vi′ ∈ R
m×(ri+1−ri ) for the space S ′′

i . Observe that by putting

together the columns of Vi and Vi′ , i.e., Vi+1 = [Vi |Vi′ ], the new matrix Vi+1 ∈ R
m×ri+1

is a basis for the space S ′
i+1. Therefore, Ui+1 belongs to the column span of the first ri+1

columns of Vi+1 since Vi has exactly ri+1 columns. Given the induction hypothesis, the
proof is complete as Us belongs to the column span of the first rs columns of Vi+1, s =
1, . . . , i + 1.

Corollary 1 There exists a rank decomposition U = VT, where V ∈ R
m×rk , T ∈ R

rk×nk ,
T(r1 + 1 : rk, 1 : n1) = 0(rk−r1)×n1 , T(r2 + 1 : rk, n1 + 1 : n2) = 0(rk−r2)×(n2−n1), . . .

and T(rk−1 + 1 : rk, nk−1 + 1 : nk) = 0(rk−rk−1)×(nk−nk−1). We call such decomposition an
“appropriate decomposition”, which is shown in Fig. 2.

Proof Note that T ∈ R
rk×nk , T(r1+1 : rk, 1 : n1) = 0(rk−r1)×n1 is equivalent to having that

U1 belongs to the column span of the first r1 columns of V. Similarly, we can observe that
the assumptions given in Corollary 1 are equivalent to the assumptions on the appropriate
basis V in Lemma 1, and therefore according to Lemma 1, the proof is complete.
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nk nk 1n2 n1n1

rk r1

rk rk 1

0(rk r1 ) n1 0(rk r2 ) (n2 n1 )

0(rk rk 1 ) (nk nk 1 )

Fig. 2 A matrix T that satisfies the properties of an appropriate decomposition

From now on, we only consider appropriate decompositions. In fact, given Corollary
1, it is easy to verify that there exists infinitely many appropriate decompositions for U.
However, we are interested in having a canonical basisV so that for anyU there exits exactly
one appropriate decompositions satisfying the canonical structure.

Definition 1 For notational simplicity, we divide the columns of a basisV ∈ R
m×rk forU as

V = [V1| . . . , |Vk], where V1 ∈ R
m×r1 denotes the first r1 columns of V, V2 ∈ R

m×(r2−r1)

denotes the next (r2 − r1) columns of V, . . . and Vk ∈ R
m×(rk−rk−1) denotes the next

(rk − rk−1) columns of V. This structure is shown in Fig. 3.

Fig. 3 An appropriate basis
V = [V1| . . . , |Vk]
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rk rk 1r2 r1r1

r1

r2 r1

Ir1

Ir2 r1

0r1 (r2 r1 )

Irk rk 1

0rk 1 (rk rk 1 )

rk rk 1

Fig. 4 A canonical basis

Definition 2 A basis V ∈ R
m×rk for U has canonical structure if V(1 : r1, 1 : r1) =

Ir1 , V(1 : r2, r1 + 1, r2) = [0(r2−r1)×r1 |I(r2−r1)]�, . . . and V(1 : rk, rk−1 + 1, rk) =
[0(rk−rk−1)×rk−1 |I(rk−rk−1)]�, as shown in Fig. 5.

The following lemma characterizes the relationship between appropriate bases, which
will be used in Lemmas 3 and 4 (Fig. 4).

Lemma 2 Consider an appropriate basis V ∈ R
m×rk for U. Then, the full rank matrix

V′ ∈ R
m×rk is an appropriate basis for U if and only if there exist matrices A1 ∈ R

r1×r1 ,
A2 ∈ R

r2×(r2−r1), . . . and Ak ∈ R
rk×(rk−rk−1) such that V′

1A1 = V1, [V′
1|V′

2]A2 = V2, . . .
and [V′

1|V′
2| . . . |V′

k]Ak = V′Ak = Vk .

Proof Assume that V′ is an appropriate basis for U. Then, the first r1 columns of V′, i.e.,
V′
1, is a basis for the rank-r1 matrix U1 and note that V is also an appropriate basis for U.

Therefore, V′
1 and V1 span the same r1-dimensional space, and therefore each column of

V1 can be written as a linear combination of the columns of V′
1, i.e., V

′
1A1 = V1 for some

A1 ∈ R
r1×r1 . Similarly, [V′

1|V′
2] and [V1|V2] span the same r2-dimensional space since

both of them are a basis for the rank-r2 matrix U2. As a result, each column of V2 can be
written as a linear combination of the columns of [V′

1|V′
2], i.e., [V′

1|V′
2]A2 = V2 for some

A2 ∈ R
r2×(r2−r1). Similarly, we can show [V′

1|V′
2| . . . |V′

k]Ak = V′Ak = Vk for some
Ak ∈ R

rk×(rk−rk−1).
To prove the other direction of the statement, assume that there exist matrices A1 ∈

R
r1×r1 , A2 ∈ R

r2×(r2−r1), . . . and Ak ∈ R
rk×(rk−rk−1) such that V′

1A1 = V1, [V′
1|V′

2]A2 =
V2, . . . and [V′

1|V′
2| . . . |V′

k]Ak = V′Ak = Vk . Note that V is an appropriate basis
for U, and therefore the assumption V′

1A1 = V1 results that V′
1 and V1 span the same

r1-dimensional space. Hence, V′
1 is basis for U1. The assumptions V′

1A1 = V1 and
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[V′
1|V′

2]A2 = V2 together and the fact that V′ is a full rank matrix results that [V′
1|V′

2] and[V1|V2] span the same r2-dimensional space. Therefore, [V′
1|V′

2] is a basis for U2. Similar
reasoning results that V′ is an appropriate basis for U.

Lemma 3 There exists at most one appropriate decomposition U = VT such that V has
the canonical structure.

Proof By contradiction assume that there exist two different canonical bases V and
V′. Then, according to Lemma 2, we have V′

1A1 = V1, [V′
1|V′

2]A2 = V2, . . . and
[V′

1|V′
2| . . . |V′

k]Ak = V′Ak = Vk for some A1 ∈ R
r1×r1 , A2 ∈ R

r2×(r2−r1), . . . and
Ak ∈ R

rk×(rk−rk−1). Since both V and V′ are canonical bases, V(1 : r1, :) = V′(1 :
r1, :) = Ir1 , and therefore the equation V′(1 : r1, :)A1 = V(1 : r1, :) results that
A1 = Ir1 . As a result, V1 = V′

1. Moreover, we have [V′
1|V′

2]A2 = V2, which results
[V′

1|V′
2](1 : r1, :)A2 = V2(1 : r1, :) = 0r1×(r2−r1). Since we have V′

2(1 : r1, :) =
0r1×(r2−r1) and V′

1(1 : r1, :) = Ir1 , then [V′
1|V′

2](1 : r1, :)A2 = 0r1×(r2−r1) reduces to
Ir1A2 = 0r1×(r2−r1), i.e., A2(1 : r1, :) = 0r1×(r2−r1). Therefore, [V′

1|V′
2]A2 = V2 reduces

to V′
2A2(r1 + 1 : r2, :) = V2. Now, with the similar approach that we showed V1 = V′

1,
we can show V′

2 = V2 since V′
2(r1 + 1 : r2, :) = V2(r1 + 1 : r2, :) = Ir2 . The similar

approach results that V′
3 = V3, . . . and V′

k = Vk , and therefore V′ = V, which contradicts
the assumption.

The following lemma shows the uniqueness of canonical structure in Definition 2.

Lemma 4 With probability one, there exists a unique appropriate decomposition U = VT
such that V has the canonical structure.

Proof As in Lemma 3 we showed that there exist at most one appropriate canonical basis, it
suffices to show the existence of one appropriate canonical basis for U with probability one.
According to Lemma 1, there exists an appropriate basis V′ for U and we will construct an
appropriate canonical basis based on V′ to complete the proof. The genericity assumption
results that the submatrix consisting of any r1 rows of V′

1 is full rank as each column of U1
is chosen generically from the Grassmannian manifold of Gr(r1,Rm). As a result, V′

1(1 :
r1, :) is full rank, i.e., V′

1(1 : r1, :) is nonsingular, with probability one with respect to the
probability measure PG1Pθ1 . Define A1 = V′

1(1 : r1, :)−1 ∈ R
r1×r1 and V1 = V′

1A1 ∈
R

m×r1 . Note that V1(1 : r1, :) = Ir1 .
Similarly, [V′

1|V′
2](1 : r2, :) is full rank with probability one with respect to the prob-

ability measure �2
i=1PGi

Pθi
. Define A′

2 = [V′
1|V′

2](1 : r2, :)−1 ∈ R
r2×r2 , A2 = A′

2(:
, r1 + 1 : r2) ∈ R

r2×(r2−r1) and V2 = [V′
1|V′

2]A2 ∈ R
m×(r2−r1). Therefore, V2(1 : r2, :) =

[0(r2−r1)×r1 |I(r2−r1)]�. By repeating this procedure we constructV = [V1| . . . |Vk] such that
V has the canonical structure with probability one with respect to the probability measure
�k

i=1PGi
Pθi

. Moreover, according to Lemma 2, V is an appropriate basis for U.

As a result of Lemma 4, for each U there exists a unique appropriate decomposition
with the canonical basis and observe that an arbitrary appropriate decomposition with the
canonical basis results in a certain matrix U that satisfies the given rank constraints. Hence,
the canonical structure plays the role of a bijective mapping from a generic member of the
manifold corresponding to U to the appropriate decomposition with canonical basis and
generic entries (excluding the entries of the canonical pattern). Consequently, those entries
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excluding the canonical pattern entries are chosen with respect to the Lebesgue measure on
R, i.e., are chosen generically.

Remark 1 Similarly to the proof of Lemma 4, we can show the uniqueness of the bases
having a structure of any permutation of the rows of the canonical structure given in Def-
inition 2. Considering all these permutations of the canonical structure, we obtain some
patterns that operate like an equivalence class such that with probability one, exactly one
basis belongs to each class, i.e., exactly one basis satisfies a certain pattern, among all the
bases for appropriate decompositions. This also leads to the fact that the dimension of all
appropriate bases is equal to mrk − ∑k

i=1 ri(ri − ri−1), which is the number of unknown
entries of the canonical structure.

3.2 Polynomials and finite completability

We consider an appropriate decompositionU = VT, whereV ∈ R
m×rk and T ∈ R

rk×nk . We
are interested in obtaining all entries of V and T using the sampled entries of U. Assuming
that the unknown entries of V and T are variables, each sampled entry of U results in a
polynomial in terms of these variables as the following,

U(i, j) =
rk∑

l=1

V(i, l)T(l, j). (1)

Here, we briefly mention the following two facts to highlight the fundamentals of our
proposed analysis.

– Fact 1: As it can be observed from (1), any sampled entry U(i, j) results in a polyno-
mial that involves the entries of the i-th row of V and the entries of the j -th column of
T. Moreover, for a sampled entry U(i, j), the values of i and j specify the location of
the entries of V and T that are involved in the corresponding polynomial, respectively.

– Fact 2: It can be concluded from Bernstein’s theorem [38] that in a system of n poly-
nomials in n variables with each consisting of a given set of monomials such that the
coefficients are chosen with respect to the Lebesgue measure on the manifold corre-
sponding to the basis of the given rank, the n polynomials are algebraically independent
with probability one, and therefore there exist only finitely many solutions. However, in
the structure of the polynomials in our model, the set of involved monomials are differ-
ent for different set of polynomials, and therefore to ensure algebraically independency
we need to have for any selected subset of the original n polynomials, the number of
involved variables should be more than the number of selected polynomials.

The following assumption will be used frequently in this paper.

Assumption 1 Each column ofUi that does not belong to Ui−1 includes at least ri sampled
entries, i = 1, . . . , k.

Lemma 5 Given the basis V, Assumption 1 holds if and only if T is uniquely solvable.

Proof We prove that Assumption 1 is necessary and sufficient condition for unique solvabil-
ity of each column of T. We show that the first column ofU1 has less than r1 sampled entries
if and only if the first column of T is infinitely many solvable, and the same reasoning works
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for other columns as well. According to Fact 1, only sampled entries of the first column of
U1 result in a linear polynomial that involves the entries of the first column of T (since V
is given the polynomials are linear). Note that as we consider appropriate decompositions,
the first column of T includes r1 unknown variables, and therefore exactly r1 polynomials
with generic coefficients results in a unique solution and less than r1 polynomials results in
infinitely many solutions.

Definition 3 For notational simplicity, defineM = ∑k
i=1 ri(ni −ni−1) (the number of non-

zero entries of an appropriateT, i.e., the number of sampled entries described in Assumption
1),M ′ = rknk−M (the number of zero entries of an appropriate T),N = ∑k

i=1 ri(ri−ri−1)

(the number of fixed entries of a canonical basis) and N ′ = mrk −N (the number of entries
of a canonical basis excluding the entries of the canonical pattern).

As a result of Lemma 4, we specify the M sampled entries described in Assumption 1
to obtain T uniquely based on V. Hence, we want to obtain the condition on the sampling
pattern for finite solvability of V given T.

Definition 4 Let P(�) denote the set of polynomials corresponding to the observed entries
as in (1) excluding the M observed entries of Assumption 1. Note that since T is already
solved in terms of V, each polynomial in P(�) is in terms of the entries of V.

The following lemma provides the condition on P(�) for finite completability of the
sampled matrix U.

Lemma 6 Suppose that Assumption 1 holds. With probability one, there exist only finitely
many completions of U if and only if there exist N ′ algebraically independent polynomials
in P(�).

Proof The proof is omitted due to the similarity to the proof of Lemma 2 in [1]. The

only minor difference is that here the dimension is N ′ instead of
(
�

j

i=1ni

) (
�d

i=j+1ri

)
−(∑d

i=j+1 r2i

)
which is the dimension of the core for Tucker decomposition.

Having Lemma 6, we only need to obtain the maximum number of algebraically inde-
pendent polynomials inP(�) to determine ifU is finitely many completable. In Section 3.3,
we construct a binary matrix based on the sampling pattern � to obtain this number.

3.3 Constraint matrix

In this section, we provide a procedure to construct a binary valued matrix based on the
sampling pattern such that each column of it represents one polynomial, and therefore we
can later obtain the maximum number of algebraically independent polynomials in P(�)

in terms of some combinatorial properties of the sampling pattern.
Let li = N�(U1 (:, i)) denote the number of observed entries in the i-th column of U1,

where i ∈ {1, . . . , n1}. Assumption 1 results that li ≥ r1. We construct a binary valued
matrix �̆1 based on � and r1. Specifically, we construct li − r1 columns with binary entries
based on the locations of the observed entries in U1 (:, i) such that each column has exactly
r1 + 1 entries equal to one (if li = r1 then �̆1 = ∅). Assume that x1, . . . , xli are the row
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indices of all observed entries in this column. Let �i
1 be the corresponding m × (li − r1)

matrix to this column which is defined as the following: for any j ∈ {1, . . . , li − r1}, the
j -th column has the value 1 in rows {x1, . . . , xr1 , xr1+j } and zeros elsewhere. Define the
binary constraint matrix as �̆1 = [

�1
1|�2

1 . . . |�n1
1

] ∈ R
m×K1 [34], where K1 = N�(U1) −

n1r1. Similarly, we construct �̆i for the matrix consisting of the columns of Ui that do not
belong to Ui−1 based on the corresponding sampling pattern and ri , i = 2, . . . , k. Then,

we put together all these k binary matrices �̆ =
[
�̆1|�̆2| . . . |�̆k

]
∈ R

m×K and call it

the constraint matrix, where K = N�(U) − M . We show this procedure on a simple
example.

Example 1 Consider the sampled matrix U ∈ R
4×7, where n1 = 3 and n2 = 7,

i.e., U1 ∈ R
4×3 and U2 ∈ R

4×7. Assume that r1 = 2 and r2 = 3. Moreover,
assume that the sampled entries are F = {(1, 1), (2, 1), (3, 1), (1, 2), (1, 3), (2, 3), (3, 3),
(4, 3), (1, 4), (2, 4), (4, 4)} and those samples that are used to obtain T are F ′ =
{(1, 1), (1, 2), (1, 3), (2, 3), (1, 4), (2, 4)}. Then, the constraint matrix is

�̆ =

⎡
⎢⎢⎣
1 1 1 1 1
1 0 1 1 1
0 1 1 0 0
0 0 0 1 1

⎤
⎥⎥⎦ ,

where �̆1 = [�̆(:, 1)|�̆(:, 2)] and �̆2 = [�̆(:, 3)|�̆(:, 4)|�̆(:, 5)].

In Section 3.4, we characterize a relationship between the maximum number of alge-
braically independent polynomials in P(�̆) and a combinatorial condition on the sampling
pattern �. We next define the notion of proper submatrix of C(�).

Definition 5 A submatrix �̆′ of the constraint matrix �̆ is called a proper submatrix if its
columns correspond to different columns of the sampling pattern �.

3.4 Algebraic independence

In this subsection, we characterize the condition on the sampling pattern for finite com-
pletability of the sampled data given the rank constraints, i.e., the condition on the sampling
pattern for having N ′ algebraically independent polynomials in P(�̆) = P(�).

Definition 6 Let �̆
′
be a subset of columns of the constraint matrix �̆. Let g(�̆

′
) denote

the number of nonzero rows of �̆
′
and P(�̆

′
) denote the set of polynomials that cor-

respond to the columns of �̆
′
. Moreover, let �̆

′
i denote the columns of �̆

′
that include

exactly ri + 1 nonzero entries, i.e., correspond to the columns of Ui and not columns of
Ui−1.

The following lemma gives an upper bound on the maximum number of algebraically
independent polynomials in any subset of columns of the constraint matrix �̆. Simply put,
for a set of polynomials with coefficients chosen generically, the total number of involved
variables in the polynomials is an upper bound on the maximum number of algebraically
independent polynomials.
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Lemma 7 Let �̆
′ ∈ R

m×t be a proper subset of columns of the constraint matrix �̆. Then,
the maximum number of algebraically independent polynomials in P(�̆

′
) is at most

k∑
i=1

(ri − ri−1)(g(�̆
′
i ) − ri)

+. (2)

Proof Note that each observed entry of U1, i.e., each column of �̆
′
1, results in a polynomial

that involves all r1 entries of a row of V1. As a result, the number of entries of V1 that are
involved in the polynomials is exactly (r1 − r0)g(�̆

′
1). However, the rows of the canonical

pattern in V1 can be permuted, and therefore in the case of �̆
′
1 �= ∅ the number of known

entries of the pattern in V1 is r21 for a pattern. Hence, the minimum number of variables

(unknown entries) of V1 is (r1 − r0)g(�̆
′
1) − r21 = (r1 − r0)(g(�̆

′
1) − r1)

+ since �̆
′
1 �= ∅

implies g(�̆
′
1) ≥ r1 + 1. Moreover, clearly in the case of �̆

′
1 = ∅ the number of variables

(unknown entries) of V1 is (r1 − r0)(g(�̆
′
1) − r1)

+ = 0. Similarly, we can show that the

minimum number of variables (unknown entries) ofV1 is
∑k

i=1(ri −ri−1)(g(�̆
′
i )−ri)

+. As
a result, the maximum number of algebraically independent polynomials inP(�̆

′
) is at most

equal to the number of involved variables in the polynomials, i.e.,
∑k

i=1(ri − ri−1)(g(�̆
′
i )−

ri)
+.

A set of polynomials is called minimally algebraically dependent if the polynomials
in that set are algebraically dependent but polynomials in every of its proper subset are
algebraically independent. The next lemma which is Lemma 7 in [4], states an important
property of a set of minimally algebraically dependent among polynomials in P(�̆). This
lemma is needed to derive the maximum number of algebraically independent polynomials
in any subset of P(�̆).

Lemma 8 Let �̆
′ ∈ R

m×t be a proper subset of columns of the constraint matrix �̆. Assume
that polynomials in P(�̆

′
) are minimally algebraically dependent. Then, the number of

variables (unknown entries) of V that are involved in P(�̆
′
) is equal to t − 1.

Given a proper subset of columns �̆
′
of the constraint matrix, the following lemma takes

advantage of Lemmas 7 and 8 to characterize a relationship between the maximum number
of algebraically independent polynomials in P(�̆

′
) and the geometric structure of nonzero

entries of �̆
′
.

Lemma 9 Given a proper subset of columns �̆
′ ∈ R

m×t of the constraint matrix, the
polynomials in P(�̆

′
) are algebraically independent if and only if for any t ′ ∈ {1, . . . , t}

and any subset of columns �̆
′′ ∈ R

m×t ′ of �̆
′
we have

k∑
i=1

(ri − ri−1)(g(�̆
′′
i ) − ri)

+ ≥ t ′. (3)

Proof Assume that the polynomials in P(�̆
′
) are algebraically dependent. Then, there

exists a subset of polynomials P(�̆
′′
) of the set P(�̆

′
) such that the polynomials in
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P(�̆
′′
) are minimally algebraically dependent. Let �̆

′′ ∈ R
m×t ′ , where t ′ ∈ {1, . . . , t}.

According to Lemma 8 the number of involved variables in P(�̆
′′
) is t ′ − 1. How-

ever, in Lemma 7 we showed that the number of involved variables in P(�̆
′′
) is at least∑k

i=1(ri − ri−1)(g(�̆
′′
i )− ri)

+, and therefore
∑k

i=1(ri − ri−1)(g(�̆
′′
i )− ri)

+ ≤ t ′ − 1 < t ′.
In order to show the other direction, assume that the polynomials in P(�̆

′
) are

algebraically independent, and therefore any subset of polynomials of P(�̆
′
) are also

algebraically independent. By contradiction assume that there exists a subset of columns
�̆

′′ ∈ R
m×t ′ of �̆

′
such that (3) does not hold. Hence,

∑k
i=1(ri − ri−1)(g(�̆

′′
i ) − ri)

+ is

less than the number of polynomials in P(�̆
′′
). On the other hand, according to Lemma

(7), the maximum number of algebraically independent polynomials in P(�̆
′′
) is at most∑k

i=1(ri − ri−1)(g(�̆
′′
i ) − ri)

+, which is less than the number of polynomials in P(�̆
′′
),

and this contradicts the assumption.

The next theorem which is the main result of this subsection characterizes the condition
on the sampling pattern for finite completability of U.

Theorem 1 Suppose that Assumption 1 holds. With probability one, the sampled data U is
finitely many completable if and only if there exists a proper subset of columns �̆

′ ∈ R
m×N ′

of the constraint matrix �̆ such that for any t ′ ∈ {1, . . . , N ′} and any subset of columns
�̆

′′ ∈ R
m×t ′ of �̆

′
, (3) holds.

Proof First we assume that there exists a proper subset of columns �̆
′ ∈ R

m×N ′
of the

constraint matrix �̆ such that for any t ′ ∈ {1, . . . , N ′} and any subset of columns �̆
′′ ∈

R
m×t ′ , (3) holds and we need to show the finite completability of U. According to Lemma

8, the N ′ polynomials corresponding to �̆
′
are algebraically independent, and therefore

according to Lemma 6, U is finitely many completable.
In order to complete the proof, we assume that U is finitely many completable and show

the existence of such �̆
′
described in the statement of theorem. According to Lemma 6,

there exists N ′ algebraically independent polynomials in P(�̆), and therefore according
to Lemma 8, the submatrix corresponding to these N ′ polynomials satisfies the properties
described in the statement of theorem.

One challenge of applying Theorem 1 is the exhaustive enumeration that it takes to check
if (3) holds for all the corresponding subsets of columns. In the next section, we provide
a bound on the sampling probability in terms of r1, . . . , rk that ensures (3) holds with
high probability for all the corresponding subsets of columns. Consequently, we do not
need to check (3) but instead we can certify the above results with high probability and not
deterministically anymore.

4 Probabilistic conditions for finite completability

We assume that the entries of U are sampled independently with probability p. In this
section, we are interested in obtaining a condition in terms of the number of samples, i.e., the
sampling probability, to ensure the combinatorial conditions on the sampling pattern given
in Theorem 1 hold with high probability. Therefore, according to Theorem 1, the provided
condition on the sampling probability ensures the finite completability of U.
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Lemma 10 below is Lemma 5 in [7], which will be used later as it connects a condition
in terms of the number of samples to a combinatorial property on the sampling pattern.

Lemma 10 Assume that r ≤ m
6 and also each column of � includes at least l nonzero

entries, where

l > max
{
9 log

(m

ε

)
+ 3 log

(q

ε

)
+ 6, 2r

}
. (4)

Let �′ be an arbitrary set of m − r columns of �. Then, with probability at least 1 − ε
q
,

every subset �′′ of columns of �′ satisfies

g(�′′) − r ≥ t, (5)

where t is the number of columns of �′′.

Note that we are interested in obtaining a condition in terms of the number of samples
to ensure finite completability, i.e., to certify that the conditions on the constraint matrix
�̆ (not the sampling pattern �) in Theorem 1 hold, with high probability. However, given
the number of samples is large enough and using Lemma 10, we will be able to verify the
mentioned combinatorial conditions on the sampling pattern. Then, the following lemma
connects the conditions on the sampling pattern to the combinatorial conditions on the con-
straint matrix. In particular, the following lemma, which is Lemma 8 in [1], states that if
the property in Lemma 10 holds for the sampling pattern, then it will be satisfied for the
constraint matrix as well.

Lemma 11 Let r be a given nonnegative integer. Assume that there exists a matrix �′ such
that it consists of m− r columns of � and each column of �′ includes at least r +1 nonzero
entries and satisfies the following property:

– Denote an arbitrary matrix obtained by choosing any subset of the columns of �′ by
�′′. Then,

g(�′′) − r ≥ c(�′′), (6)

where c(�′′) denotes the number of columns of �′′. Then, there exists a matrix �̆
′
with

the same size as �′ such that: each column has exactly r + 1 entries equal to one, and
if �̆

′
(x, y) = 1 then we have �′(x, y) = 1. Moreover, �̆

′
satisfies the above-mentioned

property.

Definition 7 Let �i denote the subset of columns of � that correspond those columns of
Ui that do not belong to Ui−1, i.e., the (ni − ni−1 + 1)-th to the ni-th columns of �.

The following lemma will be used to ensure that the condition on the constraint matrix
�̆ in Theorem 1 is satisfied.

Lemma 12 Assume that i ∈ {1, . . . , k}, ri ≤ m
6 , (ri − ri−1)(m − ri) ≤ ni − ni−1 and each

column of �i includes at least li nonzero entries where

li > max

{
9 log

(m

ε

)
+ 3 log

(
(ri − ri−1)k

ε

)
+ 6, 2ri

}
. (7)
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Then, with probability at least 1 − ε
k
, there exists a subset of columns �̆

′
i ∈ R

m×ti of �̆i ,
where ti = (ri − ri−1)(m − ri) such that for any t ′i ∈ {1, 2, . . . , ti} and any subset of

columns �̆
′′
i ∈ R

m×t ′i of �̆
′
i we have

(ri − ri−1)(g(�̆
′′
i ) − ri)

+ ≥ t ′i . (8)

Proof Since (ri − ri−1)(m − ri) ≤ ni − ni−1, we can randomly choose (ri − ri−1) disjoint
matrices�′

is
(for 1 ≤ s ≤ ri−ri−1), each consisting of (m−ri) columns of�i . According to

Lemma 10, each �′
is
satisfies the following property with probability at least 1− ε

(ri−ri−1)k
,

1 ≤ s ≤ ri − ri−1: for any t ′′i ∈ {1, 2, . . . , m − ri} and any subset of columns �′′
is

∈ R
m×t ′′i

of �′
is
we have

(g(�′′
is
) − ri)

+ ≥ t ′′i . (9)

On the other hand, according to Lemma 11, there exist corresponding disjoint subsets of
columns of the constraint matrix �̆

′
is
(for 1 ≤ s ≤ ri − ri−1), each consisting of (m − ri)

columns of �̆i such that they satisfy the above property as �′
is
’s. As a result, all �̆

′
is
’s satisfy

the mentioned property simultaneously with probability at least 1 − ε
k
.

Define �̆
′
i = [�̆′

i1
|�̆′

i2
| . . . |�̆′

iri−ri−1
] ∈ R

m×ti . Consider any t ′i ∈ {1, 2, . . . , ti} and any

subset of columns �̆
′′
i ∈ R

m×t ′i of �̆
′
i . Let �̆

′′
is
denote those columns of �̆

′′
i that belong to

�̆
′
is
and without loss of generality assume that c(�̆

′′
i1
) = max1≤s≤ri−ri−1{c(�̆

′′
is
)}, where

c(·) denotes the number of columns. Then, it is simply verified that

(ri − ri−1)(g(�̆
′′
i ) − ri)

+ ≥ (ri − ri−1)(g(�̆
′′
i1
) − ri)

+ ≥ (ri − ri−1)c(�̆
′′
i1
)

≥
ri−ri−1∑

s=1

c(�̆
′′
is
) ≥ t ′i . (10)

Finally, the following theorem gives the conditions on the number of samples to ensure
that the conditions on the constraint matrix �̆ in Theorem 1 hold with high probability, i.e.,
the sampled data is finitely many completable with high probability.

Theorem 2 Assume that assumptions in the statement of Lemma 12 hold for any i ∈
{1, 2, . . . , k}. Then, the sampled matrix U is finitely many completable with probability at
least 1 − ε.

Proof Consider the obtained subset of columns �̆
′
i ∈ R

m×ti of �̆i in Lemma 12, where

ti = (ri − ri−1)(m − ri), for i = 1, 2, . . . , k. Define �̆
′ = [�̆′

1|�̆′
2| . . . |�̆′

k] ∈ R
m×t , where

t = ∑k
i=1 ti = N ′. Each �̆

′
i satisfies the mentioned property in Lemma 12 with probability

at least 1 − ε
k
, and therefore all �̆

′
i’s satisfy the corresponding properties simultaneously

with probability at least 1 − ε.
Let �̆

′′ ∈ R
m×t ′ denote an arbitrary subset of columns of �̆

′
. Also, assume that �̆

′′
i

denote those columns of �̆
′′
that belong to �̆

′
i , i = 1, 2, . . . , k. Then, we can conclude that

(8) holds, i = 1, 2, . . . , k. Similarly to the last part of the proof of Lemma 12 we can show
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that (3) holds. Therefore, according to Theorem 1, U is finitely many completable with
probability at least 1 − ε.

The following lemma is taken from [1] and ensures that with high probability the number
of samples at each column is larger than a certain number given that the sampling probability
is large enough.

Lemma 13 Consider a vector with m entries where each entry is observed with probability
p independently from the other entries. If p > p′ = z

m
+ 1

4√m
, then with probability at least(

1 − exp(−
√

m
2 )

)
, more than z entries are observed.

The following lemma makes use of Lemma 13 to derive a lower bound on the sampling
probability that leads to the similar statement as Theorem 2 with high probability, i.e., finite
completability of U with high probability, given that the sampling probability is larger than
a certain number.

Lemma 14 Assume that ri ≤ m
6 , (ri − ri−1)(m − ri) ≤ ni − ni−1, 1 ≤ i ≤ k and that the

entries of U are sampled independently with probability p, where

p >
1

m
max

{
9 log

(m

ε

)
+ 3 log

(
qk

ε

)
+ 6, 2rk

}
+ 1

4
√

m
, (11)

where q = max1≤i≤k ri − ri−1. Then, with probability at least (1− ε)
(
1 − exp(−

√
m
2 )

)nk

,

U is finitely many completable.

Proof Since q = max1≤i≤k ri − ri−1 and according to Lemma 13, the number of samples

at each column of �i satisfies (7) with probability at least
(
1 − exp(−

√
m
2 )

)
. The rest of

the proof is easy to verify using Theorem 2.

5 Deterministic and probabilistic conditions for unique completability

In Sections 3 and 4, we characterized the deterministic and probabilistic conditions on the
sampling pattern for finite completability, respectively. In this section, we are interested in
obtaining the deterministic and probabilistic conditions on the sampling pattern for unique
completability. Note that for matrix completion problem (and therefore for our problem),
finite completability does not necessarily imply unique completability [1]. Unique com-
pletability simply means that, any completion of the sampled data obtained by any algorithm
is exactly the original sampled data. We show that adding a set of mild assumptions to those
stated in Theorem 1 leads to unique completability.

Recall that there exists at least one completion of U since the original matrix that is
sampled satisfies the rank constraints. The following lemma is a re-statement of Lemma 25
in [4].

Lemma 15 Assume that Assumption 1 holds. Let �̆
′
be a proper subset of columns of

the constraint matrix �̆. Assume that polynomials in P(�̆
′
) are minimally algebraically
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dependent. Then, all variables (unknown entries) of V that are involved in P(�̆
′
) can be

determined uniquely.

The following theorem characterizes sufficient deterministic conditions on the sampling
pattern for unique completability. In particular, condition (i) is the same condition as in
Theorem 1, which results in finite completability, while by adding condition (ii) and using
Lemma 15, we can ensure the unique completability with probability one.

Theorem 3 Suppose that Assumption 1 holds. With probability one, the sampled data U is
uniquely completable if there exists disjoint proper subsets of columns �̆

′ ∈ R
m×N ′

and
�̆

′
i ∈ R

m×(m−ri ) (1 ≤ i ≤ k) of the constraint matrix �̆ such that

(i) for any t ′ ∈ {1, . . . , N ′} and any subset of columns �̆
′′ ∈ R

m×t ′ of �̆
′
, (3) holds.

(ii) for any t ′i ∈ {1, . . . , m − ri} and any subset of columns �̆
′′
i ∈ R

m×t ′i of �̆
′
i we have

(g(�̆
′′
i ) − ri)

+ ≥ t ′i , (12)

i = 1, 2, . . . , k.

Proof According to Theorem 1, condition (i) results that there are at most finitely many
completions of U. As we showed in the proof of Theorem 1, there exist N ′ algebraically
independent polynomials {p1, p2, . . . , pN ′ } in P(�̆

′
). Note that any set of N ′ + 1 poly-

nomials are algebraically dependent. Consider a single polynomial p0 from the set of
polynomials ∪k

i=1P(�̆
′
i ). Hence, {p0, p1, . . . , pN ′ } are algebraically dependent and since

{p1, p2, . . . , pN ′ } are algebraically independent, there exist a set of polynomials P(p0) ⊆
{p0, p1, . . . , pN ′ } that is minimally dependent.

According to Lemma 15, all variables involved in P(p0) and therefore all variables
involved in p0 can be determined uniquely, or in other words, we obtain ri linear polyno-
mials in terms of the entries of Vi given that p0 ∈ P(�̆

′
i ). It is easily verified that given (ii)

and substituting p0 by all of the polynomials in P(�̆
′
i ) one by one, Vi can be determined

uniquely, i = 1, 2, . . . , k.

Finally, using Theorems 2 and 3, we provide a bound on the number of samples to
ensure unique completability with high probability. In particular, the next theorem gives
a probabilistic guarantee for satisfying the conditions (i) and (ii) in the statement of
Theorem 3.

Theorem 4 Assume that ri ≤ m
6 , (ri − ri−1 + 1)(m − ri) ≤ ni − ni−1 and each column of

�i includes at least li nonzero entries where

li > max

{
9 log

(m

ε

)
+ 3 log

(
(ri − ri−1)2k

ε

)
+ 6, 2ri

}
, (13)

for i = 1, 2, . . . , k. Then, with probability at least 1 − ε, U is uniquely completable.

Proof According to Theorem 2, condition (i) in the statement of Theorem 3 holds with
probability at least 1− ε

2 . According to Theorem 3, in order to complete the proof, it suffices
to show that condition (ii) in the statement of Theorem 3 holds with probability at least
1 − ε

2 . Note that according to Lemmas 10 and 11, condition (ii) for each value of i holds
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with probability at least 1 − ε
(ri−ri−1)2k

, and therefore condition (ii) holds with probability
at least 1 − ε

(ri−ri−1)2
≥ 1 − ε

2 .

The following lemma makes use of Lemma 13 to derive a lower bound on the sampling
probability that leads to the similar statement as Theorem 4, i.e., unique completability with
high probability.

Lemma 16 Assume that ri ≤ m
6 , (ri − ri−1 + 1)(m − ri) ≤ ni − ni−1, 1 ≤ i ≤ k and that

the entries of U are sampled independently with probability p, where

p >
1

m
max

{
9 log

(m

ε

)
+ 3 log

(
2qk

ε

)
+ 6, 2rk

}
+ 1

4
√

m
, (14)

where q = max1≤i≤k ri − ri−1. Then, with probability at least (1− ε)
(
1 − exp(−

√
m
2 )

)nk

,

U is uniquely completable.

Proof Using Theorem 4, the proof is similar to the proof of Lemma 14.

6 Numerical results

As the first example, we compute the total number of samples that is required for finite
completability based on Theorem 2 and compare with the number of samples required
by simply using the conventional matrix analysis [34]. The mentioned numbers are∑k

i=1(ni − ni−1)

max
{
9 log

(
m
ε

) + 3 log
(

(ri−ri−1)k

ε

)
+ 6, 2ri

}
and nk max

{
12 log

(
m
ε

) + 12, 2rk
}
,

respectively. In this numerical example, we consider m = 10000, k = 4, ε = 0.01 and also
ri = r × i2 and ni = 50 × i2 × 10000, i = 1, 2, . . . , k, where we vary r from 1 to 50. The

Fig. 5 Comparison of the number of samples for a union of 4 subspaces
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Fig. 6 Comparison of the union of two subspaces and multi-view matrix

corresponding curves are shown in Fig. 5. It is seen that the proposed analysis requires much
less number of samples than the conventional matrix analysis for finite completability.

In another numerical example, we are interested in comparing our proposed method for
the union of two subspaces with the multi-view scenario studied in [7]. First, we consider
the union of two subspaces as m = 1200, k = 2, ε = 0.01 and also ri = r × i2 and
ni = 50 × i2 × 10000, i = 1, 2, where we vary r from 1 to 50. Hence, for any value
of r ∈ {1, . . . , 50}, we have r1 = rank(U1) = r and r2 = rank(U) = 4r . In the multi-
view problem, an extra rank constraint is given, which is R = rank (U(:, n1 + 1 : n2)). The
number of samples that ensures finite completability for multi-view matrix is [7]

n1 max

{
9 log

(m

ε

)
+ 3 log

(
3max{r2 − r1, r2 − R, r1 + R − r2}

ε

)
+ 6, 2r1

}

+ (n2 − n1)max

{
9 log

(m

ε

)
+ 3 log

(
3max{r2−r1, r2 − R, r1+R−r2}

ε

)
+ 6, 2R

}
.

It is easily verified that r1 ≤ r2, R ≤ r2 and r2 ≤ r1 + R. Therefore, as r2 = 4r1 = 4r ,
we conclude that 3r ≤ R ≤ 4r , i.e., R = tr for some 3 ≤ t ≤ 4. Note that in the union
of subspaces scenario, the genericity assumption results that R = r2 = 4r . Hence, in the
multi-view scenario, t = 4 is basically almost the same as the union of subspaces scenario
and for 3 ≤ t < 4 we have more constraint in comparison with the union of subspaces
scenario. The corresponding curves are shown in Fig. 6. It is seen that for 3 ≤ t < 4 the
multi-view matrix requires less number of samples than the union of two subspaces as we
have one more rank constraint, and therefore more information about the data.

7 Conclusions

We consider the problem of union of low-rank subspaces completion. We analyze the man-
ifold structure corresponding to the given rank constraints to characterize the deterministic
conditions on the sampling pattern for finite completability of a matrix that represents the
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union of several subspaces satisfying the mentioned rank constraints. In order to obtain
the deterministic conditions on the sampling pattern, we characterizes the algebraic inde-
pendence of a set of polynomials defined based on the sampling pattern, which is closely
related to finite completion. Moreover, assuming that the entries of the data are sampled
independently with probability p and using the mentioned deterministic analysis, we pro-
pose a combinatorial method to derive a lower bound on the sampling probability p, or
equivalently, the number of sampled entries that guarantees finite completability with high
probability. Furthermore, using the proposed analysis for finite completability, we charac-
terize deterministic and probabilistic conditions on the sampling pattern and the sampling
probability that ensure there exists only one completion for the sampled data.
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