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1. Introduction

In many practical applications, we need to analyze a collection
of datasets like images, text documents, etc. To model such data
structures, we can consider a matrix U € Rm>*"2 whose columns
are chosen from one of K unknown subspaces. The problem of sub-
space clustering aims to cluster the columns of this matrix to K
groups such that the columns in each group belong to the same
subspace. Subspace clustering is an important pre-processing step
of data analysis when the data lies in a union of subspaces and
is well studied [10,11,13]. The problem is much more challenging
with missing data, i.e., when the matrix U is incomplete, which is
an important problem in subspace learning for real-world scenar-
ios and is studied broadly [8,15,17-19,21]. Subspace clustering can
be also used as a prepossessing step for data completion problem.
Retrieving the missing entries, i.e., data completion, has many ap-
plications and there are various works in this area [2,5,6,14]. Sub-
space clustering has many applications in various fields including
image processing [12], recommender systems [20], etc.

In [18], it is assumed that all the K unknown subspaces have
the same dimension and are chosen independently from the Grass-
mannian manifold Gr(n, r) (set of all -dimensional subspaces of
the nq-dimensional space). It is shown that if the number of sam-
ples per column is above a threshold, and assuming that there ex-
ists an r-dimensional subspace that fits enough number of columns
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of the sampled matrix, then it is ensured that this subspace is one
of the K unknown subspaces and all the covered columns belong to
that subspace. The key condition for this to hold is that the num-
ber of columns of U drawn from each of the K subspaces should be
more than (r+1)(n; —r+1) = O(rny). This bound is interesting
since before it was only known to be necessary when each column
includes r + 1 sampled entries [9]. The similar algebraic geometry
approaches as in [18] have been studied in [1,3,4,7] for data com-
pletion and sensing problem.

In this paper, we consider the general scenario that the K
unknown subspaces are chosen (not necessarily independently)
from K different Grassmannian manifolds with different dimen-
sions Gr(nq,rq),..., Gr(ny, rg). Our main result states that if at
least K(rmax + 1) (ny — rmax + 1) columns are drawn from each sub-
space, where rmax = maxX;_,.k T, then the columns can be cor-
rectly clustered with high probability. The key approach in our
analysis is to cluster the subspaces from the lowest dimension to
the highest.

2. Background

Given positive integers ry,15,...,7x, we consider K different
subspaces Sj,...,Sk chosen from the Grassmannian manifolds
Gr(nq, 1), k=1, ..., K. Let Z;, be a set of ¢, columns chosen gener-
ically from the mentioned r,-dimensional subspace (drawn inde-
pendently according to a continuous distribution with respect to
the Lebesgue measure on the mentioned r,-dimensional subspace),
k=1,...,K. Assume that U € R"*™ is a matrix such that its n, =
Ef:1ck columns are the union of all columns in {Z;,k=1,...,K}.
However, these n, columns are blended so that we do not know
the source subspace of each column.
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We assume that U is randomly sampled, i.e., each entry of U
is independently sampled with probability 0 <p <1. Let £ be an
ny x np binary sampling matrix such that (i, j) =1 if U(i, j) is
sampled and (i, j) = 0 otherwise. Let Ug, denote the incomplete
matrix consisting of only the sampled entries of U. We are inter-
ested in clustering the columns of the sampled matrix Ug into K
groups such that the columns in each group belong to one sub-
space with high probability. The number of columns in Z, i.e., ¢
and the sampling probability p or the number of sampled entries
in Ug, are key parameters in this problem.

In [18], the above subspace clustering problem with missing
data is studied for the special case that r; =1, =--- =1 =1 and
the subspaces Sji,...,Sk are independent. Here, we restate the
main result of Pimentel-Alarcon and Nowak [18] (i.e., Theorems
1 and 3 in [18]) using our notations in Theorem 2.2, which pro-
vides a lower bound on c;'s and the number of samples per col-
umn (which can be translated in terms of p) such that the columns
of Ug chosen from the same subspace, can be correctly clustered
with high probability. First we restate Theorem 3 in [16] that char-
acterizes a condition on unique completability of Ug, i.e., a condi-
tion that ensures there exists a unique way to complete Ug while
satisfying the rank constraint, as the following theorem. This theo-
rem is used to show the main result in [18], i.e.,, Theorem 2.2 be-
low, as well as our new result, i.e., Theorem 3.4 in Section 3.

Theorem 2.1 ([16]). Assume that a generic rank-r matrix U € R"1*™
with r < %1 and n, > (r+1)(ny —r+1) is randomly sampled such
that each column of Ug, includes at least | sampled entries where

I > max{lZ(log <n1(r€+1)> +l>,2r} (1)

for some 0<e <1. Then, the sampled matrix Ug is uniquely com-
pletable with probability at least 1 — €.

Definition 2.1. Consider a subspace S € Gr(nq,r) and a sampled
column ug € RM*1. We say that S fits ug or ug can be covered
(generated) by S if there exists at least one completion of ug that
belongs to S.

Theorem 2.2 ([18]). Assume that the subspaces Si,...,Sk are in-
dependently chosen from Gr(nqy, r), r=ri=ry=---=1g < %‘ and
> (T+1)(ny—r+1), k=1,...,K. Moreover suppose that each
column of Ug, includes at least | sampled entries such that (1) holds.
Let S denote an r-dimensional subspace that fits exactly ¢ columns
of Ug (ie, C is the maximum number of columns of Ug that can
be covered by S) and assume that ¢ > (r + 1)(ny —r + 1). Then, with
probability at least 1 —Ke, the following statement holds: All the
¢ columns of Ug, covered by S belong to one source Ty, for some
1<ko <K and the rest of the columns of Ug do not belong to T
and moreover, ¢ = ¢, and S= Sk,

3. Main results

We are interested in generalizing Theorem 2.2 to the general
scenario when ry,...,r¢ are not necessarily equal and also, the
subspaces Sy, ..., Sk are not chosen independently.

We start by stating some basic properties as a consequence
of the genericity assumption. Consider a matrix X € R"1*"2 whose
columns are drawn generically from a subspace that belongs to
Gr(nq, 1), where ny>r and n, >r. Then, with probability one, X
is a rank-r matrix. More specifically, with probability one, any r
columns (or any r rows) of X are linearly independent; and any
rx r submatrix of X is full-rank. Further, given two different sub-
spaces S; € S, and a column u that is drawn generically from S,,
we have u ¢ S; with probability one.

The following three lemmas are instrumental to the proof of
our clustering result, i.e., Theorem 3.4.

Lemma 3.1. Let X, be a rank-(r — 1) matrix and Xy (i, j) = x be an
entry of this matrix. Assume that changing the value of entry Xq(i, j)
from x to y results in X/, which is a rank-r matrix. Then, there are
infinitely many scalars z such that changing the value of entry Xq(i, j)
from x to z results in a rank-r matrix.

Proof. Since X; is a rank-(r — 1) matrix, the determinant of any
rx r submatrix of X is zero. Moreover, Xj is a rank-r matrix and
hence, there exists an r x r submatrix X, of Xg such that chang-
ing the value of the corresponding entry of X, from x to y results
in a non-zero determinant. Since changing the order of the rows
and columns does not affect the values of rank and determinant,
we can assume that X;(1,1) = Xqy(i, j) = x. Hence, det(X;) = 0 and
changing the value of X,(1, 1) from x to y makes the determinant
of X, non-zero. On the other hand, we have

0 = det(X;) =X, (1, 1)det(X;(2:1,2:1))
— 2L, (-1)X:(1,i)detX, (2 : 1, {1, ..., T\ {i})), (2)

or equivalently,

xdet(X;(2:1,2:1))
= B, (DX (1, i)detXr (2 : 1, {1, ..., T\ {i}). (3)
Moreover, we have
ydet(X;(2:1,2:1))
# T, (-1)X(1,i)det(X, (2 : 1, {1, ..., rI\{i})). (4)

Note that if det(X,(2:r,2:1r)) =0, then both sides of (3) are
zero; and hence both sides of (4) are zero; which contradicts the
inequality in (4). Hence, det(X(2: r, 2: 1))#£0, then (3) and (4) can
be written as

T (-D)IX (1, Ddet(Xp (2 1 {1, .. rh\(i}))
detX;(2:1,2:1)) ’

Therefore, changing the value of X,(1, 1) (i.e., Xy(i, j)) from x to
any z#x leads X, to an r x r full-rank matrix. As a result, there are
infinitely many scalars z such that changing the value of Xy(i, j)
from x to z results in the existence of a full-rank r x r submatrix,
i.e,, results in a matrix with rank at least r.

On the other hand, changing the value of only one entry of a
matrix can affect the rank of the matrix by at most one, i.e., the
rank can decrease or increase by one or stay the same. This is be-
cause changing one single entry of the matrix affects only one col-
umn of the matrix. Hence, the rank cannot decrease or increase by
more than one. Therefore, there are infinitely many scalars z such
that changing the value of Xy(i, j) from x to z results in a rank-r
matrix. O

(5)

y#x=

Lemma 3.2. Consider a sampled matrix X, such that there exist at
least one rank-(r — 1) and one rank-r completion for some r > 1. Then,
there exists infinitely many rank-r completions of Xg,.

Proof. Note that changing the value of only one entry of a ma-
trix results in changing the rank of the matrix by at most one.
Let X; and X, denote the rank-(r — 1) and rank-r completions, re-
spectively. X; and X, are the same over the sampled entries, i.e.,
(X1)@ = (X3)q, and their difference is only over some of the non-
sampled entries. We start changing the value of non-sampled en-
tries of X; one by one to the value of the corresponding non-
sampled entries of X;, which will eventually result in X, if we con-
tinue this for all non-sampled entries. While performing this sim-
ple process, we simply increase the rank from r—1 to r at some
step by changing a non-sampled entry. This is because at the be-
ginning the rank of the matrix is r — 1 and at the end the rank is r
and also at each step the rank changes by at most one.

Hence, there exists a rank-(r — 1) completion X3 of the sampled
matrix Xg such that changing the value of some entry X;(i, j) from
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v to V' increases the rank to r for some scalars v and v'. The rest
of the proof is straight-forward due to Lemma 3.1. O

Lemma 3.3. Consider a sampled matrix Xg, such that there exist at
least one rank-(r — i) and one rank-r completion for some i <. Then,
there exist infinitely many rank-r completions of Xg,.

Proof. Using the same process described in the proof of
Lemma 3.2, i.e., changing the values of the non-sampled entries
of the rank-(r — i) completion to reach to the rank-r completion, it
is trivial to see that there exists at least one rank-(r — 1) comple-
tion as well. Hence, according to Lemma 3.2, there exists infinitely
many rank-r completions of Xq,. O

The following theorem extends Theorem 2.2 to the general case
and provides the conditions to correctly cluster the columns cho-
sen from one of the subspaces that is of the lowest dimension,
with high probability.

Theorem 3.4. Without loss of generality, assume that rq <r, <

-+ <T1g and denote Tmax = Maxq_p.x T, =Tg. Assume further that
Tmax < g+ Ck = K(rmax + 1) (nq — fmax+1), k=1,....K, and also,
each column of Ug, includes at least | sampled entries such that I >
max{lZ(log(w) +1), 2rmax}. Let S denote an ry-dimensional
subspace that fits exactly ¢ columns of Ug (ie., C is the maximum
number of columns of Ug, that can be covered by S) and assume that
€ > K(rmax + 1)(ny — rmax + 1). Then, with probability at least 1 — €
the following statement holds: All the ¢ columns of Ug, covered by S
belong to one source Iy for some 1<ko <K that ry =1y (if 1y <13
then kg = 1 and otherwise there are more options for kg) and the rest
of the columns of Ug do not belong to Z,,, and moreover, ¢ = ¢, and

§ =5,

Proof. According to pigeonhole principle, at least (%] > (Fmax +
1)(nq —rmax + 1) columns of the ¢ covered columns by § are
chosen from one source I, . Note that due to the assump-
tions rmax > 1y, and rmax < 2 we have (max + 1) (N — max + 1) >
(T + D =1, +1) and hence, there are at least (g, + D (g —
r, +1) columns covered by S that are chosen from one source
Ty,- Then, according to Theorem 2.1, there exists a unique rank-ry
completion for the mentioned (r, + 1)(ny — 1, + 1) columns with
probability at least 1 — €. In the rest of the proof, we assume the
mentioned unique completability holds and show the mentioned
statement holds with probability one.

First, we show that r, = ry. By contradiction, assume otherwise
that ry <1y, . Recall that S is an r;-dimensional subspace that fits
the mentioned (T + D1 =1y + 1) columns and hence, there
exists a rank-r; completion of these columns. Hence, according
to Lemma 3.3, there exist infinitely many rank-r,<0 completions of
these columns, which contradicts the earlier uniqueness assump-
tion. As a result, we have r, = rq with probability one.

Therefore, again according to the uniqueness of rank—rko com-
pletion assumption, and due to the fact that both subspaces S and
Sy, are ri-dimensional (since r, =) and they both fit the men-
tioned (ry, +1)(ny — 1, +1) columns, we simply conclude S=
Sk, Consequently, S covers all C, columns of Ug that belong to
TIy,- In order to complete the proof, it suffices to show that ¢ = ¢y,
ie, S does not cover any other column of Ug that belongs to other
sources I, for k# kg, with probability one.

Note that any column chosen from sources other than I does
not belong to Sy, with probability one (this statement is not valid
if r, # min{ry, rp, ..., ¢} as will be discussed in Remark 3.1). This
is because none of the other subspaces can be a subspace of
Sk S Ty =11 = min{ry, 5, ..., rx}. By contradiction, assume that
a column ug of Ug is chosen from I, (for some kq#ko) and

it can be covered by S. Recall that [ > max{]Z(log(w) +

1), 2rmax} holds and therefore, ug includes at least 2rmax > 2r;
sampled entries. Now, consider r; random columns of Ug that
belong to I, and denote it by Up,. Also, let the unique comple-
tion of Uy, be Uy. Then, define Uy, = [Ug|ug] € R *("1+D (where
U, denotes the corresponding r; columns of the unique comple-
tion that is not given to us and ug is an incomplete column;
so only the last column of Uy, is incomplete) and consider an
(r1 +1) x (ry +1) submatrix of Uy, that includes r; +1 of the
sampled entries of ug and denote it by U;. Since r;, >, = and
Sk, # Sk, (because kq#ko), we conclude that rank(U;) =ry +1
and hence, rank(U}) =r; +1 with probability one, where U; de-
notes the original (before sampling) matrix corresponding to Uy,.
Hence, for any completion of Uy, there exists a “fixed” and full-
rank (rq +1) x (r; + 1) submatrix. Therefore, S cannot fit ug with
probability one (since § is an r;-dimensional subspace) and the
proof is complete due to this contradiction. O

Remark 3.1. Note that the above proof is valid since r,, =11 =
min{ry,rp, ..., ¢}, as mentioned in the last part of the proof.
Moreover, we can show that if r # min{ry, 5, ..., 1}, the state-
ment of the theorem does not hold. For example, consider the sce-
nario when r; <, <... <rg and Sy is a subspace of Sy 1 (this
can happen as the subspaces are not necessarily independent), k =
1,...,K — 1. Now, assume that S in the statement of the above the-
orem is r,-dimensional instead of r;-dimensional. Then if § = S,
S also fits the columns drawn from S; (recall that S; is a subspace
of S;) and hence, we cannot distinguish the columns drawn from
S1 and Sy.

Remark 3.2. Theorem 3.4 requires K times more columns from
each unknown subspace in comparison with Theorem 2.2 to iden-
tify the columns of one subspace. However, Theorem 3.4 does
not require all ranks to be the same or the independent sub-
space assumption. Moreover, the probability of clustering failure in
Theorem 3.4 is K times less than that in Theorem 2.2.

After identifying all columns chosen from an r;-dimensional
subspace correctly, we can exclude the identified columns from the
sampled matrix. Then, the problem reduces to the similar problem
with K — 1 subspaces of ranks r, <--- <rg and a smaller number
of columns for the sampled matrix. Hence, the same analysis is ap-
plicable again.

Specifically, let S, ..., S (for some 1<K <K) denote differ-
ent ri—, ..., rp—dimensional subspaces that fit exactly ¢y, ..., g
columns of Ug (ie., ¢ is the maximum number of columns of
Ug that can be covered by Sy), respectively, and assume that ¢ >
K(rmax +1)(ny —rmax + 1), k=1,...,K’. Moreover, assume that
there exist K(rmax + 1)(1; — rmax + 1) columns covered by S, that
cannot be covered by any of Sy,..., 8,1, k=1,....K.

Then, according to Theorem 3.4, we have §; = S, and ¢1 = ¢
with probability at least 1 — €. Moreover, we can exclude all the ¢,
columns from the sampled matrix and the identified subspace S, .
Then, the new sampled matrix is ny x (1 — ¢, ) and the columns
of this matrix are chosen from the K —1 remaining subspaces.
Then, similarly, we apply Theorem 3.4 for the r,-dimensional sub-
space S, that has the lowest dimension now (because one ry-
dimensional subspace has been excluded).

Now, assuming that the clustering of the ¢, columns in the
previous step was correct, we can cluster the columns of the next
subspace correctly with probability at least 1 —e€. This can be
done because due to the assumption, after excluding the columns
of the first cluster, there exist K(rmax +1)(n{ — rmax + 1) columns
covered by S, that cannot be covered by S;. Hence, we apply
Theorem 3.4 again and therefore, with probability at least (1 — €)?2
the following statement holds: All the ¢, columns of Ug covered
by S, belong to one source Z,, such that r =1, and the rest of
the columns of Ug do not belong to Z;; and moreover, ¢, = ¢, and
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Fig. 1. The required sampling probability for correctly clustering with probability at
least 0.99, where n; = 1000 and ¢; = ¢; = ¢3 = 600000.

Sk = Sy, k=1, 2. By simply repeating this procedure, we conclude
the following corollary.

Corollary 3.5. Without loss of generality, assume that r;{ <ry <

- <1k and denote Tmax = MaXq gk 'k = Ik. Assume further that
Tmax < g+ G = K(rmax + D (g —rmax + 1), k=1,....K, and also,
each column of Ug includes at least | sampled entries such that
I~ max{lZ(log(w) +1),2rmax}. Let Sq,...,Sg (for some
1<K <K) denote different rq, ..., ry dimensional subspaces that fits
exactly Cq,...,C columns of Ug (ie., Cj is the maximum number
of columns of Ug that can be covered by S), respectively, and as-
sume that €, > K(rmax + 1)(ny —rmax + 1), k=1,...,K’. Moreover,
assume that there exist K(rmax + 1)(n; — rmax + 1) columns covered
by Sy that cannot be covered by any of Sy,...,85¢_1, k=1,..., K.
Then, with probability at least (1— €)X the following statement
holds: All the ¢, columns of Ug covered by S, belong to one source
Ty such that 1, =1}, and the rest of the columns of Ug, do not belong
to Z,; and moreover, ¢, = ¢y and Sy =Sy, k=1,.... K.

We would like to emphaszie the advantage of our results when
the number of sampled entries are as low as O(nqrmax) per col-
umn. Please refer to [18] to see the discussion on how tight our
information-theoretic bounds on the number of samples are in
comparison with the theoretical bounds in the existing works on
subspace clustering with missing data. Moreover, our results in this
paper not only improved the bound on the number of sampled en-
tries in [18], but also removed the strong restrictions such as inde-
pendency of the subspaces or subspaces being of the same size.

4. Numerical experiments

Assume that n; = 1000 and c¢; = ¢y = c3 = 600000. We con-
struct K = 3 matrices of rank r; by multiplying a random n; x r;
matrix by a random r; x ¢; matrix. We assume each entry is sam-
pled uniformly and independently with some sampling probabil-
ity p. Since in our probabilistic analysis, only the maximum rank
max Matters (our bounds and analyses are based on the maxi-
mum rank), the x-axis in Fig. 1 represents the maximum rank.
Also, the y-axis represents the required sampling probability. Then,
using Corollary 3.5, the average number of required samples to
guarantee the correct clustering with probability at least 1 —¢€ is
((max{12(log( "LV ) 1) 2rinay})

n
Hence, in Filg. 1, we have provided several curves to represent
the value of sampling probability and certainty value using our
analysis. Each curve represents the probability of sampling (for dif-
ferent rank value) such that according to Corollary 3.5, we can
guarantee the correct clustering with probability at least 1 — €, for
different values of €.

Note that our analysis is more efficient for relatively low-rank
scenarios. This is because as long as 2rmax < 12(10g(w) +
1), we basically provide a very tight bound on the number of sam-
ples to for correctly clustering with probability 1 — €. However, as
we need 2rmax samples as well in Corollary 3.5 (since we used
Theorem 2.1), we can observe that by increasing the value of rank
to a very large number (high-rank scenarios) the bound can be
slightly weak and e disappears in the curves as it means we can
guarantee the correct clustering with probability almost 1.

5. Conclusions

We have developed a generalization to the low-rank subspace
clustering conditions in [18]. In particular, given an incomplete ma-
trix whose columns are drawn from K independent subspaces with
the same dimension, a lower bound on the number of columns
from each subspace is given in [18], such that, with high prob-
ability, the columns are clustered correctly. In order to treat the
general case that the subspaces are not independently chosen, and
their dimensions can be different, we have provided a new analy-
sis that leads to the lower bound on the number of columns from
each subspace, for the general case, which is K times that in [18];
however, the probability of clustering failure is reduced by a factor
of K compared with that in [18]. The key approach in our analysis
is to focus on the subspace of the lowest dimension.
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