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different dimensions, the subspace clustering problem is to cluster the columns that belong to the same 

subspace. We derive a lower bound on the number of columns from each subspace such that the columns 

can be clustered correctly with high probability. The analysis focuses on the subspace with the lowest 

dimension and is a generalization of the corresponding results in [18] that assumes the subspaces are 

independent and with the same dimension. 
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. Introduction 

In many practical applications, we need to analyze a collection

f datasets like images, text documents, etc. To model such data

tructures, we can consider a matrix U ∈ R 

n 1 ×n 2 whose columns

re chosen from one of K unknown subspaces. The problem of sub-

pace clustering aims to cluster the columns of this matrix to K

roups such that the columns in each group belong to the same

ubspace. Subspace clustering is an important pre-processing step

f data analysis when the data lies in a union of subspaces and

s well studied [10,11,13] . The problem is much more challenging

ith missing data, i.e., when the matrix U is incomplete, which is

n important problem in subspace learning for real-world scenar-

os and is studied broadly [8,15,17–19,21] . Subspace clustering can

e also used as a prepossessing step for data completion problem.

etrieving the missing entries, i.e., data completion, has many ap-

lications and there are various works in this area [2,5,6,14] . Sub-

pace clustering has many applications in various fields including

mage processing [12] , recommender systems [20] , etc. 

In [18] , it is assumed that all the K unknown subspaces have

he same dimension and are chosen independently from the Grass-

annian manifold Gr( n 1 , r ) (set of all r -dimensional subspaces of

he n 1 -dimensional space). It is shown that if the number of sam-

les per column is above a threshold, and assuming that there ex-

sts an r -dimensional subspace that fits enough number of columns
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f the sampled matrix, then it is ensured that this subspace is one

f the K unknown subspaces and all the covered columns belong to

hat subspace. The key condition for this to hold is that the num-

er of columns of U drawn from each of the K subspaces should be

ore than (r + 1)(n 1 − r + 1) = O (r n 1 ) . This bound is interesting

ince before it was only known to be necessary when each column

ncludes r + 1 sampled entries [9] . The similar algebraic geometry

pproaches as in [18] have been studied in [1,3,4,7] for data com-

letion and sensing problem. 

In this paper, we consider the general scenario that the K

nknown subspaces are chosen (not necessarily independently)

rom K different Grassmannian manifolds with different dimen-

ions Gr (n 1 , r 1 ) , . . . , Gr( n 1 , r K ). Our main result states that if at

east K(r max + 1)(n 1 − r max + 1) columns are drawn from each sub-

pace, where r max = max 1 ≤k ≤K r k , then the columns can be cor-

ectly clustered with high probability. The key approach in our

nalysis is to cluster the subspaces from the lowest dimension to

he highest. 

. Background 

Given positive integers r 1 , r 2 , . . . , r K , we consider K different

ubspaces S 1 , . . . , S K chosen from the Grassmannian manifolds

r( n 1 , r k ), k = 1 , . . . , K. Let I k be a set of c k columns chosen gener-

cally from the mentioned r k -dimensional subspace (drawn inde-

endently according to a continuous distribution with respect to

he Lebesgue measure on the mentioned r k -dimensional subspace),

 = 1 , . . . , K. Assume that U ∈ R 

n 1 ×n 2 is a matrix such that its n 2 =
K 
k =1 

c k columns are the union of all columns in {I k , k = 1 , . . . , K} .
owever, these n 2 columns are blended so that we do not know

he source subspace of each column. 
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We assume that U is randomly sampled, i.e., each entry of U

is independently sampled with probability 0 < p < 1. Let � be an

n 1 × n 2 binary sampling matrix such that �(i, j) = 1 if U ( i, j ) is

sampled and �(i, j) = 0 otherwise. Let U � denote the incomplete

matrix consisting of only the sampled entries of U . We are inter-

ested in clustering the columns of the sampled matrix U � into K

groups such that the columns in each group belong to one sub-

space with high probability. The number of columns in I k , i.e., c k 
and the sampling probability p or the number of sampled entries

in U � are key parameters in this problem. 

In [18] , the above subspace clustering problem with missing

data is studied for the special case that r 1 = r 2 = · · · = r K = r and

the subspaces S 1 , . . . , S K are independent. Here, we restate the

main result of Pimentel-Alarcón and Nowak [18] (i.e., Theorems

1 and 3 in [18] ) using our notations in Theorem 2.2 , which pro-

vides a lower bound on c k ’s and the number of samples per col-

umn (which can be translated in terms of p ) such that the columns

of U � chosen from the same subspace, can be correctly clustered

with high probability. First we restate Theorem 3 in [16] that char-

acterizes a condition on unique completability of U �, i.e., a condi-

tion that ensures there exists a unique way to complete U � while

satisfying the rank constraint, as the following theorem. This theo-

rem is used to show the main result in [18] , i.e., Theorem 2.2 be-

low, as well as our new result, i.e., Theorem 3.4 in Section 3 . 

Theorem 2.1 ( [16] ) . Assume that a generic rank-r matrix U ∈ R 

n 1 ×n 2 

with r ≤ n 1 
6 and n 2 ≥ (r + 1)(n 1 − r + 1) is randomly sampled such

that each column of U � includes at least l sampled entries where 

l > max 

{
12 

(
log 

(
n 1 (r + 1) 

ε

)
+ 1 

)
, 2 r 

}
(1)

for some 0 < ε < 1 . Then, the sampled matrix U � is uniquely com-

pletable with probability at least 1 − ε. 

Definition 2.1. Consider a subspace S ∈ Gr (n 1 , r) and a sampled

column u � ∈ R 

n 1 ×1 . We say that S fits u � or u � can be covered

(generated) by S if there exists at least one completion of u � that

belongs to S . 

Theorem 2.2 ( [18] ) . Assume that the subspaces S 1 , . . . , S K are in-

dependently chosen from Gr( n 1 , r ), r = r 1 = r 2 = · · · = r K ≤ n 1 
6 and

c k ≥ (r + 1)(n 1 − r + 1) , k = 1 , . . . , K. Moreover suppose that each

column of U � includes at least l sampled entries such that (1) holds.

Let S̄ denote an r-dimensional subspace that fits exactly c̄ columns

of U � (i.e., c̄ is the maximum number of columns of U � that can

be covered by S̄ ) and assume that c̄ ≥ (r + 1)(n 1 − r + 1) . Then, with

probability at least 1 − Kε, the following statement holds: All the

c̄ columns of U � covered by S̄ belong to one source I k 0 for some

1 ≤ k 0 ≤ K and the rest of the columns of U � do not belong to I k 0 
and moreover, c̄ = c k 0 and S̄ = S k 0 . 

3. Main results 

We are interested in generalizing Theorem 2.2 to the general

scenario when r 1 , . . . , r K are not necessarily equal and also, the

subspaces S 1 , . . . , S K are not chosen independently. 

We start by stating some basic properties as a consequence

of the genericity assumption. Consider a matrix X ∈ R 

n 1 ×n 2 whose

columns are drawn generically from a subspace that belongs to

Gr( n 1 , r ), where n 1 ≥ r and n 2 ≥ r . Then, with probability one, X

is a rank- r matrix. More specifically, with probability one, any r

columns (or any r rows) of X are linearly independent; and any

r × r submatrix of X is full-rank. Further, given two different sub-

spaces S 1 ⊂ S 2 and a column u that is drawn generically from S 2 ,
we have u / ∈ S 1 with probability one. 

The following three lemmas are instrumental to the proof of

our clustering result, i.e., Theorem 3.4 . 
emma 3.1. Let X 0 be a rank- (r − 1) matrix and X 0 (i, j) = x be an

ntry of this matrix. Assume that changing the value of entry X 0 ( i, j )

rom x to y results in X 

′ 
0 
, which is a rank-r matrix. Then, there are

nfinitely many scalars z such that changing the value of entry X 0 ( i, j )

rom x to z results in a rank-r matrix. 

roof. Since X 0 is a rank- (r − 1) matrix, the determinant of any

 × r submatrix of X 0 is zero. Moreover, X 

′ 
0 is a rank- r matrix and

ence, there exists an r × r submatrix X r of X 0 such that chang-

ng the value of the corresponding entry of X r from x to y results

n a non-zero determinant. Since changing the order of the rows

nd columns does not affect the values of rank and determinant,

e can assume that X r (1 , 1) = X 0 (i, j) = x . Hence, det (X r ) = 0 and

hanging the value of X r (1, 1) from x to y makes the determinant

f X r non-zero. On the other hand, we have 

 = det (X r ) = X r (1 , 1) det (X r (2 : r, 2 : r)) 

− �r 
i =2 (−1) i X r (1 , i ) det (X r (2 : r, { 1 , . . . , r}\{ i } )) , (2)

r equivalently, 

x det (X r (2 : r, 2 : r)) 

= �r 
i =2 (−1) i X r (1 , i ) det (X r (2 : r, { 1 , . . . , r}\{ i } )) . (3)

oreover, we have 

y det (X r (2 : r, 2 : r)) 

� = �r 
i =2 (−1) i X r (1 , i ) det (X r (2 : r, { 1 , . . . , r}\{ i } )) . (4)

Note that if det (X r (2 : r, 2 : r)) = 0 , then both sides of (3) are

ero; and hence both sides of (4) are zero; which contradicts the

nequality in (4) . Hence, det( X r (2: r , 2: r )) � = 0, then (3) and (4) can

e written as 

 � = x = 

�r 
i =2 

(−1) i X r (1 , i ) det (X r (2 : r, { 1 , . . . , r}\{ i } )) 
det (X r (2 : r, 2 : r)) 

. (5)

herefore, changing the value of X r (1, 1) (i.e., X 0 ( i, j )) from x to

ny z � = x leads X r to an r × r full-rank matrix. As a result, there are

nfinitely many scalars z such that changing the value of X 0 ( i, j )

rom x to z results in the existence of a full-rank r × r submatrix,

.e., results in a matrix with rank at least r . 

On the other hand, changing the value of only one entry of a

atrix can affect the rank of the matrix by at most one, i.e., the

ank can decrease or increase by one or stay the same. This is be-

ause changing one single entry of the matrix affects only one col-

mn of the matrix. Hence, the rank cannot decrease or increase by

ore than one. Therefore, there are infinitely many scalars z such

hat changing the value of X 0 ( i, j ) from x to z results in a rank- r

atrix. �

emma 3.2. Consider a sampled matrix X � such that there exist at

east one rank- (r − 1) and one rank-r completion for some r > 1 . Then,

here exists infinitely many rank-r completions of X �. 

roof. Note that changing the value of only one entry of a ma-

rix results in changing the rank of the matrix by at most one.

et X 1 and X 2 denote the rank- (r − 1) and rank- r completions, re-

pectively. X 1 and X 2 are the same over the sampled entries, i.e.,

(X 1 ) � = (X 2 ) �, and their difference is only over some of the non-

ampled entries. We start changing the value of non-sampled en-

ries of X 1 one by one to the value of the corresponding non-

ampled entries of X 2 , which will eventually result in X 2 if we con-

inue this for all non-sampled entries. While performing this sim-

le process, we simply increase the rank from r − 1 to r at some

tep by changing a non-sampled entry. This is because at the be-

inning the rank of the matrix is r − 1 and at the end the rank is r

nd also at each step the rank changes by at most one. 

Hence, there exists a rank- (r − 1) completion X 3 of the sampled

atrix X such that changing the value of some entry X 3 ( i, j ) from
�
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 to v ′ increases the rank to r for some scalars v and v ′ . The rest

f the proof is straight-forward due to Lemma 3.1 . �

emma 3.3. Consider a sampled matrix X � such that there exist at

east one rank- (r − i ) and one rank-r completion for some i < r. Then,

here exist infinitely many rank-r completions of X �. 

roof. Using the same process described in the proof of

emma 3.2 , i.e., changing the values of the non-sampled entries

f the rank- (r − i ) completion to reach to the rank- r completion, it

s trivial to see that there exists at least one rank- (r − 1) comple-

ion as well. Hence, according to Lemma 3.2 , there exists infinitely

any rank- r completions of X �. �

The following theorem extends Theorem 2.2 to the general case

nd provides the conditions to correctly cluster the columns cho-

en from one of the subspaces that is of the lowest dimension,

ith high probability. 

heorem 3.4. Without loss of generality, assume that r 1 ≤ r 2 ≤
· · ≤ r K and denote r max = max 1 ≤k ≤K r k = r K . Assume further that

 max ≤ n 1 
6 , c k ≥ K(r max + 1)(n 1 − r max + 1) , k = 1 , . . . , K, and also,

ach column of U � includes at least l sampled entries such that l >

ax { 12( log ( 
n 1 (r max +1) 

ε ) + 1) , 2 r max } . Let S̄ denote an r 1 -dimensional

ubspace that fits exactly c̄ columns of U � (i.e., c̄ is the maximum

umber of columns of U � that can be covered by S̄ ) and assume that

¯ ≥ K(r max + 1)(n 1 − r max + 1) . Then, with probability at least 1 − ε
he following statement holds: All the c̄ columns of U � covered by S̄ 
elong to one source I k 0 for some 1 ≤ k 0 ≤ K that r k 0 = r 1 (if r 1 < r 2 
hen k 0 = 1 and otherwise there are more options for k 0 ) and the rest

f the columns of U � do not belong to I k 0 and moreover, c̄ = c k 0 and

¯
 = S k 0 . 

roof. According to pigeonhole principle, at least 	 c̄ K 
 ≥ (r max +
)(n 1 − r max + 1) columns of the c̄ covered columns by S̄ are

hosen from one source I k 0 . Note that due to the assump-

ions r max ≥ r k 0 and r max ≤ n 1 
6 we have (r max + 1)(n 1 − r max + 1) ≥

(r k 0 + 1)(n 1 − r k 0 + 1) and hence, there are at least (r k 0 + 1)(n 1 −
 k 0 

+ 1) columns covered by S̄ that are chosen from one source

 k 0 
. Then, according to Theorem 2.1 , there exists a unique rank- r k 0 

ompletion for the mentioned (r k 0 + 1)(n 1 − r k 0 + 1) columns with

robability at least 1 − ε. In the rest of the proof, we assume the

entioned unique completability holds and show the mentioned

tatement holds with probability one. 

First, we show that r k 0 = r 1 . By contradiction, assume otherwise

hat r 1 < r k 0 . Recall that S̄ is an r 1 -dimensional subspace that fits

he mentioned (r k 0 + 1)(n 1 − r k 0 + 1) columns and hence, there

xists a rank- r 1 completion of these columns. Hence, according

o Lemma 3.3 , there exist infinitely many rank- r k 0 completions of

hese columns, which contradicts the earlier uniqueness assump-

ion. As a result, we have r k 0 = r 1 with probability one. 

Therefore, again according to the uniqueness of rank- r k 0 com-

letion assumption, and due to the fact that both subspaces S̄ and

 k 0 
are r 1 -dimensional (since r k 0 = r 1 ) and they both fit the men-

ioned (r k 0 + 1)(n 1 − r k 0 + 1) columns, we simply conclude S̄ =
 k 0 

. Consequently, S̄ covers all c k 0 columns of U � that belong to

 k 0 
. In order to complete the proof, it suffices to show that c̄ = c k 0 ,

.e., S̄ does not cover any other column of U � that belongs to other

ources I k for k � = k 0 , with probability one. 

Note that any column chosen from sources other than I k 0 does

ot belong to S k 0 with probability one (this statement is not valid

f r k 0 � = min { r 1 , r 2 , . . . , r K } as will be discussed in Remark 3.1 ). This

s because none of the other subspaces can be a subspace of

 k 0 
as r k 0 = r 1 = min { r 1 , r 2 , . . . , r K } . By contradiction, assume that

 column u � of U � is chosen from I k 1 (for some k 1 � = k 0 ) and

t can be covered by S̄ . Recall that l > max { 12( log ( 
n 1 (r max +1) 

) +
ε
) , 2 r max } holds and therefore, u � includes at least 2 r max ≥ 2 r 1 
ampled entries. Now, consider r 1 random columns of U � that

elong to I k 0 and denote it by U 0 �
. Also, let the unique comple-

ion of U 0 �
be U 0 . Then, define U 1 �

= [ U 0 | u �] ∈ R 

n 1 ×(r 1 +1) (where

 0 denotes the corresponding r 1 columns of the unique comple-

ion that is not given to us and u � is an incomplete column;

o only the last column of U 1 �
is incomplete) and consider an

(r 1 + 1) × (r 1 + 1) submatrix of U 1 �
that includes r 1 + 1 of the

ampled entries of u � and denote it by U 

′ 
1 
. Since r k 1 ≥ r k 0 = r 1 and

 k 1 
� = S k 0 (because k 1 � = k 0 ), we conclude that rank (U 1 ) = r 1 + 1

nd hence, rank (U 

′ 
1 ) = r 1 + 1 with probability one, where U 1 de-

otes the original (before sampling) matrix corresponding to U 1 �
.

ence, for any completion of U 1 �
, there exists a “fixed” and full-

ank (r 1 + 1) × (r 1 + 1) submatrix. Therefore, S̄ cannot fit u � with

robability one (since S̄ is an r 1 -dimensional subspace) and the

roof is complete due to this contradiction. �

emark 3.1. Note that the above proof is valid since r k 0 = r 1 =
in { r 1 , r 2 , . . . , r K } , as mentioned in the last part of the proof.

oreover, we can show that if r k 0 � = min { r 1 , r 2 , . . . , r K } , the state-

ent of the theorem does not hold. For example, consider the sce-

ario when r 1 < r 2 < . . . < r K and S k is a subspace of S k +1 (this

an happen as the subspaces are not necessarily independent), k =
 , . . . , K − 1 . Now, assume that S̄ in the statement of the above the-

rem is r 2 -dimensional instead of r 1 -dimensional. Then if S̄ = S 2 ,
¯
 also fits the columns drawn from S 1 (recall that S 1 is a subspace

f S 2 ) and hence, we cannot distinguish the columns drawn from

 1 and S 2 . 

emark 3.2. Theorem 3.4 requires K times more columns from

ach unknown subspace in comparison with Theorem 2.2 to iden-

ify the columns of one subspace. However, Theorem 3.4 does

ot require all ranks to be the same or the independent sub-

pace assumption. Moreover, the probability of clustering failure in

heorem 3.4 is K times less than that in Theorem 2.2 . 

After identifying all columns chosen from an r 1 -dimensional

ubspace correctly, we can exclude the identified columns from the

ampled matrix. Then, the problem reduces to the similar problem

ith K − 1 subspaces of ranks r 2 ≤ · · · ≤ r K and a smaller number

f columns for the sampled matrix. Hence, the same analysis is ap-

licable again. 

Specifically, let S̄ 1 , . . . , S̄ K ′ (for some 1 ≤ K 

′ < K ) denote differ-

nt r 1 −, . . . , r K ′ −dimensional subspaces that fit exactly c̄ 1 , . . . , ̄c K ′ 
olumns of U � (i.e., c̄ k is the maximum number of columns of

 � that can be covered by S̄ k ), respectively, and assume that c̄ k ≥
(r max + 1)(n 1 − r max + 1) , k = 1 , . . . , K 

′ . Moreover, assume that

here exist K(r max + 1)(n 1 − r max + 1) columns covered by S̄ k that

annot be covered by any of S̄ 1 , . . . , S̄ k −1 , k = 1 , . . . , K 

′ . 
Then, according to Theorem 3.4 , we have S̄ 1 = S k 1 and c̄ 1 = c k 1 

ith probability at least 1 − ε. Moreover, we can exclude all the c k 1 
olumns from the sampled matrix and the identified subspace S k 1 .
hen, the new sampled matrix is n 1 × (n 2 − c k 1 ) and the columns

f this matrix are chosen from the K − 1 remaining subspaces.

hen, similarly, we apply Theorem 3.4 for the r 2 -dimensional sub-

pace S̄ 2 that has the lowest dimension now (because one r 1 -

imensional subspace has been excluded). 

Now, assuming that the clustering of the c k 1 columns in the

revious step was correct, we can cluster the columns of the next

ubspace correctly with probability at least 1 − ε. This can be

one because due to the assumption, after excluding the columns

f the first cluster, there exist K(r max + 1)(n 1 − r max + 1) columns

overed by S̄ 2 that cannot be covered by S̄ 1 . Hence, we apply

heorem 3.4 again and therefore, with probability at least (1 − ε) 2 

he following statement holds: All the c̄ k columns of U � covered

y S̄ k belong to one source I k ′ such that r k ′ = r k and the rest of

he columns of U do not belong to I k ′ and moreover, c̄ k = c k ′ and
�
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Fig. 1. The required sampling probability for correctly clustering with probability at 

least 0.99, where n 1 = 10 0 0 and c 1 = c 2 = c 3 = 60 0 0 0 0 . 
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S̄ k = S k ′ , k = 1 , 2 . By simply repeating this procedure, we conclude

the following corollary. 

Corollary 3.5. Without loss of generality, assume that r 1 ≤ r 2 ≤
· · · ≤ r K and denote r max = max 1 ≤k ≤K r k = r K . Assume further that

r max ≤ n 1 
6 , c k ≥ K(r max + 1)(n 1 − r max + 1) , k = 1 , . . . , K, and also,

each column of U � includes at least l sampled entries such that

l > max { 12( log ( 
n 1 (r max +1) 

ε ) + 1) , 2 r max } . Let S̄ 1 , . . . , S̄ K ′ (for some

1 ≤ K 

′ < K) denote different r 1 , . . . , r K ′ dimensional subspaces that fits

exactly c̄ 1 , . . . , ̄c K ′ columns of U � (i.e., c̄ k is the maximum number

of columns of U � that can be covered by S̄ k ), respectively, and as-

sume that c̄ k ≥ K(r max + 1)(n 1 − r max + 1) , k = 1 , . . . , K 

′ . Moreover,

assume that there exist K(r max + 1)(n 1 − r max + 1) columns covered

by S̄ k that cannot be covered by any of S̄ 1 , . . . , S̄ k −1 , k = 1 , . . . , K 

′ .
Then, with probability at least (1 − ε) K 

′ 
the following statement

holds: All the c̄ k columns of U � covered by S̄ k belong to one source

I k ′ such that r k ′ = r k and the rest of the columns of U � do not belong

to I k ′ and moreover, c̄ k = c k ′ and S̄ k = S k ′ , k = 1 , . . . , K 

′ . 

We would like to emphaszie the advantage of our results when

the number of sampled entries are as low as O(n 1 r max ) per col-

umn. Please refer to [18] to see the discussion on how tight our

information-theoretic bounds on the number of samples are in

comparison with the theoretical bounds in the existing works on

subspace clustering with missing data. Moreover, our results in this

paper not only improved the bound on the number of sampled en-

tries in [18] , but also removed the strong restrictions such as inde-

pendency of the subspaces or subspaces being of the same size. 

4. Numerical experiments 

Assume that n 1 = 10 0 0 and c 1 = c 2 = c 3 = 60 0 0 0 0 . We con-

struct K = 3 matrices of rank r i by multiplying a random n 1 × r i 
matrix by a random r i × c i matrix. We assume each entry is sam-

pled uniformly and independently with some sampling probabil-

ity p . Since in our probabilistic analysis, only the maximum rank

r max matters (our bounds and analyses are based on the maxi-

mum rank), the x -axis in Fig. 1 represents the maximum rank.

Also, the y -axis represents the required sampling probability. Then,

using Corollary 3.5 , the average number of required samples to

guarantee the correct clustering with probability at least 1 − ε is

(( max { 12( log ( 
n 1 (r max +1) 

ε )+1) , 2 r max } ) 
n 1 

. 

Hence, in Fig. 1 , we have provided several curves to represent

the value of sampling probability and certainty value using our

analysis. Each curve represents the probability of sampling (for dif-

ferent rank value) such that according to Corollary 3.5 , we can

guarantee the correct clustering with probability at least 1 − ε, for

different values of ε. 
Note that our analysis is more efficient for relatively low-rank

cenarios. This is because as long as 2 r max < 12( log ( 
n 1 (r max +1) 

ε ) +
) , we basically provide a very tight bound on the number of sam-

les to for correctly clustering with probability 1 − ε. However, as

e need 2 r max samples as well in Corollary 3.5 (since we used

heorem 2.1 ), we can observe that by increasing the value of rank

o a very large number (high-rank scenarios) the bound can be

lightly weak and ε disappears in the curves as it means we can

uarantee the correct clustering with probability almost 1. 

. Conclusions 

We have developed a generalization to the low-rank subspace

lustering conditions in [18] . In particular, given an incomplete ma-

rix whose columns are drawn from K independent subspaces with

he same dimension, a lower bound on the number of columns

rom each subspace is given in [18] , such that, with high prob-

bility, the columns are clustered correctly. In order to treat the

eneral case that the subspaces are not independently chosen, and

heir dimensions can be different, we have provided a new analy-

is that leads to the lower bound on the number of columns from

ach subspace, for the general case, which is K times that in [18] ;

owever, the probability of clustering failure is reduced by a factor

f K compared with that in [18] . The key approach in our analysis

s to focus on the subspace of the lowest dimension. 

cknowledgments 

This work was supported in part by the U.S. National Science

oundation ( NSF ) under grant CIF1064575 , and in part by the U.S.

ffice of Naval Research ( ONR ) under grant N0 0 0141410 6 67 . 

eferences 

[1] M. Ashraphijuo , V. Aggarwal , X. Wang , On deterministic sampling patterns for
robust low-rank matrix completion, IEEE Signal Process. Lett. 25 (3) (2018)

343–347 . 
[2] M. Ashraphijuo , R. Madani , J. Lavaei , Characterization of rank-constrained fea-

sibility problems via a finite number of convex programs, in: IEEE 55th Con-
ference on Decision and Control, IEEE, 2016, pp. 6544–6550 . 

[3] M. Ashraphijuo , X. Wang , Fundamental conditions for low-cp-rank tensor com-

pletion, J. Mach. Learn. Res. 18 (63) (2017) 1–29 . 
[4] M. Ashraphijuo , X. Wang , A characterization of sampling patterns for union of

low-rank subspaces retrieval problem, Int. Symp. Artif. Intell. Math. (2018) 1–8 .
[5] M. Ashraphijuo , X. Wang , V. Aggarwal , An approximation of the CP-rank of a

partially sampled tensor, in: Annual Allerton Conference on Communication,
Control, and Computing, IEEE, 2017, pp. 604–611 . 

[6] M. Ashraphijuo , X. Wang , V. Aggarwal , A characterization of sampling patterns

for low-rank multi-view data completion problem, in: IEEE International Sym-
posium on Information Theory, IEEE, 2017, pp. 1147–1151 . 

[7] M. Ashraphijuo , X. Wang , V. Aggarwal , Rank determination for low-rank data
completion, J. Mach. Learn. Res. 18 (98) (2017) 1–29 . 

[8] L. Balzano , B. Eriksson , R. Nowak , High rank matrix completion and sub-
space clustering with missing data, in: Conference on Artificial Intelligence and

Statistics, 2012 . 

[9] E.J. Candès , B. Recht , Exact matrix completion via convex optimization, Found.
Comput. Math. 9 (6) (2009) 717 . 

[10] E. Elhamifar , R. Vidal , Sparse subspace clustering, in: IEEE Conference on Com-
puter Vision and Pattern Recognition, IEEE, 2009, pp. 2790–2797 . 

[11] E. Elhamifar , R. Vidal , Sparse subspace clustering: algorithm, theory, and appli-
cations, IEEE Trans. Pattern Anal. Mach. Intell. 35 (11) (2013) 2765–2781 . 

[12] W. Hong , J. Wright , K. Huang , Y. Ma , Multiscale hybrid linear models for lossy

image representation, IEEE Trans. Image Process. 15 (12) (2006) 3655–3671 . 
[13] G. Liu , Z. Lin , S. Yan , J. Sun , Y. Yu , Y. Ma , Robust recovery of subspace struc-

tures by low-rank representation, IEEE Trans. Pattern Anal. Mach. Intell. 35 (1)
(2013) 171–184 . 

[14] X.-Y. Liu , S. Aeron , V. Aggarwal , X. Wang , M.-Y. Wu , Tensor completion via
adaptive sampling of tensor fibers: Application to efficient indoor rf finger-

printing, in: IEEE International Conference on Acoustics, Speech and Signal
Processing, IEEE, 2016, pp. 2529–2533 . 

[15] D. Pimentel-Alarcón , L. Balzano , R. Nowak , Necessary and sufficient conditions

for sketched subspace clustering, in: Annual Allerton Conference on Commu-
nication, Control, and Computing, IEEE, 2016, pp. 1335–1343 . 

[16] D. Pimentel-Alarcón , N. Boston , R.D. Nowak , A characterization of determinis-
tic sampling patterns for low-rank matrix completion, IEEE J. Sel. Top. Signal

Process. 10 (4) (2016) 623–636 . 

https://doi.org/10.13039/501100008982
https://doi.org/10.13039/100000006
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0001
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0001
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0001
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0001
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0002
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0002
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0002
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0002
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0003
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0003
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0003
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0004
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0004
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0004
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0005
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0005
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0005
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0005
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0006
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0006
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0006
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0006
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0007
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0007
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0007
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0007
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0008
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0008
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0008
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0008
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0009
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0009
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0009
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0010
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0010
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0010
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0011
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0011
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0011
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0012
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0012
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0012
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0012
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0012
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0013
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0013
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0013
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0013
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0013
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0013
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0013
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0014
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0014
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0014
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0014
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0014
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0014
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0015
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0015
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0015
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0015
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0016
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0016
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0016
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0016


M. Ashraphijuo and X. Wang / Pattern Recognition Letters 120 (2019) 31–35 35 

 

 

 

 

 

 

[  

 

 

[17] D. Pimentel-Alarcón , R. Nowak , L. Balzano , On the sample complexity of sub-
space clustering with missing data, in: IEEE Workshop on Statistical Signal Pro-

cessing, IEEE, 2014, pp. 280–283 . 
[18] D. Pimentel-Alarcón , R. Nowak , The information-theoretic requirements of sub-

space clustering with missing data, in: International Conference on Machine
Learning, 2016, pp. 802–810 . 

[19] D.L. Pimentel-Alarcón , N. Boston , R.D. Nowak , Deterministic conditions for sub-
space identifiability from incomplete sampling, in: IEEE International Sympo-

sium on Information Theory, IEEE, 2015, pp. 2191–2195 . 
20] J.D. Rennie , N. Srebro , Fast maximum margin matrix factorization for collabora-
tive prediction, in: International Conference on Machine Learning, ACM, 2005,

pp. 713–719 . 
[21] C. Yang , D. Robinson , R. Vidal , Sparse subspace clustering with missing entries,

in: International Conference on Machine Learning, 2015, pp. 2463–2472 . 

http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0017
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0017
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0017
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0017
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0018
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0018
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0018
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0019
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0019
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0019
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0019
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0020
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0020
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0020
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0021
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0021
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0021
http://refhub.elsevier.com/S0167-8655(18)30927-9/sbref0021

	Clustering a union of low-rank subspaces of different dimensions with missing data
	1 Introduction
	2 Background
	3 Main results
	4 Numerical experiments
	5 Conclusions
	Acknowledgments
	References


