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ABSTRACT. Let G = (V, E) be an oriented graph whose edges are
labeled by the elements of a group I' and let A C V. An A-path
is a path whose ends are both in A. The weight of a path P in G
is the sum of the group values on forward oriented arcs minus the
sum of the backward oriented arcs in P. (If T is not abelian, we
sum the labels in their order along the path.) We are interested in
the maximum number of vertex-disjoint A-paths each of non-zero
weight. When A = V this problem is equivalent to the maximum
matching problem. The general case also includes Mader’s S-paths
problem. We prove that for any positive integer k, either there are
k vertex-disjoint A-paths each of non-zero weight, or there is a
set of at most 2k — 2 vertices that meets each of the non-zero
A-paths. This result is obtained as a consequence of an exact min-
max theorem.

1. INTRODUCTION

Let T be a group, let G = (V, E) be an oriented graph where each
edge e of G is assigned a weight 7, € T', and let A C V. (We will
use additive notation for groups, although they need not be abelian.)
An A-path is a path (with at least one edge) in the underlying graph
whose ends are both in A. Let e be an edge of G oriented with
tail v and head v. We let v(e,u) = —7. and y(e,v) = .. Now, if
P = (vg,€1,v1,€9,0V9,...,€ vx) is a path in G, then the weight of P,
denoted (P), is defined to be 3% ~(e;, v;). Note that, reversing the
orientation on an edge e and replacing v, with —v, does not change
the weight of any path.
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We are interested in the maximum number of vertex-disjoint A-paths
each of non-zero weight. We prove the following result.

Theorem 1.1. Let I be a group, let G = (V, E) be an oriented graph
with edge-labels from T, and let A C V. Then, for any integer k, either

(1) there are k vertez-disjoint A-paths each of non-zero weight, or
(2) there is a set of at most 2k —2 vertices that meets each non-zero
A-path.

Let v(G, A, ) denote the the maximum number of vertex-disjoint
A-paths each of non-zero weight. We prove Theorem 1.1 as a corollary
to an exact min-max theorem for v(G, A,~). In fact we will give two
different versions of the min-max theorem; the first provides a more
intuitive upper-bound while the second is cleaner. Let E(A,y) denote
the set of all edges e € E whose ends are both in A and that have
ve = 0; note that deleting such edges does not affect v. Let comp(G)
denote the set of components of G. Finally, let X, A’ C V such that
A-XCACV-Xandlet ('=G—-X —E(A’,7v). Then

v(G, A7) < 1X|+v(G-X,A-X,7)

X|+ (G — X, A7)

= |X[+v(G",A,y)

X|+ ) v(HANV(H),Y)

Hecomp(G')

< X[+ Y ){WJ.

<
<

2
Héecomp(G’
We will see that after an appropriate change of edge-weights we can
find X and A’ such that the above inequalities hold with equality.
Let x € V and let § € I'. For each edge e of G with tail v and head
v we define
Ye+6, ifv=zx
Yo=K =0+, fu==z
Ve, otherwise.

We say that +' is obtained by shifting v by § at z. Note that, if z ¢ A
then this shift does not change the weight of any A-path (even when T’
is non-abelian). The main theorem is:

Theorem 1.2. Let T be a group, let G = (V, E) be an oriented graph
with edge labels (7. : e € E) from T, and let A C X. Then there exist
edge-labels (7. : e € E) obtained by shifting v at vertices in V — A and



PACKING NON-ZERO A-PATHS 3

there exist sets X, A' CV such that A— X CA'CV —X and
ANV(H

Hecomp(G')
where G' = comp(G — X — E(A",7')).

We now turn to an alternative min-max theorem. A set of edges
F C E is A-balanced if F' contains no non-zero A-path and no non-zero
circuit. We let V' (F’) denote the set of all vertices in G that are incident
with an edge in F. It is straightforward to prove that FF C F is A-
balanced if and only if there exist edge-labels (7. : e € E) obtained by
shifting v at vertices in V' — A such that ’y} = (0 for all f € F. With
this in mind, the next result is an easy consequence of Theorem 1.2.

Corollary 1.3. Let T be a group, let G = (V, E) be an oriented graph
with edge labels (v, : e € E) from I, and let A C X. Then

V(G A7) =min | [X]+ 3

Héecomp(G—X—F)

Y

V(AU V(FQ)) N V(H)\J

where the minimum 1s taken over all A-balanced sets I C E and all
sets X C V.

Note that, v(G, V, ) is the size of the largest matching in G—E(V, 7).
When A = V it is easy to see that Theorem 1.2 is equivalent to the
Tutte-Berge Formula (Theorem 3.1) for the size of a maximum match-
ing. Our proof of Theorem 1.2 is modeled on an easy proof of the
Tutte-Berge Formula that we give in Section 3.

2. SOME SPECIAL CASES

In this section we mention some path-packing problems that can
be modeled via non-zero A-paths. In each of the applications we are
given an undirected graph G = (V, E) and a set A C V. Then, we are
interested in finding a maximum collection of “feasible” A-paths; where
feasibility depends on the application. We then determine a group, a
labeling of the edges, and an orientation of G so that the non-zero
A-paths and feasible A-paths coincide. Unless explicitly defined, we
assume that an arbitrary orientation of G has been prescribed.

A-paths. Here we consider any A-path to be feasible. We assign
labels 7, to edges e € E and let I' be the free group generated by {7, :
e € E}. Thus, any non-trivial path has non-zero weight. Gallai [2]
reduced this case to the maximum cardinality matching problem and
proved the specialization of Theorem 1.1.
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Odd A-paths. Here only the A-paths of odd length are feasible. We
let I' = Zs and assign to each edge the label 1. Thus the non-zero paths
are exactly those of odd length. The problem of finding a maximum
collection of disjoint odd A-paths can be reduced to the maximum
matching problem; see [1].

(The main result in [1] gives a structural characterization of signed-
graphs with no odd-K, minor. Signed-graphs can be considered as
binary coextensions of graphic matroids. Theorem 1.1 allows us to

extend those results to coextensions of graphic matroids over other
finite fields.)

(S, T)-paths. Let (S,T) be a partition of A; an (S,T)-path is a path
with one end in S and the other end in 7. Let I' = Zs. The edges with
exactly one end in S are assigned a label of 1 and all other edges are
labeled 0. Then, an A-path is an (S,7)-path if and only if it is non-
zero. Now, v(G, A, ) is just the maximum number of vertex disjoint
(S, T)-paths. It is an interesting exercise to deduce Menger’s theorem
from Theorem 1.2.

Composition of feasible sets. Suppose that we have groups ['; and I'y
and two edge-labelings (o, : e € E) from I'; and (B, : e € E) from I's.
We can define I' = T’y x 'y and define new edge-labels v, = (., Be)-
Now, a path P is non-zero with respect to «y if and only if P is non-zero
with respect to either a or f.

Mader’s S-paths. Let S be a partition of A and let | = |S|. A path is
an S-path if its ends are in different parts of S. Thus, an A-path is an
S-path if and only if it is an (S, A —S)-path for some set S € S. Then,
by composition, we can define a group I' = Z, and an edge-labeling
v from I' such that the S-paths are precisely the non-zero A-paths.
(There is a more direct formulation in which I' = Z;.) Mader [3]
proved a min-max theorem for the maximum number of disjoint S-
paths; see Schrijver [5] for a shorter proof. Mader’s Theorem is a
direct specialization of Corollary 1.3.

(The problem of finding a maximum collection of vertex-disjoint S-
paths is equivalent to the problem of finding a maximum collection of
internally vertex-disjoint A-paths. It is natural then to consider the
problem of finding a maximum collection of internally vertex-disjoint
non-zero A-paths. This contains the problem of finding a maximum
collection of internally vertex-disjoint odd paths between a given pair
of vertices; we suspect that this latter problem is N P-hard.)

Paths on surfaces. Suppose that G = (V| E) is an oriented graph
embedded on a surface S and that A C V all lie on a common face F'
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in the embedding, where F' is a closed disk. We fix a basepoint x in F’;
then, we associate to each A-path P a simple closed curve C'(P) on S
that is contained in P U F' and that has x as its basepoint. Now, we
can designate an A-path P to be feasible, in different ways, according
to the homotopy class of C'(P).

Example 1: P is feasible if C(P) is non-contractible.

Example 2: P is feasible if C(P) is non-separating.

Example 3: P is feasible if C'(P) is orientation reversing (that
is, the neighbourhood of the curve C'(P) is a Mdbius band).

Let I' = 7(S,z) be the fundamental group of S with respect to the
basepoint z; see Munkres [4]. Recall that the elements of I are the
equivalence classes of (z,z)-curves on S with respect to homotopy;
thus, the identity of I' consists of the set of contractible (z,x)-curves.
Readers familiar with topology will see that:

Lemma 2.1. G can be assigned edge-labels (. : e € E) from I' such
that, for any A-path P, «(P) is the homotopy class of C(P).

Thus, given the edge-labeling v from Lemma 2.1, an A-path P is
non-zero if and only if C'(P) is non-contractible. This gives us a for-
mulation for the first example. In each of the other two examples, the
homotopy classes corresponding to non-feasible A-paths determine a
normal subgroup of I'. Therefore, formulations for these examples can
be obtained, via Lemma 2.1, by applying appropriate homomorphisms
to I,

3. MATCHING

Let G = (V, E) be a graph. The matching number of G, denoted
v(@), is the size of a maximum matching, and the deficiency of G is
defined by def(G) := |V| — 2v(G). We let odd(G) denote the number
of components of G that have an odd number of vertices. Note that,
for any X C V', we have

def(G) > def(G — X) — | X| > 0odd(G — X) — | X|;
the following theorem shows that equality can be attained.

Theorem 3.1 (Tutte-Berge Formula). For any graph G,
def(@) = max(odd(G — X) — |X| : X C V).

A set S C V is matchable if there is a matching of G that covers
every vertex in S (matchable sets need not have even cardinality). It
is well-known that the matchable sets of G form the independent sets
of a matroid on V; this is the matching matroid of G.
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We require some elementary matroid theory. Let M be a matroid
with ground set V' and let u,v € V. Then, u is a coloop of M if u is in
every basis of M. The elements u and v are in series if neither u nor v
are coloops, but there is no basis that avoids both v and v. It is easy
to show that series pairs are transitive. That is, if u is in series with v
and v is in series with w (u # w), then u is in series with w.

Lemma 3.2 (Gallai’s Lemma). If G = (V, E) is a connected graph and
v(G —v) = v(G) for each vertex v € V, then def(G) = 1 and |V| is
odd.

Proof. The matching matroid M of G has no coloops since v(G —v) =
v(QG) for each vertex v € V. For each edge uv of G, we have v(G —u —
v) < v(G); that is, u is in series with v. Then, since G is connected,
each pair of vertices is in series. Thus, no basis of M can avoid two or
more vertices. Therefore, def(G) = 1 and, hence, |V| is odd. O

Proof of the Tutte-Berge Formula. We have already seen that
def(G) > odd(G — X) — |X| for any set X C V, thus it suffices
to prove that equality can be attained.

Choose X C V maximal such that v»(G) = v(G — X) + | X|. By our
choice of X we have v((G — X) —v) =v(G — X) for each v € V — X.
Then, applying Gallai’s Lemma to each component H of G — X, we see
that def(H) =1 and |V (H)| is odd. Thus, def(G — X) = odd(G — X).
Therefore, def(G) = |V| - 2v(G) = |V| - 2(v(G — X) + |X|) = (|V -
X|—-2v(G - X)) —|X|=def(G—X) — |X| =0dd(G — X) — | X]|; as
required. U

4. A MATROID FROM NON-ZERO A-PATHS

Throughout this section we let T' be a group, G = (V, E) be an
oriented graph with edge-labels (7, : e € F) from I', and A C V. We
let def(G, A,v) := |A| — 2v(G, A, 7).

A path is a sequence P = (vg, €1, v1, €2, V2, . . ., €k, V) Where v, . .., Vg
are distinct vertices of G and e; has ends v,_; and v; for each i €
{1,...,k}. Thus, P is ordered in that it has distinguished start (vo)
and end (vg). However, P need not be “directed” in that an edge e; of
P may have v;_; or v; as its head. The path (v, ex, vg—1,. -, V1, €1, Vp)
is denoted by P. Also, for any i,j € {1,...,k} with i < j, the path
(Vi; €415 Vig1, - - -, €5, 0;) is denoted by Plv;,v;]. We allow paths con-
sisting of a single vertex; we refer to such paths as trivial.

An A-collection is a set P of vertex disjoint paths such that:

1. each vertex in A is either the start or the end of a path in P,
2. the start of each path P € P is in A, and
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3. if P € P is non-trivial and has its end in A, then y(P) # 0.

A path P € P is loose if it is trivial or its end is not in A; thus each
path in P is either an A-path or it is loose (not both). An A-collection
is optimal if it contains v (G, A, ) A-paths; note that there are optimal
A-collections.

Let I = {y(P) : P a path of G} (when I is finite we could just take
["=T). Now, let S = {(v,0) : ve A}U{(v,7) :veV —-A yel'}.
We will define a matroid on the ground set S. Let P be an A-collection.
We let B(P) denote the set of pairs (v,v(P)) where v is the end of a
loose path P € P. Note that, B(P) C S. Now let B denote the set of
all B(P) where P is an optimal A-collection.

Note that |B| = def(G, A, ) for all B € B. Below we show that B is
the collection of bases of a matroid on S. (In the special case that our
original A-path problem was just matching, this matroid is isomorphic
to the dual of the matching matroid.)

Lemma 4.1. B is the set of bases of a matroid on S.

Proof. As noted above, B is nonempty and all sets in B have the same
cardinality. Suppose that B is not the collection of bases of a matroid.
Thus, there exist P, P’, and (u, o) satisfying:

4.1.1. P and P' are optimal A-collections and (u,«) € B(P) — B(P")
such that for each (v, 3) € B(P') — B(P) we have (B(P) — {(u,a)})U
{(v,8)} ¢B.

Now:

4.1.2. we choose P, P!, and (u, @) satisfying 4.1.1 with |E(P)—E(P')|
as small as possible.

We use the following claim repeatedly.

4.1.3. There does not exist an optimal A-collection P" such that
B(P) — B(P") = {(u,®)} and |E(P") — E(P')| < |[E(P) — E(P')|.

Subproof. Suppose that there does exist such an A-collection P”.
Since |B(P")| = |B(P)| there is a unique element, say (u,¢'), in
B(P") — B(P). Moreover, by 4.1.1, (u',o/) ¢ B(P'). However,
|[E(P") — E(P")] < |E(P) — E(P'")|. So, by 4.1.2, P", P, and
(u',o') do not satisfy 4.1.1. That is, there exists an element (v, 3) €
B(P') — B(P") such that (B(P') —{(v,a/)}) U{(v,8)} € B. However,
(B(P) = {(u,@)}) U{(v, 8)} = (B(P') = {(v',a)}) U{(v, )} € B,
contradicting 4.1.1. (]

Let P = (vg,e1,v1,---,€,v) be the path in P ending at u; thus,
u = vg. By possibly reversing the order, we may assume that there is a
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path P' = (v(, €}, v}, ..., e}, v) in P’ that starts at vy. Suppose that P
is not contained in P and let e, be the first edge of P not in P’. Now let
P" be the A-collection obtained from P by replacing P with P[vg, v4_1].
Note that, P" is optimal. Moreover, B(P) — B(P") = {(u, )} and
|E(P") — E(P")| < |E(P) — E(P')|; contradicting 4.1.3. Hence, P is
contained in P’.

Suppose that P’ is disjoint from each path in P other than the path
P, and let P"” be obtained from P by replacing P with P’. Since P
is optimal, P” is also optimal and P’ is loose. Note that, (v}, v(P')) €
B(P') — B(P) and (B(P) — {(u,)}) U {(v;,7(P"))} = B(P") € B,
contradicting 4.1.1. Therefore, there is some vertex that is both on P’
and on a path in P other than P; let v] be the first such vertex on
P’ and let Q = (uo, f1,u1,-- -, fm,Um) be the path of P containing v;.
Suppose that u; = v;. We consider two cases.

Case 1: QQ is a loose path.

Let P; be the A-path contained in P'UQ and let P, be the path in P'U
(@ that starts at v and ends at w,,. Since P is optimal, y(P;) = 0. Thus,
Y(P'[vg, vi]) = v(Q[uo, u;]) and, hence, v(P) = v(Q). Now, let P” be
the A-collection obtained from P by replacing P and ) with P, and
the trivial path (up). Note that, B(P) — B(P") = {(u,«)}. Moreover,
since y(P;) = 0, P, # P'. Thus, there is an edge of Q[uo, u;] that is
not in E(P’). So, |[E(P")—E(P')| < |E(P)— E(P')|; contrading 4.1.3.

Case 2: Q is an A-path.

Let P, and P, be the A-paths in P'U( that both start at u and that
end with uy and u,, respectively. Note that v(P;) + v(Q) +v(P) = 0
and v(Q) # 0, so either y(P;) # 0 or y(P,) # 0. Moreover, either
P’ is loose (and hence different from P, and P,) or v(P') # 0. Thus,
either v(P;) # 0 and P, # P’ or v(P,) # 0 and P, # P'. By possibly
swapping P; and P, and reversing (), we may assume that vy(P) # 0
and P; # P'. Let P” be the A-collection obtained from P by replacing
P and @ with P, and the trivial path (uq). Note that, B(P)— B(P") =
{(u, @)}. Moreover, since P; # P’ there is an edge of Q[ug, u;| that is
not in E(P") U E(P'). Thus, |E(P") — E(P")| < |E(P) — E(P")|;
contradicting 4.1.3. This final contradiction completes the proof. [J

5. PROOFS OF THE MAIN RESULTS

Let T be a group, G = (V, E) be an oriented graph with edge-labels
(Ve : e € E) from I', and A C V. The triple (G, A,7) is critical if

(i) G is connected,
(ii) v(G — {v}, A —{v},7) = v(G, A,~) for each v € V,
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(iii) for each v € V — A and for any edge-labeling 7' obtained from
v by shifting at v we have v(G, AU {v},v") > v(G, A,~), and

(iv) E(A,v) =0.

In Section 3 we defined “coloops” and “series pairs”; in this section
we require the dual notions, “loops” and “parallel pairs”. Let M be
a matroid with ground set S and let u,v € S. Then, u is a loop of
M if u is not in any basis of M. The elements u and v are parallel if
neither u nor v are loops, but there is no basis that contains both u
and v. Parallel pairs are transitive; that is, if u is parallel with v and
v is parallel with w (u # w), then wu is parallel with w.

Lemma 5.1. Let T’ be a group, let G = (V, E) be an oriented graph
with edge labels (v, : e € E) from T, and let A C X. If (G, A,~) is
critical, then def(G, A,~v) =1 and, hence, |A| is odd.

Proof. Suppose that (G, A,~) is critical, and let M = (S, B) be the
matroid obtained from (G, A,~y) via Lemma 4.1. Let S” denote the set
of all non-loop elements of M.

5.1.1. Let e be and edge of G with tail u and head v, and let
(u,), (v,8) € S". Ifa+~.— B #0, then (u, ) and (v, 8) are parallel.

Subproof. If (u,«) and (v, 8) are not parallel, then there is a basis of
M that contains them both. That is, there is an optimal A-collection
P with (u,a),(v,8) € B(P). Now, let P, and P, be the paths in
P containing u and v respectively. Note that, P = (P,,e, P,) is an
A-path with v(P) = a + v, — . Then, since P is optimal, we have
a+ 7. — B =0, as required. O

5.1.2. For each v € A, we have (v,0) € S'.

Subproof. Since (G, A,7~) is critical, v(G — v, A — v,7) = v(G, A,7).
Thus, there exists a set P of v(G, A, v) non-zero A-paths each disjoint
from v. Now, adding trivial A-paths to P we obtain an optimal A-
collection P’ with (v,0) € B(P'). Thus, (v,0) € ', as required. O

5.1.3. For each v € V — A, there exist two distinct elements
(v, ), (v,8) € S".

Subproof. Consider any element § € T', and let 7' be the edge labels
obtained from 7 by shifting at v by J. Since (G, A,7) is critical,
v(G,AU {v},y) = v(G,A,v) + 1. Let P be an optimal A U {v}-
collection with respect to 4'. Since v(G, AU {v},7) > v(G, A,7), v
is the start or end of an A U {v}-path P in P; by possibly reversing
P we may assume that v is the end. Then, P is an optimal A-path
collection in G and +'(P) = v(P) + § # 0. Now, (v,y(P)) € S’ and
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v(P) # —4. Since 0 is any element of I', there must exist two distinct
elements (v, a), (v, B) € S'. O

5.1.4. Let e be an edge with tail v and head v. Then, there exist
(u, ), (v, 0) € S" that are parallel in M.

Subproof. First suppose that u,v € A. Let a, = «, = 0. Since
(G, A,) is critical, 0 # v, = ay + Ye — @,. Then, by 5.1.1, (u, o)
and (v, ) are parallel. Now we may assume that u € A or v ¢ A; by
symmetry we may assume that v ¢ A. Now, by 5.1.2 and 5.1.3, there
exists ay € I' such that (u,ay) € S, and, by 5.1.3, there exists o, € T’
such that (v, ) € S’ and «, # @y + Ye- Then, by 5.1.1, (u, ) and
(v, o) are parallel. O

For each v € V, let S, = {(u,) € §' : u = v}. Consider an
optimal A-collection P. Since there is at most one path in P that ends
at v, |[B(P)NS!| < 1. Thus, any two elements of S! are in parallel.
Then, by 5.1.4 and since G is connected, each pair of elements in S’
are parallel. Thus, if P is an optimal A-collection, then |B(P)| =1
and, hence, def(G, A,v) = 1, as required. O
Proof of Theorem 1.2. Choose X C V maximal such that v(G—-X, A—
X,v) = v(G,A,7) — |X|. Now among all sets A’ C V — X with
A — X C A’ and edge-labelings 7' obtained from v by shifting on the
vertices in A" — A such that v(G — X, A",7) =v(G - X, A — X,v) we
choose the pair (A’, ") with A’ as large as possible. Now let Hy, ..., H,

be the components of G — X — E(A’,4') and let A} denote A'NV (H;).
Note that,

(G, A7) |X\+Z (Hi, Al

By our choice of X and A', it is easy to check that each of the triples
(H;, AL, ~") is critical. Then, by Lemma 5.1, v(H;, A}, v') = {%J So,

l | Afl
G.AY)=|X + el
as required. O

Proof of Theorem 1.1. By Theorem 1.2 there exist edge-labels (v, :
e € E) obtained by shifting v at vertices in V' — A and there exist sets
X, AACVsuchthat A— X CA CV —X and

UG, A7) = |X|+Z['V(—;“A"J,
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where Hy,..., H; are the components of G — X — E(A’,v'). Let i €
{1,...,1} and let A} denote V(H;)N A’. Now, let X; C A} with |X;| =
|Al — 1, and let X* = X U X; U---U X,. Note that, v(H; — X;, A} —
X;,v") = 0 since |A] — X;| = 1. Now,
v(G@—-X"A-X*y) = v(G-X"A-X"*"9)
< v(G-X* A —X*9)
= v(G-X*"—-EA ), A - X"+
!
ZV(Hz‘ — Xi, 4 — Xi,7)
i=1

= 0.

IA

Thus, X* meets every non-zero A-path in G. Suppose that v(G, A4,7) <
k. Then,

2% —2 > 2(G, A7)
l
A
= 92X 9 | i
X+ {2

!
> X[+ (4l -1)
i=1

I

= X[+ 1Xi
i=1

= X7,

as required. O
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