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Abstract. Let G = (V,E) be an oriented graph whose edges are
labelled by the elements of a group Γ and let A ⊆ V . An A-path is
a path whose ends are both in A. The weight of a path P in G is the
sum of the group values on forward oriented arcs minus the sum of
the backward oriented arcs in P . (If Γ is not abelian, we sum the
labels in their order along the path.) We give an efficient algorithm
for finding a maximum collection of vertex-disjoint A-paths each
of non-zero weight. When A = V this problem is equivalent to the
maximum matching problem.

1. Introduction

Let Γ be a group; we will use additive notation for groups, although
they need not be abelian. A Γ-labelled graph is a graph G in which each
edge e = uv ∈ E(G) is assigned weights ωG(e, u), ωG(e, v) ∈ Γ where
ωG(e, u) = −ωG(e, v). Let G be a Γ-labelled graph and let A ⊆ V (G).
An A-path is a path, with at least one edge, whose ends are both in A.
Now, if P = (v0, e1, v1, e2, v2, . . . , ek, vk) is a path in G, then the weight

of P , denoted ωG(P ), is defined to be
∑k

i=1 ωG(ei, vi).
We are interested in the maximum number of vertex-disjoint A-paths

each of non-zero weight, which we denote by ν(G, A). Chudnovsky et
al. [1] gave a min-max theorem for ν(G, A); they also discuss mo-
tivation for the non-zero A-paths problem. In particular, they show
that Mader’s S-path problem [4] is a special case. The only previously
known algorithm for Mader’s S-path problem was obtained by Lovász
via a reduction to linear matroid matching [2]. We present an algorithm
for finding a maximum collection of vertex-disjoint non-zero A-paths
that runs in time O(|V (G)|6). In our complexity calculations, group
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operations (such as addition and comparison) are treated as elemen-
tary operations. Our algorithm is similar to an algorithm of Lovász
and Plummer [3, p376] for finding a maximum matching. Lovász and
Plummer cleverly abstract an algorithm from what would otherwise
appear to be a nonconstructive proof of the Edmonds-Gallai Structure
Theorem (see [3]). Using a similar approach, we obtain an algorithm
from our proof of Theorem 1.3, which is a structure theorem for non-
zero A-paths. Theorem 1.3 is closely related to a structure theorem
of Sebő and Szegő [5] for Mader’s S-path problem; our results were,
however, obtained independently.

Let E0(G, A) denote the set of all edges e = uv ∈ E whose ends
are both in A and that have ωG(e, v) = 0; note that deleting such
edges does not affect ν. Let def(G, A) = |A| − 2ν(G, A); we call this
the deficiency. Let odd(G, A) denote the number of components H of
G−E0(G, A) with |V (H)∩A| odd. Finally let X, A′ ⊆ V (G) such that
A ∪X ⊆ A′. It is straightforward to see that

def(G, A) ≥ def(G, A′)− |A′ − A|
≥ def(G−X, A′ −X)− |A′ − A| − |X|
≥ odd(G−X, A′ −X)− |A′ − A| − |X|.

Let x ∈ V and let δ ∈ Γ. We will construct a new Γ-labelled graph
G′ from G by changing the labels as follows. For each edge e = uv in
G we define

ωG′(e, u) =

 ωG(e, u) + δ, if u = x
−δ + ωG(e, u), if v = x
ωG(e, u), otherwise.

We say that G′ is obtained from G by shifting by δ at x. Note that,
if x 6∈ A, then this shift does not change the weight of any A-path
(even when Γ is non-abelian). If G′ is a Γ-labelled graph obtained by a
sequence of shifting operations on vertices not in A, then we say that
G and G′ are A-equivalent. The main theorem in [1] is:

Theorem 1.1. Let Γ be a group, let G be a Γ-labelled graph, and let
A ⊆ V (G). Then there exists a Γ-labelled graph G′ that is A-equivalent
to G and there exist sets X, A′ ⊆ V (G) with A ∪X ⊆ A′ such that

def(G, A) = odd(G′ −X,A′ −X)− |A′ − A| − |X|.
Our structure theorem provides a canonical choice for A′ and X

in Theorem 1.1. Before stating the structure theorem we need some
definitions; we start by clarifying our notation.

A path is a sequence P = (v0, e1, v1, e2, v2, . . . , ek, vk) where v0, . . . , vk

are distinct vertices of G and ei has ends vi−1 and vi for each i ∈
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{1, . . . , k}. Thus P is ordered in that it has distinguished start (v0)
and end (vk). The path (vk, ek, vk−1, . . . , v1, e1, v0) is denoted by P̄ .
We allow paths consisting of a single vertex; we refer to such paths as
trivial. We denote by E(P ) and V (P ) the set of edges and vertices of
P , respectively.

An A-collection is a set Π of vertex disjoint paths such that:

1. each vertex in A is either the start or the end of a path in Π,
2. the start of each path P ∈ Π is in A, and
3. if P ∈ Π is non-trivial and has its end in A, then ωG(P ) 6= 0.

A path P ∈ Π is loose if it is trivial or its end is not in A; thus each path
in Π is either an A-path or it is loose (not both). The value of an A-
collection Π, denoted valA(Π) or val(Π), is the number of A-paths that
it contains. The A-collection is optimal if val(Π) = ν(G, A); note that
there are optimal A-collections. Let P(G, A) denote the set of all A-
collections and let P∗(G, A) denote the set of all optimal A-collections.

Given an A-collection Π, let BA(Π) (or B(Π)) denote the set of
pairs (v, ωG(P )) where v is the end of a loose path P ∈ Π. Note that
|B(Π)| = |A|−2valA(Π). Now letR(G, A) = ∪(B(Π) : Π ∈ P∗(G, A));
the pairs in R(G, A) are called reachable pairs.

For each vertex v ∈ V (G), we let Γ(G, A, v) = {α ∈ Γ : (v, α) ∈
R(G, A)}. Now we let

D1(G, A) = {v ∈ V (G) : |Γ(G, A, v)| = 1},
D2(G, A) = {v ∈ V (G) : |Γ(G, A, v)| ≥ 2}, and

D(G, A) = D1(G, A) ∪D2(G, A);

D(G, A) is the set of reachable vertices. Note that D1(G, A) and
D2(G, A) are not affected by shifting on a vertex v 6∈ A.

For X ⊆ V (G), we let NG(X) denote the set of vertices in V (G)−X
that are adjacent to a vertex in X. To make use of the coming structure
theorem, we need the following easy lemma.

Lemma 1.2. Let G be a Γ-labelled graph and let A ⊆ V (G). Then
there exists a Γ-labelled graph G′ that is A-equivalent to G and such
that:

(1) for each v ∈ D1(G
′, A), Γ(G′, A, v) = {0}, and

(2) for each u ∈ NG′(D(G′, A)) − A, there exists uv = e ∈ E(G′)
such that ωG′(e, v) ∈ Γ(G′, A, v).

Proof. Suppose that v ∈ D1(G, A) and that Γ(G, A, v) = {α}. If v ∈ A,
then α = 0. On the other hand, if v 6∈ A and G′ is obtained from G by
shifting by−α at v, then Γ(G′, A, v) = {0} and Γ(G′, A, y) = Γ(G, A, y)
for all y ∈ V (G)− {v}.
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Now suppose that uv = e ∈ E(G) where u 6∈ A ∪ D(G, A) and
v ∈ D(G, A). Let α ∈ Γ(G, A, v) and let G′ be the Γ-labelled graph
obtained from G by shifting by ωG(e, v)− α at u. Then ωG′(e, v) = α
and Γ(G′, A, y) = Γ(G, A, y) for all y ∈ V (G). �

We can now state our structure theorem.

Theorem 1.3. Let Γ be a group, let G be a Γ-labelled graph, and
let A ⊆ V (G). Now let A′ = A ∪ NG(D(G, A)) ∪ D1(G, A) and let
X = NG−E0(G,A′)(D(G, A)). If (G, A) satisfies:

(1) for each v ∈ D1(G, A), Γ(G, A, v) = {0}, and
(2) for each u ∈ NG(D(G, A)) − A, there exists uv = e ∈ E(G)

such that ωG(e, v) ∈ Γ(G, A, v),

then def(G, A) = odd(G−X, A′ −X)− |A′ − A| − |X|.

2. Proof of the structure theorem

In this section we outline a proof of the structure theorem; this out-
line is intended to motivate the main steps in the algorithm. Through-
out the rest of the paper we let Γ be a group, we let G be a group
labelled graph, and we let A ⊆ V (G).

It is an easy but important observation that the sets D1(G, A),
D2(G, A), and Γ(G, A, v) are determined by R(G, A). This allows us
to prove Theorem 1.3 inductively by changing G and A in ways that
do not effect R(G, A). We begin with two easy observations:

2.1. If u ∈ A − D(G, A), then ν(G − u, A − {u}) = ν(G, A) − 1 and
R(G, A) ⊆ R(G− u, A− {u}).
2.2. If u ∈ V (G) − A and Γ(G, A, u) ⊆ {0}, then ν(G, A ∪ {u}) =
ν(G, A) and R(G, A) ⊆ R(G, A ∪ {u}).

In the next two results we provide additional hypotheses to 2.1
and 2.2 so that the above inclusions hold with equality. We will not
prove these lemmas now since they follow immediately from more gen-
eral results (Lemmas 4.3 and 4.4) proved later.

Lemma 2.3. Let u ∈ A − D(G, A). If there exists uv = e ∈ E(G)
and α ∈ Γ(G, A, v) such that ωG(e, u) 6= −α, then ν(G−u, A−{u}) =
ν(G, A)− 1 and R(G, A) = R(G− u, A− {u}).
Lemma 2.4. Let u ∈ V (G) − A where Γ(G, A, u) ⊆ {0}. If there
exists uv = e ∈ E(G) and α ∈ Γ(G, A, v) such that ωG(e, u) = −α,
then ν(G, A ∪ {u}) = ν(G, A) and R(G, A) = R(G, A ∪ {u}).

With the main ingredients in place, we can begin the proof of the
structure theorem. Suppose that:
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(1) for each v ∈ D1(G, A), Γ(G, A, v) = {0}, and
(2) for each u ∈ NG(D(G, A)) − A, there exists uv = e ∈ E(G)

such that ωG(e, v) ∈ Γ(G, A, v).

Now let A′ = A ∪ NG(D(G, A)) ∪ D1(G, A) and X =
NG−E0(G,A′)(D(G, A)).

Lemma 2.5. ν(G, A) = ν(G−X,A′−X)+ |X| and R(G, A) = R(G−
X, A′ −X). Hence def(G, A) = def(G−X,A′ −X)− |A′ − A| − |X|.

Proof. Let A′′ = A ∪NG(D(G, A)). First we consider u ∈ A′′ − A. By
(2), there exists uv = e ∈ E(G) such that ωG(e, v) ∈ Γ(G, A, v). Then,
by Lemma 2.4, ν(G, A∪{u}) = ν(G, A) and R(G, A) = R(G, A∪{u}).
Hence D(G, A) = D(G, A ∪ {u}) and A′′ = A ∪ NG(D(G, A)) = A ∪
NG(D(G, A ∪ {u})). Inductively we conclude that ν(G, A′′) = ν(G, A)
and R(G, A′′) = R(G, A).

Now consider u ∈ D1(G, A) − A = A′ − A′′. By (1), we have
Γ(G, A, u) = {0} and, hence, Γ(G, A′′, u) = {0}. Thus there ex-
ists Π ∈ P∗(G, A′′) such that (u, 0) ∈ B(Π). Let P ∈ Π be the
path ending at u, let v be the vertex preceding u on P , let Pv be
the initial subpath of P ending at v, and let e = uv. Note that
ωG(Pv) − ωG(e, v) = ωG(P ) = 0. Thus ωG(Pv) = ωG(e, v). Let
Πv = (Π − {P}) ∪ {Pv}. Now Πv is an optimal A′′-collection with
(v, ωG(Pv)) ∈ B(Πv). Therefore ωG(e, v) ∈ Γ(G, A, v). Hence, by
Lemma 2.4, ν(G, A′′∪{u}) = ν(G, A′′) = ν(G, A) andR(G, A′′∪{u}) =
R(G, A′′) = R(G, A). Inductively this proves that ν(G, A) = ν(G, A′)
and R(G, A) = R(G, A′).

Note that X ⊆ A′. Now consider u ∈ X. By the definition of X,
there exists uv = e ∈ E(G)−E0(G, A′) where v ∈ D(G, A′). We claim
that there exists α ∈ Γ(G, A′, v) such that ωG(e, v) 6= α; for this it
suffices to consider v ∈ D1(G, A). In this case Γ(G, A′, v) = {0} and,
since u, v ∈ A′, ωG(e, v) 6= 0, as required. Therefore, by Lemma 2.3,
ν(G− u, A′−{u}) = ν(G, A′)− 1 and R(G, A′) = R(G− u, A′−{u}).
Inductively it follows that ν(G, A) = ν(G − X,A′ − X) + |X| and
R(G, A) = R(G−X, A′ −X), as required. �

We need one more definition. A critical pair (G, A) consists of a
Γ-labelled graph G and a set A ⊆ V (G) such that G is connected,
D1(G, A) = A, D2(G, A) = V (G)− A, and E0(G, A) = ∅.

Now let A1 = A′ − X and G1 = G − X. The next lemma follows
from the definition of G1 and A1.

Lemma 2.6. For each component H of G1 − E0(G1, A1), either
def(H, V (H) ∩ A1) = 0 or (H, V (H) ∩ A1) is critical.
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Proof. Let G2 = G1 − E0(G1, A1). By Lemma 2.5, R(G1, A1) =
R(G, A) and, hence, R(G2, A1) = R(G, A). Moreover R(G2, A1) is
the union of the sets R(H, A1 ∩ V (H)) taken over all components H
of G2. Note that, if uv = e ∈ E(G) with u ∈ V (G) − D(G, A) and
v ∈ D(G, A), then either u ∈ X or e ∈ E0(G, A′). Thus, if H is a com-
ponent of G2, then either V (H) ⊆ D(G2, A1) or V (H)∩D(G2, A1) = ∅.
If V (H) ∩ D(G2, A1) = ∅, then def(H, V (H) ∩ A1) = 0. Thus we
may assume that V (H) ⊆ D(G2, A1). Since H is a component of G2,
D1(H, V (H) ∩ A1) = D1(G2, A1) ∩ V (H) and D2(H, V (H) ∩ A1) =
D2(G2, A1) ∩ V (H). By the definition of A′, a vertex v ∈ D(G2, A1) is
in D1(G2, A1) if and only if v ∈ A1. Hence (H, V (H) ∩ A1) is critical,
as required. �

The final lemma was proved in [1]; we prove a more general lemma
later (see 4.5).

Lemma 2.7. If (G, A) is a critical pair, then def(G, A) = 1 and, hence,
|A| is odd.

It follows from Lemmas 2.6 and 2.7 that def(G1, A1) = odd(G1, A1).
Therefore

def(G, A) = odd(G−X,A′ −X)− |A′ − A| − |X|.
This completes the proof of the structure theorem.

3. The exchange property

Chudnovsky et al. [1] proved that {B(Π) : Π ∈ P∗(G, A)} is the
set of bases of a matroid. The following lemma extends that result
by providing an exchange property on all A-collections. The proof is
essentially the same as the proof given in [1]. (For sets A and B, we
let A∆B = (A−B) ∪ (B − A).)

Lemma 3.1. Let Π1, Π2 ∈ P(G, A) and let p1 ∈ B(Π1) − B(Π2).
Then there exists Π′

1 ∈ P(G, A) and p2 ∈ B(Π1) ∪ B(Π2) such that
B(Π′

1) = B(Π1)∆{p1, p2}. Moreover, given Π1, Π2, and p1, we can
find Π′

1 and p2 in O(|V (G)|2) time.

Proof. Let B = {B(Π) : Π ∈ P(G, A)}. Suppose, by way of contradic-
tion, that there exist

3.1.1. Π1, Π2 ∈ P(G, A) and p1 = (u, α) ∈ B(Π1) − B(Π2) such that
B(Π1)∆{p1, p2} 6∈ B for each p2 ∈ B(Π1) ∪B(Π2).

Given an A-collection Π, we let E(Π) denote the union of the edge
sets (E(P ) : P ∈ Π).
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3.1.2. We choose Π1, Π2, and p1 = (u, α) satisfying 3.1.1 with |E(Π1)∪
E(Π2)| as small as possible.

We use the following claim repeatedly.

3.1.3. There do not exist Π′
1 ∈ P(G, A) and p2 ∈ V (G)× Γ such that

B(Π′
1) = B(Π1)∆{p1, p2} and |E(Π′

1) ∪ E(Π2)| < |E(Π1) ∪ E(Π2)|.

Proof of claim. Suppose otherwise. By 3.1.1, p2 6∈ B(Π1) ∪ B(Π2).
However, |E(Π′

1)−E(Π2)| < |E(Π1)−E(Π2)|. So, by 3.1.2, Π′
1, Π2, and

p2 do not satisfy 3.1.1. That is, there exists an element p3 ∈ B(Π2)−
B(Π′

1) such that B(Π′
1)∆{p2, p3} ∈ B. However, B(Π1)∆{p1, p3} =

B(Π′
1)∆{p2, p3} ∈ B, contradicting 3.1.1. �

Let p1 = (u, α) and let P = (v0, e1, v1, . . . , ek, vk) be the path in
Π1 ending at u; thus P is loose. By possibly reversing the order, we
may assume that there is a path P ′ = (v′0, e

′
1, v

′
1, . . . , e

′
l, v

′
l) in Π2 that

starts at v0. Suppose that P is not contained in P ′. Now let Π′
1 be

the A-collection obtained from Π1 by replacing P with the trivial path
(v0). Note that B(Π′

1) = B(Π1)∆{p1, (v0, 0)} and |E(Π′
1) ∪ E(Π2)| <

|E(Π1) ∪ E(Π2)|, contradicting 3.1.3. Hence P is contained in P ′.
Suppose that P ′ is disjoint from each path in Π1 − {P} and

let Π′
1 be obtained from Π1 by replacing P with P ′. Note that

B(Π′
1) = B(Π1)∆{p1, (v

′
l, ωG(P ′))} and (v′l, ωG(P ′)) ∈ B(Π2), contra-

dicting 3.1.1. Therefore there is some vertex that is both on P ′ and on
a path in Π1 other than P ; let v′i be the first such vertex on P ′ and let
Q = (u0, f1, u1, . . . , fm, um) be the path of Π1 containing v′i. Suppose
that uj = v′i.

For a walk W = (x0, f1, x1, . . . , fp, xp) and 0 ≤ a ≤ b ≤ p we denote
the walks (xa, fa+1, xa+1, . . . , fb, xb) and (xb, fb, xb−1, . . . , fa+1, xa) by
W [xa, xb] and W [xb, xa] respectively.

We consider two cases.

Case 1: Q is a loose path.
Let P1 be the A-path obtained by concatenating P ′[v′0, . . . , v

′
i]

with Q[uj, . . . , u0] and let P2 be the path obtained by concatenating
P ′[v′0, . . . , v

′
i] with Q[uj, . . . , um].

Case 1.1: ωG(P1) 6= 0.
Let Π′

1 = (Π1 − {P, Q}) ∪ P1. Note that B(Π′
1) = B(Π1) −

{p1, (um, ωG(Q))} and (um, ωG(Q)) ∈ B(Π1), contradicting 3.1.1.

Case 1.2: ωG(P1) = 0.
Thus ω(P ′[v′0, v

′
i]) = ω(Q[u0, uj]) and, hence, ω(P2) = ω(Q). Now

let Π′
1 be the A-collection obtained from Π1 by replacing P and Q with

P2 and the trivial path (u0). Note that B(Π′
1) = (B(Π1) − {p1}) ∪



8 CHUDNOVSKY, CUNNINGHAM, AND GEELEN

{(u0, 0)}. Moreover, since ωG(P1) = 0, P1 6= P ′. Thus there is an edge
of Q[u0, uj] that is not in E(Π2). So, |E(Π′

1) ∪ E(Π2)| < |E(Π1) ∪
E(Π2)|, contradicting 3.1.3.

Case 2: Q is an A-path.
Let P1 and P2 be the A-paths in G[E(P ′) ∪ E(Q)] that both start

at v0 and that end with u0 and um respectively. Note that ω(P1) +
ω(Q) − ω(P2) = 0 and ω(Q) 6= 0, so either ω(P1) 6= 0 or ω(P2) 6= 0.
Moreover, either P ′ is loose (and hence different from P1 and P2) or
ω(P ′) 6= 0. Thus either ω(P1) 6= 0 and P2 6= P ′ or ω(P2) 6= 0 and
P1 6= P ′. By possibly swapping P1 and P2 and reversing Q, we may
assume that ω(P2) 6= 0 and P1 6= P ′. Let Π′

1 be the A-collection
obtained from Π1 by replacing P and Q with P2 and the trivial path
(u0). Note that B(Π′

1) = (B(Π1) − {p1}) ∪ {(u0, 0)}. Moreover, since
P1 6= P ′ there is an edge of Q[u0, uj] that is not in E(Π′

1) ∪ E(Π2).
Thus |E(Π′

1) ∪ E(Π2)| < |E(Π1) ∪ E(Π2)|, contradicting 3.1.3. This
final contradiction completes the proof.

The above proof can easily be made algorithmic with the stated
running time. �

We now prove a useful application of the exchange property.

Lemma 3.2. Let Π1, Π2 ∈ P(G, A) and let B1 ⊆ BA(Π1). Then there
exists Π3 ∈ P(G, A) such that either:

(1) val(Π3) = val(Π1) and B1 ⊆ B(Π3) and B(Π3) − B1 ⊆ B(Π2),
or

(2) val(Π3) = val(Π1) + 1 and |B(Π3) ∩B1| ≥ |B1| − 1.

Moreover, we can find such Π3 in O(|V (G)|3) time.

Proof. We assume that:

3.2.1. Among all Π′
1 ∈ P(G, A) with B1 ⊆ B(Π′

1) and val(Π′
1) =

val(Π1) we choose Π′
1 minimizing |B(Π′

1)−B(Π2)|.

We may assume that there exists p1 ∈ B(Π′
1)− (B1 ∪ B(Π2)), since

otherwise Π3 := Π′
1 satisfies (1). By the exchange property, there

exists Π3 ∈ P(G, A) and p2 ∈ B(Π′
1) ∪ B(Π2) such that B(Π3) =

B(Π′
1)∆{p1, p2}.

Case 1: p2 ∈ B(Π′
1).

Thus val(Π3) = val(Π′
1) + 1 and |B(Π3) ∩ B1| ≥ |B1| − 1, satisfying

(2).

Case 2: p2 ∈ B(Π2)−B(Π′
1).

Thus val(Π3) = val(Π′
1), B1 ⊆ B(Π3), and |B(Π3) − B(Π2)| <

|B(Π′
1)−B(Π2)|, contradicting3.2.1.
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That completes the proof; this proof can clearly be made algorithmic
with the stated running time. �

The following two lemmas are consequences of Lemma 3.2.

Lemma 3.3. Let Π1, Π2 ∈ P(G, A) with val(Π2) = val(Π1) + 1, let
uv = e ∈ E(G), let (u, α) and p be distinct elements of B(Π1), and
let (v, β) ∈ B(Π2) where α + ωG(e, v) − β 6= 0. Then there exists
Π3 ∈ P(G, A) such that val(Π3) = val(Π2) and either (u, α) ∈ B(Π3)
or p ∈ B(Π3). Moreover, we can find such Π3 in O(|V (G)|3) time.

Proof. By Lemma 3.2 with B1 = {p, (u, α)}, we get one of the following
two cases.

Case 1: There exists Π ∈ P(G, A) such that val(Π) = val(Π1) and
B1 ⊆ B(Π) and B(Π)−B1 ⊆ B(Π2).

Since |B(Π)| = 2val(Π) = 2val(Π2)+2 = |B(Π2)|+ |B1| and B(Π)−
B1 ⊆ B(Π2), we have B(Π2) ⊆ B(Π). Thus p, (u, α), (v, β) ∈ B(Π).
Let Pu and Pv be the loose paths in Π ending at u and v respectively.
Now let P = (Pu, e, P̄v), where P̄v denotes the reverse of the path Pv.
Note that P is an A-path and ωG(P ) = α + ωG(e, v) − β 6= 0. Now
let Π3 = (Π − {Pu, Pv}) ∪ {P}. Note that valA(Π3) = val(Π2) and
p ∈ B(Π3), as required.

Case 2: There exists Π3 ∈ P(G, A) such that val(Π3) = val(Π2) and
|B(Π3) ∩B1| ≥ |B1| − 1.

Thus either (u, α) ∈ B(Π3) or p ∈ B(Π3), as required.
This proof is clearly constructive with the stated running time. �

The next lemma is a direct consequence of Lemma 3.2; we omit the
easy proof.

Lemma 3.4. Let Π1, Π2 ∈ P(G, A) with val(Π2) = val(Π1), let p1 ∈
B(Π1), and let p2 and p3 be distinct elements of B(Π2). Then there
exists Π3 ∈ P(G, A) such that either:

(1) val(Π3) = val(Π1), p1 ∈ B(Π3), and either p2 ∈ B(Π3) or
p3 ∈ B(Π3), or

(2) val(Π3) = val(Π1) + 1.

Moreover, we can find such Π3 in O(|V (G)|3) time.

4. Key lemmas

In this section we prove constructive analogues of some of the lemmas
in Section 2.
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Throughout this section we let G be a Γ-labelled graph, A ⊆ V (G),
and P ⊆ P(G, A). We use the following definitions:

ν(P , A) = max(valA(Π) : Π ∈ P),

def(P , A) = |A| − 2ν(P , A),

P∗ = {Π ∈ P : valA(Π) = ν(P , A)}, and

R(P , A) = ∪(BA(Π) : Π ∈ P∗).

Now, for each v ∈ V (G), we let

Γ(P , A, v) = {γ ∈ Γ : (v, γ) ∈ R(P , A)}.
In addition, we define:

D1(P , A) = {v ∈ V (G) : |Γ(P , A, v)| = 1},
D2(P , A) = {v ∈ V (G) : |Γ(P , A, v)| > 1}, and

D(P , A) = D1(P , A) ∪D2(P , A).

We begin with some easy observations relating to 2.1 and 2.2:

4.1. Let u ∈ A−D(P , A). If there exists Π ∈ P(G− u, A− {u}) such
that valA−{u}(Π) = ν(P , A), then there exists Π′ ∈ P(G, A) such that
(u, 0) ∈ R(P ∪ {Π′}, A).

4.2. Let u ∈ V (G) − A with Γ(P , A, u) ⊆ {0}. If there exists
Π ∈ P(G, A ∪ {u}) such that valA∪{u}(Π) = ν(P , A) + 1, then there
exists Π′ ∈ P(G, A) such that either valA(Π′) > ν(P , A) or valA(Π′) =
ν(P , A) and there exists α ∈ Γ−{0} such that (u, α) ∈ R(P∪{Π′}, A).

The next result generalizes Lemma 2.3.

Lemma 4.3. Let u ∈ A−D(P , A), uv = e ∈ E(G), and α ∈ Γ(P , A, v)
such that ωG(e, u) 6= −α. If Π ∈ P(G−u, A−{u}) with valA−{u}(Π) =
ν(P , A) − 1 and p ∈ BA−{u}(Π) − R(P , A), then there exists Π′ ∈
P(G, A) such that valA(Π′) = ν(P , A) and either (u, α + ωG(e, u)) ∈
B(Π′) or p ∈ B(Π′). Moreover, if |P| ≤ 2|V (G)|, then we can find
such Π′ in O(|V (G)|3) time.

Proof. Let Π1 be the A-collection obtained by adding the trivial path
(u) to Π. Note that valA(Π1) = ν(P , A) − 1 and p, (u, 0) ∈ BA(Π1).
Let Π2 ∈ P∗ with (v, α) ∈ BA(Π2). Now valA(Π2) = valA(Π1) +
1. Therefore, by Lemma 3.3, we find Π′ ∈ P(G, A) with valA(Π′) =
ν(P , A) and either (u, 0) ∈ BA(Π′) or p ∈ BA(Π′). Now Π′ satisfies the
lemma.

This proof is clearly constructive with the stated running time. �

The next result generalizes Lemma 2.4.
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Lemma 4.4. Let u ∈ V (G) − A with Γ(P , A, u) ⊆ {0}, let uv =
e ∈ E(G) with ωG(e, v) ∈ Γ(P , A, v). If Π ∈ P(G, A ∪ {u}) with
valA∪{u}(Π) = ν(P , A) and p ∈ BA∪{u}(Π) − R(P , A), then there ex-
ists Π′ ∈ P(G, A) such that either valA(Π′) > ν(P , A) or valA(Π′) =
ν(P , A) and either p ∈ B(Π′) or there exists (u, α) ∈ B(Π′) with α 6= 0.
Moreover, if |P| ≤ 2|V (G)|, then we can find such Π′ in O(|V (G)|3)
time.

Proof. Note that, if v ∈ A, then, since ωG(e, v) ∈ Γ(P , A, v), we have
ωG(e, v) = 0. On the other hand, if v 6∈ A, then, by possibly shifting,
we may assume that ωG(e, v) = 0. Let p = (w, δ). We break the proof
into the following cases.

Case 1: There exists Π1 ∈ P(G, A∪{u}) with valA∪{u}(Π1) = ν(P , A)
and p ∈ BA∪{u}(Π1), such that u is not the start of the loose path in
Π1 containing w.

There is a path P ∈ Π1 whose start or end is u. Suppose that P is a
loose path with respect to A∪{u}; thus u is the start of P and P does
not contain w. Then Π′ := Π1 − {P} satisfies the lemma. Therefore
we may assume that P is an A ∪ {u}-path; furthermore, by possibly
reversing P , we may assume that u is the end of P . Let α = ωG(P ).
Since P is an A ∪ {u}-path in Π1, we have α 6= 0. Now note that
Π1 ∈ P(G, A), valA(Π1) = ν(P , A) − 1, and p, (u, α) ∈ BA(Π1). Let
Π2 ∈ P∗ with (v, 0) ∈ BA(Π2). Applying Lemma 3.3 to Π1 and Π2 we
find Π′ ∈ P(G, A) with valA(Π′) = ν(P , A) and either p ∈ BA(Π′) or
(u, α) ∈ BA(Π′), as required by the lemma.

Case 2: There exists Π1 ∈ P(G, A∪{u}) with valA∪{u}(Π) = ν(P , A)+
1.

There is a path P ∈ Π1 whose start or end is u. If P is a loose
path, then Π′ := Π1 − {P} satisfies the lemma. Therefore we may
assume that P is an A ∪ {u}-path; furthermore, by possibly reversing
P , we may assume that u is the end of P . Let α = ωG(P ). Since P
is an A ∪ {u}-path in Π1, we have α 6= 0. Now note that Π1 is an
A-collection, valA(Π1) = ν(P , A), and (u, α) ∈ BA(Π1). Thus Π′ := Π1

satisfies the lemma.

Case 3: There exists Π1 ∈ P(G, A∪{u}) with valA∪{u}(Π1) = ν(P , A)
and there exists (z, β) ∈ BA∪{u}(Π1)− {(w, δ)} with zu = f ∈ E(G).

Let P ∈ Π1 be the path ending at w. We may assume that u is
the start of P , since otherwise we reduce to Case 1. Let Pz ∈ Π1

be the path ending at z, let Pu = (Pz, f, u), and let Pw = (Pz, f, P ).
Let α = ωG(Pu). Note that ωG(Pw) = α + δ, so either α 6= 0 or
ωG(Pw) = δ. Suppose that α 6= 0. Let Π′ = (Π1 − {P, Pz}) ∪ {Pu}.



12 CHUDNOVSKY, CUNNINGHAM, AND GEELEN

Note that valA(Π′) = ν(P , A) and (u, α) ∈ BA(Π′), as required. Now
suppose that ωG(Pw) = δ. Let Π′ = (Π1 − {P, Pz}) ∪ {Pw}. Note that
valA(Π′) = ν(P , A) and (w, δ) ∈ BA(Π′), as required.

Case 4: There exists Π2 ∈ P(G, A ∪ {u}) such that valA∪{u}(Π2) =
ν(P , A) and (z, β), (v, 0) ∈ BA∪{u}(Π2) where zu = f ∈ E(G) and
(z, β) 6∈ {(w, δ), (v, 0)} .

Note that, since (v, 0) ∈ R(P , A), we have (v, 0) 6= (w, δ). Re-
call that Π ∈ P(G, A ∪ {u}), valA∪{u}(Π) = ν(P , A), and (w, δ) ∈
BA∪{u}(Π). Applying Lemma 3.4 to Π1 := Π and Π2, we find Π3 ∈
P(G, A) such that either valA∪{u}(Π3) > ν(P , A), or valA∪{u}(Π3) =
ν(P , A) and either (v, 0), (w, δ) ∈ BA∪{u}(Π3) or (z, β), (w, δ) ∈
BA∪{u}(Π3). The case that valA∪{u}(Π3) > ν(P , A) reduces to Case
2 and the case that valA∪{u}(Π3) = ν(P , A) and either (v, 0), (w, δ) ∈
BA∪{u}(Π3) or (z, β), (w, δ) ∈ BA∪{u}(Π3) reduces to Case 3.

Case 5: There exists Π2 ∈ P(G, A ∪ {u}) such that valA∪{u}(Π2) =
ν(P , A) and (u, 0), (v, 0) ∈ BA∪{u}(Π2)}.

Note that, since (v, 0) ∈ R(P , A), we have (v, 0) 6= (w, δ). Re-
call that Π ∈ P(G, A ∪ {u}), valA∪{u}(Π) = ν(P , A), and (w, δ) ∈
BA∪{u}(Π). Applying Lemma 3.4 to Π1 := Π and Π2, we find Π3 ∈
P(G, A) such that either valA∪{u}(Π3) > ν(P , A), or valA∪{u}(Π3) =
ν(P , A) and either (u, 0), (w, δ) ∈ BA∪{u}(Π3) or (v, 0), (w, δ) ∈
BA∪{u}(Π3). The case that valA∪{u}(Π3) > ν(P , A) reduces to Case 2;
the case that valA∪{u}(Π3) = ν(P , A) and (v, 0), (w, δ) ∈ BA∪{u}(Π3)
reduces to Case 3; and the case that valA∪{u}(Π3) = ν(P , A) and
(u, 0), (w, δ) ∈ BA∪{u}(Π3) reduces to Case 1.

Let Πv ∈ P∗ with (v, 0) ∈ BA(Πv). We may assume that there is a
path P ∈ Πv that contains u, since otherwise Π2 := Πv ∪ {(u)} meets
the criteria of Case 5.

Case 6: P is a loose path with respect to A.
For any y ∈ V (P ), we let Py denote the initial segment of P ending

at y. We may assume that ωG(Pu) = 0, since otherwise Π′ := (Πv −
{P}) ∪ {Pu} satisfies the lemma. Now we may assume that v is the
end of P , since otherwise Π2 := ((Πv − {P}) ∪ {Pu} meets the criteria
of Case 5. Now let z be the vertex preceding u on P and let P ′ be the
subpath of P starting at u and ending at v. Let β = ωG(Pz). We may
assume that (z, β) 6= (w, δ), since otherwise Π′ := ((Πv − {P}) ∪ {Pz}
satisfies the lemma. Finally, we see that Π2 := (Πv − {P}) ∪ {Pz, P

′}
meets the criteria of Case 4.

Case 7: P is an A-path.
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For any y ∈ V (P ), we let Py denote the initial segment of P ending
at y. Note that, by possibly reversing the direction of P , we may
assume that ωG(Pu) 6= 0; let α = ωG(Pu). Let z be the vertex on
P immediately following u, let P ′ denote the subpath of P̄ that ends
at z, and let β = ωG(P ′). We may assume that (z, β) = (w, δ), since
otherwise Π2 := (Πv−{P})∪{Pu, P

′} meets the criteria of Case 4. Let
Q ∈ Πv be the path ending at v. Let P ′′ = (Q, e, P̄u). Note that P ′′ is
an A-path and that ωG(P ′′) = ωG(Q) + ωG(e, u) − ωG(Pu) = −α 6= 0.
Therefore Π′ := (Πv − {P, Q}) ∪ {P ′, P ′′} satisfies the lemma.

That completes the proof; this proof can easily be made algorithmic
with the stated running time. �

We say that (G, A) is P-critical if G is connected, E0(G, A) = ∅,
D1(P , A) = A, and D2(P , A) = V (G)−A. The next result generalizes
Lemma 2.7.

Lemma 4.5. If (G, A) is P-critical and def(P , A) > 1, then there
exists Π ∈ P(G, A) such that valA(G) = νA(P) + 1. Moreover, if
|P| ≤ 2|V (G)|, then we can find such Π′ in O(|V (G)|4) time.

Proof. We start by considering an easy case.

Case 1: There exists Π1 ∈ P(G, A) with valA(Π1) = νA(P) and there
exists (u, α), (v, β) ∈ BA(Π1) where uv = e ∈ E(G).

We break this into two further subcases.

Case 1.1: α + ωG(e, v)− β 6= 0.
Let Pu, Pv ∈ Π1 be the paths ending at u and v respectively and

let P = (Pu, e, P̄v). Note that P is an A-path and that ωG(P ) =
α + ωG(e, v) − β 6= 0. Thus Π := (Π1 − {Pu, Pv}) ∪ {P} satisfies the
lemma.

Case 1.2: α + ωG(e, v)− β = 0.
Note that, since (G, A) is P-critical, either u 6∈ A or v 6∈ A. By

possibly swapping u and v, we may assume that v 6∈ A. Then, since
(G, A) is P-critical, there exists β′ ∈ Γ(P , A, v) − {β}. Let Π2 ∈
P∗ with (v, β′) ∈ BA(Π2). Applying Lemma 3.4 to Π2 and Π1, we
find Π3 ∈ P(G, A) such that either valA(Π3) > νA(P) or valA(Π3) =
νA(P) and either (u, α), (v, β′) ∈ BA(Π3) or (v, β), (v, β′) ∈ BA(Π3).
If valA(Π3) > νA(P), then Π := Π3 satisfies the lemma. Also, note
that BA(Π3) cannot contain both (v, β) and (v, β′). Therefore we may
assume that (u, α), (v, β′) ∈ BA(Π3). Now, since β 6= β′, we have
α + ωG(e, v)− β′ 6= α + ωG(e, v)− β = 0. Therefore Π1 := Π3 satisfies
the criterion for Case 1.1.
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(∗) Among all triples (Π1, (v1, α1), (v2, α2)) where Π1 ∈ P(G, A),
valA(Π1) = νA(P), and (v1, α1), (v2, α2) ∈ BA(Π1) we choose the triple
such that the distance between v1 and v2 in G is minimum.

In view of Case 1, we may assume that v1 is not adjacent to v2.
Let P be a shortest (v1, v2)-path and let u be an internal vertex of P .
Since (G, A) is P-critical, there exists β ∈ Γ(P , A, u). Let Π2 ∈ P∗

with (u, β) ∈ BA(Π2). Applying Lemma 3.4 to Π2 and Π1, we find
Π3 ∈ P(G, A) such that either valA(Π3) > νA(P) or valA(Π3) = νA(P)
and (u, β), (vi, αi) ∈ BA(Π3) for some i ∈ {1, 2}. If valA(Π3) > νA(P),
then Π := Π3 satisfies the lemma. Thus, by symmetry, we may assume
that valA(Π3) = νA(P) and (u, β), (v1, α1) ∈ BA(Π3). However, since
v1 is closer to u than it is to v2, we have a contradiction to (∗).

That completes the proof; this proof can easily be made algorithmic
with the stated running time. �

5. The algorithm

Throughout the algorithm we maintain a set P ⊆ P(G, A). We are
primarily interested in the sets D1(P , A) and D2(P , A). Therefore, by
removing unnecessary A-collections from P , we keep

|P| ≤ |D1(P , A)|+ 2|D2(P , A)| ≤ 2|V (G)|.
If P1,P2 ⊆ P(G, A), then we say that P2 is richer than P1, with respect
to A, if either νA(P2) > νA(P1) or νA(P2) = νA(P1) and |D1(P2, A)|+
2|D2(P2, A)| > |D1(P1, A)|+ 2|D2(P1, A)|.

By possibly shifting (as we did in Lemma 1.2), we may assume that
(G, A) satisfies:

(1) for each v ∈ D1(P , A), Γ(P , A, v) = {0}, and
(2) for each u ∈ NG(D(P , A)) − A, there exists uv = e ∈ E(G)

such that ωG(e, v) ∈ Γ(G, A, v).

Now let A′ = A ∪ NG(D(G, A)) ∪ D1(G, A) and X =
NG−E0(G,A′)(D(G, A)).

Optimality condition: If def(P , A) = odd(G−X,A′−X)−|A′−A|−|X|,
then the A-collections in P∗ are optimal.

Proof. Note that def(P , A) ≥ def(G, A) ≥ odd(G−X,A′−X)− |A′−
A| − |X|. Thus, if def(P , A) = odd(G−X, A′ −X)− |A′ − A| − |X|,
then def(P , A) = def(G, A) and, hence, each A-collection in P∗ is
optimal. �

In each iteration of the algorithm, if def(P , A) 6= odd(G − X, A′ −
X)− |A′−A| − |X|, then we find an A-collection Π such that P ∪{Π}
is richer than P . Hence in at most O(|V (G)|2) iterations we will find
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an optimal A-collection. It remains to show how we find the promised
A-collection Π.

We omit the elementary proof of the next lemma.

Lemma 5.1. Let A1, X1 ⊆ V (G) such that A ∪ X1 ⊆ A1 ⊆ A′ and
X1 ⊆ X. Then, in O(|V (G)|3) time, we can construct P1 ⊂ P(G −
X1, A1 − X1) such that either νA1(P1) > νA(P) − |X1| or νA1(P1) =
νA(P)− |X1| and R(P , A) ⊆ R(P1, A1).

Lemma 5.2. Let A′′ ⊆ A′ with A ⊆ A′′. Suppose that Π′ ∈ P(G, A′′)
where either

(i) νA′′(P ′) > νA(P) or
(ii) νA′′(P ′) = νA(P) and there exists (v, β) ∈ BA′′(Π′) − R(P , A)

where v 6∈ D2(P , A).

Then, in O(|V (G)|4) time, we can find Π ∈ P(G, A) such that P ∪{Π}
is richer than P.

Proof. The proof is inductive on |A′′ − A|. If A′′ = A, then Π := Π′

satisfies the lemma. Thus we may assume that there exists a ∈ A′′ −
A. Let A1 = A′′ − {a}. By Lemma 5.1, we can construct P1 ⊂
P(G, A1) such that either νA1(P1) > νA(P) or νA1(P1) = νA(P) and
R(P , A) ⊆ R(P1, A1). Inductively, we may assume that νA1(P1) =
νA(P), D1(P1, A1) = D1(P , A), and D2(P1, A1) = D2(P , A). Now, by
Lemma 4.4, we can construct Π′′ ∈ P(G, A1) such that P1 ∪ {Π′′} is
richer than P1 with respect to A1. �

The next lemma is proved similarly; we leave the details to the
reader.

Lemma 5.3. Let X ′ ⊆ X. Suppose that Π′ ∈ P(G − X ′, A′ − X ′)
where either

(i) νA′−X′(P ′) > νA(P) or
(ii) νA′−X′(P ′) = νA(P) and there exists (v, β) ∈ BA′−X′(Π′) −

R(P , A) where v 6∈ D2(P , A).

Then, in O(|V (G)|4) time, we can find Π ∈ P(G, A) such that P ∪{Π}
is richer than P.

Let G1 = G − X and let A1 = A′ − X. Now, by Lemma 5.1,
we can construct P1 ⊂ P(G1, A1) such that either νA1(P1) > νA(P)
or νA1(P1) = νA(P) and R(P , A) ⊆ R(P1, A1). By Lemma 5.3,
we may assume that νA1(P1) = νA(P), D1(P1, A1) = D1(P , A), and
D2(P1, A1) = D2(P , A). Now let G2 = G1 − E0(G1, A1). Note that
no A1-collection in G1 uses an edge in E0(G1, A1), so P1 ⊆ P(G2, A1).
Note that, if we can find Π′ ∈ P(G2, A1) such that valA1(Π

′) > νA1(P1),
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then, by Lemma 5.3, we can construct Π ∈ P(G, A) such that P ∪{Π}
is richer than P .

Let H be a component of G2, let AH = A1 ∩ V (H). For each
Π ∈ P(G2, A1), we let Π|H denote the restriction of Π to H and let
Π−H denote the restriction of Π to G2−H. Let Π1, Π2 ∈ P∗

1 . Suppose
that valAH

(Π1|H) > valAH
(Π2|H). Now let Π′ = (Π2 − H) ∪ (Π1|H).

Note that Π′ ∈ P(G2, A1) and that valA1(Π
′) > νA1(P1), as re-

quired. Therefore we may assume that, for all Π1, Π2 ∈ P∗
1 , we have

valAH
(Π1|H) > valAH

(Π2|H). Let PH = {Π|H : Π ∈ P∗
1}.

Lemma 5.4. For each component H of G2, either def(H, AH) = 0 or
(H, AH) is PH-critical.

Proof. Note that, if uv = e ∈ E(G) with u ∈ V (G) − D(P , A)
and v ∈ D(P , A), then either u ∈ X or e ∈ E0(G, A′). Moreover,
D(P1, A1) = D(P , A). Thus, if H is a component of G2, then either
V (H) ⊆ D(P1, A1) or V (H)∩D(P1, A1) = ∅. If V (H)∩D(P1, A1) = ∅,
then def(PH , AH) = 0. Thus we may assume that V (H) ⊆ D(P1, A1).
Note that, since H is a component of G2, D1(PH , AH) = D1(P1, A1) ∩
V (H) and D2(PH , AH) = D2(P1, A1) ∩ V (H). By the definition of A′,
a vertex v ∈ D(P1, A1) is in D1(P1, A1) if and only if v ∈ A1. Hence
H is PH-critical, as required. �

Suppose that (H, AH) is PH-critical and that def(PH , AH) > 1.
Then, by Lemma 4.5, we can construct Π1 ∈ P(H, AH) such that
valAH

(Π1) > ν(PH , AH). Now let Π2 ∈ P∗
1 and let Π′ = Π1∪ (Π2−H).

Note that Π′ ∈ P(G2, A1) and that valA1(Π
′) > νA1(P1), as required.

Therefore we may assume that: For each component H of G2, we have
def(PH , AH) ≤ 1. Thus def(G1, A1) = odd(G1, A1). So, we have:

def(P , A) = def(G−X, A′ −X)− |A′ − A| − |X|
= odd(G−X,A′ −X)− |A′ − A| − |X|,

as required. This completes the description and proof of the algorithm.
Let n = |V (G)|. The algorithm, as stated, requires O(n6) time. The

complexity in Lemma 3.2 can be improved from O(n3) to O(n2), by
combining the proofs of Lemma 3.2 and 3.1. This reduces the overall
complexity of our algorithm from O(n6) to O(n5).
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