
Recognizing Berge Graphs

Maria Chudnovsky, Princeton University, Princeton, NJ

Gérard Cornuéjols1, Carnegie Mellon University, Pittsburgh, PA, and

Faculté des Sciences de Luminy, Marseille, France

Xinming Liu, Carnegie Mellon University, Pittsburgh, PA

Paul Seymour2, Princeton University, Princeton, NJ

Kristina Vušković3, University of Leeds, Leeds, UK

November 15, 2002; revised August 15, 2004

1Supported by NSF grant DMI-0098427 and ONR grant N00014-97-1-0196.
2Supported by ONR grant N00014-01-1-0608, and NSF grant DMS-0070912.
3Supported by EPSRC grant GR/R35629/01.

Abstract

A graph is Berge if no induced subgraph of G is an odd cycle of length at least five or the complement
of one. In this paper we give an algorithm to test if a graph G is Berge, with running time O(|V (G)|9).
This is independent of the recent proof of the strong perfect graph conjecture.

1 Introduction

A hole in G is an induced subgraph of G that is a cycle of length at least four, and it is odd or even
if it has odd (or even, respectively) length. A graph is Berge if G and its complement both have no
odd hole. (The complement G of G is the graph with vertex set V (G), in which two distinct vertices
are adjacent if and only if they are nonadjacent in G.) It has been an open question whether there
is a polynomial algorithm to test if a graph is Berge (or even whether testing Bergeness belongs to
NP). We give an algorithm to answer this, with running time O(|V (G)|9).

A graph G is perfect if the chromatic number of H equals the size of the largest clique in H,
for every induced subgraph H of G. Perfect graphs are of interest for many reasons, and in joint
work with Neil Robertson and Robin Thomas, two of us proved in a recent paper [2] the well-known
“strong perfect graph conjecture” of Claude Berge [1], that a graph is Berge if and only if it is
perfect. So we can test whether G is perfect by applying an algorithm to test whether G is Berge,
and being able to test whether a graph is perfect might have practical applications, as well as being
of theoretical interest. However, the algorithm we give here for testing Bergeness is independent of
the theorem of [2].

Here is an outline of the algorithm. It makes use of “cleaning”, a technique first used by Conforti
and Rao [5] to recognize linear balanced matrices. (Cleaning is also a key step in the even hole
recognition algorithm obtained jointly by two of us with Conforti and Kapoor [3]; and indeed, the
two-step cleaning algorithm there was an ancestor of Routine 3 in this paper.) With input a graph
G, we would like to decide either that G is not Berge, or that G contains no odd hole. (To test
Bergeness, we just run this algorithm on G and then again on the complement of G.) If there is an
odd hole in G, then there is a shortest one, say C. A vertex of the remainder of G is C-major if its
set of neighbours in C is not a subset of the vertex set of any 3-vertex path of C; and C is clean
(in G) if there are no C-major vertices in G. If there happens to be a clean shortest odd hole in
G, then it stands out and can be detected relatively easily; and that essentially is the first step of
our algorithm, a routine to test whether there is a clean shortest odd hole. The remainder of the
algorithm consists of reducing the general problem to the “clean” case that was just handled. If C
is a shortest odd hole in G, let us say a subset X of V (G) is a cleaner for C if X ∩ V (C) = ∅ and
every C-major vertex belongs to X. Thus if X is a cleaner for C then C is a clean hole in G \ X.
The idea of the remainder of the algorithm is to generate polynomially many subsets of V (G), such
that if there is a shortest odd hole C in G, then one of the subsets will be a cleaner for C. If we can
do that, then we delete each of these subsets in turn, thereby generating polynomially many induced
subgraphs; and we know that there is an odd hole in G if and only if in one of these subgraphs there
is a clean shortest odd hole. Thus we can decide whether G has an odd hole by testing whether any
of these subgraphs has a clean shortest odd hole.

In order to reduce the running time, it turns out to be advantageous not to do exactly what we
just described, but to allow the subsets to meet the shortest odd hole within some 3-vertex path.
Let C be a shortest odd hole in G. We say a subset X of V (G) is a near-cleaner for C if X contains
all C-major vertices, and X ∩V (C) is a subset of the vertex set of some 3-vertex path of C. For us it
is much faster to generate subsets such that one is guaranteed to be a near-cleaner, than if we really
require one to be a cleaner; but we have to pay for it with added complications in the first step (the
clean shortest odd hole detector), because now we have to detect a clean but “slightly-damaged”
shortest odd hole. Nevertheless, the tradeoff is worth it.

How can we generate the polynomially many subsets such that one is a near-cleaner for a shortest

1

odd hole C, without knowledge of C? This we only know how to do if C is “amenable”, so let us define
that next. A subset X ⊆ V (G) is anticonnected if the subgraph of G induced on X is connected. A
vertex v is X-complete if v ∈ V (G) \X is adjacent to every vertex in X, and an edge is X-complete
if both its ends are X-complete. A hole C in G is amenable if

• C is a shortest odd hole in G, of length at least 7, and

• for every anticonnected set X of C-major vertices, there is an X-complete edge in C.

We know how to clean if there is an amenable hole. Finally, there is the possibility that the input
graph has an odd hole but no amenable hole. To handle this we first run some tests which in this
case will detect directly that G is not Berge.

Thus, the algorithm falls naturally into three parts (numbered in the order in which they were
discovered, and in the order in which it is most convenient to explain them, not the order in which
they are applied). The first is the clean shortest odd hole detector, modified to allow for near-cleaners.
More precisely:

Routine 1: A polynomial algorithm with input a graph G and a subset X of V (G), such that if X
is a near-cleaner for a shortest odd hole in G, then the algorithm will discover an odd hole in G.

The second part is the amenability test:

Routine 2: A polynomial algorithm such that, if some shortest odd hole in G is not amenable, the
algorithm will discover that G is not Berge.

Finally, we need the cleaning process:

Routine 3: A polynomial algorithm that outputs polynomially many subsets of V (G), such that if
C is an amenable hole in G, then one of the subsets is a near-cleaner for C.

From these parts, we construct an algorithm to test Bergeness as follows. First we run Routine
2; and if we do not detect that G is not Berge, from now on we know that every shortest odd hole
is amenable. Now we run Routine 3, and get the polynomially many subsets. For each of them (say
X) in turn, we run Routine 1 on the pair G,X. If we still have not decided that G is not Berge, we
repeat everything on the complement graph; and if there too we cannot deduce that G is not Berge,
then it is Berge and we output that.

Incidentally, there is another interesting open question in this area — is there a polynomial
algorithm to test if G contains an odd hole? The algorithms of Routines 1 and 3 work equally well
for that question; they take no notice of odd holes in G. However, there are places in the algorithm
for Routine 2 where we stumble over an odd hole in G and stop, declaring G non-Berge, and we are
currently unable to eliminate that feature; so the question of testing just for odd holes in G remains
open.

This paper is the product of the research of two groups that were working separately on the
problem, Cornuéjols, Liu and Vušković (CLV), and Chudnovsky and Seymour (ChS). The approach
of both groups was based on cleaning a shortest odd hole, and there was a great deal of overlap in
their results. Both groups simultaneously obtained Routine 1, in quite different ways; ChS obtained
Routines 2 and 3; and then CLV obtained Routine 3, with a much better method. What is presented
here is the work of ChS on Routines 1 and 2, and the work of CLV on Routine 3. In the appendix
we also give the version of Routine 1 due to CLV, which may be of some independent interest.

2

2 Testing for pyramids

In this section we begin on the algorithm for Routine 1. Let us be more precise. All graphs in this
paper are finite, and simple. The vertex- and edge-sets of a graph G are denoted by V (G), E(G).
A subset X ⊆ V (G) is connected if the subgraph of G induced on X is connected. If X ⊆ V (G),
a component of X means a maximal nonnull connected subset of X. A path in G is an induced
subgraph that is connected, with at least one vertex, no cycle, and no vertex of degree > 2. The
ends of a path are defined as usual. We denote the set of internal vertices of a path P (that is, its
interior) by P ∗. The length of a path or hole is the number of edges in it, and a path or hole is odd if
it has odd length and even otherwise. If u, v ∈ V (G), in the same component, we denote the length
of the shortest path in G between them by dG(u, v).

A triangle in a graph G means a set of three pairwise adjacent vertices of G. A pyramid in G
is an induced subgraph formed by the union of a triangle {b1, b2, b3}, a fourth vertex a, and three
paths P1, P2, P3, satisfying:

• for i = 1, 2, 3, Pi is between a and bi

• for 1 ≤ i < j ≤ 3, a is the only vertex in both Pi, Pj , and bibj is the only edge of G between
V (Pi) \ {a} and V (Pj) \ {a}

• a is adjacent to at most one of b1, b2, b3.

So every pyramid is a subdivision of K4. Note that the pyramid is determined by a knowledge of
P1, P2, P3, and we call it the pyramid formed by P1, P2, P3. If there exist a, b1, b2, b3 etc as above,
we say that a can be linked onto the triangle {b1, b2, b3}, via the paths P1, P2, P3. It is easy to see
that any graph containing a pyramid contains an odd hole. Our objective in this section is to give a
polynomial algorithm to test whether G contains a pyramid.

If K is a pyramid, formed by three paths P1, P2, P3 linking a onto b1, b2, b3 respectively, we say
its frame is the 10-tuple

a, b1, b2, b3, s1, s2, s3,m1,m2,m3,

where

• for i = 1, 2, 3, si is the neighbour of a in Pi

• for i = 1, 2, 3, mi ∈ V (Pi) satisfies dPi
(a,mi) − dPi

(mi, bi) ∈ {0, 1}.

A pyramid K in G is optimal if there is no pyramid K ′ with |V (K ′)| < |V (K)|. If there is a
pyramid in G, then there is an optimal one, and optimal pyramids have some special structure that
helps us detect them.

2.1 Let K be an optimal pyramid, with frame a, b1, b2, b3, s1, s2, s3,m1,m2,m3. Let S1, T1 be the
subpaths of P1 from m1 to s1, b1 respectively. Let F be the set of all vertices nonadjacent to each of
s2, s3, b2, b3.

1. Let Q be a path between s1 and m1 with interior in F , and with minimum length over all such
paths. Then a-s1-Q-m1-T1-b1 is a path (say P ′

1), and P ′

1, P2, P3 form an optimal pyramid.

3

2. Let Q be a path between m1 and b1 with interior in F , and with minimum length over all such
paths. Then a-s1-S1-m1-Q-b1 is a path (say P ′

1), and P ′

1, P2, P3 form an optimal pyramid.

Analogous statements hold for P2, P3.

Proof. Note first that from the choice of m1, we have

|E(S1)| ≤ |E(T1)| ≤ |E(S1)| + 1.

Let U be the path induced on V (P2 ∪ P3) \ {b2, b3}. Let us prove the first statement. If s1 = m1

or s1,m1 are adjacent, then the claim holds trivially, so we assume that s1,m1 are distinct and
nonadjacent. Hence S1 has length ≥ 2, and therefore T1 has length ≥ 2, and in particular m1 6= b1.
From the choice of Q, it follows that |E(Q)| ≤ |E(S1)|. Let Q have vertices q1- · · · -qn, where q1 = s1

and qn = m1. Then n ≥ 3.
Suppose first that none of q2, . . . , qn−1 belong to or have neighbours in U . Then there is a path

P ′

1 between a, b1 with interior in V (Q∪T1), of length at most 1 + |E(Q)|+ |E(T1)|. Hence P ′

1, P2, P3

form a pyramid, and from the optimality of K it follows that P ′

1 has length at least that of P1. So

|E(P ′

1)| ≥ 1 + |E(S1)| + |E(T1)| ≥ 1 + |E(Q)| + |E(T1)| ≥ |E(P ′

1)|

and therefore equality holds throughout, and in particular, a-s1-Q-m1-T1-b1 is the path P ′

1, and the
pyramid formed by P ′

1, P2, P3 is optimal. Thus in this case the claim holds.
We may therefore assume that for some k with 2 ≤ k ≤ n − 1, qk belongs to or has neighbours

in U . Choose such a value of k, maximum. We claim that none of qk, . . . , qn belongs to U ; for if
k < n − 1 this follows from the maximality of k, and if k = n − 1 it follows since qn = m1 has no
neighbour in U . From the choice of Q, none of qk, . . . , qn−1 is adjacent to any of b2, b3.

Suppose that qk has nonadjacent neighbours in U . Then qk can be linked onto {b1, b2, b3} via
a path from qk to b1 with interior in {qk+1, . . . , qn} ∪ V (T1), and two paths with interior in V (U)
from qk to b2, b3 respectively. Since the first path is strictly shorter than P1 (since k ≥ 2 and
|E(Q)| ≤ |E(S1)|), and the sum of the lengths of the other two is at most the sum of the lengths of
P1, P2, this contradicts the optimality of K.

Next suppose that qk has a unique neighbour in U , say x. Then x can be linked onto {b1, b2, b3},
via a path from x to b1 with interior in {qk, . . . , qn} ∪ V (T1), and two paths with interior in V (U),
from x to b2, b3 respectively, contrary to the optimality of K (since k ≥ 2 and |E(Q)| ≤ |E(S1)|).

So qk has exactly two neighbours in U , and they are adjacent. Since qk is nonadjacent to s2, s3,
it follows that qk is nonadjacent to a, and we may assume that qk has two adjacent neighbours in
P2, different from a, s2, b2. Let X be the subpath of P2 between a and the neighbour of qk that is
closer to a in P2 (say x), and let Y be the subpath of P2 between b2 and the neighbour of qk that
is closer to b2 (say y). Then a can be linked onto {qk, x, y}, via a path from a to qk with interior in
V (S1) ∪ {qk+1, . . . , qn}, a-X-x and a-P3-b3-b2-Y -y. Since the sum of the lengths of the second and
third paths equals the sum of the lengths of P2, P3, and the first path has length

≤ 1 + |E(S1)| + n − k ≤ 2|E(S1)| ≤ |E(S1)| + |E(T1)| < |E(P1)|,

this contradicts the optimality of K. This proves the first statement of 2.1.
Now we prove the second statement. If m1 = b1 or m1, b1 are adjacent, the claim holds trivially,

so we assume m1, b1 are distinct and nonadjacent. Hence T1 has length ≥ 2, and therefore S1 has

4

length ≥ 1. From the choice of Q, |E(Q)| ≤ |E(T1)|. Let Q have vertices q1- · · · -qn, where q1 = m1

and qn = b1; then n ≥ 3, since m1, b1 are distinct and nonadjacent. Suppose that none of q2, . . . , qn−1

belong to or have neighbours in U . Then from the optimality of K, it follows that P1 is a shortest
path between a, b1 with interior in V (P1) ∪ {q2, . . . , qn−1}; and so Q,T1 have the same length, and
there are no edges between {q2, . . . , qn−1} and V (S1 \ m1), and therefore the claim holds.

So we may assume that qk belongs to or has a neighbour in U , for some k with 2 ≤ k ≤ n − 1.
Choose k minimum. It follows that none of q1, . . . , qk belong to U . Let R be a path from qk to
b1 with interior in {q1, . . . , qk} ∪ V (T1). We claim that |E(R)| ≤ |E(P1)| − 2. This is clear if qk is
adjacent to b1, since P1 has length ≥ 4. If qk is not adjacent to b1 then

k − 1 ≤ n − 3 ≤ |E(T1)| − 2 ≤ |E(S1)| − 1,

and so
|E(R)| ≤ k − 1 + |E(T1)| ≤ |E(S1)| + |E(T1)| − 1 = |E(P1)| − 2.

In either case, |E(R)| ≤ |E(P1)| − 2 as claimed.
From the choice of Q, qk is nonadjacent to b2, b3. Suppose first that qk has nonadjacent neighbours

in U . Then qk can be linked onto {b1, b2, b3} via R and two paths with interior in U from qk to b2, b3

respectively. Since R is strictly shorter than P1, and the sum of the lengths of the other two is at
most the sum of the lengths of P2, P3, this contradicts the optimality of K.

Next suppose that qk has a unique neighbour in U , say x. Then x can be linked onto {b1, b2, b3},
via x-qk-R-b1 and two paths with interior in U from x to b2, b3 respectively, again contrary to the
optimality of K (since |E(R)| ≤ |E(P1)| − 2).

Thus qk has exactly two neighbours in U , and they are adjacent. Since qk is nonadjacent to s2, s3,
it follows that qk is nonadjacent to a, and we may assume that qk has two adjacent neighbours in
P2, different from a, s2, b2. Let X be the subpath of P2 between a and the neighbour of qk that is
closer to a in P2 (say x), and let Y be the subpath of P2 between b2 and the neighbour of qk that
is closer to b2 (say y). Then a can be linked onto {qk, x, y}, via a path from a to qk with interior
in {q1, . . . , qk−1} ∪ V (S1), a-X-x and a-P3-b3-b2-Y -y. Since the first path is strictly shorter than P1,
and the sum of the lengths of the second two paths equals the sum of the lengths of P2, P3, again
this contradicts the optimality of K. This proves the second statement of 2.1.

We use the previous lemma to prove the following.

2.2 There is an algorithm with the following specifications:

Input: A graph G.

Output: Either it finds a pyramid (and hence an odd hole) in G, or it determines that G contains
no pyramid.

Running time: O(|V (G)|9).

Proof. Here is an algorithm. Enumerate all 6-tuples b1, b2, b3, s1, s2, s3 that satisfy the following
conditions:

• for 1 ≤ i < j ≤ 3, {bi, si} is disjoint from {bj , sj}, and bibj is the unique edge between them

5

• there is a vertex a adjacent to all of s1, s2, s3 and to at most one of b1, b2, b3, such that for
1 ≤ i ≤ 3, if a is adjacent to bi then si = bi (let us call such a vertex a an apex for the 6-tuple).

(We can find all such 6-tuples in time O(|V (G)|7).)
For each such choice of b1, b2, b3, s1, s2, s3 we do the following. Let M = V (G)\{b1, b2, b3, s1, s2, s3}.

For each m ∈ M , find a shortest path S1(m) between s1,m such that s2, s3, b2, b3 have no neighbours
in its interior, if such a path exists. Find a shortest path T1(m) between m, b1 such that s2, s3, b2, b3

have no neighbours in its interior, if such a path exists. Find S2(m), T2(m), S3(m), T3(m) similarly.
(To find these paths, for a given 6-tuple b1, b2, b3, s1, s2, s3, but for all m, takes time O(|V (G)|2).)

Next, for each m ∈ M ∪ {b1} let P1(m) be defined as follows. If s1 = b1 let P1(b1) be the one-
vertex path with vertex b1, and let P1(m) be undefined for each m ∈ M . Now assume that s1 6= b1.
Then P1(b1) is undefined; and for each m ∈ M , test whether all the following are true:

• m is nonadjacent to b2, b3, s2, s3

• S1(m), T1(m) both exist

• V (S1(m) ∩ T1(m)) = {m}

• there are no edges between V (S1(m) \ m) and V (T1(m) \ m).

If so, then s1-S1(m)-m-T1(m)-b1 is a path; call it P1(m) (and otherwise P1(m) is undefined). Define
P2(m), P3(m) similarly. (Finding P1(m), P2(m), P3(m) for all m takes time O(|V (G)|3).)

Our goal is now to check for each triple m1,m2,m3 whether the three paths Pi(mi) (i = 1, 2, 3)
form a pyramid, for some suitable choice of a vertex a. But with care we can significantly reduce the
running time, so let us do it carefully.

If 1 ≤ i < j ≤ 3, we say that (mi,mj) is a good (i, j)-pair if mi ∈ M ∪ {bi}, mj ∈ M ∪ {bj},
Pi(mi), Pj(mj) both exist, and the sets V (Pi(mi)), V (Pj(mj)) are disjoint and bibj is the only edge
between them. Next we want to find the list of all good (1, 2)-pairs. (And we need to do it in time
O(|V (G)|3), so the obvious method is not fast enough.) For each m1 ∈ M ∪ {b1}, we find the set
of all m2 such that (m1,m2) is good, in two stages as follows. If P1(m1) does not exist, there are
no such good pairs. If it exists, colour black the vertices of M that either belong to P1(m1) or have
a neighbour in P1(m1), and colour all other vertices white. (This takes time O(|V (G)|2).) Then
for each m2 ∈ M ∪ {b2}, test whether P2(m2) exists and contains no black vertices. (For each m2

this takes linear time, so doing it for all m2 takes time O(|V (G)|2).) Repeating this for all m1, we
compute the set of all good (1, 2)-pairs (in time O(|V (G)|3)). Repeat to find the good (1, 3)-pairs
and (2, 3)-pairs. Now we examine all triples m1,m2,m3 such that mi ∈ Mi ∪ {bi} for i = 1, 2, 3 and
test whether (mi,mj) is a good (i, j)-pair for 1 ≤ i < j ≤ 3. (For each triple this takes constant
time, so altogether it again takes time O(|V (G)|3).) If we find a triple such that all three pairs are
good, we output that G contains a pyramid and stop.

After examining all choices of b1, b2, b3, s1, s2, s3, output that G contains no pyramid. (Each
choice of b1, b2, b3, s1, s2, s3 takes total time O(|V (G)|3) to process and since there are O(|V (G)|6)
such choices, the total running time is O(|V (G)|9).)

Now we need to prove that the algorithm works correctly. Suppose first that it outputs that G
contains a pyramid. Therefore for some choice of b1, b2, b3, s1, s2, s3, we know the following:

• for 1 ≤ i < j ≤ 3, {bi, si} is disjoint from {bj , sj}, and bibj is the unique edge between them,
and in particular, {b1, b2, b3} is a triangle

6

• there is a vertex a adjacent to all of s1, s2, s3 and to at most one of b1, b2, b3, such that for
1 ≤ i ≤ 3, if a is adjacent to bi then si = bi,

• with notation as before, for i = 1, 2, 3 there exists mi ∈ M ∪ {bi}, such that (mi,mj) is a good
(i, j)-pair for 1 ≤ i < j ≤ 3.

Then for i = 1, 2, 3, Pi(mi) is a path between si and bi, these three paths are vertex-disjoint, and
the only edges between them join two of {b1, b2, b3}. Moreover there is a vertex a, adjacent to at
most one of b1, b2, b3, and with a neighbour in each Pi(mi). Hence a can be linked onto the triangle
{b1, b2, b3}, via paths with interior in V (Pi(mi))(i = 1, 2, 3), and therefore G contains a pyramid. So
in this case the output of the algorithm was correct.

For the converse, suppose that G in fact does contain a pyramid, and let an optimal pyramid in
G be formed by P1, P2, P3, with frame

a, b1, b2, b3, s1, s2, s3,m1,m2,m3.

We can assume that the algorithm inspects the 6-tuple b1, b2, b3, s1, s2, s3, for if not then it has already
detected some pyramid and stopped, and the output is correct. Let us examine what the algorithm
does when it inspects this 6-tuple. Since a is an apex for this 6-tuple, the algorithm will proceed to
search for paths Si(mi), Ti(mi) for 1 ≤ i ≤ 3, and since such paths exist, it will find them. By six
applications of 2.1, it follows that the union of these six paths (together with the vertex a, the edges
asi, and the edges bibj) is an optimal pyramid; and so the algorithm will detect this pyramid, and
output correctly that G contains a pyramid. This proves 2.2.

Since this is the slowest part (or one of them) of the algorithm to test Bergeness, it would be nice
to make it faster, but at the moment we don’t see how. Here are three encouraging observations,
each of which looks at first sight as if it brings the running time down to O(|V (G)|8):

• Let P1, P2, P3 be the optimal pyramid, and let P1 be the shortest of the three paths, with
second vertex s1. Then any minimum length path between s1 and b1 containing no neighbours
of b2, b3 can be used in place of P1 \ s1; in other words we don’t need to “guess” the middle
vertex m1 before we can find the path.

• For any one of the three paths, say P3, if we have figured out P1, P2 correctly, we don’t need
the best possible P3; to be sure that G contains a pyramid, it is enough to detect any path
from a to b3 that does not pass through vertices with neighbours in P1, P2.

• We don’t really need to find a pyramid; it is enough to find an odd hole. And if there is
an optimal pyramid, there is an odd hole formed by the union of two of the paths Pi(mi)
(i = 1, 2, 3). So it is enough to examine each possible pair of paths, rather than trying to
examine triples of paths.

But none of these is enough, as far as we can see; the running time remains O(|V (G)|9).

3 Finding jewels

Before we explain Routine 1, there is another configuration we need to eliminate. We say a se-
quence v1, . . . , v5, P is a jewel in G if v1, . . . , v5 are distinct vertices, v1v2, v2v3, v3v4, v4v5, v5v1 are

7

edges, v1v3, v2v4, v1v4 are nonedges, and P is a path of G between v1, v4 such that v2, v3, v5 have no
neighbours in P ∗.

3.1 There is an algorithm with the following specifications:

Input: A graph G.

Output: Decides whether there is a jewel in G.

Running time: O(|V (G)|6).

Proof. The obvious implementation (enumerate all choices of v1, . . . , v5 and check them) has running
time O(|V (G)|7), but we can gain a little bit as follows. Enumerate all 3-tuples v2, v3, v5 of distinct
vertices such that v2v3 is an edge. For each choice of v2, v3, v5, find the set F of all vertices nonadjacent
to each of v2, v3, v5, and find all its components. Find the set X1 of all vertices adjacent to v2, v5 and
not to v3, and for each v1 ∈ X1 and each component of F ′ of F , record whether v1 has a neighbour
in F ′. Do the same for the set X2 of all vertices adjacent to v3, v5 and not to v2. Then test if there
exist v1 ∈ X1, v4 ∈ X2, and a component F ′ of F , such that v1, v4 are nonadjacent and both have
neighbours in F ′. If so then output that G contains a jewel. If after examining all choices we still
have not found a jewel, then none exists; output that fact. This proves 3.1.

We observe also that:

3.2 If there is a jewel in G, then there is an odd hole in G.

Proof. Let v1, . . . , v5, P be a jewel. If P is odd, then v1-P -v4-v5-v1 is an odd hole, and otherwise
v1-P -v4-v3-v2-v1 is an odd hole. This proves 3.2.

4 The clean shortest odd hole detector

In this section we prove a theorem used to show the correctness of our algorithm for Routine 1
(which is completed in the next section). Let C be a shortest odd hole in G. We recall that, if
v ∈ V (G) \ V (C), we say v is C-major if the set of its neighbours in C is not contained in any
3-vertex path of C; and C is clean if no vertex is C-major.

4.1 Let G be a graph containing no jewel or pyramid, and let C be a clean shortest odd hole in G.
Let u, v ∈ V (C) be distinct and nonadjacent, and let L1, L2 be the two subpaths of C joining u, v,
where |E(L1)| < |E(L2)|. Then:

• L1 is a shortest path in G between u, v, and

• for any shortest path P in G between u, v, P ∪ L2 is a shortest odd hole in G, and it is clean.

Proof. Assume that the theorem is false, and choose a shortest odd hole C and vertices p1, . . . , pk,
with k as small as possible such that the following holds: there exist u, v ∈ V (C) such that
u-p1- · · · -pk-v is a path P of G, and with L1, L2 defined as in the theorem, either L1 has length
> k +1, or it has length k +1 and P ∪L2 is not a clean shortest odd hole. (We refer to this property

8

as the “minimality of k”.) For fixed C and p1, . . . , pk choose u, v in addition such that |E(L2)| is as
small as possible. Evidently P is a shortest path between u, v.

Assign C an orientation, clockwise say, and for any two distinct vertices x, y in C, let C(x, y) be
the clockwise path in C from x to y, when it exists (that is, unless y immediately precedes x in the
clockwise order). We may assume that L1 = C(u, v). Let C have vertices c1- · · · -c2n+1 in clockwise
order, where c1 = u and cm = v; and therefore m ≤ n + 1. From the hypothesis,

k + 1 = dG(u, v) ≤ dC(u, v) = m − 1 ≤ n.

(We recall that dG(u, v) is the length of a shortest path in G between u, v.)

(1) k ≥ 2, and consequently m ≥ 4 and n ≥ 3.

For assume that k = 1. Since p1 is not C-major, it follows that m = 3, and the only neighbours of p1

in C are c1, c3 and possibly c2. In particular, c1-p1-c3- · · · -c2n+1-c1 is a hole C ′. Since it has the same
length as C, we deduce that C ′ is a shortest odd hole. Since the theorem is not satisfied, C ′ is not
clean, and so there is a vertex w that is C ′-major. Since w is not C-major, it follows that C ′ 6= C,
and so p1 6∈ V (C); and for the same reason, w is adjacent to p1. The neighbours of w in C do not all
lie in the path c2-c3-c4, since w is C ′-major; and similarly they do not all lie in c2n+1-c1-c2, and not all
in c1-c2-c3. Since they do all lie in some 3-vertex path of C, we may assume from the symmetry that
w is nonadjacent to both c1, c2. Choose i, j with 3 ≤ i ≤ j ≤ 2n+1, minimum and maximum respec-
tively such that w is adjacent to ci, cj . Hence j ≤ i + 2, and j ≥ 5. The hole w-cj- · · · -c2n+1-c1-p1-w
is shorter than C and therefore even, and so j is odd. If i > 3 then similarly i is even, and since
j − i ≤ 2 it follows that j = i + 1; but then the paths p1-w, p1-c3- · · · -ci, p1-c1-c2n+1- · · · -ci+1 form a
pyramid in G, a contradiction. So i = 3, and therefore j = 5. But then c1, c2, c3, w, p1 and the path
w-c5- · · · -c2n+1-c1 form a jewel, a contradiction. Thus k ≥ 2. Since k+1 ≤ m−1 ≤ n, this proves (1).

(2) The sets P ∗, C(v, u)∗ are disjoint, and there are no edges between {p2, . . . , pk−1} and C(v, u)∗.

For suppose not. Then for some j with m + 1 ≤ j ≤ 2n + 1, there exist paths P1, P2 from cj

to u, v respectively, with interior in P ∗, both strictly shorter than P . Suppose first that j = 2n + 1.
Then

dC(c2n+1, v) = min(m, 2n + 1 − m) ≥ m − 1 ≥ |E(P)| > |E(P2)|,

and since P2 is strictly shorter than P , this contradicts the minimality of k. Thus j ≤ 2n and
similarly j ≥ m + 2. In particular, P1, P2 both have length at least two. Now

|E(P1)| + |E(P2)| ≤ k + 3 ≤ m + 1 ≤ 2n + 3 − m < (2n + 3 − j) + (j + 1 − m),

and so either P1 has length at most that of C(cj , u), or P2 has length at most that of C(v, cj). From
the symmetry between u, v we may assume the first. From the minimality of k it follows that

dG(cj , u) = dC(cj , u) = min(2n + 2 − j, j − 1).

But
dG(cj , u) ≤ |E(P1)| < |E(P)| ≤ m − 1 ≤ j − 1,

9

so dG(cj , u) = 2n + 2 − j. Since P1 has length at most 2n + 2 − j, it follows that P1 is a shortest
path in G between cj , u. Let u′ be the neighbour of cj in P1. The minimality of k implies that
u-C(u, cj)-cj-P1-u is a clean shortest odd hole (C ′ say) in G, and in particular, u′, v are nonadjacent.
Orient C ′ such that the orientations of C,C ′ agree on the common subpath C(u, v). There is a
subpath P ′ of P between u′, v, of length k + 2 − |E(P1)| = k + j − 2n. Since P ′ is strictly shorter
than P (because cj , u are nonadjacent), it follows from the minimality of k (applied to C ′, P ′) that
one of the paths C ′(u′, v), C ′(v, u′) has length at most k + j − 2n, and in particular is strictly shorter
than P . But C ′(u′, v) includes C(u, v) and therefore is not strictly shorter than P ; and C ′(v, u′) has
length

j − m + 1 ≥ j − m + 1 − 2(n − m + 1) − (m − k − 2) > k + j − 2n,

a contradiction. This proves (2).

(3) Either c1 is the only neighbour of p1 in C, or c1, c2 are the only neighbours of p1 in C, or
m = n + 1 and c1, c2n+1 are the only neighbours of p1 in C; and in particular, p1 6∈ V (C). The
analogous statement holds for pk.

For suppose first that p1 has two nonadjacent neighbours x, z ∈ V (C). Since p1 is not C-major, we
may assume that C(x, z) has length 2 and contains all neighbours of p1 in C (and, if p1 ∈ V (C), it is
the middle vertex of C(x, z)). Let y be the middle vertex of C(x, z); then u ∈ {x, y, z}, and since u, v
are nonadjacent and p1, v are nonadjacent by (1), it follows that v 6= x, y, z. Now p1-z-C(z, x)-x-p1

is a hole C ′ of the same length as C, and hence is a shortest odd hole, and it is clean, by (1) and the
minimality of k. Since dG(p1, v) = k, it follows from the minimality of k that dC′(p1, v) = k. Since
v 6= y, it follows that dC′(p1, v) = dC(y, v), and therefore dC(y, v) = k. Since C(u, v) has length
≤ n, and contains z, it follows that dC(z, v) ≤ dC(y, v) = k. But dC(u, v) ≥ k + 1, and u ∈ {x, y, z};
and therefore u = x. From the minimality of k (applied to p1- · · · -pk-v and C ′), it follows that
u-p1- · · · -pk-v-C(v, u)-u is a clean shortest odd hole. But then the theorem holds, a contradiction.
Hence p1 does not have two nonadjacent neighbours in C, and in particular, p1 6∈ V (C). Since p1 is
adjacent to c1, we may assume it is also adjacent to c2n+1, for otherwise the claim holds. Suppose
that m ≤ n. Since c2n+1 is nonadjacent to p2, . . . , pk−1 by (2), and nonadjacent to pk since pk does
not have two nonadjacent neighbours in C, it follows that c2n+1-p1- · · · -pk-cm is a path; and by the
second minimization in the choice of u, v (minimizing |E(L2)|) applied to this path, it follows that

dC(c2n+1, cm) = dG(c2n+1, cm) ≤ k + 1.

But dC(c2n+1, cm) = m ≥ k + 2, a contradiction. Hence m = n + 1. This proves (3).

(4) There are no edges between P ∗ and C(v, u)∗.

For suppose there are edges between P ∗ and C(v, u)∗. From (2) and (3), we may assume that
p1 is adjacent to c2n+1 and m = n+1. Let P ′ be the path c2n+1-p1- · · · -pk-v. If dG(c2n+1, v) < k +1,
then from the minimality of k, dC(c2n+1, v) < k + 1 ≤ n, a contradiction since m = n + 1. So
dG(c2n+1, v) ≥ k + 1, and therefore P ′ is a shortest path in G between c2n+1, v. Hence there is sym-
metry between c1, c2n+1, and from (2) applied under this symmetry we deduce that P ∗ is disjoint
from C(u, v)∗, and there are no edges between {p2, . . . , pk−1} and C(u, v)∗. Consequently there are
no edges between P ∗ and C except for p1c1, p1c2n+1 and possibly edges incident with pk. Since G

10

contains no pyramid, cm cannot be linked onto the triangle {p1, c1, c2n+1}, and therefore pk has at
least two neighbours in C; by (3), pk has exactly two neighbours in C and they are adjacent; and
from the symmetry between c1, c2n+1 we may assume that the second neighbour of pk is cm−1. If
k + m is even then c1-C(c1, cm−1)-pk- · · · -p1-c1 is an odd hole of length k + m − 1 < 2n + 1, while if
k+m is odd then cm-C(cm, c2n+1)-c2n+1-p1- · · · -pk-cm is an odd hole of length 2n−m+k+2 < 2n+1,
in both cases a contradiction. This proves (4).

(5) k + 2 < m.

For suppose not. Certainly k + 2 ≤ m, and so P,C(u, v) have the same length. By (4),

c1-p1- · · · -pk-cm-cm+1- · · · -c2n+1-c1

is a hole, C ′ say; and it is a shortest odd hole, since P,C(u, v) have the same length. Consequently
it is not clean, since the theorem is not satisfied; let w ∈ V (G) be C ′-major. Since it is not C-major,
it is adjacent to at least one of p1, . . . , pk. Since P is a shortest path between u, v, the neighbours of
w in P lie in a 3-vertex subpath of P ; and since w is C ′-major, it follows that w is adjacent to at
least one of cm+1, . . . , c2n+1.

Suppose that w has two nonadjacent neighbours in the path C(v, u). Since w is not C-major,
we may assume that the neighbours of w in C are ci, ci+2, and possibly ci+1 where m ≤ i ≤ 2n − 1.
By (1) and the minimality of k, the hole obtained from C by replacing ci+1 by w is clean; but there
are edges between w and p1, . . . , pk, contradicting (4) applied to this hole. So w does not have two
nonadjacent neighbours in C(v, u).

Suppose that w is adjacent to none of cm+2, . . . , c2n. Then we may assume w is adjacent to c2n+1.
Since it is not C-major, it has no neighbours in C except c2n+1 and possibly c1, c2. Choose i with
1 ≤ i ≤ k maximum such that w is adjacent to pi. Since w is C ′-major it follows that i > 1; and since
c2n+1, c1, p1, p2, w and the path p2- · · · -pk-cm- · · · -c2n+1 do not form a jewel, it follows that i > 2.
Hence dG(cm, c2n+1) ≤ k, and so from the minimality of k, dG(cm, c2n+1) = dC(cm, c2n+1). But

dC(cm, c2n+1) = min(m, 2n + 1 − m) > k,

a contradiction. So w is adjacent to one of cm+2, . . . , c2n. Since it is not C-major, it is nonadjacent
to all of c2, . . . , cm−1. Since it does not have two nonadjacent neighbours in C(v, u), it is nonadjacent
to both c1, cm.

Choose i, j with 1 ≤ i ≤ j ≤ k, minimum and maximum respectively such that w is adjacent to
pi, pj . Choose s, t with m + 1 ≤ s ≤ t ≤ 2n + 1, minimum and maximum respectively such that w is
adjacent to cs, ct. Since P is a shortest path between u, v it follows that j − i ≤ 2. Since w does not
have two nonadjacent neighbours in C(v, u), it follows that t − s ≤ 1. Since w is adjacent to one of
cm+2, . . . , c2n, it follows that s ≤ 2n and t ≥ m + 2. Since

w-ct- · · · -c2n+1-c1-p1- · · · -pi-w

is a hole of length ≤ 2n, it is even, and so t + i is even; and similarly s − m + k − j is odd. Since
k = m − 2 it follows that s + j is odd. Consequently (t − s) + (j − i) is odd.

Suppose that i = j. Then t− s = 1 since t− s is odd; but then pi can be linked onto the triangle
{w, cs, ct} via pi-w and two subpaths of C ′, contradicting that G contains no pyramid. So j > i.

11

Similarly if s = t then j−i = 1, and cs can be linked onto {w, pi, pj}, again a contradiction. So t > s.
Since t − s ≤ 1 it follows that t = s + 1 and therefore j = i + 2, since (t − s) + (j − i) is odd. But
then the path u-p1- · · · -pi-w-pj- · · · -pk-v is a path between u, v with the same length as P , and yet
there are edges between its interior and C(v, u)∗, contrary to (4) applied to this path. This proves (5).

(6) The sets P ∗, C(u, v)∗ are disjoint, and there are no edges between {p2, . . . , pk−1} and C(u, v).

The argument is almost identical with that for (2). Suppose the claim is false; then there exists
j with 2 ≤ j ≤ m − 1, and paths P1, P2 from cj to u, v respectively, with interior in P ∗, and both
strictly shorter than P . Since

|E(P1)| + |E(P2)| ≤ k + 3 ≤ m < j + (m − j + 1)

it follows that either P1 has length < j or P2 has length < m−j +1, and from the symmetry we may
assume the first. By the minimality of k (if u, cj are nonadjacent, and trivially otherwise) it follows
that dG(u, cj) = j − 1, and therefore P1 is a shortest path between u, cj , and it has length j − 1 and
u-P1-cj-C(cj, u)-u is a clean shortest odd hole, C ′ say. Orient C ′ to agree with the orientation of C
on C(v, u). Let u′ be the neighbour of cj in P1, and let P ′ be the subpath of P between u′, v. Thus
P ′ has length

|E(P)| − (|E(P1)| − 1) = (k + 1) − (j − 2) = k − j + 3.

From the minimality of k (applied to C ′, P ′) it follows that dC′(u′, v) = k − j + 3. But C ′(u′, v) has
length m − j + 1 > k − j + 3, and C ′(v, u′) has length strictly longer than P , a contradiction. This
proves (6).

Note that c2n+1, c1, c2 are all different from cm−1, cm, cm+1, since k ≥ 2. From (2), (3) and (6) it
follows that the only edges between P ∗ and V (C) are p1c1, pkcm, possibly one edge from p1 to one
of c2, c2n+1, and possibly one edge from pk to one of cm−1, cm+1. If neither or both of the possible
extra edges are present, there is an odd hole shorter than C, a contradiction; while if exactly one
of the possible extra edges is present, then G contains a pyramid (induced on V (C ∪ P)), again a
contradiction. This proves 4.1.

We use the previous result to prove the following. (This is included just for its simplicity; it is
not actually used in the final algorithm.)

4.2 There is an algorithm with the following specifications:

Input: A graph G containing no pyramid or jewel.

Output: Determines one of the following:

1. G contains an odd hole

2. there is no clean shortest odd hole in G.

Running time: O(|V (G)|4).

12

Proof. Here is an algorithm. For every pair of vertices u, v, find a shortest path P (u, v) between
them, if one exists. For every triple u, v, w, test whether the three paths P (u, v), P (v, w), P (w, u) all
exist, and if so whether their union is an odd hole. If we find such a hole, output that fact. If not,
when all triples have been examined, output that there is no clean shortest odd hole in G.

To see that this works correctly, certainly if the algorithm outputs statement 1 then that is
correct. We must check that if statement 2 is false then the algorithm will output statement 1. So
assume that statement 2 is false, that is, there is a shortest odd hole C of G that is clean. Choose
vertices u, v, w ∈ V (C), roughly equally spaced in C; more precisely, such that every component of
C \{u, v, w} contains at most n−1 vertices, where C has length 2n+1. Since there is a path joining
u, v, the algorithm will find a shortest such path P (u, v). We claim that C can be chosen containing
P (u, v). For let L1 be the path of C joining u, v, not passing through w. Then L1 has length ≤ n,
from the choice of u, v, w, and so from 4.1, L1, P (u, v) have the same length. If u, v are adjacent
then P (u, v) = L1 and therefore C already contains P (u, v); and otherwise let L2 be the second path
between u, v in C. The union of L2, P (u, v) is a clean shortest odd hole, by 4.1, and so again we may
choose C containing P (u, v). By repeating this for the other two pairs from u, v, w, we see that C
can be chosen to include any of P (u, v), P (v, w), P (w, u), and indeed all of them simultaneously. So
the union of the three paths joining u, v, w chosen by the algorithm is an odd hole, and therefore in
this case the algorithm correctly outputs an odd hole.

The running time of the algorithm as described is O(|V (G)|5), because after selecting u, v, w and
the three paths, it takes quadratic time to check whether the three paths make a hole. With a little
more care we can bring it down to O(|V (G)|4), using the black/white colouring trick we used in 2.2.
But here the running time is not crucial, so we omit the details. This proves 4.2.

5 The use of near-cleaners

Let us show next how to use the results of the previous section to complete Routine 1.

5.1 There is an algorithm with the following specifications:

Input: A graph G, containing no pyramid or jewel, and a subset X of V (G).

Output: Determines one of the following:

• G has an odd hole.

• There is no shortest odd hole in C such that X is a near-cleaner for C.

Running time: O(|V (G)|4).

Proof. Here is a wasteful way to do it. Enumerate all Y ⊆ X with |Y | ≤ 3; and apply 4.2 to
G \ (X \ Y) for each such X and Y . If X is a near-cleaner for some shortest odd hole of G, then one
of these subgraphs has a clean shortest odd hole, and we will therefore detect an odd hole. If not,
then X is not a near-cleaner for any shortest odd hole, and we output that.

This is simple to state, but the running time is O(|V (G)|7), and with more care we can do it
more efficiently. So let us do it again.

For every pair x, y ∈ V (G) of distinct vertices, find a shortest path R(x, y) between x, y with no
internal vertex in X, if there is one, and let r(x, y) be its length. If R(x, y) does not exist, let r(x, y)

13

be infinite. For all y1 ∈ V (G) \X and all 3-vertex paths x1-x3-x2 of G \ y1, we check whether all the
following are true, where y2 is the neighbour of y1 in R(x2, y1):

• r(x1, y1), r(x2, y1) are both finite (and therefore y2 is defined)

• r(x2, y1) = r(x1, y1) + 1 = r(x1, y2) (= n say)

• r(x3, y1), r(x3, y2) ≥ n.

If we find such a choice of x1, x2, x3, y1, then we output that there is an odd hole. If not, we report
that there is no shortest odd hole in C such that X is a near-cleaner for C.

Let us see that the output of this algorithm is correct. First, suppose that there is a choice of
x1, x2, x3, y1 satisfying the three conditions, and let y2, n be as above. We claim that G contains an
odd hole. Let R(x1, y1) have vertices p1- · · · -pn, and let R(x2, y1) have vertices q1- · · · -qn+1, where
p1 = x1, pn = qn+1 = y1, q1 = x2, and qn = y2. From the definition of R(x1, y1) and R(x2, y1), none
of p2, . . . , pn−1, q2, . . . , qn belong to X, and from the choice of y1, y1 /∈ X (possibly x1, x2, x3 belong
to X).

Since r(x1, y1) = r(x2, y1) − 1, it follows that x2 does not belong to R(x1, y1); and for the same
reason and since x1, x2 are nonadjacent, x1 does not belong to R(x2, y1). Since r(x3, y1), r(x3, y2) ≥ n,
it follows that x3 does not belong to R(x1, y1) or to R(x2, y1), and has no neighbours in R(x1, y1)\x1,
and none in R(x2, y1) \ x2. Since r(x1, y2) = n, y2 does not belong to R(x1, y1). We claim first that
p2, . . . , pn−1 are all different from q2, . . . , qn. For suppose that pi = qj say, where 2 ≤ i ≤ n − 1 and
2 ≤ j ≤ n. Then the subpaths of these two paths between pi, y1 are both subpaths of shortest paths,
and therefore have the same length, that is, j = i + 1. So p1- · · · -pi-qj+1- · · · -qn contains a path
between x1, y2 of length ≤ n − 2, contradicting that r(x1, y2) = n. So R(x1, y1) and R(x2, y1) have
no common vertex except y1. If there are no edges between R(x1, y1)\y1 and R(x2, y1)\y1, then the
union of these two paths and the path x1-x3-x2 is an odd hole, and so the algorithm has performed
correctly. So assume that piqj is an edge where 1 ≤ i ≤ n− 1 and 1 ≤ j ≤ n. We claim i ≥ j. For if
j = 1 this is clear, so we assume j > 1. There is a path between x1, y2 within {p1, . . . , pi, qj , . . . , qn},
which therefore has length ≤ n − j + i and has no internal vertex in X (since j > 1); and since
r(x1, y2) = n, it follows that n− j + i ≥ n, that is, i ≥ j as claimed. Consequently i ≥ 2, since x1, x2

are nonadjacent. But also r(x2, y1) ≥ n, and so j + n− i ≥ n, that is, j ≥ i. Consequently i = j; let
us choose i minimum. Then x3-p1- · · · -pi-qi- · · · -q1-x3 is an odd hole, and again the algorithm has
answered correctly. So when the algorithm outputs that G has an odd hole, it is true that G has an
odd hole.

Now we must prove that when the other output is produced, that also is true. Suppose then
that X is a near-cleaner for some shortest odd hole C. Thus for some choice of x1, x2, x3, y1 above,
all these four vertices lie in C and dC(x2, y1) = dC(x1, y1) + 1 (= n say), and C is a clean short-
est odd hole of length 2n + 1 in H, where H = G \ (X \ {x1, x2, x3}). Note in particular that
V (C) ∩ X ⊆ {x1, x2, x3}. We observe:

(1) If u, v ∈ V (C), then r(u, v) ≥ dH(u, v) = dC(u, v).

For if R(u, v) exists then none of its internal vertices are in X, and so it is a path of H; and
consequently r(u, v) ≥ dH(u, v). By 4.1, dH(u, v) = dC(u, v). This proves (1).

14

Since r(x1, y1) ≤ dC(x1, y1) (because V (C)∩X ⊆ {x1, x2, x3}), it follows from (1) that r(x1, y1) =
n−1 and R(x1, y1) is a shortest path of H between x1, y1. By 4.1 we can choose C such that R(x1, y1)
is a path of C. Similarly r(x2, y1) = n, and we may assume that R(x2, y1) is a path of C. In particular,
y2 ∈ V (C). By the same argument, r(x1, y2) = dC(x1, y2) = n. Now dC(x3, y1) = n, and so by (1),
r(x3, y1) ≥ n, and similarly r(x3, y2) ≥ n. Thus in this case the algorithm would output correctly
that G is has an odd hole, and so the output of the algorithm is correct in all cases.

It takes time O(|V (G)|3) to find all the shortest paths; then we check all quadruples x1, x2, x3, y1,
and each takes constant time. So the time taken here is O(|V (G)|4), as claimed. This proves 5.1.

6 Some more easily-detectable subgraphs

We turn to the algorithm for Routine 2. We define configurations of type T1, T2, T3 as follows:

1. A configuration of type T1 in G is a hole of length 5.

2. A configuration of type T2 in G is a sequence v1, v2, v3, v4, P,X such that:

• v1-v2-v3-v4 is a path of G

• X is an anticomponent of the set of all {v1, v2, v4}-complete vertices

• P is a path in G \ (X ∪ {v2, v3}) between v1, v4, and no vertex in P ∗ is X-complete or
adjacent to v2 or adjacent to v3.

3. A configuration of type T3 in G is a sequence v1, . . . , v6, P,X such that

• v1, . . . , v6 are distinct vertices of G

• v1v2, v3v4, v1v4, v2v3, v3v5, v4v6 are edges, and v1v3, v2v4, v1v5, v2v5, v1v6, v2v6, v4v5 are non-
edges

• X is an anticomponent of the set of all {v1, v2, v5}-complete vertices, and v3, v4 are not
X-complete

• P is a path of G \ (X ∪ {v1, v2, v3, v4}) between v5, v6, and no vertex in P ∗ is X-complete
or adjacent to v1 or adjacent to v2

• if v5v6 is an edge then v6 is not X-complete.

Clearly we can test whether G contains a configuration of type T1 in time O(|V (G)|5), and if so
then G is not Berge. We need analogous results for the other two types of configurations.

6.1 There is an algorithm with the following specifications:

Input: A graph G.

Output: Reports whether G contains a configuration of type T2.

Running time: O(|V (G)|6).

15

Proof. Here is an algorithm. Enumerate all paths v1-v2-v3-v4 of G. For each one, find the set Y of
all {v1, v2, v4}-complete vertices. Find the anticomponents of Y . For each anticomponent X, test if
there is a path P between v1, v4 in G \ {v2, v3}, such that no internal vertex of P is adjacent to v2 or
v3, and no internal vertex of P is X-complete. The algorithm evidently performs as claimed. This
proves 6.1.

The following is proved in [2]. (In fact it is an easy consequence of 6.5.)

6.2 Let G be Berge, let X be an anticonnected subset of V (G), and P be an odd path in G \ X,
such that both ends of P are X-complete, and no edge of P is X-complete. Then every X-complete
vertex has a neighbour in P ∗.

We deduce:

6.3 If G contains a configuration of type T2 then G is not Berge.

Proof. Let v1, v2, v3, v4, P,X be a configuration of type T2 in G. If P is even then v1-v2-v3-v4-P -v1

is an odd hole, while if P is odd then since the X-complete vertex v2 has no neighbour in the interior
of P , and the ends of P are X-complete and the internal vertices are not, it follows from 6.2 that G
is not Berge. This proves 6.3.

Now let us do the same for configurations of type T3.

6.4 There is an algorithm with the following specifications:

Input: A graph G.

Output: Reports whether G contains a configuration of type T3.

Running time: O(|V (G)|6).

Proof. Here is an algorithm. Enumerate all triples v1, v2, v5 of distinct vertices such that v1v2

is an edge and v5 is nonadjacent to both v1, v2. For each choice of v1, v2, v5, find the set Y of all
{v1, v2, v5}-complete vertices, and find its anticomponents. For each anticomponent X, find the
maximal connected subset F ′ containing v5 with the properties that v1, v2 have no neighbours in F ′

and no vertex of F ′ \ {v5} is X-complete. Let F be the union of F ′ and the set of all X-complete
vertices that are nonadjacent to all of v1, v2, v5 and have a neighbour in F ′. Still with the same
choice of v1, v2, v5 and X, we enumerate all vertices v4 that are adjacent to v1 and not to v2, v5, and
have a neighbour in F and a nonneighbour in X. For each choice of v4, we test whether there is a
vertex v3, adjacent to v2, v4, v5 and not to v1, with a nonneighbour in X. If we find such a vertex v3,
let v6 be a neighbour of v4 in F , and P a path from v6 to v5 with interior in F ′; then v1, . . . , v6, P,X
is a configuration of type T3; output that fact. If after checking all choices of v1, v2, v5, X, v4 we find
no such v3, then there is no such configuration; output that.

This algorithm evidently tests correctly for configurations of type T3. To see its running time,
there are O(|V (G)|3) triples v1, v2, v5 to examine. For each, there are linearly many choices of X,
and each one takes time O(|V (G)|2) to process. Then there are linearly many choices of v4, and each
takes linear time to process. So the total running time is O(|V (G)|6). This proves 6.4.

16

Next we need to show that no Berge graph contains a configuration of type T3. We need the
following, the Roussel-Rubio lemma [8].

6.5 Let G be Berge, let X be an anticonnected subset of V (G), and P be an odd path p1- · · · -pn in
G \ X with length ≥ 5, such that p1, pn are X-complete and p2, . . . , pn−1 are not. Then there exist
nonadjacent x, y ∈ X such that there are exactly two edges between x, y and P ∗, namely xp2 and
ypn−1.

We also need:

6.6 Let G be Berge, and let X ⊆ V (G) be connected. Let v1, v2, v3, v4, p1, p2 be distinct vertices of
G \ X, such that

• v1v3 and v2v4 are edges, and there are no edges between {v1, v3} and {v2, v4}

• v3, v4 both have a neighbour in X; no vertex of X is adjacent to both v3, v4; and v1, v2 have no
neighbours in X

• p1, p2 are nonadjacent; p1 is adjacent to v1, v2, v3 and not to v4, and p2 is adjacent to v1, v2, v4

and not to v3, and

• there is a path between v3, v4 with interior in X such that p1, p2 have no neighbours in its
interior.

Then p1, p2 have no neighbours in X.

Proof. Suppose that one of p1, p2 has a neighbour in X. Let Q be a path between v3, v4 with interior
in X such that p1, p2 have no neighbours in its interior. Let x1- · · · -xk be a path of vertices of X
such that one of p1, p2 is adjacent to x1, and xk has a neighbour in Q∗, with k minimum. (This exists
because Q∗ is nonempty and X is connected.) It follows that none of x1, . . . , xk−1 have neighbours in
Q∗, and none of x2, . . . , xk are adjacent to p1 or p2. Let A,B be paths from x1 to v3, v4 respectively
with interior in {x2, . . . , xk} ∪ Q∗. From the symmetry we may assume that x1 is adjacent to p1.
Then B can be completed to a hole via v4-v2-p1-x1, and therefore B is odd. Consequently it cannot
be completed to a hole via v4-p2-v1-p1-x1, and so p2 has neighbours in B \ {v4}. Since p2 has no
neighbours in Q∗ ∪ {x2, . . . , xk} it follows that p2 is adjacent to x1; and this restores the symmetry
between p1 and p2. Since B is odd, it cannot be completed to a hole via v4-p2-x1, and so x1 is
adjacent to v4. Similarly x1 is adjacent to v3, and so x1 ∈ X is adjacent to both v3, v4, contrary to
the hypothesis of the theorem. This proves 6.6.

These two lemmas are applied to prove the following.

6.7 If G contains a configuration of type T3 then G is not Berge.

Proof. Let G be Berge, and suppose that v1, . . . , v6, P,X is a configuration of type T3 in G. Let Q
be an antipath between v3, v4 with interior in X. It can be completed to an antihole via v4-v5-v1-v3,
and therefore Q is odd. Hence v1-v3-Q-v4-v2 is an odd antipath. By 6.5, applied in G to the path
v1-v3-Q-v4-v2 and anticonnected set V (P), we deduce that there exist p1, p2 ∈ V (P), adjacent in
G, such that the only nonedges between p1, p2 and V (Q) are p1v4, p2v3. By 6.6 applied in G, we

17

deduce that either some z ∈ X is nonadjacent to both v3, v4, or p1, p2 are both X-complete. The
first is impossible since z-v1-v4-v3-v5-z is not an odd hole. The second is impossible since no internal
vertex of P is X-complete, and if v5, v6 are adjacent then by hypothesis v6 is not X-complete. So G
contains no such configuration. This proves 6.7.

In summary, then, we have

6.8 If G or G contains a jewel, pyramid, or configuration of type T1, T2 or T3, then G is not Berge.
Moreover, there is an algorithm to test whether G contains such a configuration, with running time
O(|V (G)|9).

As we shall see in the next two sections, the algorithm of 6.8 is all that we need for Routine 2.

7 Normal subsets

Let C be a graph that is a cycle, and let A ⊆ V (C). An edge of C with both ends in A is called an
A-edge. An A-gap is a subgraph of C composed of a component X of C \ A, the vertices of A with
neighbours in X, and the edges between A and X. (So if some two vertices in A are nonadjacent,
the A-gaps are the paths of C of length ≥ 2, with both ends in A and no internal vertex in A.) The
length of an A-gap is the number of edges in it (so if A consists just of two adjacent vertices, the
A-gap has length |E(C)| − 1). We speak of cycles, A-gaps, and (A,B)-gaps (defined below) being
odd or even meaning that they have an odd (or even, respectively) number of edges. We say that A
is normal in C if every A-gap is even.

7.1 Let C be an odd cycle, and let A ⊆ V (C) be normal. Then there are an odd number of A-edges
in C, and consequently |A| ≥ 2.

Proof. The edges of C that belong to A-gaps are precisely the edges that are not A-edges. But all
A-gaps are even, and C is odd, and so there are an odd number of A-edges. This proves 7.1.

If A,B ⊆ V (C), an (A,B)-gap is a path P of C between a, b say, such that a is the unique vertex
of P in A and b is the unique vertex of P in B. (Possibly a = b and P has length 0.)

7.2 Let C be a cycle, and let A,B ⊆ V (C), such that A,B are both normal. Let P be an odd
A ∩ B-gap. Then P includes an A-gap that contains an odd number of B-edges.

Proof. Since every B-gap is even, and every edge of P that is not a B-edge belongs to a B-gap, it
follows that P contains an odd number of B-edges. But every B-edge of P lies in exactly one A-gap
contained in P , so one of the A-gaps in P contains an odd number of B-edges. This proves 7.2.

7.3 Let C be an odd cycle, and let A,B ⊆ V (C) be normal. Let P be an A-gap; then P contains
either zero or two (A,B)-gaps. If P contains an odd number of B-edges, then P contains an odd
(A,B)-gap and an even one. If P contains an even number of B-edges, then P contains either two
odd (A,B)-gaps, or none.

18

Proof. By 7.1, |A|, |B| ≥ 2. Let P have vertices p1, . . . , pn say, in order. Since A is normal and
C is odd, it follows that p1 6= pn, p1, pn ∈ A, and n is odd. If none of p1, . . . , pn belongs to B the
claim is true, so we assume that we may choose i, j with 1 ≤ i ≤ j ≤ n, minimum and maximum
respectively such that pi, pj ∈ B; and therefore P contains exactly two (A,B)-gaps, namely p1- · · · -pi

and pj- · · · -pn. (These are indeed (A,B)-gaps, since either n < |V (C)|, or i < j, because |B| ≥ 2.)
The sum of their lengths is n − j + i − 1, and since n is odd, it follows that exactly one of the two
(A,B)-gaps is odd if and only if j− i is odd. It therefore suffices to show that the number of B-edges
in P is odd if and only if j − i is odd. But the B-edges in P are precisely the edges between pi and
pj that do not lie in B-gaps, and every B-gap is even, so an even number of edges of pi- · · · -pj are
not B-edges. This proves 7.3.

7.4 Let C be an odd cycle. Let A1, . . . , Ak ⊆ V (G) be normal, such that for 1 ≤ i < j ≤ k, every
(Ai, Aj)-gap is even. Then A1 ∩ · · · ∩ Ak is normal.

Proof. We proceed by induction on k. If k = 1 the result is trivial, so we may assume that k ≥ 2.
Define A0 = A1 ∩ A2. Since there is no odd (A1, A2)-gap, 7.2 and 7.3 imply that A0 is normal.

(1) For 3 ≤ j ≤ k, every (A0, Aj)-gap is even.

For suppose not, and choose a path p1- · · · -pn (= P say) of C with n even such that p1 is the
unique vertex of P in A0, and pn is the unique vertex of P in Aj . Choose h with 1 ≤ h ≤ n maxi-
mum such that ph ∈ A1, and i with 1 ≤ i ≤ n maximum such that pi ∈ A2. Since every (A1, Aj)-gap
is even, it follows that n − h is even, and therefore h is even, since n is even. Since every A1-gap
is even and p1, ph ∈ A1, it follows that there are an odd number of A1-edges in the path p1- · · · -ph.
Similarly i is even, and from the symmetry we may assume that h ≤ i. Now p2, . . . , pn /∈ A1 ∩ A2,
and in particular no A1-edge of P is an A2-edge. Consequently every A1-edge of P belongs to a
unique A2-gap included in P , and therefore some A2-gap included in P contains an odd number of
A1-edges. By 7.3, there is an odd (A1, A2)-gap, a contradiction. This proves (1).

From (1) and the inductive hypothesis applied to A0, A3, . . . , Ak, it follows that A0∩A3∩· · ·∩Ak

is normal, and hence A1 ∩ · · · ∩ Ak is normal. This proves 7.4.

7.5 Let G be a graph containing no pyramid, and let C be a shortest odd hole in G. Then every
C-major vertex has at least four neighbours in C.

Proof. Let v be a C-major vertex, and suppose it has at most three neighbours in C. Since its set
of neighbours in C is normal, it follows from 7.1 that there are an odd number of edges of C with
both ends adjacent to v, and therefore there is exactly one such edge; and since v is C-major, it
has exactly three neighbours in C. But then the subgraph induced on V (C) ∪ {v} is a pyramid, a
contradiction. This proves 7.5.

We apply the two previous lemmas to show the following. (7.4 and 7.6 were proved by two of
us in joint work with Neil Robertson and Robin Thomas, and 7.6 was proved independently by the
other three of us in joint work with Michele Conforti and Giacomo Zambelli. Thanks also to Conforti
and Zambelli for pointing out an error in an earlier draft of this theorem.).

19

7.6 Let G be a graph containing no jewel or pyramid, and let C be a shortest odd hole in G. Let X
be a stable set of C-major vertices. Then the set of X-complete vertices in C is normal.

Proof. Let X = {x1, . . . , xk}, and for 1 ≤ i ≤ k let Ai be the set of neighbours of xi in V (C). For
1 ≤ i ≤ k, since xi is C-major and C is a shortest odd hole, it follows that Ai is normal and |Ai| ≥ 4
by 7.5. If for 1 ≤ i < j ≤ k every (Ai, Aj)-gap is even, then the result follows from 7.4. So we may
assume that there is an odd (A1, A2)-gap, say P . Let C have vertices c1, . . . , c2n+1 in order, where
P is c1- · · · -cr, and r is even, with 2 ≤ r ≤ 2n.

(1) If Q is an even (A1, A2)-gap, then V (P ∩ Q) = ∅ and there is an edge between V (P), V (Q).

For suppose first that P ∩ Q is nonempty, say cr ∈ V (Q). Then P ∪ Q is an odd A1-gap or A2-gap,
a contradiction. So P ∩ Q is empty. Now assume there are no edges between P and Q. Then their
union, together with x1, x2, forms an odd hole, of length at most that of C. Since C is a shortest
odd hole, this new hole has length equal to that of C, and hence Q is the path cr+2- · · · -c2n. Since
|A1|, |A2| ≥ 4 it follows that cr+1, c2n+1 ∈ A1∩A2. From the symmetry, we may assume that c1 ∈ A1

and cr ∈ A2. If r + 2 = 2n then the sequence c1, c2n+1, c2n, c2n−1, x1, P is a jewel, a contradiction.
So r + 2 < 2n; but then cr+1- · · · -c2n is either an odd A1-gap (if cr+2 ∈ A2) or an odd A2-gap (if
cr+2 ∈ A1), in either case a contradiction. This proves (1).

Now there is an even (A1, A2)-gap; for if A1 ∩ A2 is normal, then it is nonempty and there is an
(A1, A2)-gap of length 0, and otherwise there is an even (A1, A2)-gap by 7.2 and 7.3. So by (1) we
may assume that cr+1- · · · -cs is an even (A1, A2)-gap, Q say, for some odd s with r +1 ≤ s ≤ 2n+1.
Since |A1| ≥ 4, and only two vertices of P ∪ Q belong to A1, it follows that s ≤ 2n − 1. If both
A1, A2 meet the path cs+2- · · · -c2n, then there is an (A1, A2)-gap contained in this path; it is not
even, by (1), since there are no edges between it and P , and it is not odd, by (1), since there are
no edges between it and Q, a contradiction. So we may assume that none of cs+2, . . . , c2n belong
to A1, from the symmetry between A1, A2. Since |A1| ≥ 4, it follows that cs+1, c2n+1 ∈ A1. Since
cs+1-cs+2- · · · -c2n+1 is not an odd A1-gap, it follows that s = 2n − 1. Since |A2| ≥ 4, it follows that
c2n, c2n+1 ∈ A2. But then c2n forms an even (A1, A2)-gap, and there are no edges between it and P ,
contrary to (1). This proves 7.6.

8 Anticonnected sets of C-major vertices

We recall that a hole C of G is amenable if

• C is a shortest odd hole in G, of length at least 7, and

• for every anticonnected set X of C-major vertices, there is an X-complete edge in C.

The next result shows that the algorithm of 6.8 provides Routine 2.

8.1 Let G be a graph containing no pyramid and no configuration of types T1, T2 or T3, and such
that G,G both contain no jewel. Then every shortest odd hole in G is amenable.

20

Proof. Let C be a shortest odd hole in C. Let us say a subset X of V (G) is well-behaved if the set
of all X-complete vertices in C is normal. Suppose the result is false, and choose an anticonnected
set X of C-major vertices that is not well-behaved, with X minimal. By 7.6, some two vertices
in X are adjacent, and therefore there is an antipath of length ≥ 2 contained in X. Let Q be a
maximal antipath in X, between a, b ∈ X say. Then X \ {a}, X \ {b} are both anticonnected. Let
A be the set of all X \ {a}-complete vertices in C, and define B similarly. Then from the minimal-
ity of X, A and B are normal, and A∩B is not, since A∩B is the set of all X-complete vertices in C.

(1) There exist a vertex in A \ B and a vertex in B \ A that are nonadjacent.

For assume that every vertex in A \ B is adjacent to every vertex in B \ A. By 7.2 and 7.3,
there is an odd A ∩ B-gap P , containing an odd (A,B)-gap and an even one. Since every vertex in
A \B is adjacent to every vertex in B \A it follows that there is an (A,B)-gap in P of length 1, and
one of length 0 (and hence A ∩ B 6= ∅). Let C have vertices c1, . . . , c2n+1 in order. We may assume
that c1 ∈ A\B and c2n+1 ∈ B \A, and c1, c2n+1 both belong to P ∗. Let P be cj- · · · -c2n+1-c1- · · · -ci;
thus, i, j ∈ {2, 3, . . . , 2n} are minimum and maximum respectively such that ci, cj ∈ A∩B. Since P
is odd, it follows that j − i is even. Suppose that i > 2. Since none of c2, . . . , ci−1 belong to A (since
every vertex in A \ B is adjacent to c2n+1), it follows that c1- · · · -ci is an A-gap, and therefore i is
odd. Consequently c2n+1-c1- · · · -ci is not a B-gap; but every vertex in B \ A is adjacent to c1, and
so c2 ∈ B \ A, and no other internal vertex of c2n+1-c1- · · · -ci belongs to B. So c2- · · · -ci is an odd
path, and since it is not a B-gap it follows that i = 3. We have shown then that if i > 2 then i = 3
and c2 ∈ B \ A. By the same argument, if j < 2n then j = 2n − 1 and c2n ∈ A \ B. Now not both
c2 ∈ B \ A and c2n ∈ A \ B, since every vertex in A \ B is adjacent to every vertex in B \ A; and
hence we may assume that j = 2n. Since j − i is even it follows that i 6= 3, and hence i = 2.

There are two cases, depending on whether some vertex of c3- · · · -c2n−1 belongs to A ∪ B. Sup-
pose first that, say, ch ∈ A for some h with 3 ≤ h ≤ 2n − 1. Since ch is not adjacent to c2n+1,
it follows that ch ∈ A ∩ B. But then c1, c2n, c2, c2n+1, ch and the antipath c1-a-Q-b-c2n+1, form a
jewel in G, a contradiction. So none of c3, . . . , c2n−1 belongs to A ∪ B. Let Z be the set of all
{c2, c2n, c2n+1}-complete vertices in G; thus, X \ {b} ⊆ Z. Let Y be the anticomponent of Z that
includes X \ {b}. But then c2n, c2n+1, c1, c2, the path c2-c3- · · · -c2n, and Y , form a configuration of
type T2 in G, a contradiction. This proves (1).

(2) Every vertex of X \ {a, b} is adjacent to at least one of a, b.

For suppose that some x ∈ X \ {a, b} is nonadjacent to both a, b. Choose ci ∈ A \B and cj ∈ B \A,
nonadjacent. Then x-ci-b-a-cj-x is a configuration of type T1, a contradiction. This proves (2).

It follows from (2) that Q has length ≥ 3.

(3) X \ {a, b} is anticonnected.

For assume it has more than one anticomponent; then there is an anticomponent Y of X \ {a, b}
disjoint from Q∗. Since X is anticonnected, there exists y ∈ Y nonadjacent to one of a, b. Since Y
is disjoint from Q∗ it follows that y is Q∗-complete, and from the maximality of Q it follows that y
is nonadjacent to both a, b, contrary to (2). This proves (3).

21

(4) Every odd (A,B)-gap has length 1.

For let C have vertices c1, . . . , c2n+1 in order, where c1- · · · -cr is an odd (A,B)-gap, and assume
that r ≥ 3. We may assume that c1 ∈ A and cr ∈ B. Since X \ {a, b} is well-behaved, and c1- · · · -cr

is an odd path and its ends are X \{a, b}-complete, it follows that some internal vertex of this path is
X \ {a, b}-complete, say ci. But then ci is nonadjacent to both a, b, since c1- · · · -cr is an (A,B)-gap;
and therefore a, c1, cr, b, ci, Q is a jewel in G, a contradiction. This proves (4).

By 7.2 there is an A-gap P containing an odd number of B-edges; and by 7.3, there is an odd
(A,B)-gap contained in P . By (4) it has length 1. Consequently we may assume that C has vertices
c1, . . . , c2n+1 in order, where c1 ∈ A \ B and c2n+1 ∈ B \ A.

(5) At least one of c3, . . . , c2n−1 belongs to (A \ B) ∪ (B \ A).

For suppose not. Suppose first that none of c3, . . . , c2n−1 ∈ A ∪ B. Since A,B are normal it
follows that c2 ∈ A and c2n ∈ B. Let R be the path c2-c3- · · · -c2n, and let Y be the anticomponent
including Q∗ of the set of all {c2n, c1, c2}-complete vertices in G. Since c2, c1, c2n+1, c2n, R, Y is not
a configuration of type T2, there is a vertex ch of R∗ that is Y -complete. Since no vertex of R∗ is
X \ {a}-complete, it follows that X \ {a} 6⊆ Y , and therefore c2n /∈ A. Similarly c2 6∈ B. But ch is
X \ {a, b}-complete since it is Y -complete, and therefore ch is nonadjacent to a, b since it does not
belong to A ∪ B. But then a, c2, c2n+1, b, ch, Q is a jewel in G, a contradiction.

This proves that there exists h with 3 ≤ h ≤ 2n−1 such that ch ∈ A∪B, and therefore ch ∈ A∩B.
If c2 ∈ A\B, then a, c1, ch, c2n+1, c2 and the antipath a-Q-b-c2n+1 form a jewel in G, a contradiction.
So c2 /∈ A \ B, and similarly c2n /∈ B \ A. By (1) it follows that c2 ∈ B \ A and c2n ∈ A \ B. From
the symmetry, and since n > 2 (because G contains no configuration of type T1), we may assume
that h ≥ 4. But then a, c1, ch, c2, c2n and the antipath c2-b-Q-a form a jewel in G, a contradiction.
This proves (5).

(6) None of c3, . . . , c2n−1 is V (Q)-complete. Consequently, every member of A ∩ B has a neigh-
bour in every odd (A,B)-gap.

For suppose that some ci is V (Q)-complete where 3 ≤ i ≤ 2n − 1. From (5) there exists h with
3 ≤ h ≤ 2n − 1 such that ch ∈ (A \ B) ∪ (B \ A), and from the symmetry we may assume that
ch ∈ A \ B. But then a, c1, ci, c2n+1, ch and the antipath c2n+1-b-Q-a, form a jewel in G, a contra-
diction. This proves the first claim. For the second, note that since every odd (A,B)-gap has length
1 by (4), it suffices from the symmetry to show that every member of A ∩ B has a neighbour in
{c2n+1, c1} ; and since every vertex in A∩B is V (Q)-complete, this follows from the first claim. This
proves (6).

(7) X = V (Q).

For from (6), no edge of C is V (Q)-complete, and therefore V (Q) is not well-behaved. From the
minimality of X it follows that X = V (Q). This proves (7).

22

(8) Let P be a path of C containing a vertex of A ∪ B, such that a, b both have neighbours in
P . Suppose that there is an odd (A,B)-gap R such that V (P), V (R) are disjoint and there are no
edges between them. Then P includes an odd (A,B)-gap.

For since R has length 1 by (4), we may assume that R is c2n+1-c1 and P is a subpath of c3-c4- · · · -c2n−1.
Choose P minimal such that it contains a vertex of A∪B and a, b both have neighbours in it. Let its
ends be p1, p2 say; so one of p1, p2 ∈ A∪B, say p1 ∈ B, and therefore p2 is the unique neighbour of b in
P . By (6), p1 6= p2. Let Y be the anticomponent including Q∗ of the set of all {c1, c2n+1, p1}-complete
vertices. Since c1, c2n+1, a, b, p1, p2, P, Y do not form a configuration of type T3, it follows that either
some internal vertex of P is Y -complete, or P has length 1 and p2 is Y -complete. Suppose the first;
say ch is an internal vertex of P , and ch is Y -complete. It follows that ch is Q∗-complete, and from
the minimality of P , ch is nonadjacent to both a, b. But p1 ∈ B \A by (6), and so a, c1, p1, b, ch, Q is
a jewel in G, a contradiction. So there is no such ch, and hence P has length 1 and p2 is Y -complete
and therefore Q∗-complete. By (6) p2 is not V (Q)-complete, and since p2 is adjacent to b, it is
therefore nonadjacent to a. But then p2-p1 is an odd (A,B)-gap, by (7). This proves (8).

(9) There is an odd (A,B)-gap in c3- · · · -c2n−1, and |A ∩ B| ≤ 1.

For by (5), at least one of c3, . . . , c2n−1 belongs to A∪B. Since a, b both have at least four neighbours
in C by 7.5, and both have a nonneighbour in {c2n+1, c1}, they both have neighbours in c3- · · · -c2n−1.
Hence by (8) applied to c3- · · · -c2n−1, there is an odd (A,B)-gap contained in c3- · · · -c2n−1. Since it
has length 1 by (4), and by (6) every vertex in A ∩ B has a neighbour in each odd (A,B)-gap, the
claim follows. This proves (9).

(10) The number of odd (A,B)-gaps in C is odd.

For every odd (A,B)-gap in C is contained in a unique A-gap; and every B-edge is in a unique
A-gap since there is no A∩B-edge by (9). But by 7.3, an A-gap contains an odd number of B-edges
if and only if it includes an odd number of odd (A,B)-gaps. Since C contains an odd number of
B-edges (since B is normal), it therefore contains an odd number of odd (A,B)-gaps. This proves
(10).

Assign an orientation (“clockwise”) to C, where c2 is the successor of c1. For every odd (A,B)-
gap, let its ends be c, d where d immediately follows c in the clockwise order. Then either c ∈ A \ B
and d ∈ B \ A, or vice versa. If c ∈ A \ B, we say c-d is white and otherwise it is black. From (9),
c2n+1-c1 is not the only odd (A,B)-gap; so by (10) there are two (distinct) successive odd (A,B)-gaps
that have the same colour. Hence we may assume that for some i with 1 ≤ i ≤ 2n, ci ∈ B \ A and
ci+1 ∈ A \ B, and the path c1- · · · -ci contains no odd (A,B)-gap. Since c1 ∈ A \ B and ci ∈ B \ A,
it follows that i ≥ 2, and similarly i + 1 ≤ 2n. Now the path c1- · · · -ci contains a neighbour of a, a
neighbour of b, and a member of A ∪ B, and includes no odd (A,B)-gap; and we deduce from (8)
that every odd (A,B)-gap contains one of ci+1, c2n+1. By (10) we may assume that ci+2 ∈ B \ A,
and there are exactly three odd (A,B)-gaps in C.

Suppose that i+2 ≤ 2n. Since there are no edges between {c1, . . . , ci−1} and the odd (A,B)-gap
{ci+1, ci+2}, it follows from (8) applied to c1-c2- · · · -ci−1 that none of c1, . . . , ci−1 belong to B. So
c2n+1-c1- · · · -ci is a B-gap, and therefore i is even. Since c1- · · · -ci is not an odd (A,B)-gap, it follows

23

that there exists h with 2 ≤ h < i such that ch ∈ A. Choose h maximum. Then ch- · · · -ci+1 is an
A-gap and ch- · · · -ci is an (A,B)-gap, and one of them is odd, a contradiction. This proves that
i = 2n − 1.

Since A,B are both normal, they both meet c2- · · · -c2n−2, and yet there are no edges between
{c2, . . . , c2n−2} and the odd (A,B)-gap {c2n, c2n+1} and the path includes no odd (A,B)-gap, con-
trary to (8). This proves 8.1.

9 The cleaning algorithm

We turn to Routine 3. For any two distinct vertices a, b, let N(a, b) be the set of all {a, b}-complete
vertices. The definition of an amenable shortest odd hole C implies that cleaning can be done
when the set of C-major vertices is anticonnected. How do we proceed when there are at least two
anticomponents of C-major vertices? The key idea is as follows. If X is some subset of the C-major
vertices, there may or may not be two X-complete vertices in C that have distance at least 3 in C.
Smaller sets X tend to have this property, and larger sets tend not to. In both cases a good thing
happens. First, if X does have two such common neighbours (a, b say) then all members of N(a, b)
are C-major, and this set includes X; so we could easily guess a set of C-major vertices including
X, just by trying all pairs a, b and outputting the set N(a, b) for each pair. Thus in this case, X is
essentially easily “guessable”. On the other hand, if X does not have two such common neighbours
a, b, then the set of all X-complete vertices has very limited intersection with C, and yet contains
“most” C-major vertices (all of them except those in the anticomponents of C-major vertices that
meet X); and therefore if only we could guess X, we could guess most C-major vertices. If we choose
X right on the border, maximal such that a, b both exist, and add one more C-major vertex to it,
we essentially get both good things at once. This is still not quite enough to do cleaning; the last
trick is not just to maximize X, but to lexicographically maximize the sizes of the anticomponents
of X. Then that works, as we shall see. Let us explain the details.

A triple (a, b, c) of vertices is relevant if a, b are distinct and nonadjacent, and c /∈ N(a, b) (possibly
c ∈ {a, b}). For every relevant triple (a, b, c), we make the following definitions:

• r(a, b, c) is the cardinality of the largest anticomponent of N(a, b) that contains a nonneighbour
of c (or 0, if c is N(a, b)-complete)

• Y (a, b, c) is the union of all anticomponents of N(a, b) that have cardinality strictly greater
than r(a, b, c)

• W (a, b, c) is the anticomponent of N(a, b) ∪ {c} that contains c

• Z(a, b, c) is the set of all Y (a, b, c) ∪ W (a, b, c)-complete vertices, and

• X(a, b, c) = Y (a, b, c) ∪ Z(a, b, c).

The algorithm depends on the following lemma.

9.1 Let C be a shortest odd hole in G, with length at least 7. Then there is a relevant triple (a, b, c)
of vertices such that:

• the set of all C-major vertices not in X(a, b, c) is anticonnected, and

24

• X(a, b, c) ∩ V (C) is a subset of the vertex set of some 3-vertex path of C.

Proof. Let M be the set of all C-major vertices. Choose vertices a, b ∈ V (C), such that both paths
of C joining them have length at least 3 (this is possible since C has length at least 7). Let the
anticomponents of N(a, b) have cardinalities n1, . . . , nk in non-increasing order. Choose a, b such that
n1 is as large as possible, and subject to that n2 is as large as possible, and so on. We observe first
that N(a, b) ⊆ M , and that for any vertex c /∈ N(a, b), (a, b, c) is relevant and Y (a, b, c) is disjoint
from V (C).

Suppose first that M ⊆ N(a, b). Then equality holds. Moreover, r(a, b, a) = 0, and Y (a, b, a) =
N(a, b) and so every C-major vertex belongs to X(a, b, a). But W (a, b, a) = {a}, and therefore
Z(a, b, a) ∩ V (C) is a subset of the set of neighbours of a in C; and consequently, X(a, b, c) ∩ V (C)
is a subset of a 3-vertex path of C. In this case the triple (a, b, a) satisfies the theorem.

We may therefore assume that there exists c ∈ M \ N(a, b). For any such vertex c, (a, b, c) is
relevant; choose c such that r(a, b, c) is as large as possible. We claim that (a, b, c) satisfies the
theorem.

(1) W (a, b, c) ⊆ M \ X(a, b, c); and every vertex of M \ X(a, b, c) either belongs to W (a, b, c) or
has a nonneighbour in W (a, b, c). Consequently M \ X(a, b, c) is anticonnected.

For W (a, b, c) is disjoint from Y (a, b, c), Z(a, b, c) from the definition of these sets, and so W (a, b, c) ⊆
M \X(a, b, c). For the second assertion, let v ∈ M \X(a, b, c). We claim that v is Y (a, b, c)-complete.
For if v ∈ N(a, b) then this is true, since v /∈ Y (a, b, c) and Y (a, b, c) is a union of anticomponents of
N(a, b). If v /∈ N(a, b) then since v ∈ M , it follows that v is Y (a, b, c)-complete from the choice of c.
This proves that v is Y (a, b, c)-complete. Since v /∈ Z(a, b, c), it follows that either v ∈ W (a, b, c) or
v has a nonneighbour in W (a, b, c). This proves (1).

(2) X(a, b, c) ∩ V (C) is a subset of the vertex set of some 3-vertex path of C.

For suppose not. Since C has length at least 7, there exist a′, b′ ∈ Z(a, b, c) ∩ V (C) with dis-
tance at least 3 in C. Then Y (a, b, c) ∪W (a, b, c) ⊆ N(a′, b′), and so every anticomponent of N(a, b)
with cardinality strictly greater than r(a, b, c) is a subset of an anticomponent of N(a ′, b′). But also
W (a, b, c) has cardinality strictly greater than r(a, b, c), from the definition of r(a, b, c), and W (a, b, c)
is not an anticomponent of N(a, b), and W (a, b, c) is a subset of an anticomponent of N(a ′, b′). It
follows that replacing a, b by a′, b′ increases lexicographically the sequence n1, . . . , nk, contrary to
the choice of a, b. This proves (2).

From (1) and (2), it follows that (a, b, c) satisfies the theorem. This proves 9.1.

The algorithm for Routine 3 is as follows.

9.2 There is an algorithm with the following specifications:

Input: A graph G.

Output: O(|V (G)|5) subsets of V (G), such that if C is an amenable hole in G, then one of the
subsets is a near-cleaner for C.

25

Running time: O(|V (G)|5).

Proof. Here is the algorithm. For every two adjacent vertices u, v, compute the set N(u, v), and
list all such sets. For each relevant triple (a, b, c), compute the set X(a, b, c), and list all such sets.
Output all subsets that are the union of a set from the first list and one from the second. This
completes the algorithm.

To see that this output is correct, suppose that C is an amenable hole in G. By 9.1, there is
a relevant triple (a, b, c) satisfying that theorem. Since the set (T , say) of all C-major vertices not
in X(a, b, c) is anticonnected, and C is amenable, there is an edge uv of C that is T -complete; and
therefore T ⊆ N(u, v). But then N(u, v) ∪X(a, b, c) is a near-cleaner for C, and it is one of the sets
in the output. The running time is evidently as claimed.

10 The algorithm for Bergeness

Let us put these pieces together. The main result of the paper is the following:

10.1 There is an algorithm with the following specifications:

Input: A graph G.

Output: Determines whether G is Berge.

Running time: O(|V (G)|9).

Proof. First, use the algorithm of 6.8 to test whether one of G,G contains a jewel, a pyramid, or
a configuration of type T1, T2 or T3. If so, we output that G is not Berge and stop. If not, then by
8.1, every shortest odd hole in G is amenable. We run 9.2, and obtain the O(|V (G)|5) subsets. For
each subset X in turn, we run 5.1 on the pair G,X. If we find that G has an odd hole, we output
that and stop. If after examining all the sets X, we still have not found an odd hole, we turn to G,
and run the same procedure on that. (There is no need to repeat the algorithm of 6.8, of course.) If
again we do not detect an odd hole, we report that G is Berge. That completes the description of
the algorithm.

Let us show that the output is correct. We must show that G is not Berge if and only if the
algorithm reports that G is not Berge. From the construction of the algorithm, if the algorithm
reports that G is not Berge, then this is true. For the converse, suppose that G is not Berge. Since
we run the same algorithm on G and on G, we may assume that there is an odd hole in G, by
replacing G by G if necessary. Hence there is a shortest odd hole in G, say C. We may assume that
in the call of 6.8, we did not detect that G is not Berge, and therefore G and G both contain no
jewel, pyramid, or configuration of type T1, T2 or T3. Hence by 8.1, C is amenable. Thus the call
of 9.2 functions as it should, and one of the subsets X it outputs is a near-cleaner for C. Therefore
when we apply 5.1 to the pair G,X, the algorithm will discover an odd hole and report that. Thus
the output is correct in all cases.

Finally, let us add up the total running time. The call to 6.8 takes time O(|V (G)|9). Running 9.2
takes time O(|V (G)|5), and then for each of O(|V (G)|5) subsets we have to call 5.1, each call taking
time O(|V (G)|4). Then we repeat on the complement. The whole running time is O(|V (G)|9), as
claimed. This proves 10.1.

26

11 Appendix

Here we give another algorithm for Routine 1. First, by making use of 2.2 and 3.1, we may assume
that the input graph contains no pyramid or jewel. In the version of Routine 1 given earlier, we
then call 4.2 or its more efficient variant 5.1, but there is an alternative method that can be applied
at this stage, that can be shown to work using just a special case of 4.1. What is presented in this
appendix is the work of CLV, although an almost identical algorithm was developed independently
by ChS in joint work with Neil Robertson and Robin Thomas.

Let us say a graph G is clean if it is either odd-hole-free or it contains a clean shortest odd
hole. We will present an algorithm that takes as input a clean graph G containing no pyramid or
jewel, and recognizes whether G is odd-hole-free. The idea is to decompose the input graph G into a
polynomial number of simpler graphs G1, . . . , Gm so that the following two properties are satisfied:

(1) G is odd-hole-free if and only if Gi is odd-hole-free for every i = 1, . . . ,m, and

(2) for every i = 1, . . . ,m it is easy to check directly whether Gi is odd-hole-free.

The basis of this recognition algorithm is the following decomposition theorem for odd-hole-free
graphs by Conforti, Cornuéjols and Vušković [4]. For Berge graphs, this result also follows from the
decomposition theorem of Chudnovsky, Robertson, Seymour and Thomas [2].

A set S of vertices is a double star if S contains two adjacent vertices u and v such that S ⊆
N(u) ∪ N(v). Here N(x) denotes the set of vertices adjacent to vertex x. We say that S is centred
at uv. The vertex set S is a cutset of G if G \ S contains more connected components than G.

A graph G has a 2-join V1|V2 with special sets (A1, A2, B1, B2) if its vertices can be partitioned
into sets V1 and V2 so that, for i = 1, 2, Vi contains disjoint, nonempty vertex sets Ai and Bi, such
that every vertex of A1 is adjacent to every vertex of A2, every vertex of B1 is adjacent to every vertex
of B2, and there are no other adjacencies between V1 and V2. Furthermore, for i = 1, 2, |Vi| > 2 and
the graph induced by Vi is not a path. 2-joins were introduced by Cornuéjols and Cunningham [6]
in a special case and by Conforti, Cornuéjols, Kapoor and Vušković [3] in the above form.

A basic graph is a bipartite graph or the line graph of a bipartite graph or the complement of a
line graph of a bipartite graph.

11.1 [4] If G is an odd-hole-free graph, then either G is basic, or G has a double star cutset or a
2-join.

Checking whether a graph is basic can easily be done in polynomial time [7, 9]. This is an answer
to (2) above. A polynomial algorithm for finding a 2-join is given in [3]. It is not difficult to find a
double star cutset in polynomial time: For any two adjacent vertices u, v and any two nonadjacent
vertices x, y, test whether there is a double star cutset centred at u and v that disconnects x and y
by removing all the neighbours of u and all the neighbours of v except x and y, and checking whether
x and y belong to distinct connected components of the resulting graph. A crude implementation
runs in time O(|V (G)|6). Therefore the main difficulty in applying Theorem 11.1 is to decompose a
graph G that has a double star cutset or a 2-join into “blocks of decomposition” Gi that satisfy (1)
above.

27

Blocks of decomposition

We now define the blocks of decomposition for double star cutsets and 2-joins. Remember that our
goal is to satisfy (1) above. If X ⊆ V (G) then we denote the subgraph of G induced on X by G[X].

2-Join Decomposition: Let V1|V2 be a 2-join of G with special sets (A1, A2, B1, B2). If there
does not exist a path from a vertex of A2 to a vertex of B2 in G[V2] then we define block G1 to be the
subgraph of G induced by V1 ∪ {a2, b2}, where a2 ∈ A2 and b2 ∈ B2. Otherwise, let Q2 be a shortest
path from A2 to B2 in G[V2]. We define block G1 to be the graph obtained from G[V1 ∪ V (Q2)] by
replacing Q2 by a path P2 of length 4 if Q2 is of even length, and of length 5 otherwise. Path P2 is
called the marker path. Block G2 is defined similarly.

11.2 Let G1 and G2 be the blocks of a 2-join decomposition of G. Then G is odd-hole-free if and
only if G1 and G2 are odd-hole-free. Furthermore, if G contains a clean odd hole of length strictly
greater than 5, then G1 or G2 contains a clean odd hole of length strictly greater than 5.

Proof. Assume first that G is odd-hole-free and that G1 contains an odd hole C. Suppose that C
does not contain the marker path P2. Since C is not a hole of G, it contains both endvertices of Q2

and Q2 is an edge. But then G contains a shorter odd hole, a contradiction. Therefore C contains
the marker path P2. Let C1 = C ∩ V1. Then C1 ∪ Q2 induces an odd hole of G, a contradiction.

Next we prove that if G contains an odd hole C, then G1 or G2 contains an odd hole. If C does
not contain a vertex in each of A1, A2, B1, B2, then C is contained in G1 or G2. Thus we can assume
that C contains a vertex in each of A1, A2, B1, B2. First assume that C contains exactly four vertices
of A1∪A2∪B1∪B2. Let C1 = C ∩V1 and C2 = C ∩V2. Since C is odd, we may assume without loss
of generality that C1 is even and C2 is odd. If P2 is odd then C1 ∪P2 is an odd hole of G1. Hence we
can assume that P2 is even. Then one of P1 ∪Q2 or P1 ∪C2 induces an odd hole in G2. Now assume
that C contains more than four vertices of A1 ∪ A2 ∪ B1 ∪ B2. Without loss of generality, we may
assume that C contains two vertices a1, a

′

1 ∈ A1. Then C contains exactly one vertex in A2, which
is adjacent to a1 and a′1. Since C is a hole it cannot contain more than one vertex in B2. Hence C
is entirely contained in G1.

The second statement of the theorem follows by observing that if the odd hole C defined in the
previous paragraph is a clean odd hole of length strictly greater than 5, then the odd hole found in
G1 or G2 is also a clean odd hole of length strictly greater than 5 (for example the fact that P1 ∪Q2

is clean follows from the fact that Q2 is a shortest path from A2 to B2 in G[V2]). This proves 11.2.

Double Star Decomposition: Let S be a double star cutset of G and H1, H2, . . . ,Hn the
connected components of G\S. We define the blocks of the decomposition to be the graphs G1, . . . , Gn

where Gi = G[V (Hi) ∪ S].
This definition of blocks for the double star cutset does not preserve the odd-hole-free property.

Consider a graph G that consists of a 5-hole C = x1, x2, x3, x4, x5, x1 and a vertex x adjacent to
x1, x2 and x4. If we decompose G with a double star cutset N(x) ∪ {x} then neither of the blocks
contains an odd hole. In the subsection below entitled “Double star decomposition” we show how to
preserve the odd-hole-free property if the input graph G is clean.

28

Clean holes

In this subsection we show that if a shortest odd hole C ∗ in a graph G is clean, then the entire family
of shortest odd holes obtained from C∗ through certain vertex and edge substitutions is also clean
in G.

For an odd hole C, a vertex u ∈ V (G) \ V (C) is called C-minor if it is not C-major. Consider
a C-minor vertex u and let P be the subpath of C of length at most two (P possibly empty) such
that N(u) ∩ V (C) ⊆ V (P) and u is adjacent to both endvertices of P . We say that u is a C-minor
vertex of Type i if i = |V (P)|.

Let C be an odd hole and u a C-minor vertex of Type 3, with neighbours in C contained in
a subpath u1, u2, u3 of C. Let C ′ be the hole induced by (V (C) \ {u2}) ∪ {u}. We say that C ′ is
obtained from C through a minor vertex substitution. Note that C and C ′ have the same length.

A C-minor edge is an edge uv such that both u and v are C-minor vertices, and for some u ′v′-
subpath P of C of length three, (N(u) ∪ N(v)) ∩ V (C) ⊆ V (P), and u is adjacent to u ′, and v is
adjacent to v′. Note that u is not adjacent to v′ and v is not adjacent to u′. Let C ′ be the hole
induced by (V (C) \ V (P)) ∪ {u, v, u′, v′}. We say that C ′ is obtained from C through a minor edge
substitution. Note that C and C ′ have the same length.

Let C be an odd hole in a graph G. We define SG(C) to be the family of all holes of G obtained
from C through a sequence of minor vertex substitutions or minor edge substitutions.

The next result is a special case of 4.1. However, we only need the special case of 4.1 when
dG(u, v) ≤ 3, and for that case the proof of 4.1 can be considerably shortened (to about a page).
There is no other application of 4.1 in the algorithm described in this appendix.

11.3 Let G be a graph containing a shortest odd hole C ∗ but no jewel nor pyramid. If C∗ is clean
then all holes in SG(C∗) are clean.

Double star decomposition

In this subsection we decompose clean graphs with double star cutsets.

11.4 Let G be a graph that contains a shortest odd hole C ∗, but no jewel nor pyramid. If u, v ∈
V (G) \ V (C∗) are two adjacent C∗-minor vertices then one of the following is true.

(i) uv is a C∗-minor edge.

(ii) The vertices of (N(u) ∪ N(v)) ∩ V (C∗) are contained in a subpath P of C∗ of length at most
two, and if P is of length 2 then u or v is a C∗-minor vertex of Type 3.

Proof. Let P be a shortest subpath of C∗ such that the vertices of (N(u) ∪ N(v)) ∩ V (C∗) are
contained in P . Suppose that P is of length 2. If neither u nor v is a C ∗-minor vertex of Type 3,
V (C∗) ∪ {u, v} induces a jewel. Therefore, (ii) holds. If P is of length 3 then uv is a C ∗-minor edge
and therefore (i) holds. Now we assume that P is of length strictly greater than 3. If exactly one of
u and v is a C∗-minor vertex of Type 2, then there is a pyramid. If u and v are both of Type 3 and
they have a common neighbour in C∗, then there is a jewel. In all other cases, G[V (C ∗) ∪ {u, v}]
contains an odd hole shorter than C∗. This proves 11.4.

29

11.5 Let G be a graph that contains a clean shortest odd hole C ∗, but does not contain a jewel or
a pyramid. If S is a double star cutset of G, then some hole of SG(C∗) is entirely contained in one
of the blocks of the decomposition by S.

Proof. Let S be centred at uv, and suppose that C ∗ is not entirely contained in one block of the
decomposition. Then C∗ does not contain both u and v. Suppose that C∗ contains u, but not v.
Since C∗ is clean and is contained in no block of the decomposition, v is a C ∗-minor vertex of Type
3. Hence the hole obtained by substituting v into C ∗ is in SG(C∗) and entirely contained in one
block of the decomposition. So we may assume that C ∗ contains neither u nor v. Then by 11.4, one
of the holes in SG(C∗) is entirely contained in one block of the decomposition. This proves 11.5.

11.6 There is an algorithm with the following specifications:

Input: A connected clean graph G that does not contain a jewel, a pyramid, a 5-hole or a 7-hole.

Output: A family L of induced subgraphs of G that satisfies the following properties:

(1) G is odd-hole-free if and only if all the graphs in L are odd-hole-free.

(2) The graphs in L do not have a double star cutset.

(3) The number of graphs in L is O(|V (G)|2).

Running Time: O(|V (G)|8).

Proof. The algorithm is as follows. Initialize L = ∅ and L′ = {G}, and perform the following
iterative step: If L′ = ∅ then stop. Otherwise, remove a graph F from L′. If the distance between
every pair of vertices of F is strictly less than 4 in G, discard F and iterate. Otherwise, if F has
no double star cutset, then add F to L and iterate. Otherwise, let S be a double star cutset in F ,
construct the blocks of the decomposition by S, add them to L′ and iterate.

(2) holds by the construction of the algorithm. We now show that (1) holds. Since the graphs in
L are induced subgraphs of G, if G is odd-hole-free then all graphs in L are odd-hole-free. Suppose
G contains a clean shortest odd hole C∗. Note that by 11.3 all holes in SG(C∗) are clean. Since
C ∈ SG(C∗) is of length greater than 7, it contains two vertices u and v that are at distance at least
4 in C. By 11.4 u and v are at distance at least 4 in G as well. Hence by 11.5, some graph in L
contains an odd hole of SG(C∗).

We prove (3) by showing that the number of graphs in L is bounded by the number of pairs of
vertices at distance at least 4 in G. Let S be a double star cutset of a graph F , and let F1, . . . , Fm

be the blocks of the decomposition. Let u and v be two vertices of F that are at distance at least
4 in G (and hence in F). The pair of vertices {u, v} cannot be contained in two different blocks of
the decomposition since otherwise they would both have to be in S, but since S is a double star, all
vertices of S are at distance at most 3. Therefore no pair of vertices that are at distance at least 4
in G can be contained in different graphs in L.

Finding a double star cutset and constructing blocks of decomposition can be done in time
O(|V (G)|6). This is performed at most O(|V (G)|2) times, giving O(|V (G)|8) time complexity. This
proves 11.6.

30

2-join decomposition

In this subsection we decompose a clean graph that has no double star cutset using 2-join decompo-
sitions, without creating any new double star cutset.

11.7 If a graph G has a 2-join V1|V2 with special sets (A1, A2, B1, B2) such that V1 \ (A1 ∪B1) = ∅
and V2 \ (A2 ∪ B2) = ∅ then G contains no clean odd hole of length strictly greater than five.

Proof. Suppose that C is a clean odd hole of length at least seven in G. Since there is no C-major
vertex, C cannot be entirely contained in A1 ∪B1 or A2 ∪B2. Now we assume with loss of generality
that C contains one vertex of A2 and two vertices of A1. Then C contains at least two vertices of
B1 but no vertex of B2. Now any vertex of B2 is C-major, a contradiction. This proves 11.7.

11.8 Suppose that a connected graph G has a 2-join V1|V2 with special sets (A1, A2, B1, B2) such
that at least one of V1 \ (A1 ∪B1) and V2 \ (A2 ∪B2) is nonempty. Let G1 and G2 be the blocks of a
2-join decomposition of G. If G does not have a double star cutset then the following hold.

(1) Both V1 \ (A1 ∪ B1) and V2 \ (A2 ∪ B2) are nonempty.

(2) For i = 1, 2, Gi does not have a double star cutset.

(3) For i = 1, 2, |Vi| ≥ 6.

Proof. For i = 1, 2 let Pi be the set of all paths in G[Vi] with one vertex in Ai, the other in Bi and
no intermediate vertex in Ai ∪ Bi. (1) follows from the following claim.

Claim 1: For i = 1, 2, Pi 6= ∅ and all paths of Pi are of length at least 2.

Proof of Claim 1: Let u ∈ A1 and v ∈ B1. If P1 = ∅ then, since |V1| > 2, either {u}∪A2 or {v}∪B2

is a double star cutset of G. So P1 6= ∅ and similarly P2 6= ∅. Now suppose that uv is an edge. If
V2 \ (A2 ∪ B2) 6= ∅ then {u, v} ∪ A2 ∪ B2 is a double star cutset of G. So V2 \ (A2 ∪ B2) = ∅. Since
P2 6= ∅ there is an edge from A2 to B2, and hence V1 \ (A1 ∪ B1) = ∅. But this contradicts the
assumption that at least one of V1 \ (A1 ∪ B1) and V2 \ (A2 ∪ B2) is nonempty. This completes the
proof of Claim 1.

To prove (2) in 11.8, we may assume without loss of generality that G1 has a double star cutset
S centred at xy. By Claim 1, G1 contains the marker path a2- · · · -b2 (= P2 say). First suppose
that x, y ∈ V1. By Claim 1 no vertex of A1 is adjacent to B1, so S cannot contain both a2 and b2.
Without loss of generality we may assume that S does not contain b2. If S contains a2 then S ∪ A2

is a double star cutset of G. So S does not contain a2, and hence S is a double star cutset of G.
So x or y is in P2. By Claim 1, P1 6= ∅ and hence S must contain a2 or b2. Since P2 is of length 4
or 5, S cannot contain both a2 and b2. Without loss of generality we may assume that S contains
a2 but not b2. Suppose that neither x nor y coincides with a2. Since P1 6= ∅, there is a connected
component of G1 \ S that contains B1 ∪ {b2} and some vertex u ∈ A1. Since G is connected, some
vertex of A1 \{u} is contained in another connected component of G1 \S. Then {u}∪A2 is a double
star cutset of G. Therefore we may assume that x = a2. By the above argument we may also assume
that S contains a vertex of A1. In fact, without loss of generality we may assume that y ∈ A1. But
then (S \ V (P2)) ∪ A2 is a double star cutset of G.

31

To prove (3) let Q be a shortest path in P2. By Claim 1, Q is of length at least 2. If Q is of
length at least 4, then by definition of 2-join, |V2| ≥ 6. So we may assume that Q is of length 2 or
3. By definition of 2-join, there exists w ∈ V2 \ V (Q). If |A2| = |B2| = 1 then V (Q) is a double star
cutset of G that separates w from V1. So we may assume that w ∈ A2. Let Q be x1- · · · -xk, where
x1 ∈ A2 and xk ∈ B2. Let S = (N(x1)∪N(x2)) \ {w}. Since S cannot be a double star cutset of G,
there exists a path P from w to B2 in G \ S. By Claim 1, P contains at least 3 vertices, and hence
|V2| ≥ 6. Similarly, |V1| ≥ 6. This proves 11.8.

11.9 There is an algorithm with the following specification:

Input: A connected clean graph G that has no double star cutset and no hole of length 5.

Output: Either an odd hole of G, or a family L of graphs that satisfies the following properties:

(1) G is odd-hole-free if and only if all graphs in L are odd-hole-free.

(2) No graph of L has a double star cutset or a 2-join.

(3) The number of graphs in L is O(|V (G)|).

Running Time: O(|V (G)|8).

Proof. The algorithm is as follows. Initialize L = ∅ and L′ = {G}, and perform the following
iterative step. If L′ = ∅ then stop. Otherwise, remove a graph F from L′. If F has no 2-join, then
add F to L and iterate. Otherwise, let V1|V2 be a 2-join of F with special sets (A1, A2, B1, B2). If
V1 \ (A1 ∪B1) = ∅ and V2 \ (A2 ∪B2) = ∅, discard F and iterate. Otherwise, construct the blocks of
the 2-join decomposition of F , say F1 and F2. For i = 1 or 2, if |Vi| ≤ 7, check directly whether Fi

contains an odd hole. If it does, output this result and otherwise discard Fi. If |Vi| > 7, add Fi to
L′. Iterate.

(1) follows from 11.2 and 11.7, and (2) follows from 11.8.
To prove that |L| is O(|V (G)|), we construct a decomposition tree T whose root is G and whose

leaves are the graphs in L. Let F be a nonleaf vertex of T , let V1|V2 be a 2-join of F with special
sets (A1, A2, B1, B2), and let F1, F2 be the two blocks of the 2-join decomposition of F . Note
that Vi 6= Ai ∪ Bi for i = 1, 2 by 11.8. We define φ(F) = |V (F)| − 12, φ(Fi) = |V (Fi)| − 12 for
i = 1, 2. Assume first that both F1 and F2 appear in T . Since only Fi with |Vi| > 7 is added
to L′ and the marker path contains at least five vertices, φ(Fi) ≥ 1 for i = 1, 2. Furthermore,
φ(F1) + φ(F2) ≤ φ(F) by the fact that the marker path contains at most six vertices. Now assume
that only one of the blocks F1, F2 belongs to T , say F1. Then φ(F1) ≤ φ(F) since |V2| ≥ 6 by 11.8
and the marker path of F1 contains at most six vertices. Let B1, . . . , Bk be the leaves of T . Then
k ≤ Σk

i=1φ(Bi) ≤ φ(G) = |V (G)| − 12. This implies that the number of leaves in T is O(|V (G)|).
Finding a 2-join takes time O(|V (G)|7) using the crude implementation in [3], and this algorithm

is applied at most O(|V (G)|) times, which yields an overall complexity of O(|V (G)|8). This proves
11.9.

Recognition algorithm for odd-hole-free clean graphs

As explained earlier, it suffices to show how to handle graphs with no pyramid or jewel, and we also
may assume that they are connected and contain no 5-hole or 7-hole. Then we use the following.

32

11.10 There is an algorithm with the following specification:

Input: A connected clean graph G, that contains no pyramid, jewel, 5-hole or 7-hole.

Output: ODD-HOLE-FREE when G is odd-hole-free, and NOT ODD-HOLE-FREE otherwise.

Running Time: O(|V (G)|10).

Proof. The algorithm has three steps. In Step 1, we apply the Double Star Decomposition Algorithm
to G, and let L1 be the output family of graphs. In Step 2, we set L2 = ∅. For every graph in L1 apply
the 2-Join Decomposition Algorithm. If the output of this algorithm is an odd hole, then output
NOT ODD-HOLE-FREE and stop. Otherwise, merge the output with L2. Finally, in Step 3, we
check whether every graph of L2 is basic. If this is the case, output ODD-HOLE-FREE. Otherwise
output NOT ODD-HOLE-FREE.

The complexity of Step 1 is O(|V (G)|8) and there are O(|V (G)|2) graphs in L1. The 2-join
decomposition algorithm, whose complexity is O(|V (G)|8), is applied O(|V (G)|2) times in Step 2
(since it is applied to every graph in L1), so the total complexity of Step 2 is O(|V (G)|10). Given a
graph G, the algorithms in [7] and [9] can test in time O(|V (G)|2) whether G is basic. Since there
are O(|V (G)|3) graphs in L2, this implies that the complexity of Step 3 is O(|V (G)|5). Therefore
the overall complexity of the algorithm is dominated by Step 2, which is O(|V (G)|10). This proves
11.10.

To apply this to test whether a graph is Berge, we need a version of 9.2 that will generate a set of
subsets one of which is guaranteed to be a cleaner rather than just a near-cleaner. But it is easy to
adapt 9.2 to do this (for each of the O(|V (G)5| sets X output by 9.2, remove at most three elements
from it in all possible ways; of the O(|V (G)8| sets Y we generate, one is guaranteed to be a cleaner).
The remainer of the application is just like in 10.1, applying 11.10 to all the graphs G \ Y , in place
of applying 5.1 to the pairs G,X. The overall running time is O(|V (G)|18).

12 Acknowledgements

ChS would like to express their thanks to Neil Robertson and Robin Thomas. Many of the ChS ideas
and methods in this paper grew from joint work with them. In particular, Robin correctly insisted
that cleaning shortest odd holes was a good idea; and they both did a great deal of work with ChS
on finding common neighbours of anticonnected sets of C-major vertices.

CLV had many stimulating discussions with Michele Conforti and Giacomo Zambelli on the
recognition of Berge graphs and in particular on cleaning shortest odd holes.

Thanks also to the American Institute of Mathematics for their support. They hosted a conference
on perfect graphs devoted in part to cleaning methods, just a week or so before the algorithm was
completed, and that was a great stimulus to our work.

References

[1] C. Berge, “Färbung von Graphen, deren sämtliche bzw. deren ungerade Kreise starr sind”, Wiss.
Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe 10 (1961), 114.

33

[2] M. Chudnovsky, N. Robertson, P. Seymour and R. Thomas, “The strong perfect graph theorem”,
Annals of Math., to appear.

[3] M. Conforti, G. Cornuéjols, A. Kapoor and K. Vušković, “Even-hole-free graphs, Part II: Recog-
nition algorithm”, J. Graph Theory 40 (2002), 238-266.

[4] M. Conforti, G. Cornuéjols and K. Vušković, “Decomposition of odd-hole-free graphs by double
star cutsets and 2-joins”, preprint (2001), to appear in the special issue of Discrete Applied
Mathematics dedicated to the Brazilian Symposium on Graphs, Algorithms and Combinatorics,
Fortaleza, March 17-19, 2001.

[5] M. Conforti and M.R. Rao, “Testing balancedness and perfection of linear matrices”, Mathe-
matical Programming 61 (1993), 1-18.

[6] G. Cornuéjols and W.H. Cunningham, “Compositions for perfect graphs”, Discrete Mathematics
55 (1985), 245-254.

[7] P. G. H. Lehot, “An optimal algorithm to detect a line graph and output its root graph”, J.
Assoc. Comput. Mach. 21 (1974), 569-575.

[8] F. Roussel and P. Rubio, “About skew partitions in minimal imperfect graphs”, J. Combinatorial
Theory, Ser. B 83 (2001), 171-190.

[9] N. D. Roussopoulos, “A max{m,n} algorithm for determining the graph H from its line
graph G”, Informat. Process. Letters 2 (1973), 108-112.

34

