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Abstract

The bull is a graph consisting of a triangle and two pendant edges.
A graphs is called bull-free if no induced subgraph of it is a bull. In
this paper we prove that every bull-free graph on n vertices contains
either a clique or a stable set of size n

1

4 , thus settling the Erdős-Hajnal
conjecture [5] for the bull.

1 Introduction

All graphs in this paper are finite and simple. The bull is a graph with
vertex set {x1, x2, x3, y, z} and edge set

{x1x2, x2x3, x1x3, x1y, x2z}.

Let G be a graph. We say that G is bull-free if no induced subgraph of G is
isomorphic to the bull. The complement of G is the graph G, on the same
vertex set as G, and such that two vertices are adjacent in G if and only if
they are non-adjacent in G. We observe that G is bull-free if and only if G

∗This research was conducted during the period the author served as a Clay Mathe-

matics Institute Research Fellow.
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is bull-free. A clique in G is a set of vertices, all pairwise adjacent. A stable
set in G is a clique in the complement of G.

In [5] Erdős and Hajnal made the following conjecture:

1.1 For every graph H, there exists δ(H) > 0, such that if G is a graph
and no induced subgraph of G is isomorphic to H, then G contains either a
clique or a stable set of size at least |V (G)|δ(H).

This conjecture is known to be true for small graphs H (with |V (H)| ≤
4), and for graphs H obtained from them by certain operation [1, 5, 6]. Thus
graphs H on at least five vertices, not obtained by the operations of [1, 5, 6],
are the next interesting case. The bull is one of such graphs. In this paper
we prove that the Erdős-Hajnal conjecture holds when H is the bull. Our
main result is:

1.2 Let G be a bull-free graph. Then G contains a stable set or a clique of
size at least |V (G)|

1

4 .

In fact, we prove a stronger result. We say that a graph G is nar-
row, if

∑

v∈V (G) g(v)2 ≤ 1 for every function g : V (G) → R
+ such that

∑

v∈V (P ) g(v) ≤ 1 for every perfect induced subgraph P of G. We prove:

1.3 Every bull-free graph is narrow.

The connection between 1.2 and 1.3 is explained in the next section.
For a subset A of V (G) and a vertex b ∈ V (G) \ A, we say that b is

complete to A if b is adjacent to every vertex of A, and that b is anticomplete
to A if b is not adjacent to any vertex of A. For two disjoint subsets A and
B of V (G), A is complete to B if every vertex of A is complete to B, and A

is anticomplete to B if every vertex of A is anticomplete to B. For a subset
X of V (G), we denote by G|X the subgraph induced by G on X, and by
G \ X the subgraph induced by G on V (G) \ X. We say that X is a bull
if G|X is a bull. A hole in a graph G is an induced cycle with at least four
vertices. An antihole in G is a hole in G. A hole (antihole) is odd if it has
an odd number of vertices. A path in G is an induced connected subgraph
P of G such that either P is a one-vertex graph, or two vertices of P have
degree one and all the others have degree two. The interior of P is the set
of all vertices that have degree two in P . An antipath in G is a path in G. A
homogeneous set in G is a proper subset X of V (G) such that every vertex
of V (G)\X is either complete or anticomplete to X. We say that G admits
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a homogeneous set decomposition if there exists a homogeneous set X in G

with 1 < |X| < |V (G)|.
We say that G is composite if G is bull-free and there exists an odd hole

or antihole A in G, such that some vertex of V (G) \ V (A) is complete to
V (A) and some vertex of V (G) \ V (A) is anticomplete to V (A). A graph is
basic if it is bull-free and not composite.

In Section 3 we prove the following (this result, in a slightly greater
generality, appears in [3], but we include the proof here for completeness):

1.4 Every composite graph admits a homogeneous set decomposition.

In Section 4 we prove that 1.3 holds for basic graphs. In Section 5 we use
induction on the number of vertices of the graph, 1.4 and the fact that 1.3
is true for basic graphs, to prove 1.3 for composite graphs, thus completing
the proof of 1.3.

Before we proceed with the proof, let us state two results about perfect
graphs that we use:

the Weak Perfect Graph Theorem [7]

1.5 A graph G is perfect if and only if G is perfect.

and the Strong Perfect Graph Theorem [4]

1.6 A graph is perfect if and only if it contains no odd hole and no odd
antihole.

2 Covering with perfect graphs

In this section we show how 1.3 implies 1.2. For a graph G, we denote by
ω(G) the size of the largest clique of G, by α(G) the size of the largest
stable set of G, and by χ(G) the chromatic number of G. G is perfect if
χ(H) = ω(H) for every induced subgraph H of G. We observe the following:

2.1 Every perfect graph G contains a clique or stable set with at least
√

|V (G| vertices.

Proof. Since χ(G) = ω(G), it follows that |V (G)| ≤ α(G)ω(G), and 2.1
follows.

Next we prove the following lemma about narrow graphs:
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2.2 Let G be a narrow graph, let w : V (G) → R
+, and let M =

√

∑

v∈V (G) w(v)2.

Let P be the family of all induced perfect subgraphs of G. Then there exists
a function f : P → R

+ such that

•
∑

{P∈P s.t. v∈P} f(P ) ≥ w(v) for every v ∈ V (G), and

•
∑

P∈P f(P ) ≤ M.

Proof. Consider the following linear program:

z = min
∑

P∈P

f(P )

subject to
∑

{P∈P s.t. v∈P}

f(P ) ≥ w(v) for every v ∈ V (G)

f(P ) ≥ 0 for every P ∈ P.

By taking duals, using the LP-duality theorem (see, e.g. [2]), we get that

z = max
∑

v∈V (G)

g(v)w(v)

subject to
∑

v∈V (P )

g(v) ≤ 1 for every P ∈ P

g(v) ≥ 0 for every v ∈ V (G).

Let g : V (G) → R
+ be a function such that

∑

v∈V (P )

g(v) ≤ 1 for every P ∈ P.

Then, by the Cauchy-Schwartz inequality, and since G is narrow, it follows
that

∑

v∈V (G)

g(v)w(v) ≤

√

∑

v∈V (G)

g(v)2
√

∑

v∈V (G)

w(v)2 ≤ M.

This proves 2.2.
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Thus, 1.3 and 2.2, imply the following:

2.3 Let G be a bull-free graph, let w : V (G) → R
+, and let M =

√

∑

v∈V (G) w(v)2.

Let P be the family of all induced perfect subgraphs of G. Then there exists
a function f : P → R

+ such that

•
∑

{P∈P s.t. v∈P} f(P ) ≥ w(v) for every v ∈ V (G), and

•
∑

P∈P f(P ) ≤ M.

Next we show that in order to prove 1.2, it is enough to prove the fol-
lowing:

2.4 Let G be a bull-free graph and let P be the family of all perfect induced
subgraphs of G. Then there exists f : P → R

+ such that

•
∑

{P∈P s.t. v∈P} f(P ) ≥ 1 for every v ∈ V (G), and

•
∑

P∈P f(P ) ≤
√

|V (G)|.

Proof of 1.2 assuming 2.4. Let G be a bull-free graph, and let f be
as in 2.4. Let K = maxP∈P |V (P )|. Then

|V (G)| =
∑

v∈V (G)

1 ≤
∑

v∈V (G)

∑

{P∈P s.t v∈V (P )}

f(P )

≤
∑

P∈P

∑

v∈V (P )

f(P ) ≤ K
∑

P∈P

f(P ) ≤ K
√

|V (G)|.

Consequently,
K ≥

√

|V (G)|.

Let P be a perfect induced subgraph of G with |V (P )| ≥
√

|V (G)|. Now 2.1
implies that P , and therefore G, contains a clique or a stable set of size at
least

√

|V (P )| ≥ |V (G)|
1

4 . This proves 1.2.

Clearly, 2.4 is just a special case of 2.3 when w(v) = 1 for every v ∈ V (G).
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3 Homogeneous sets in composite graphs

The goal of this section is to prove 1.4. We start with some definitions. Let
G be a graph, and let S ⊆ V (G). We say that S is split, if |S| > 1, and for
every vertex x ∈ V (G) \ S that is not complete or anticomplete to S, there
exist three distinct vertices u, v,w ∈ S such that one of the following two
alternatives holds:

1. u-v-w is a path, x is adjacent to u and v and non-adjacent to w, or

2. u-v-w is an antipath, x is adjacent to u and non-adjacent to v and w.

Please note that S is a split set in G if and only if S is a split set in G.
We prove the following result, which, as we later show, implies 1.4:

3.1 Let G be a bull-free graph, and let S ⊆ V (G) be a split set. Assume
that there exist vertices a, c ∈ V (G) \ S such that c is complete to S and a

is anticomplete to S. Then G admits a homogeneous set decomposition.

Proof. We start with the following observation.

(1) If c is adjacent to a, then every vertex of V (G) \ S is either complete to
S, or anticomplete to S, or is adjacent to c. If c is non-adjacent to a, then
every vertex of V (G) \S is either complete to S, or anticomplete to S, or is
non-adjacent to a.

Let x ∈ V (G) \ S and suppose that x violates (1). Let S1 be the set of
neighbors on x in S, and let S2 = S \S1. Then S1, S2 6= ∅. Since S is a split
set, and by the definition of S1, one of the following two cases holds.

Case 1. There exist vertices u, v ∈ S1 and w ∈ S2, such that u-v-w is a
path.

In this case x is adjacent to u, v and non-adjacent to w. Since the set
{a, x, u, v, w} is not a bull in G, it follows that x is non-adjacent to a. Since
x violates (1), it follows that c is adjacent to a, and x is non-adjacent to c.
But now {x, v,w, c, a} is a bull, a contradiction. This finishes Case 1.

Case 2. There exist vertices u ∈ S1 and v,w ∈ S2, such that u-v-w is
an antipath.

In this case x is adjacent to u, and non-adjacent to v and w. Since {x, u,w, c, v}
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is not a bull, it follows that x is adjacent to c. Since x violates (1), it follows
that c is non-adjacent to a, and x is adjacent to a. But now {a, x, u, c, v} is
a bull, a contradiction. This finishes Case 2.

This proves (1).

Let C be the set of all vertices of G that are complete to S, and A be the set
of all vertices of G that are anticomplete to S. Let X = V (G)\ (A∪C ∪S).
We observe that either every vertex in C has a neighbor in A, or every vertex
in A has a non-neighbor in C. From this, together with the fact that if G

admits a homogeneous set decomposition then so does G, we may assume,
passing to the complement if necessary, that every vertex of C has a neigh-
bor in A.

(2) C is complete to X.

Let x ∈ X and c′ ∈ C. Choose a′ ∈ A that is a neighbor of c′. Apply-
ing (1) to x, c′ and a′, we deduce that c′ is adjacent to x. This proves (2).

Let A′ be the set of vertices a′ in A such that for some x ∈ X, there
exists a path from a′ to x with interior in A.

(3) A′ is complete to C.

Let k be an integer, let a1, . . . , ak ∈ A′ and x ∈ X and let x-a1- . . . -ak

be a path. We prove by induction on k that ak is complete to C. By (2) x

is complete to C.
Suppose first that k = 1. Since S is a split set, x is not complete and

not anticomplete to S, x is adjacent to a1, and a1 ∈ A, (1) implies that a1

is complete to C.
So we may assume that k > 1, and {a1, . . . , ak−1} is complete to C.

Let a0 = x. Then ak−2 is defined, and there exists s ∈ S anticomplete to
{ak−2, ak−1, ak}. But now, since {s, c′, ak−2, ak−1, ak} is not a bull for any
c′ ∈ C, it follows that C is complete to ak. This proves (3).

Let Z = S ∪ X ∪ A′. By the definition of A′, every vertex of A \ A′ is
anticomplete to Z, and by (2) and (3), C is complete to Z. Since c ∈ C, we
deduce that Z 6= V (G). But now Z is a homogeneous set in G; and since S

is a split set, it follows that |Z| > 1. This proves 3.1.
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We can now prove 1.4.
Proof of 1.4. Since G is composite, we may assume, passing to the

complement if necessary, that there is an odd hole A in G, such that some
vertex of V (G)\V (A) is complete to V (A), and some vertex of V (G)\V (A)
is anticomplete to V (A). By 3.1 it is enough to verify that V (A) is a split
set. Let x ∈ V (G) \ V (A) and assume that x is not complete and not
anticomplete to V (A). We need to show that one of the two alternatives of
the definition of a split set holds for x.

Let the vertices of A be a1-a2- . . . -ak-a1 in order. From the symmetry,
we may assume that x is adjacent to a1 and non-adjacent to a2. We may
assume that x is non-adjacent to ak, for otherwise the first alternative of
the definition of a split set holds for the path ak-a1-a2. If x is non-adjacent
to ak−1, then the second alternative of the definition holds for the antipath
a1-ak−1-a2. So we may assume that x is adjacent to ak−1. But now the
second alternative of the definition holds for the antipath ak−1-a2-ak. This
proves that V (A) is a split set, and completes the proof of 1.4.

4 Basic graphs

Let G be a graph. Let H be a hole in G with vertices h1, . . . , hk in order.
We say that v ∈ V (G)\V (H) has two consecutive neighbors in H if for some
1 ≤ i ≤ k, u is adjacent to both hi and hi+1 (here the addition is mod k).

We start with two lemmas about basic graphs.

4.1 Let G be a basic graph, let H be a hole in G with |V (H)| ≥ 5, let
c ∈ V (G) \ V (H) be complete to V (H), and let u ∈ V (G) be non-adjacent
to c. Then either

1. u is complete to V (H), or

2. u has at least three neighbors in V (H), and |V (H)| = 5.

Proof. Let the vertices of H be h1-h2- . . . -hk-h1 in order. Since G is basic,
u has a neighbor in V (H), and from the symmetry we may assume that u

is adjacent to h1.
Suppose first that u is adjacent to h2. Since {hk, h1, u, h2, h3} is not

a bull in G, we may assume from the symmetry that u is adjacent to hk.
We may assume that u is not complete to V (H), and that |V (H)| > 5, for
otherwise one of the outcomes of 4.1 holds. Since {u, h2, h3, c, hk−1} is not
a bull in G, it follows that u is adjacent to one of h3, hk−1, and again, from
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the symmetry we may assume that u is adjacent to h3. Let i be minimum
such that u is non-adjacent to hi. Then i > 3. Since {hi, hi−1, hi−2, u, hk}
is not a bull in G, it follows that i = k − 1, and therefore i ≥ 5. But now
{hi, hi−1, hi−2, u, h1} is a bull in G, a contradiction. This proves that u is
non-adjacent to h2, and, from the symmetry, u does not have two consecutive
neighbors in H.

Since {u, h1, h2, c, hi} is not a bull for i ∈ {4, . . . , k − 1}, it follows that
u is adjacent to every hi with i ∈ {4, . . . , k − 1}. From the reflectional
symmetry about h1, u is adjacent to every hi with i ∈ {3, . . . , k − 2}. But
then u is adjacent to both h3 and h4, a contradiction. This proves 4.1.

4.2 Let G be a basic graph, let H be a hole in G with |V (H)| ≥ 5, let
a ∈ V (G) \V (H) be anticomplete to V (H), and let u ∈ V (G) be adjacent to
a. Then u does not have two consecutive neighbors in H, and, in particular,
u has at least ⌈ |V (H)|

2 ⌉ non-neighbors in V (H).

Proof. Let the vertices of H be h1-h2- . . . -hk-h1 in order. Suppose u is
adjacent to some two consecutive vertices of H, say h1 and h2. Since G

is basic, u has a non-neighbor in V (H). Let i be minimum such that u is
non-adjacent to hi. Then {a, u, hi−2, hi−1, hi} is a bull in G, a contradiction.
This proves 4.2.

4.3 Let G be a basic graph, and let u ∈ V (G). Let N be the set of neighbors
of u in G, and M the set of non-neighbors of u in G. Then one of the graphs
G|M , G|N is perfect.

Proof. Let GN = G|N and GM = G|M . Suppose neither of GM , GN is
perfect.

(1) Not both GM , GN contain an odd hole.

Suppose (1) is false, and let HM ,HN be odd holes in GM , GN , respec-
tively. Then u is complete to V (HN ) and anticomplete to V (HM). Let
m = |V (HM )| and n = |V (HN )|. Then m,n ≥ 5. By 4.1 with c = u, every
vertex of HM has at least n − 2 neighbors in V (HN ), and hence there are
at least m(n − 2) edges with one end in V (HM ) and the other in V (HN ).
By 4.2 with a = u, every vertex of HN has at least m+1

2 non-neighbors in
V (HM), and hence there are at least nm+1

2 non-adjacent pairs of vertices
with one vertex in V (HM ) and the other in V (HN ). Consequently,

m(n − 2) + n
m + 1

2
≤ nm,
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and therefore
nm − 4m + n ≤ 0.

But, since n ≥ 5, it follows that

nm − 4m + n ≥ m + 5,

a contradiction. This proves (1).

Since the complement of a basic graph is also basic, it follows that not
both GM , GN contain an odd antihole.

(2) There is no odd hole in GN .

Suppose there is an odd hole HN in GN . Since GM is not perfect, it follows
from (1) and 1.6 that there is an odd antihole HM in GM . Let m = |V (HM )|
and n = |V (HN )|. Since the complement of a hole of length five is a hole of
length five, (1) implies that m ≥ 7 and n ≥ 7. Let v ∈ V (HM ). By 4.1 with
c = u, it follows that v is complete to V (HN ). On the other hand, by 4.1
with c = u applied in G, every vertex of HN is anticomplete to V (HM ), a
contradiction. This proves (2).

By (2) and 1.6, there is an odd antihole HN in GN . By (1) and 1.6,
this implies that there is an odd hole HM in GM . Let m = |V (HM )| and
n = |V (HN ). By 4.2 with a = u, every vertex of HN has at least m+1

2 non-
neighbors in V (HM ), and hence there are at least nm+1

2 non-adjacent pairs
of vertices with non-empty intersection with each of V (HM ), V (HN ). By 4.2
with a = u applied in G, every vertex of HM has at least n+1

2 neighbors in
V (HN ), and hence there are at least mn+1

2 adjacent pairs of vertices with
non-empty intersection with each of V (HM ), V (HN ). But then

n
m + 1

2
+ m

n + 1

2
≤ mn,

a contradiction. This proves 4.3.

We can now prove the main result of this section, which is 1.3 for basic
graphs:

4.4 Let G be a basic graph. Then G is narrow.

The proof is by induction on |V (G)|. Let g : V (G) → R
+ be such that

∑

v∈V (P ) g(v) ≤ 1 for every perfect induced subgraph P of G. We need to
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show that
∑

v∈V (G) g(v)2 ≤ 1. Since every two-vertex induced subgraph of
G is perfect, we may assume that g(u) < 1 for every u ∈ V (G). Choose
u ∈ V (G) with g(u) maximum. Let N be the set of neighbors of u in G,
and M the set of non-neighbors. Let GM = G|M and GN = G|N . By 4.3,
at least one of GM , GN is perfect. Since being basic, narrow and perfect are
all properties that are invariant under taking complements (the first one is
obvious, and the last two follow from 1.5), we may assume, passing to the
complement if necessary, that GN is perfect.

It follows from the inductive hypothesis that GM is narrow. Define
f : M → R

+ to be f(v) = g(v)
1−g(u) for every v ∈ M . Let P be a perfect

induced subgraph of GM . Then G|(V (P ) ∪ {u}) is perfect, and therefore

∑

v∈V (P )

f(v) ≤ 1.

Consequently,
∑

v∈M

f(v)2 ≤ 1,

and therefore
∑

v∈M

g(v)2 ≤ (1 − g(u))2.

Since G|N is perfect, it follows that G|(N ∪{u}) is perfect, and therefore
∑

v∈N∪{u} g(v) ≤ 1. Consequently, by the choice of u,

∑

v∈N

g(v)2 ≤ g(u)
∑

v∈N

g(v) ≤ g(u)(1 − g(u)).

Thus

∑

v∈V (G)

g(v)2 = g(u)2+
∑

v∈M

g(v)2+
∑

v∈N

g(v)2 ≤ g(u)2+(1−g(u))2+g(u)(1−g(u))

= 1 − g(u) + g2(u) ≤ 1.

This proves 4.4.

5 Composite graphs and the proof of 1.3.

Let H,F be graphs with V (H)∩ V (F ) = ∅, and let v ∈ V (H). Let H(v, F )
be the graph defined as follows:
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• V (H(v, F )) = V (H) ∪ V (F ) \ {v}

• u,w ∈ V (H) are adjacent in H(v, F ) if and only if they are adjacent
in H

• u,w ∈ V (F ) are adjacent in H(v, F ) if and only if they are adjacent
in F

• u ∈ V (H) is adjacent to w ∈ V (F ) in H(v, F ) if and only if u is
adjacent to v in H.

We say that H(v, F ) is obtained from H by substituting F for v.
In the proof of 1.3 we use the following result of [7]:

5.1 Let H1,H2 be perfect graphs and let v ∈ V (H1). Then the graph ob-
tained from H1 by substituting H2 for v is perfect.

We can now prove 1.3.
Proof of 1.3. The proof is by induction on |V (G)|. Let g : V (G) → R

+

be such that
∑

v∈V (P ) g(v) ≤ 1 for every perfect induced subgraph P of G.

We need to show that
∑

v∈V (G) g(v)2 ≤ 1. If G is basic, then 1.3 follows
from 4.4, so we may assume that G is composite. By 1.4, there exists a
homogeneous set X in G with 1 < |X| < |V (G)|. Let N be the set of
vertices of G that are complete to X, and M the set of vertices of G that
are anticomplete to X. Then V (G) = X ∪ N ∪ M . Let H1 be the graph
obtained from G \ X by adding a new vertex x and making x complete to
N and anticomplete to M . Let H2 = G|X. Then H1,H2 are both bull-free,
and |V (Hi)| < |V (G)| for i = 1, 2. Thus both H1 and H2 are narrow. For
i = 1, 2, let Pi be the family of all perfect induced subgraphs of Hi. Let

K = max
P∈P2

∑

v∈P

g(v).

For i = 1, 2 define gi : V (Hi) → R
+ as follows: for v ∈ V (G) ∩ V (H1) let

g1(v) = g(v), let g1(x) = K, and for v ∈ V (H2) let g2(v) = g(v)
K

. Now it
follows from 5.1 that

∑

v∈P g1(v) ≤ 1 for every P ∈ P1. Since H1 is narrow,
we deduce that

1 ≥
∑

v∈V (H1)

g2
1(v) =

∑

v∈N∪M

g2(v) + K2.
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Clearly,
∑

v∈P g2(v) ≤ 1 for every P ∈ P2. Since H2 is narrow, it follows
that

1 ≥
∑

v∈V (H2)

g2
2(v) =

∑

v∈X

g2(v)

K2
=

∑

v∈X g2(v)

K2
,

and therefore
∑

v∈X g2(v) ≤ K2. But now

∑

v∈V (G)

g2(v) =
∑

v∈N∪M

g2(v) +
∑

v∈X

g2(v) ≤
∑

v∈N∪M

g2(v) + K2 ≤ 1.

This proves 1.3.
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