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Abstract

The Erdős-Hajnal Conjecture states that for every given H there exists a constant c(H) > 0 such
that every graph G that does not contain H as an induced subgraph contains a clique or a stable
set of size at least |V (G)|c(H). The conjecture is still open. However some time ago its directed
version was proved to be equivalent to the original one. In the directed version graphs are replaced
by tournaments, and cliques and stable sets by transitive subtournaments. Both the directed and
the undirected versions of the conjecture are known to be true for small graphs (or tournaments),
and there are operations (the so-called substitution operations) allowing to build bigger graphs (or
tournaments) for which the conjecture holds. In this paper we prove the conjecture for an infinite
class of tournaments that is not obtained by such operations. We also show that the conjecture is
satisfied by every tournament on at most 5 vertices.
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1 Introduction

All graphs in this paper are finite and simple. Let G be an undirected graph. The vertex set of G
is denoted by V (G), and the edge set by E(G). We write |G| to mean |V (G)|. Given X ⊆ V (G),
we denote by G|X the subgraph of G induced by X, that is the graph with vertex set X, in which
x, y ∈ X are adjacent if and only if they are adjacent in G. For an undirected graph H, we say
that G is H-free if no induced subgraph of G is isomorphic to H. A clique in G is a subset of V (G)
all of whose elements are pairwise adjacent, and a stable set in G is a subset of V (G) all of whose
elements are pairwise non-adjacent. For a graph H and a vertex v ∈ V (H) we denote by H\v a
graph obtained from H by deleting v and all edges of H that are: adjacent to v in the undirected
setting and: adjacent to or from v in the directed setting.

The Erdős-Hajnal Conjecture is the following:

1.1 For every undirected graph H there exists a constant c(H) > 0 such that the following holds:
every H-free graph G contains a clique or a stable set of size at least |G|c(H).

This conjecture is still open. We say that an undirected graph H satisfies the Erdős-Hajnal
Conjecture (or equivalently: has the Erdős-Hajnal property) if there exists c(H) > 0 such that every
H-free graph G contains either a clique or a stable set of size at least |G|c(H).

A version of 1.1 for some class of directed graphs was formulated in [2]. To state it, we need
some definitions. A tournament is a directed graph T , where for every two vertices u, v exactly
one of (u, v), (v, u) is an edge of T (that is, a directed edge). If (u, v) ∈ E(T ), we say that u is
adjacent to v, and that v is adjacent from u. A tournament is transitive if it contains no directed
cycle (equivalently, no directed cycle of length three). Let T be a tournament. We denote its vertex
set by V (T ) and its edge set by E(T ), and write |T | for |V (T )|. We refer to |T | as the order of T .
Given X ⊆ V (T ), the subtournament of T induced by X, denoted by T |X, is the tournament with
vertex set X, such that for x, y ∈ X, (x, y) is a directed edge of T |X if and only if (x, y) ∈ E(T ).
Given a tournament S, we say that T contains S if S is isomorphic to T |X for some X ⊆ V (T ). If
T does not contains S, we say that T is S-free. The conjecture from [2] is the following.

1.2 For every tournament S there exists a constant c(S) > 0 such that the following holds: every
S-free tournament T contains a transitive subtournament of order at least |T |c(S).

It was also shown in [2] that 1.1 and 1.2 are equivalent to each other. We define what it means for a
tournament to satisfy the Erdős-Hajnal Conjecture in a way similar to the that of undirected graphs.
In other words, a tournament H satisfies the Erdős-Hajnal Conjecture if there exists c(H) > 0 such
that every H-free tournament G contains a transitive set of size at least |G|c(H).

Both the directed and the undirected versions of the conjecture are known to be true for small
graphs (or tournaments). There is also an operation, called the substitution operation, allowing to
build bigger graphs (or tournaments) satisfying the Erdős-Hajnal Conjecture from smaller ones. We
will define now the substitution operation. Let H1, H2 be two undirected graphs/tournaments with
disjoint vertex sets. Assume that each Hi has at least two vertices. Let w ∈ V (H1). Then we say
that H is obtained from H1 by substituting H2 for w if:
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• V (H) = (V (H1) ∪ V (H2))\{w},

• H|V (H2) = H2,

• H|(V (H1)\{w}) = H1\w and,

• v ∈ V (H1) is adjacent in H to u ∈ V (H2) if and only if v is adjacent in H1 to w.

It was proved in [2] (Theorem 2.1) that if H1 and H2 both satisfy the Erdős-Hajnal Conjecture
then so does H. The proof was presented for the undirected setting however its version for the
directed setting is completely analogous and therefore we leave it to the reader.

Let T be a tournament, and let (v1, . . . , v|T |) be an ordering of its vertices; denote this ordering
by θ. We say that an edge (vj , vi) of T is a backward edge under this ordering if i < j. The graph of
backward edges under this ordering, denoted by B(T, θ), has vertex set V (T ), and vivj ∈ E(B(T, θ))
if and only if (vi, vj) or (vj , vi) is a backward edge of T under the ordering θ.

For an integer t, we call the graph K1,t a star. Let S be a star with vertex set {c, l1, . . . , lt},
where c is adjacent to l1, . . . , lt. We call c the center of the star, and l1, . . . , lt the leaves of the star.
Note that in the case t = 1 we may choose arbitrarily any one of the two vertices to be the center of
the star, and the other vertex is then considered to be the leaf.

A right star in B(T, θ) is an induced subgraph with vertex set {vi0 , . . . , vit}, such that
B(T, θ)|{vi0 , . . . , vit} is a star with center vit , and it > i0, . . . , it−1. In this case we also say that
{vi0 , . . . , vit} is a right star in T . A left star in B(T, θ) is an induced subgraph with vertex set
{vi0 , . . . , vit}, such that B(T, θ)|{vi0 , . . . , vit} is a star with center vi0 , and i0 < i1, . . . , it. In this case
we also say that {vi0 , . . . , vit} is a left star in T . Finally, a star in B(T, θ), is a left star or a right
star.

A tournament T is a galaxy if there exists an ordering θ of its vertices such that every connected
component of B(T, θ) is either a star or a singleton, and

• no center of a star appears in the ordering between two leaves of another star.

We call such an ordering a galaxy ordering of T . Let Σ1, . . . ,Σl be the non-singleton components
of B(T, θ). We say that Σ1, . . . ,Σl are the stars of T under theta. If V (T ) =

⋃l
i=1 V (Σl), we say

that T is a regular galaxy.

1 2 3 4 5 6 7 8

Fig.1 Galaxy consisting of one left and two right stars. All edges that are not drawn are forward.

Our first result in this paper is the following:

1.3 Every galaxy H satisfies the Erdős-Hajnal Conjecture.
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We denote by Pk a tournament of order k whose vertices can be ordered so that the set of
backward edges under this ordering is the set of edges joining consecutive vertices in the ordering.
Thus formally, the vertices of Pk can be enumerated as: v1, ..., vk such that the set of backward edges
under this ordering is of the form: {(vi+1, vi) : i = 1, ..., k − 1}.

As an interesting fact, we prove the following corollary:

1.4 For every k, the tournament Pk satisfies the Erdős-Hajnal Conjecture.

Denote by C5 the (unique) tournament on 5 vertices in which every vertex is adjacent to exactly
two other vertices. One way to construct this tournament is with vertex set {0, 1, 2, 3, 4} and i is
adjacent to i+ 1 mod 5 and i+ 2 mod 5.

Our second main result is:

1.5 The tournament C5 satisfies the Erdős-Hajnal Conjecture.

As a corollary, using 1.5 and [3], we get

1.6 Every tournament on at most 5 vertices satisfies the Erdős-Hajnal Conjecture.

This paper is organized as follows:

• in Section 2 we present some definitions and technical lemmas used in the proofs of 1.3 and
1.5.

• in Section 3 we present most important ideas used in the proofs of main results of the paper
without going deeply into technical details.

• in Section 4 we prove 1.3 and deduce 1.4.

• in Section 5 we prove 1.5.

• in Section 6 we prove 1.6.

2 Basic lemmas

In this section we prove a few lemmas used in the proofs of our main results. Let T be a tournament.
We say that a vertex w is an outneighbor of a vertex v if (v, w) ∈ E(T ). Otherwise we say that it
is an inneighbor of a vertex v. For disjoint subsets A,B of V (T ), we say that A is complete to B if
every vertex of A is adjacent to every vertex of B. We say that A is complete from B if B is complete
to A. Denote by tr(T ) the largest size of the transitive subtournament of T . For X ⊆ V (T ), write
tr(X) for tr(T |X).

Let X,Y ⊆ V (T ) be disjoint. Denote by eX,Y the number of directed edges (x, y), where x ∈ X
and y ∈ Y . The directed density from X to Y is defined as d(X,Y ) =

eX,Y

|X||Y | .

Given ε > 0 we call a pair A,B of disjoint subsets of V (T ) ε-regular if all X ⊆ A and Y ⊆ B
with |X| ≥ ε|A| and |Y | ≥ ε|B| satisfy: |d(X,Y )− d(A,B)| ≤ ε.

Consider a partition {V0, V1, ..., Vk} of V (T ) in which one set V0 has been singled out as an
exceptional set. (This exceptional set V0 may be empty). We call such a partition an ε-regular
partition of T if it satisfies the following three conditions:
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• |V0| ≤ ε|V |

• |V1| = ... = |Vk|

• all but at most εk2 of the pairs (Vi, Vj) with 1 ≤ i < j ≤ k are ε-regular.

The following was proved in [1]:

2.1 For every ε > 0 and every m ≥ 1 there exists an integer DM = DM(m, ε) such that every
tournament of order at least m admits an ε-regular partition {V0, V1, ..., Vk} with m ≤ k ≤ DM .

The above lemma is a “tournament”-version of the celebrated Regularity Lemma proved by Endre
Szeméredi and originally stated for undirected graphs ([6]). In the undirected setting we only need to
change the definition of eX,Y which is now the number of edges between sets X and Y . The original
version of the lemma is as follows:

2.2 For every ε > 0 and every m ≥ 1 there exists an integer DM = DM(m, ε) such that every
undirected graph of order at least m admits an ε-regular partition {V0, V1, ..., Vk} with m ≤ k ≤ DM .

We also need the following lemma:

2.3 For every natural number k and real number 0 < λ < 1 there exists 0 < η = η(k, λ) < 1
such that for every tournament H with vertex set {x1, ..., xk} and tournament T with vertex set
V (T ) =

⋃k
i=1 Vi, if the Vi’s are disjoint sets, each of order at least one, and each pair (Vi, Vj),

1 ≤ i < j ≤ k is η-regular, with d(Vi, Vj) ≥ λ and d(Vj , Vi) ≥ λ, then there exist vertices vi ∈ Vi for
i ∈ {1, . . . , k}, such that the map xi → vi gives an isomorphism between H and the subtournament
of T induced by {v1, ..., vk}.

The undirected version of the lemma above is another celebrated result, the so-called Embedding
Lemma.

2.4 For every natural number k and real number 0 < λ < 1 there exists 0 < η = η(k, λ) < 1 such
that for every undirected graph H with vertex set {x1, ..., xk} and undirected graph T with vertex
set V (T ) =

⋃k
i=1 Vi, if the Vi’s are disjoint sets, each of order at least one, and each pair (Vi, Vj),

1 ≤ i < j ≤ k is η-regular, with d(Vi, Vj) ≥ λ and d(Vj , Vi) ≥ λ, then there exist vertices vi ∈ Vi for
i ∈ {1, . . . , k}, such that the map xi → vi gives an isomorphism between H and the subgraph of T
induced by {v1, ..., vk}.

Its proof can be found in [4]. We will omit the proof of 2.3 since it is completely analogous to
the proof of the Embedding Lemma.

We call a tournament T ε-critical for ε > 0 if tr(T ) < |T |ε but for every proper subtournament
S of T we have: tr(S) ≥ |S|ε. Next we list some properties of ε-critical tournaments.

2.5 For every N > 0 there exists ε(N) > 0 such that for every 0 < ε < ε(N) every ε-critical
tournament T satisfies |T | ≥ N .

Proof. Since every tournament contains a transitive subtournament of order 2 so it suffices to take
ε(N) = logN (2).
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2.6 Let T be an ε-critical tournament with |T | = n and ε, c, f > 0 be constants such that ε <
logc(1 − f). Then for every A ⊆ V (T ) with |A| ≥ cn and every transitive subtournament G of T
with |G| ≥ f · tr(T ) we have: A is not complete from V (G) and A is not complete to V (G).

Proof. Assume otherwise. Let AT be a transitive subtournament in T |A of size tr(A). Then
|AT | ≥ (cn)ε. Now we can merge AT with G to obtain a transitive subtournament of size at least
(cn)ε+ftr(T ). From the definition of tr(T ) we have (cn)ε+ftr(T ) ≤ tr(T ). So cεnε ≤ (1−f)tr(T ),
and in particular cεnε < (1− f)nε. But this contradicts the fact that ε < logc(1− f).

2.7 Let T be an ε-critical tournament with |T | = n and ε, c > 0 be constants such that ε < log c
2
(12).

Then for every two disjoint subsets X,Y ⊆ V (T ) with |X| ≥ cn, |Y | ≥ cn there exist an integer
k ≥ b cn2 c and vertices x1, ..., xk ∈ X and y1, ..., yk ∈ Y such that yi is adjacent to xi for i = 1, ..., k.

Proof. Assume otherwise. Write m = b cn2 c. Consider the bipartite graph G with bipartition (X,Y )
where {x, y} ∈ E(G) if (y, x) ∈ V (T ). Then we know that G has no matching of size m. By König’s
Theorem (see [5]) there exists C ⊆ V (G) with |C| < m, such that every edge of G has an end

in C. Write C ∩ X = CX and C ∩ Y = CY . We have |CX | ≤ |X|
2 and |CY | ≤ |Y |

2 . Therefore

|X\CX | ≥ |X|2 and |Y \CY | ≥ |Y |2 , and by the definition of C and G, we know that X\CX is complete
to Y \CY . Denote by T1 a transitive subtournament of size tr(T |(X\CX)) in T |(X\CX). Denote by
T2 a transitive subtournament of size tr(T |(Y \CY )) in T |(Y \CY ). From the ε-criticality of T and
since |X\CX | ≥ cn

2 , |Y \CY | ≥ cn
2 , we also have: |T1| ≥ ( cn2 )ε, |T2| ≥ ( cn2 )ε. We can merge T1 and

T2 to obtain bigger transitive tournament T3 with |T3| ≥ 2( c2)εnε. Therefore, since T is ε-critical, we
have: 2( c2)ε < 1. But this contradicts the condition ε < log c

2
(12).

The next lemma is a starting point for all of our constructions. This is also the only step in the
proof where we use 2.1. Note that in what follows we do not require for the pairs (Ai, Aj) to be
regular, and so even we do not need the full strength of 2.1.

2.8 Let H be a tournament, P > 0 be an integer and 0 < λ < 1
2 . Then there is an integer N such

that for every tournament T not containing H with |T | ≥ N there exists a constant c > 0 and P
pairwise disjoint subsets A1, A2, ..., AP of vertices of T satisfying:

• d(Ai, Aj) ≥ 1− λ for i, j ∈ {1, 2, ..., P}, i < j

• |Ai| ≥ c|T | for i ∈ {1, 2, ..., P}.

Proof. Write |T | = n, |H| = h. Let R(t1, t2) denote the smallest integer such that every graph
of order at least R(t1, t2) contains either a stable set of size t1 or a clique of size t2 (so R(t1, t2) is
simply a Ramsey number, see [5]). Take k = R(2P−1, h). Take η = min( 1

2(k−1) , η0(h, λ)) (where η0 is

as in the statement of 2.3). Let u > 0 be the smallest integer such that:
(
û
2

)
− ηû2 > 1

2
k−2
k−1 û

2 holds
for all û ≥ u. By 2.1 there exists an integer N > 0 such that every tournament T with |T | ≥ N
admits an η-regular partition with at least u parts. Denote by DM the upper bound (from 2.1) on
the number of parts of this partition. Denote the parts of the partition by: W0,W1, ...,Wr, where
u ≤ r ≤ DM and W0 is the exceptional set. We have: |Wi| ≥ (1−η)n

DM . Now consider the graph G with
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V (G) = {W1, . . . ,Wr} where there is an edge between two vertices if the pair (Wi,Wj) is η-regular.
Then, from the definition of u, we have: |E(G)| ≥ k−2

2(k−1) |V (G)|2. So by Turan’s theorem (see [5]) it
follows that G has a clique of size at least k. That means that there exist k parts of the partition,
without loss of generality W1, ...Wk, such that for all i, j ∈ {1, 2, ..., k}, i 6= j the pair (Wi,Wj) is
η-regular. We say that a pair (Wi,Wj) for i, j ∈ {1, 2, ..., k}, i 6= j is good if λ ≤ d(Wi,Wj) ≤ 1− λ.
Otherwise we say this pair is bad. Now consider the graph Ĝ with V (Ĝ) = {W1, ...Wk}, where there
is an edge between Wi and Wj for i, j ∈ {1, ..., k}, i 6= j if (Wi,Wj) is a good pair. From the definition
of k we know that Ĝ contains a clique of size h or a stable set of size 2P−1. In other words, either

• there exist h parts of the partition, without loss of generality denote them W1, ...Wh such that
every pair (Wi,Wj) is η-regular and λ ≤ d(Wi,Wj) ≤ 1− λ for i, j ∈ {1, 2, ..., k}, i 6= j, or

• there exist 2P−1 parts of the partition, without loss of generality denote them W1, ...W2P−1

such that every pair (Wi,Wj) is η-regular and d(Wi,Wj) > 1 − λ or d(Wj ,Wi) > 1 − λ for
i, j ∈ {1, 2, ..., 2P−1}, i 6= j.

Since T does not contain H and η ≤ η0, 2.3 implies that the former is impossible.
Now define T̂ to be the tournament with V (T̂ ) = {W1, ...,W2P−1}, where an edge is directed

from Wi to Wj if d(Wi,Wj) > 1 − λ and from Wj to Wi otherwise. Using the fact that every
tournament of order at least 2P−1 contains a transitive subtournament of order at least P (see [7]),
we conclude that T̂ contains a transitive subtournament of order P . That means that there exist
P parts of the partition, without loss of generality W1, ...,WP , such that d(Wi,Wj) ≥ 1 − λ for

i, j ∈ {1, 2, ..., P}, i < j. Note that each Wi is of order at least (1−η)n
DM , so taking Ai = Wi for

i = 1, 2, ...P and c = 1−η
DM completes the proof.

The following is an easy but useful fact.

2.9 Let A1, A2 be two disjoint sets such that d(A1, A2) ≥ 1−λ and let 0 ≤ η1, η2 < 1. Let λ̂ = λ
η1η2

.

Let X ⊆ A1, Y ⊆ A2 be such that |X| ≥ η1|A1| and |Y | ≥ η2|A2|. Then d(X,Y ) ≥ 1− λ̂.

Proof. Denote by B the set of edges directed from A2 to A1. We have |B| ≤ λ|A1||A2|. On the

other hand |B| ≥ (1− d(X,Y ))|X||Y |. Therefore d(X,Y ) ≥ 1−λ |A1|
|X|
|A2|
|Y | and the result follows.

Next we refine 2.8 further.

2.10 Let 0 < λ < 1, c > 0, 0 < ε < log c
2
(12) be constants and P be a positive integer. Let T be an

ε-critical tournament with |T | = n. Assume that A1, A2, ..., AP ⊆ V (T ) are pairwise disjoint sets of
vertices such that d(Ai, Aj) ≥ (1− λ) for i, j ∈ {1, 2, ..., P}, i < j and |Ai| ≥ cn for i ∈ {1, 2, ..., P}.
Let v be a {0, 1}-vector of length P . Define I = {i : vi = 1}. Write I = {i1, i2, ...ir}, where
i1 < i2 < ... < ir. Let Λ = (4P )|I|λ. Then there exist transitive tournaments T i1∗ , T i2∗ ,...T ir∗ such
that V (T is∗ ) ⊆ Ais, |V (T is∗ )| ≥ 1

2 tr(T ) for s ∈ {1, 2, ..., r} and for every T is∗ we have

• if i < is and i /∈ I then d(Ai, T
is
∗ ) ≥ 1− Λ

• if i > is and i /∈ I then d(Ai, T
is
∗ ) ≤ Λ

• if i, j ∈ I and i < j then d(T i∗, T
j
∗ ) ≥ 1− Λ
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Proof. The proof is by induction on |I|. For |I| = 0 the statement is obvious. Denote Î =

{i1, ..., ir−1}. Inductively, we may assume the existence of the sets T i1∗ , T
i2
∗ , ..., T

ir−1
∗ as in the state-

ment of the lemma. We will now describe the procedure of extracting from Air several transitive
subtournaments of substantial sizes. Since T is ε-critical, we deduce that tr(Air) ≥ |Air |ε ≥ ( c2)εnε,
and therefore Air contains a transitive subtournament of order d12n

εe. Denote this transitive sub-

tournament by T ir1 . We have |T ir1 | ≥ 1
2 tr(T ). The last inequality follows from the fact that, by

ε-criticality, tr(T ) < nε and from our previous observation regarding the lower bound on the size of
T ir1 . We repeatedly remove transitive subtournaments: T i11 , T

i1
2 , ..., each of size at least 1

2 tr(T ) as

long as at least
|Air |
2 vertices remain. Denote the set of all extracted (and pairwise disjoint) transi-

tive subtournaments as W = {T ir1 , ..., T irw }, where w is some positive integer. We conclude that the

following holds:
⋃w
j=1 |T

ir
j | ≥

|Air |
2 and for every j ∈ {1, 2, ..., w} |T irj | ≥

1
2 tr(T ). Denote by T ir a

tournament induced by
⋃w
j=1 V (T irj ). We have |T ir | ≥ |Air |

2 .

Write Λ̂ = (4P )|I|−1λ. For i < ir and i /∈ Î denote by Ri the subset of W that consists of
tournaments T irx for which d(Ai, T

ir
x ) < (1 − 4Pλ). For i > ir and i /∈ Î denote by Ri the subset

of W that consists of tournaments T irx for which d(T i
r

x , Ai) < (1 − 4Pλ). For i < ir and i ∈ Î
denote by Ri the subset of W that consists of tournaments T irx for which d(T i∗, T

ir
x ) < (1 − 4P Λ̂).

Finally, for i > ir and i ∈ Î denote by Ri the subset ofW that consists of tournaments T irx for which
d(T i

r

x , T
i
∗) < (1− 4P Λ̂). Since d(Ai, Air) ≥ (1−λ), by 2.9 we have |Ri| ≤ 1

2P w for all i /∈ Î such that

i 6= ir. Similarly, from the induction hypothesis and 2.9 we have |Ri| ≤ 1
2P w for all i ∈ Î. Write:

R =
⋃
i 6=ir Ri. Note that R ⊆ W and |R| ≤ 1

2P w · (P − 1) < w. Therefore there exists a tournament

T ir∗ ∈ W\R, and from the definition of R, the following holds for every is ∈ I

• if i < is and i /∈ I then d(Ai, T
is
∗ ) ≥ 1− 4P Λ̂

• if i > is and i /∈ I then d(Ai, T
is
∗ ) ≤ 4P Λ̂

• if i < is and i ∈ I then d(T i∗, T
is
∗ ) ≥ 1− 4P Λ̂

• if i > is and i ∈ I then d(T i∗, T
is
∗ ) ≤ 4P Λ̂.

That completes induction since 4P Λ̂ = (4P )|I|λ = Λ.

Next we need one more definition. Let c > 0, 0 < λ < 1 be constants, and let w be a {0, 1}-vector
of length |w|. Let T be a tournament with |T | = n. A sequence of disjoint subsets (S1, S2, ..., S|w|)
of V (T ) is a (c, λ, w)-structure if

• whenever wi = 0 we have |Si| ≥ cn

• whenever wi = 1 the set T |Si is transitive and |Si| ≥ c · tr(T )

• d(Si, Sj) ≥ 1− λ for all 1 ≤ i < j ≤ |w|.

We now use 2.8 and 2.10 to prove the following:

2.11 Let S be a tournament, let w be a {0, 1}-vector, and let 0 < λ < 1
2 be a constant. Then

there exist ε0, c1 > 0 such that for every 0 < ε < ε0, every S-free ε-critical tournament contains a
(c1, λ, w)-structure.
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A1 T1 A2 A3 T2

Fig.2 Schematical representation of the (c, λ, w)-structure. This structure consists of three linear
sets: A1, A2, A3 and two transitive sets: T1 and T2. The arrows indicate the orientation of most of

the edges going between different elements of the (c, λ, w)-structure. Each Ti satisfies:
|Ti| ≥ c · tr(T ) and each Ai satisfies: |Ai| ≥ c · n, where n = |T |. We have here: w = (0, 1, 0, 0, 1).

Proof. Write n = |T | and w = (w1, . . . , wP ), where P > 0 is an integer. Define C = |{i : wi = 1}|.
Let Λ = λ

(4P )C
. By 2.5 we can choose ε0 small enough such that |T | > N , where N is an integer

from 2.8. Now it follows from 2.8 that there exist a constant c > 0 and sets A1, ..., AP such that
|Ai| ≥ cn for i ∈ {1, 2, ..., P} and d(Ai, Aj) ≥ 1−Λ for i, j ∈ {1, 2, ..., n}, i < j. We may assume that
ε0 < log c

2
(12). We now use 2.10 to complete the proof.

Let U be a transitive tournament with V (U) = {u1, u2, ..., u|U |}, where (u1, u2, ..., u|U |) is a
transitive ordering. An (m, c)-subdivision of U is defined as a sequence Ucm = (U1, U2, ..., Um), where
Uj = {uij , uij+1, ..., ukj} for i1, i2, ..., im, k1, k2, ..., km satisfying 1 ≤ i1 ≤ k1 < i2 ≤ k2 < ... < im ≤
km ≤ |U | and |Uj | ≥ c|U | for j ∈ {1, 2, ...,m}.

2.12 Let m, c1, c2, c3, ε > 0, be constants, where m > 0 is an integer, 0 < c1, c2, c3 < 1, and
0 < ε < log c1

m
(1 − c2c3). Let T be an ε-critical tournament with |T | = n, and let A ⊆ V (T ) with

|A| ≥ c1n. Let U be a transitive subtournament of T with |U | ≥ c2tr(T ) and V (U) ⊆ V (T )\A,
and let Uc3m = (U1, ..., Um) be an (m, c3)-subdivision of U . Then there exist vertices u1, u2, ..., um, x
such that x ∈ A, ui ∈ Ui and ui is adjacent to x for i ∈ {1, 2, ...,m}. Similarly, there exist vertices
w1, w2, ..., wm, d such that d ∈ A, wi ∈ Ui and d is adjacent to wi for i ∈ {1, 2, ...,m}.

Proof. We will prove only the first statement because the latter can be proved analogously. Suppose
no such u1, u2, ..., um, x exist. That means that every a ∈ A is complete to Ui for at least one
i ∈ {1, 2, ...,m}. Therefore there exists i∗ ∈ {1, 2, ...,m} such that at least |A|m vertices of A are
complete to Ui∗ . But this contradicts 2.6 since T is ε-critical and ε < log c1

m
(1− c2c3).

We continue with more definitions related to (c, λ, w)-structures. Let (S1, S2, ..., S|w|) be a
(c, λ, w)-structure, let i ∈ {1, . . . , |w|}, and let v ∈ Si. We say that v is M -good with respect to
the set Sj if either j > i and d(Sj , {v}) ≤ Mλ or j < i and d({v}, Sj) ≤ Mλ; and that v is M -good
with respect to (S1, S2, ..., S|w|) if it is M -good with respect to every Sj for j ∈ {1, 2, ..., |w|}\{i}.
Denote by Sj,v the set of the vertices of Sj adjacent from v for j > i and adjacent to v for j < i.
Now, if v ∈ Si is M -good with respect to (S1, S2, ..., S|w|) , then |Sj,v| ≥ (1 −Mλ)|Sj | for all j 6= i.
Next we list some easy facts about (c, λ, w)-structures.

2.13 Let (S1, S2, ..., S|w|) be a (c, λ, w)-structure. Then for every i, j ∈ {1, 2, ..., |w|}, i 6= j all but

at most 1
M |Si| of the vertices of Si are M -good with respect to Sj.
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Proof. We may assume without loss of generality that i < j (for i ≥ j the proof is analogous).
Denote by B ⊆ Si the set of the vertices of Si that are not M -good with respect to Sj . From the
definition of M -goodness we have d(B,Sj) < (1 −Mλ). Therefore |B| ≤ 1

M |Si| because otherwise
we get a contradiction to 2.9 taking X = B, Y = Sj .

2.14 Let (S1, S2, ..., S|w|) be a (c, λ, w)-structure. Then for every i ∈ {1, 2, ..., |w|} all but at most
|w|
M |Si| of the vertices of Si are M -good with respect to (S1, S2, ..., S|w|).

Proof. Denote by Bj the subset of vertices of Si that are not M -good with respect to Sj for
j ∈ {1, 2, ..., |w|}\{i}. Denote by B the subset of vertices of Si that are not M -good with respect to
(S1, S2, ..., S|w|). We have: B =

⋃
j 6=iBj . From 2.13 we know that |Bj | ≤ 1

M |Si|. Therefore we have:

|B| ≤ |w|M |Si|.

3 An overview

The goal of this section is to present the reader an overview of the key techniques that will be used
to derive main results of the paper. Full proofs will be given in the subsequent sections.

The proofs use the directed version of Szemerédi’s Regularity Lemma. Given a galaxy H, we start
with a regular partition of a H-free tournament. Using the directed version of the embedding lemma
along with a few standard techniques which we will not describe here, we can find subsets Vi1 , . . . , Vit
(for an appropriately chosen constant t), such that d(Vip , Viq) > .999 for every 1 ≤ p < q ≤ t. This
means that for every 1 ≤ p < q ≤ t, vertices of Vip tend to be adjacent to a substantial proportion
of the vertices of Viq . On the other hand, if a substantial subset of Vip is complete to a substantial
subset of Viq , then we can apply induction to get a large transitive subtournament in T , and so we
may assume that no such subsets exist. We now construct a copy of H in T , choosing at most one
vertex from each of Vi1 , . . . , Vit , and using the fact that for 1 ≤ p < q ≤ t no substantial subset of
Vip is complete to a substantial subset of Viq to obtain the backward edges in the galaxy ordering of
G, thus obtaining the result of 1.3.

Obviously, every tournament obtained from a transitive tournament by adding a vertex is a
galaxy. It is not difficult to check that there is only one tournament on five vertices that is not a
galaxy. Here it is: its vertex set is {v1, . . . , v5}, and vivj is an edge if and only if (j−i) mod 5 ∈ {1, 2}.
This is a tournament C5. We remark that C5 is an example of a tournament that is obtained from
a transitive tournament by adding two vertices, and that is not a galaxy.

The proof that a tournament C5 has the Erdös-Hajnal property. uses similar ideas to the ones
in the proof of 1.3, but now instead of one specific ordering of vertices, two are used.

Theorem 1.3 and 1.5 together imply that every tournament on at most five vertices has the
Erdös-Hajnal property. Another curious corollary of 1.3 is that Pk has the Erdös-Hajnal property.
This follows from the fact that, somewhat surprisingly, Pk has a galaxy ordering.

4 Galaxies

Let s be a {0, 1}-vector. Denote by sc the vector obtained from s by replacing every subsequence of
consecutive 1′s by single 1. Let δs : {i : sc = 1} → N be a function that assigns to every nonzero
entry of sc the number of consecutive 1′s of s replaced by that entry of sc.
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Let H be a regular galaxy, and let (v1, . . . , vh) be a galaxy ordering of V (H); denote this ordering
by θ. Let Σ1, . . . ,Σl be the stars of H. For i ∈ {0, . . . , l} define H i = H|

⋃i
j=1 V (Σj), where H l = H,

and H0 is the empty tournament. Let sH,θ be a {0, 1}-vector such that sH,θ(i) = 1 if and only if
vi is a leaf of one of the stars of H. We say that a (c, λ, w)-structure corresponds to H under the

ordering θ if w = sH,θc .
Let (S1, S2, ..., S|w|) be a (c, λ, w)-structure that corresponds to H under θ, and let ir be such

that w(ir) = 1. Assume that Sir = {s1ir , ..., s
|Sir |
ir
} and (s1ir , ..., s

|Sir |
ir

) is a transitive ordering. Write

m(ir) = b |Sj |
δw(ir)

c. Denote Sjir = {s(j−1)m(ir)+1
ir

, ..., s
jm(ir)
ir

} for j ∈ {1, 2, ..., δw(ir)}. For every v ∈ Sjir
denote ξ(v) = (|{k < ir : w(i) = 0}|+

∑
k<ir:w(i)=1 δ

w(k)) + j. For every v ∈ Sir such that w(ir) = 0
denote ξ(v) = (|{k < ir : w(i) = 0}| +

∑
k<ir:w(i)=1 δ

w(k)) + 1. We say that H is well-contained in

(S1, S2, ..., S|w|) that corresponds to H if there is a homomorphism f of H into T |
⋃|w|
i=1 Si such that

ξ(f(vj)) = j for every j ∈ {1, . . . , h}.
Our main goal in this section is to prove 1.3. We then deduce 1.4. Let us start with one more

technical lemma.

4.1 Let H be a regular galaxy with |H| = h and let θ be its galaxy-ordering. Let Σ1,Σ2, ...,Σl be
the stars of H under θ. Let c > 0, 0 < λ ≤ 1

h2(2(h+1))2h+2 be constants, and w be a vector. Fix

k ∈ {0, ..., l}. Let T be a tournament and let (S1, ..., S|w|) be a ( c
(2(h+1))l−k , (2(h + 1))2(l−k)λ,w)-

structure in T corresponding to Hk. Then there exists εk > 0 such that if 0 < ε < εk and T is
ε-critical, then Hk is well-contained in (S1, ..., S|w|).

Proof. Let h1, ..., h|H| be the vertices of H in order θ. Let Σ1, ...,Σl be the stars of H under θ.

Write |T | = n. Taking εk > 0 small enough we may assume that tr(T ) ≥ h(h+1)
c by 2.5. The proof

is by induction on k. For k = 0 the statement is obvious since H0 is the empty tournament. Write
M = 2h(h+ 1), ĉ = c

(2(h+1))l−k , λ̂ = (2(h+ 1))2(l−k)λ. By 2.14 we know that for every i ∈ {1, ..., |w|}
every Si contains at least (1− 1

2(h+1))|Si| M -good vertices with respect to (S1, ..., S|w|). We call this

property the purity property of (S1, ..., S|w|). Assume that hq0 is the center of Σk and hq1 , ...hqp are

its leaves for some integer p > 0. For i ∈ {0, . . . , p}, define Di to be the set of all vertices v of
⋃|w|
j=1 Sj

with ξ(v) = qi that are M -good with respect to (S1, ..., S|w|). From the purity property and the fact

that tr(T ) ≥ h(h+1)
c it follows that |Di| ≥ ĉ

2(h+1) tr(T ) for i = {1, ..., p}, and |D0| ≥ ĉ
2n. We may

assume that εk < log ĉ
2h

(1− ĉ
2(h+1)). Now we use 2.12 to conclude that there exist vertices: d0, ..., dp

such that di ∈ Di for i = 0, ..., p and

• d1, ..., dp are all adjacent to d0 if Q is a left-star, and

• d1, ..., dp are all adjacent from d0 if Q is a right-star.

Therefore {d0, ..., dp} induces a copy of Σk. Let x ∈ {1, ..., |w|} be such that d0 ∈ Sx. Now since
(S1, ..., S|w|) corresponds to Hk and hq1,...,hqp are leaves of the same star, we also know that there
exists y ∈ {1, ..., |w|}\{x} so that di ∈ Sy for all i ∈ {1, ..., p}, and T |Sy is a transitive tournament.

Let i ∈ {1, ..., |w|}\{x, y}. Denote Sfi =
⋂p
j=0 Si,dj . Since each dj is M -good with respect to

(S1, ..., S|w|) we have |Si,dj | ≥ (1−Mλ̂)|Si|. Therefore |Sfi | ≥ (1−Mhλ̂)|Si|. By the definition of λ̂

we conclude that |Sfi | ≥ (1− 1
2(h+1))|Si|. Write H = {1, ..., h}\{q0, ...qp}. If {v ∈ Sy : ξ(v) ∈ H} 6= ∅,
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then we define S∗y = Sy,d0 . By a similar argument as above we conclude that if S∗y is defined then

|S∗y | ≥ (1 − 1
2(h+1))|Sy|. If S∗y is defined then define Ŝy = {v ∈ S∗y : ξ(v) ∈ H}. Let Iy = {j :

∃v∈Ŝy
ξ(v) = j}. Note that if Ŝy is defined then Iy 6= ∅. Assume now that Ŝy is defined. For every

j ∈ Iy select arbitrarily d ĉ
2(h+1)e vertices v in Ŝy with ξ(v) = j and denote the union of these |Iy|

sets by Sfy . We can always do this selection since for every j ∈ Iy we have |v : ξ(v) = j| ≥ |Sy |
h+1 and

also |S∗y | ≥ (1 − 1
2(h+1))|Sy|. Thus we have defined t sets Sfi , where t = (|w| − 1) if Sfy is defined

and t = (|w| − 2) if Sfy is not defined. We have: |Sfi | ≥
ĉ

2(h+1) tr(T ) for every (defined) Sfi with

w(i) = 1 and |Sfi | ≥
ĉ

2(h+1)n for every (defined) Sfi with w(i) = 0. Now 2.9, implies that the sets

Sf1 , ..., S
f
t form a ( ĉ

2(h+1) , 4(h+1)2λ̂, z)-structure that corresponds to Hk−1 for an appropriate vector

z. Inductively Hk−1 is well-contained in this structure for εk > 0 small enough. But now we can
merge the well-contained copy of Hk−1 and a copy of Σk that we have already found to get a copy
of Hk. This completes the proof.

We need one more observation before proving 1.3.

4.2 Every galaxy is a subtournament of a regular galaxy.

Proof. Let H be a galaxy and let θ = (h1, ..., h|H|) be its galaxy ordering. Let {hi1 , ..., his} for
some 1 ≤ i1 < ... < is ≤ |H| be the vertices-singletons. We can assume that this set is nonempty.
Now let us consider tournament H+ with vertices: h1, ..., h|H|, h|H|+1, ..., h|H|+s such that under an
ordering θ+ = (h1, ..., h|H|, h|H|+1, ..., h|H|+s) the backward edges are those of H under ordering θ
and the edges of the form (h|H|+j , hij ) for j = 1, ..., s. Ordering θ+ is clearly the galaxy ordering of
H+. Under this ordering there are no longer singletons. Thus H+ is a regular galaxy. Furthermore
H+ contains H as a subtournament. That completes the proof.

Now we are ready to prove 1.3 that we restate

4.3 Every galaxy H satisfies the Erdős-Hajnal Conjecture.

Proof. Let H be a galaxy. By 4.2 we may assume that H is regular. Let θ be a galaxy-ordering
of H and let Σ1, ...,Σl be the stars of H under θ. Let εl be as in 4.1. Suppose 4.3 is false. Then
there exists an εl

2 -critical tournament T not containing H. By 2.11 T contains a (c, 1
h2(2h+2)2h+2 , z)-

structure corresponding to H for an appropriate vector z and some constant c > 0. But now, by 4.1
with k = l we deduce that T contains H, a contradiction.

Now we prove an interesting corollary 1.4 which we restate below

4.4 For every k the tournament Pk satisfies the Erdős-Hajnal Conjecture.

Proof. Take a path Pk. We can assume without loss of generality that k = 2l for some l. By 4.3, it
is enough to prove that Pk is a galaxy. Assume that V (Pk) = {1, ..., 2l} and that under the ordering
given by this labeling the only backward edges are of the form (i+ 1, i) for i = 1, ..., 2l−1. Now take
the following ordering of the vertices of Pk: θ = (2, 1, 4, 3, 6, 5, ..., 2l, 2l− 1). Under this ordering the
set of backward edges is the collection of edges of the form (2s+ 1, 2s) for s = 1, ..., l− 1. Therefore
Pk is a galaxy and the result follows.
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5 The tournament C5

In this section we prove 1.5. We start with some preliminary observations. Let v1, ..., v5 be the
vertices of C5. Then there exists an ordering (vθ(1), vθ(2), vθ(3), vθ(4), vθ(5)) of v1, ..., v5 where the set
of backward edges is the following: {(vθ(5), vθ(1)), (vθ(4), vθ(1)), (vθ(5), vθ(2))}. We call this ordering the
path ordering of C5 since under this ordering the set of backward edges forms a path (and one isolated
vertex). There also exists an ordering (vρ(1), vρ(2), vρ(3), vρ(4), vρ(5)) of the vertices of C5 where the set
of backward edges is {(vρ(5), vρ(3)), (vρ(3), vρ(1)), (vρ(5), vρ(1)), (vρ(4), vρ(2))}. We call this ordering the
cyclic ordering of C5, since under this ordering the set of backward edges forms a graph containing
a cycle (a triangle plus an edge).

5.1 Let c, d > 0, 0 < λ < 1, ε < log dc
2

(12) and w = (0, 0, 1, 0, 0). Let (S1, ..., S5) be a (c, λ, w)-

structure of an ε-critical tournament T . Let s1 ∈ S1, s3 ∈ S3, s5 ∈ S5. Assume that s5 is adjacent to
both s1 and s3 and s3 is adjacent to s1. Let Ŝ2 be the subset of the vertices of S2 adjacent to s3, s5
and from s1. Let Ŝ4 be the subset of the vertices of S4 adjacent to s5 and from s1, s3. Assume that
|Ŝi| ≥ d|Si| for i ∈ {2, 4}. Then T contains a copy of C5.

Proof. By 2.7, and since T is ε-critical and ε < log dc
2

(12) , there exist s2 ∈ Ŝ2 and s4 ∈ Ŝ4 such

that s4 is adjacent to s2. But now {s1, ..., s5} induces a copy of C5 in T and the ordering (s1, ..., s5)
is a cyclic ordering.

We will now prove 1.5 which we restate below:

5.2 The tournament C5 satisfies the Erdős-Hajnal Conjecture.

1

2

3

4 5

Fig.3 Tournament C5 - the smallest tournament that is not a galaxy.

Proof. Assume otherwise. Taking ε > 0 small enough, we may assume that there exists a C5-free
ε-critical tournament T . By 2.11 T contains a (c, λ, w)-structure (S1, ..., S5) for some c > 0, λ = 1

720
and w = (0, 0, 1, 0, 0). We may assume without loss of generality that |S3| mod 3 = 0.

Let (T1, T2, T3) be a (3, 13)-subdivision of S3. Let M = 30. Let S∗i be the subset of Si of M -good
vertices with respect to (S1, ..., S5). By 2.14 we have |S∗i | ≥ (1 − 5

M )|Si|. Denote T ∗i = S∗3 ∩ Ti
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for i ∈ {1, 2, 3}. We have: |T ∗i | ≥ 1
2 |Ti|. So by 2.9 (S∗1 , S2, T

∗
1 , S4, S

∗
5) is a ( c6 , 36λ,w)-structure.

Similarly, (S∗1 , S2, T
∗
3 , S4, S

∗
5) is a ( c6 , 36λ,w)-structure. Write δ = 1

2(1 − 5
M ). We may assume that

ε < logδ(
1
2), and so by 2.7 there exists an integer k ≥ 5

12c and vertices x1, ..., xk, y1, ..., yk such that
xi ∈ S∗1 , yi ∈ S∗5 and yi is adjacent to xi for i ∈ {1, ..., k}. Denote by X the subset of {x1, ..., xk}
consisting of the vertices with an inneighbor in T ∗3 , and by Y the subset of {y1, ..., yk} consisting of
the vertices with an outneighbor in T ∗1 .

We may assume that ε < log 5
36
c(1 −

c
6), and thus 2.6 implies that |X| > k

2 and |Y | > k
2 .

Consequently, there exists an index j ∈ {1, ..., k} and vertices xj , yj , t1, t3 such that t1 ∈ T ∗1 , t3 ∈ T ∗3 ,
t3 is adjacent to xj , and yj is adjacent to t1. If xj is adjacent to t1 and t3 is adjacent to yj then
write E∗ = S3,xj ∩ S3,yj ∩ T ∗2 . From the fact that xj , yj are M -good with respect to (S1, ..., S5)

and since |T2| = |S3|
3 , it follows that |E∗| ≥ 1

2 |T2|, in particular |E∗| > 0. Let q ∈ E∗. Then
xj , t1, q, t3, yj induce a copy of C5 in T , where the ordering (xj , t1, q, t3, yj) is the tree ordering, a
contradiction. Therefore we may assume that either t1 is adjacent to xj , or yj is adjacent to t3.
Write Ei = Si,xj ∩ Si,t1 ∩ Si,t3 ∩ Si,yj for i ∈ {2, 4}. From the fact that xj , yj , t1, t3 are M -good with
respect to (S1, ..., S5) it follows that |Ei| ≥ (1− 4Mλ)|Si| ≥ 1

2 |Si| for i ∈ {2, 4}.
We may assume that ε < log c

12
(12). Observe that (S∗1 , S2, T

∗
1 , S4, S

∗
5) and (S∗1 , S2, T

∗
3 , S4, S

∗
5) are

both ( c6 , 36λ,w)-structures. But now, applying 5.1 to (S∗1 , S2, T
∗
1 , S4, S

∗
5) if t1 is adjacent to xj , and

to (S∗1 , S2, T
∗
3 , S4, S

∗
5) if yj is adjacent to t3, we deduce that T contains a copy of C5 (with the path

ordering), a contradiction.

1 2 3 4 5 6 7 8 9 10

Fig.4 Two crucial orderings of vertices of C5. The left one is the path ordering and the right one is
the cyclic ordering. Notice that none of them is the galaxy ordering.

6 Small tournaments

Our goal in this section is to prove 1.6. First, we need some definitions. A tournament S is a celebrity
if there exists a constant c(S), with 0 < c(S) ≤ 1, such that every S-free tournament T satisfies
tr(T ) ≥ c(S)|T |. Celebrities were fully characterized in [3].

Let G1 be the tournament with 5 vertices v1, . . . , v5, such that under the ordering (v1, . . . , v5)
the backward edges are: (v4, v1), (v5, v2). Let G2 be the tournament with 5 vertices w1, . . . , w5, such
that under the ordering (w1, . . . , w5) the backward edges are: (w5, w1), (w5, w3).

We need the following result from [3].

6.1 Every tournament on at most 5 vertices, except C5, G1, G2, is a celebrity.

We are ready to prove 1.6, which we restate.

6.2 Every tournament on at most 5 vertices satisfies the Erdős-Hajnal Conjecture.
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Proof. Clearly every celebrity satisfies the Erdős-Hajnal Conjecture, so by 6.1 it is enough to prove
the result for G1, G2, C5. Since (v1, . . . , v5) is a galaxy-ordering of G1, and (w1, . . . , w5) is a galaxy-
ordering of G2, 4.3 implies that both G1 and G2 satisfy the Erdős-Hajnal Conjecture, and by 1.5 so
does C5. This completes the proof.

.
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