
K4-free graphs with no odd holes

Maria Chudnovsky1

Columbia University, New York NY 10027

Neil Robertson2

Ohio State University, Columbus, Ohio 43210

Paul Seymour3

Princeton University, Princeton NJ 08544

Robin Thomas4

Georgia Institute of Technology, Atlanta, GA 30332

October 5, 2001; revised July 21, 2009

1This research was conducted while the author served as a Clay Mathematics Institute Research Fellow.
2Supported by NSF grant DMS-0071096.
3Supported by ONR grants N00014-97-1-0512 and N00014-01-1-0608, and NSF grant DMS-0070912.
4Supported by NSF grant DMS-9623031 and NSA grant MDA904-98-1-0517.



Abstract

All K4-free graphs with no odd hole and no odd antihole are three-colourable, but what about K4-
free graphs with no odd hole? They are not necessarily three-colourable, but we prove a conjecture
of Ding that they are all four-colourable. This is a consequence of a decomposition theorem for
such graphs; we prove that every such graph either has no odd antihole, or belongs to one of two
explicitly-constructed classes, or admits a decomposition.



1 Introduction

All graphs in this paper are finite and have no loops or multiple edges. A hole in a graph is an induced
cycle of length at least four, and an antihole is an induced subgraph isomorphic to the complement
of a cycle of length at least four. As usual we denote by χ(G) the chromatic number of G and by
ω(G) the clique number. Recently [2] we were able to prove the “strong perfect graph conjecture”
of Berge [1], the following:

1.1 If a graph G has no odd holes and no odd antiholes, then χ(G) = ω(G).

A graph is said to be perfect if every induced subgraph has chromatic number equal to clique
number; and so 1.1 implies that graphs with no odd holes or antiholes are perfect. Since odd holes and
odd antiholes do not satisfy the conclusion of 1.1, none of them can be left out from the hypothesis
of the theorem. However, it is possible that the hypotheses can be relaxed and we could still deduce
that χ(G) is bounded by some function of ω(G), where the function does not depend on G, of course.
Gyarfás [4] conjectured:

1.2 Conjecture. For each integer k ≥ 0 there is a least integer g(k) such that every graph G with

no odd hole and with ω(G) = k satisfies χ(G) ≤ g(k).

Clearly g(i) = i for i ≤ 2, but g(3) ≥ 4 since the complement of a cycle of length seven is not
3-colourable, and Ding [3] conjectured that g(3) = 4. We prove Ding’s conjecture. For a graph F we
say that a graph is F -free if it has no induced subgraph isomorphic to F , and for a family F we say
that a graph is F-free if it has no subgraph isomorphic to a member of F . Our main result is:

1.3 Every K4-free graph with no odd hole is 4-colourable.

We deduce 1.3 from a decomposition theorem 3.1 for K4-free graphs with no odd holes. The
decomposition theorem requires a number of definitions before it can be formulated, and so we post-
pone its statement until Section 3. Let us remark that our decomposition theorem is not completely
satisfactory in that it only applies to non-perfect graphs. It would be nice to have an analogous
result for K4-free perfect graphs, but that remains open.

There is a conjectured strengthening of 1.2 due to C. T. Hoàng and C. McDiarmid [5], the
following.

1.4 Conjecture. For every graph G with no odd hole and with at least two vertices, there is a

partition (V1, V2) of V (G) such that every maximum clique of G meets both V1 and V2.

Our result 1.3 shows that 1.4 is true for all K4-free graphs.

2 Harmonious cutsets

The length of a path or cycle is the number of edges in it, and we say a path or cycle is even or odd

depending whether its length is even or odd. If A,B ⊆ V (G) are disjoint, we say that A is complete

to B if every vertex in A is adjacent to every vertex in B, and A is anticomplete to B if no vertex
in A is adjacent to a vertex in B. (We say a vertex v is complete to a set B if {v} is complete to
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B, and the same for anticomplete.) If X ⊆ V (G), G|X denotes the subgraph of G induced on X,
and G \ X denotes the graph obtained by deleting X, that is, the subgraph induced on V (G) \ X.
A cutset in a graph G is a set X ⊆ V (G) such that G\X has at least two components. A cutset X
is harmonious if X can be partitioned into disjoint sets X1,X2, . . . ,Xk such that:

• for all i, j ∈ {1, 2, . . . , k}, if P is an induced path with one end in Xi and the other end in Xj ,
then P is even if i = j and odd otherwise, and

• if k ≥ 3, then X1, . . . ,Xk are pairwise complete to each other.

Thus the first condition implies that each Xi is a stable set.

2.1 Let X be a harmonious cutset in a graph G, let C1, C2 be a partition of V (G) \ X into two

nonempty sets that are anticomplete to each other, and for t = 1, 2 let Gt be G|(Ct ∪ X). If G1, G2

have no odd hole then G has no odd hole.

We omit the (easy) proof since we do not need the result, which is included just to motivate the
concept of harmonious cutset. 2.1 implies that if we understand all graphs with no odd hole and
no harmonious cutset, then by repeatedly piecing them together on harmonious cutsets we can
“construct” all graphs with no odd hole. However, this does not really count as a construction. If
G,X,G1, G2 are as above, and we wish to view this as a construction of G from things that we
already understand, we need to know not only that G1, G2 have no odd hole, but that the cutset X
of G will be harmonious. This can be stated as a property of the pairs (G1,X) and (G2,X); but
we need to have constructions for the pairs (G1,X) and (G2,X), not just for G1, G2, before we can
claim to have a construction for G. We have not yet resolved this issue.

Let us return to the colouring problem.

2.2 Let X be a harmonious cutset in a graph G, let C1, C2 be a partition of V (G) \ X into two

nonempty sets that are anticomplete to each other, and for t = 1, 2 let Gt be G|(Ct ∪ X). If G1, G2

are 4-colourable then G is 4-colourable.

Proof. Let X1,X2, . . . ,Xk be as in the definition of a harmonious cutset. By hypothesis both G1

and G2 are 4-colourable. Let t ∈ {1, 2}, and let c be a 4-colouring of Gt (using colours 1, 2, 3, 4, and
so c is a map into {1, 2, 3, 4}). We say that a vertex v ∈ X is c-compliant if c(v) = i, where i is the
index such that v ∈ Xi. We claim

(1) Gt has a 4-colouring ct such that every vertex of X is ct-compliant.

To prove this claim let c be a 4-colouring of Gt that maximizes the number of c-compliant ver-
tices. We will show that c is as desired. To this end, suppose for a contradiction that v ∈ X is not
c-compliant, say v ∈ Xi and c(v) = j, where i 6= j. Let H be the component containing v of the
subgraph of Gt induced by vertices coloured i or j. We claim that no vertex of H in X is c-compliant.
For let u ∈ V (H) ∩ X, and let P be an induced path of H joining u, v. Now c(u) = c(v) (that is,
c(u) = j) if and only if P has even length, from the definition of H; but P has even length if and
only if u, v belong to the same member of {X1, . . . ,Xk} (that is, u ∈ Xi), since X is harmonious.
Consequently c(u) = j if and only if u ∈ Xi, and so u is not c-compliant. This proves that no vertex
of H in X is c-compliant.
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Let c′ be the colouring obtained from c by swapping the colours i and j for every vertex of H.
Then v is c′-compliant. Since no vertex of H is c-compliant, it follows that more vertices in X are
c′-compliant than are c-compliant, contrary to our choice of c. This proves (1).

Now the colourings c1 and c2 can be combined to produce a 4-colouring of G, as desired.

It is easy to see that a graph with a harmonious cutset has either what is called an even pair,
an odd pair, or a clique cutset (we omit the definitions of these standard terms, which we do not
need any more), and one could eliminate the use of 2.2 by using these three things instead, and three
corresponding theorems from the literature. The interested reader can easily work this out.

What follows is a lemma to make it easier to prove that a given cutset is harmonious.

2.3 Let G be a graph with no odd hole, let X be a cutset in G, and let X1, . . . ,Xk be a partition

of X into stable sets, such that if k ≥ 3 then the sets X1, . . . ,Xk are pairwise complete. Suppose

that for all nonadjacent a, b ∈ X, there is an induced path P joining a, b, with interior in V (G) \X,

such that P is even if some Xi contains both a, b, and odd otherwise. Then G admits a harmonious

cutset.

Proof. If some proper subset X ′ of X is a cutset, then X ′ and the sets X ′ ∩ Xi (1 ≤ i ≤ k) satisfy
the hypotheses of the theorem and we may replace X by X ′. We may therefore assume that X is a
minimal cutset. Let C1, . . . , Ct be the vertex sets of the components of G \X; thus every member of
X has a neighbour in Ci for all i with 1 ≤ i ≤ t.

(1) Let a, b ∈ X. Every induced path between a, b with no internal vertex in X is even if some

Xi contains both a, b, and odd otherwise.

For we may assume that a, b are nonadjacent, since X1, . . . ,Xk are stable. By hypothesis, there
is an induced path P joining a, b, with interior in V (G) \X, such that P is even if some Xi contains
both a, b, and odd otherwise. Since no internal vertex of P is in X, the interior of P is contained in
one of C1, . . . , Ct, say C1. Now t > 1, so a, b both have neighbours in C2 from the minimality of X,
and hence there is an induced path Q joining a, b with interior in C2. Since the union of P,Q is an
even hole, it follows that Q,P have the same parity. Now let R be any path with ends a, b and with
interior disjoint from X. Then there exists j ∈ {1, . . . , t} such that the interior of R is a subset of
Cj. Consequently one of P ∪R,Q ∪R is a hole, and since P,Q have the same parity, it follows that
R also has the same parity. This proves (1).

Let P be an induced path with both ends in X, and let its ends be v, v′ say, where v ∈ Xi and
v′ ∈ Xi′ . We must show that P is even if and only if i = i′. We proceed by induction on the length
of P . If no internal vertex of P is in X, the claim follows from (1), so we may assume that there is
an internal vertex u of P in Xj say. Let Q,Q′ be the subpaths of P between v, u and between u, v′

respectively. From the inductive hypothesis, Q is even if and only if i = j, and Q′ is even if and only
if i′ = j. Now P is odd if and only if exactly one of Q,Q′ is odd, that is, if exactly one of i, i′ is
equal to j. It follows that if P is odd then i 6= i′. For the converse, suppose that P is even; then
either both i, i′ are equal to j or both i, i′ are different from j. In the first case i = i′ as required. In
the second case, if k ≤ 2 then i = i′ as required, and if k ≥ 3 then i = i′ since v, v′ are nonadjacent.
This proves that P is even if and only if i = i′, and so proves 2.3.

For X as in 2.3, we call (X1, . . . ,Xk) the “corresponding colouring”.
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3 The main theorem

In this section we state the main result. If A,B ⊆ V (G) are disjoint, we say that A,B are linked if
every member of A has a neighbour in B, and every member of B has a neighbour in A. We need
to define two kinds of graphs.

We say a graph G is of T11 type if there is a partition of V (G) into eleven nonempty stable subsets
W1, . . . ,W11, such that (with index arithmetic modulo 11) for 1 ≤ i ≤ 11, Wi is anticomplete to
Wi+1 ∪ Wi+2 and complete to Wi+3 ∪ Wi+4 ∪ Wi+5.

We say that G is of heptagram type if there is a partition of V (G) into fourteen stable subsets
W1, . . . ,W7, Y1, . . . , Y7, where W1, . . . ,W7 are nonempty but Y1, . . . , Y7 may be empty, satisfying the
following (with index arithmetic modulo 7).

1. For 1 ≤ i ≤ 7, Wi is anticomplete to Wi+3.

2. For 2 ≤ i ≤ 7, Wi is complete to Wi+2, and W1,W3 are linked.

3. For i ∈ {3, 4, 6, 7}, Wi is complete to Wi+1; for i = 1, 2, 5, Wi,Wi+1 are linked.

4. If vi ∈ Wi for i = 1, 2, 3, and v2 is adjacent to v1, v3, then v1 is adjacent to v3.

5. If vi ∈ Wi for i = 1, 2, 3, and v2 is nonadjacent to v1, v3, then v1 is nonadjacent to v3.

6. For 1 ≤ i ≤ 7, every vertex in Yi has a neighbour in each of Wi,Wi+3,Wi−3 and has no
neighbour in Wi+1,Wi+2,Wi−1,Wi−2.

7. For 1 ≤ i ≤ 7 and each y ∈ Yi, let Nj be the set of neighbours of y in Wj for j = i, i+3, i−3; then
Ni+3 is complete to Ni−3, and Ni+3 is anticomplete to Wi−3 \ Ni−3, and Ni−3 is anticomplete
to Wi+3 \ Ni+3, and Ni is complete to Wi+1 ∪ Wi−1.

8. For 1 ≤ i ≤ 7, Yi is complete to Yi+1 and anticomplete to Yi+2 ∪ Yi+3.

9. For 1 ≤ i ≤ 7, if Yi is not complete to Wi+3∪Wi−3 then Wi−3∪Wi+3 is complete to Wi−2∪Wi+2,
and Yi−1, Yi+1, Yi−3, Yi+3 are all empty.

10. For 1 ≤ i ≤ 7, at least one of Yi, Yi+1, Yi+2 is empty.

It is questionable whether the description given above of graphs of heptagram type really counts
as an explicit construction. We return to this in the final section, where we give a more complicated
but more explicit construction of the same class of graphs. We leave the reader to check that graphs
of T11 type and graphs of heptagram type have no odd hole, are K4-free, do not admit a harmonious
cutset, and contain an antihole of length seven. (To check that graphs of heptagram type have no
odd hole, we suggest the use of theorem 5.2 below.) Our main result is the converse, the following.

3.1 Let G be a K4-free graph with no odd hole, and with no harmonious cutset, containing an

antihole of length seven. Then G is either of heptagram type or of T11 type.

This has the corollary mentioned earlier:

3.2 Every K4-free graph with no odd hole is four-colourable.
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Proof. Let G be a K4-free graph with no odd hole; we prove by induction on |V (G)| that G is
four-colourable. If G admits a harmonious cutset, the result follows from 2.2 and the inductive
hypothesis. If G contains no antihole of length seven, then it contains no odd hole or antihole, and
therefore is perfect by 1.1 (or Tucker’s earlier result [6]), and so is three-colourable. We may therefore
assume that G satisfies the hypotheses of 3.1; but then, by 3.1, G is of one of the two types listed.
It is easy to check that graphs of these two types are four-colourable. This proves 3.2.

4 Graphs of T11 type

Let X1, . . . ,Xn be disjoint subsets of V (G); by an induced path of the form X1- · · · -Xn we mean an
induced path x1- · · · -xn where xi ∈ Xi for 1 ≤ i ≤ n (and when some Xi is a singleton, say {x}, we
sometimes write x instead of Xi). We use analogous terminology for holes. Let T11 be the graph
with vertex set w1, . . . , w11, in which for 1 ≤ i ≤ 11, wi is nonadjacent to wi+1, wi+2 and adjacent to
wi+3, wi+4, wi+5. (Throughout this section, index arithmetic is modulo 11.) In this section we show
the following.

4.1 Let G be a K4-free graph with no odd holes and no harmonious cutset. If G contains T11 as an

induced subgraph then G is of T11 type.

Proof. Since G contains T11 as an induced subgraph, we may choose eleven nonempty stable sets
W1, . . . ,W11, pairwise disjoint, such that for 1 ≤ i ≤ 11, Wi is anticomplete to Wi+1,Wi+2 and
complete to Wi+3,Wi+4,Wi+5. Choose them with maximal union, and let their union be W .

(1) If v ∈ V (G) \ W , and a, b ∈ W are adjacent to v, then either a, b are adjacent or a, b ∈ Wi

for some i ∈ {1, . . . , 11}.

For suppose not; then from the symmetry we may assume that a ∈ W1 and b ∈ W2 ∪ W3. Let
N be the set of neighbours of v in W . By a v-path we mean an induced path in G|W with both
ends in N and with no internal vertices in N . Since G has no odd hole, every odd v-path has length
one. For 1 ≤ i ≤ 11 choose wi ∈ Wi. Suppose first that b ∈ W2. Since there is no v-path of the form
a-W4-W10-b, it follows that N includes one of W4,W10; and from the symmetry we may assume that
W4 ⊆ N . Since no three members of N are pairwise adjacent (since G is K4-free) it follows that
N is disjoint from W7,W8,W9. Since there is no v-path of the form b-(W5 ∪ W6)-(W1 ∪ W11)-w4 it
follows that N includes one of W5 ∪ W6,W1 ∪ W11, and we claim we may assume the second. For
if w5 /∈ N then the second statement holds anyway; and if w5 ∈ N then W2 ⊆ N (since there is
no v-path of the form w4-W7-W2-w5), and so there is symmetry between the pairs (W1,W2) and
(W5,W4), and we may assume that W1 ∪W11 ⊆ N because of this symmetry. Thus, we may assume
that W1 ∪ W11 ⊆ N . Since there is no v-path of the form a-w9-W3-w11 it follows that W3 ⊆ N ; and
since N includes no triangle within W3 ∪ W6 ∪ W11, it follows that N ∩ W6 = ∅. There is no v-path
of the form a-W5-W10-w3, so N includes one of W5,W10, and from the symmetry exchanging W1,W3

we may assume that W5 ⊆ N . Since N includes no triangle within W2 ∪ W5 ∪ W10, it follows that
N is disjoint from W10. Since there is no v-path of the form w4-w7-W2-w5, we deduce that W2 ⊆ N ,
and so N is the union of Wi for i = 11, 1, 2, 3, 4, 5. But then v can be added to W8, contradicting
the maximality of W .
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This proves that b /∈ W2, and more generally for 1 ≤ i ≤ 11, N is disjoint from one of Wi,Wi+1.
Now b ∈ W3, and so N is disjoint from W11,W2,W4. But then there is a v-path a-w4-w11-b, a
contradiction. This proves (1).

(2) Let X ⊆ V (G) \ W such that G|X is connected. If a, b ∈ W have neighbours in X then ei-

ther a, b are adjacent or a, b ∈ Wi for some i ∈ {1, . . . , 11}.

For suppose not, and choose X minimal such that some such pair a, b violates (2). It follows that
there is an induced path a-x1- · · · -xk-b where X = {x1, . . . , xk}. By (1), a, b have no common neigh-
bour in X, and so k ≥ 2. From the symmetry we may assume that a ∈ W1 and b ∈ W2 ∪ W3. For
1 ≤ i ≤ 11 choose wi ∈ Wi, choosing wi ∈ {a, b} if possible. For 1 ≤ i ≤ 11, the minimality of X
implies that not all of wi, wi+1, wi+2 have neighbours in X, since then some two of them would be
joined by a proper subpath of x1- · · · -xk. In particular, not all of w6, w7, w8 have neighbours in X;
say wj does not, where 6 ≤ j ≤ 8. Consequently wj-a-x1- · · · -xk-b-wj is a hole, and therefore k is
odd.

Suppose first that b ∈ W2. Since a-x1- · · · -xk-b-w10-w4-a is not an odd hole, we may assume from
the symmetry that w4 has a neighbour in X. From the minimality of X, w4 is adjacent to x1 and
to no other member of X. Since not all w11, w1, w2 have neighbours in X, it follows that w11 has no
neighbour in X. Since not all w4, w5, w6 have neighbours in X, there exists i ∈ {5, 6} such that wi

has no neighbour in X. But then w4-x1- · · · -xk-b-wi-w11-w4 is an odd hole, a contradiction.
Thus b /∈ W2, so b ∈ W3, and more generally for 1 ≤ i ≤ 11 at least one of Wi,Wi+1 is anticomplete

to X. In particular, w11, w2, w4 have no neighbour in X. Thus a-x1- · · · -xk-b-w11-w4-a is an odd
hole, a contradiction. This proves (2).

Suppose that W 6= V (G); we shall prove that G admits a harmonious cutset. Choose C ⊆
V (G) \ W maximal such that G|C is connected. Let N be the set of vertices in W with neighbours
in C. By (2) (and since 11/4 < 3), N ∩ Wi is nonempty for at most three values of i ∈ {1, . . . , 11},
and N ∩ Wi is complete to N ∩ Wj for all distinct i, j ∈ {1, . . . , 11}. Thus by 2.3 it suffices to show
that if a, b ∈ N ∩ W1 then there is an even path joining a, b with interior in W \ N . But a, b have a
common neighbour in Wj for j = 4, 5, and not both these belong to N by (2). This completes the
proof of 4.1.

5 Heptagrams

In view of 4.1, to prove 3.1 it suffices to prove it for {K4, T11}-free graphs, and that is the main goal
of the remainder of the paper.

If a graph G contains an antihole of length seven, then the vertices of that antihole can be
numbered w1, w2, . . . , w7 in such a way that wi is adjacent to wj if and only if |i − j| ∈ {1, 2, 5, 6}.
This motivates the following definition. We say that W = (W1,W2, . . . ,W7) is a heptagram in G if
(here and later index arithmetic is modulo 7)

(S1) the sets W1,W2, . . . ,W7 ⊆ V (G) are disjoint, nonempty, and stable,

(S2) for 1 ≤ i ≤ 7, Wi is anticomplete to Wi+3 ∪ Wi+4

6



(S3) for 1 ≤ i ≤ 7, the sets Wi,Wi+1,Wi+2 are pairwise linked

(S4) if u ∈ Wi−1, v ∈ Wi, w ∈ Wi+1 and v is adjacent to both u and w, then u is adjacent to w,

(S5) if u ∈ Wi−1, v ∈ Wi, w ∈ Wi+1 and v is non-adjacent to both u and w, then u is non-adjacent
to w, and

(S6) if u ∈ Wi−1, v ∈ Wi, w ∈ Wi+1, x ∈ Wi+2, u is adjacent to w and v is adjacent to x, then
either u is adjacent to v or w is adjacent to x.

If W = (W1, . . . ,W7) is a heptagram in G, we also use W to denote the set W1 ∪ · · · ∪ W7. This
mild abuse of notation should cause no confusion.

Let us explain briefly where these conditions came from. It is clear that (S1)–(S3) are designed
to mimic the edge-structure of the antihole on seven vertices, but (S4)–(S6) are less natural. They
arose from the following consideration. Let (W1, . . . ,W7) satisfy (S1)–(S3), in a graph G. One can
check that if (S4)–(S6) are also satisfied, then G|W has no odd hole (to prove this, use 5.3 below);
and also the converse holds, that is, if G|W has no odd hole then (S4)–(S6) hold, provided all the
graphs G|Wi ∪ Wi+1 are connected.

Our strategy to prove 3.1 is to choose a heptagram W in G with W maximal, and to analyze
how the remainder of G attaches to W . But first, in this section we study the internal structure of
a heptagram. We begin with:

5.1 Let (W1,W2, . . . ,W7) be a heptagram in a graph G. For 1 ≤ i ≤ 7, if Wi is complete to Wi+1,

then Wi is complete to Wi+2 and Wi−1 is complete to Wi+1.

Proof. Let u ∈ Wi and w ∈ Wi+2, and let v ∈ Wi+1 be a neighbour of w. (This exists by (S3).)
Since Wi is complete to Wi+1, it follows that v is adjacent to both u,w; and so u is adjacent to w
by (S4). This proves that Wi is complete to Wi+2. The second assertion follows by symmetry. This
proves 5.1.

5.2 Let (W1,W2, . . . ,W7) be a heptagram in a graph G. For 1 ≤ i ≤ 7 either Wi is complete to

Wi+1 or Wi+2 is complete to Wi+3.

Proof. From the symmetry we may assume i = 1.

(1) Let wi ∈ Wi for i = 1, 3, 4. Then w3 is adjacent to one of w1, w4.

For suppose not. By (S3), w1 has a neighbour w2 ∈ W2; by (S4), w2, w3 are nonadjacent, and
so by (S5), w2, w4 are nonadjacent. By (S3) again, w2 has a neighbour n3 ∈ W3; by (S4), w1, n3 are
adjacent, and by (S4) again, n3, w4 are nonadjacent. Again by (S3), w4 has a neighbour n2 ∈ W2;
by (S5), n2, w3 are adjacent, and so by (S4), n2, w1 are nonadjacent. But then w1, n2, n3, w4 violate
(S6). This proves (1).

To prove the theorem, suppose that wi ∈ Wi for 1 ≤ i ≤ 4, say, and w1, w2 are nonadjacent, and
w3, w4 are nonadjacent. By (1), w1, w3 are adjacent, and similarly so are w2, w4; but then (S6) is
violated. This proves 5.2.
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5.3 Let (W1,W2, . . . ,W7) be a heptagram in a graph G. Then there exists t ∈ {1, . . . , 7} such

that Wj−1 is complete to Wj+1 for all j ∈ {1, . . . , 7} \ {t}, and Wj is complete to Wj+1 for all

j ∈ {t − 3, t − 2, t + 1, t + 2}. Consequently, for all i ∈ {1, . . . , 7}, if u ∈ Wi−2 and v ∈ Wi+2, then

• u, v have common neighbours in Wi−3, in Wi and in Wi+3, and

• there is a path of the form u-Wi−1-Wi+1-v.

Proof. The first assertion follows from 5.2 and 5.1, and the others follow from this and (S3). This
proves 5.3.

6 Y-vertices

Until the end of section 8, where we complete the proof of 3.1, G is a {K4, T11}-free graph with
no odd hole, containing an antihole of length seven. Consequently there is a heptagram in G, say
W = (W1, . . . ,W7); and let us choose the heptagram with W1 ∪ · · · ∪W7 maximal. (We call this the
“maximality” of W .) Again, W is fixed until the end of section 8.

We say that y ∈ V (G) \ W is a Y-vertex or a Y-vertex of type t if the following hold, where Ni

denotes the set of neighbours of y in Wi for 1 ≤ i ≤ 7:

• Nt, Nt+3, Nt−3 are nonempty, and Ni = ∅ for i = t − 2, t − 1, t + 1, t + 2

• Nt−3 is complete to Nt+3, and Nt−3 is anticomplete to Wt+3 \ Nt+3, and Nt+3 is anticomplete
to Wt−3 \ Nt−3

• Nt is complete to Wt+1 ∪ Wt+2 ∪ Wt−1 ∪ Wt−2

The main result of this section is the following:

6.1 Let v ∈ V (G) \ W . Then one of the following holds:

• v is a Y-vertex, or

• let N be the set of neighbours of v in W ; then N ∩ Wi is nonempty for at most two values of

i ∈ {1, . . . , 7}, and if there are two such values, i and j say, then j ∈ {i − 2, i − 1, i + 1, i + 2}
and N ∩ Wi is complete to N ∩ Wj .

Proof. Let Ni = N ∩ Wi and Mi = Wi \ Ni for 1 ≤ i ≤ 7. Let

I = {i ∈ {1, . . . , 7} : Ni 6= ∅}.

By a v-path we mean an induced path of G|W such that its ends are in N and its internal vertices
are not in N . Since G has no odd hole, every odd v-path has length one. Since G is K4-free, no
three members of N are pairwise adjacent (briefly, N is triangle-free).

(1) For 1 ≤ i ≤ 7, not all i, i + 1, i + 2, i + 3 belong to I.

For suppose that 1, 2, 3, 4 ∈ I say, and choose ni ∈ Ni for 1 ≤ i ≤ 4. By 5.2, either n1, n2 are
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adjacent or n3, n4 are adjacent, and we may assume the first by the symmetry. Since N is triangle-
free, {n1, n2, n3} is not a triangle, and so (S4) implies that n2, n3 are nonadjacent. By 5.2 W1 is
complete to W7, so by 5.1 W2 is complete to W7; and so N7 = ∅ since N is triangle-free; and by 5.2
again, W4 is complete to W5. Choose w7 ∈ W7 adjacent to n2; and choose n5 ∈ W5 and w6 ∈ W6,
both adjacent to w7. By 5.3, n3, n5 are adjacent, and since n3-n5-w7-n2 is not a v-path, it follows
that n5 ∈ N5. Since N2, N3, N4, N5 6= ∅, the argument earlier in this paragraph implies that n3, n4

are nonadjacent, and N6 = ∅. Now n3 is nonadjacent to both n2, n4, and so (S5) implies that n2, n4

are nonadjacent. By 5.3, n4-w6-w7-n2 is a v-path, a contradiction. This proves (1).

(2) |I| ≤ 4.

For (1) implies that |I| ≤ 5; suppose that |I| = 5. From (1) again we may assume that I =
{1, 2, 4, 5, 7}. Choose n1 ∈ N1. If n1 has a neighbour in N2 and one in N7, then by (S4) there is a
triangle in N , a contradiction. Thus we may assume that n1 is anticomplete to N2. By 5.2, W3 is
complete to W4, and W6 to W7. Choose n2 ∈ N2. If n2 has a neighbour w1 ∈ M1, then since W1 is
complete to W6 by 5.1, there is a v-path of the form n2-w1-W6-n1, a contradiction. This proves that
n2 is anticomplete to M1. Choose n′

1 ∈ W1 adjacent to n2; it follows that n′

1 ∈ N1. Since n′

1 ∈ N1

and has a neighbour in N2, it follows from our previous argument that n′

1 is anticomplete to N7.
By 5.2, W2 is complete to W3, and W5 to W6. Choose n7 ∈ N7. Now n1 has a neighbour in W2,
necessarily in M2; let w2 be such a neighbour. Similarly let w7 ∈ M7 be adjacent to n′

1. Choose
n4 ∈ N4. If n4 is anticomplete to N5, then since W5 is complete to W7 by 5.1, and n4 has a neighbour
(say w5) in W5, n4-w5-w7-n5 is a v-path (where n5 ∈ N5), a contradiction. Thus we may choose
n5 ∈ N5 adjacent to n4. Choose w3 ∈ W3 and w6 ∈ W6. Now n2, w7 are adjacent by (S4). If n2, n7

are nonadjacent, then n2-w7-w6-n7 is a v-path, a contradiction. Thus n2, n7 are adjacent, and so by
(S5), n1, n7 are adjacent. By (S4), n7, w2 are adjacent. By (S5), n′

1, w2 are adjacent, and similarly
n1, w7 are adjacent. By (S4), w7, w2 are adjacent. But then the subgraph induced on

{v,w3, w7, n7, n4, n
′

1, n1, n5, n2, w2, w6}

is isomorphic to T11 (and these eleven vertices are written in the appropriate order), a contradiction.
This proves (2).

(3) |I| ≤ 3.

For suppose not; then |I| = 4 by (2), and we may assume that 1, 4 ∈ I. By 5.3, there is a path
of the form N1-W7-W5-N4. Since this is not a v-path, it follows that one of N5, N7 6= ∅, and from
the symmetry we may assume that 5 ∈ I. Suppose that 6 ∈ I, and so I = {1, 4, 5, 6}. If N4 is not
complete to N5 there is a v-path of the form N5-W7-W2-N4, a contradiction, so N4 is complete to
N5. Choose n6 ∈ N6. Since N4 is complete to N5 and N is triangle-free, it follows from (S4) that n6

has no neighbour in N5; and consequently n6 is adjacent to some w5 ∈ M5. But then by 5.3 there is
a v-path of the form N5-W3-w5-n6, a contradiction. This proves that 6 /∈ I, and similarly 3 /∈ I, and
so from the symmetry we may assume that 2 ∈ I, and therefore I = {1, 2, 4, 5}.

In this case we will show that we can add v to W3, forming a heptagram W ′, contrary to the
maximality of W . Define W ′

i = Wi for 1 ≤ i ≤ 7 with i 6= 3, and W ′

3 = W3 ∪ {v}; and let
W ′ = (W ′

1, . . . ,W
′

7). We must check that W ′ satisfies (S1)–(S6). The first three are clear. Since W
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satisfies (S4)–(S6), in order to check that W ′ satisfies (S4)–(S6), it suffices from the symmetry to
show that:

1. N2 is complete to N4

2. N4 is anticomplete to M5

3. M2 is anticomplete to M4

4. M4 is complete to N5

5. if M2 6= ∅ then N4 is complete to N5

6. every vertex in W6 is either anticomplete to M4 or complete to N5.

Let us prove these statements. For the first, if n2 ∈ N2 and n4 ∈ N4 are nonadjacent, choose wi ∈ Wi

for i = 6, 7, adjacent; then by 5.2, n4, w6 are adjacent and so are n2, w7, and therefore n4-w6-w7-n4

is a v-path, a contradiction.
For the second, suppose that n4 ∈ N4 is adjacent to w5 ∈ M5. Choose n1 ∈ N1 and w7 ∈ W7

adjacent to both n1, w5 (this is possible by 5.3); then n4-w5-w7-n1 is a v-path, a contradiction.
For the third statement, suppose that w2 ∈ M2 and w4 ∈ M4 are adjacent. Choose n1 ∈ N1

and n5 ∈ N5. Since n1-w2-w4-n5 is not a v-path, we may assume that n1, w2 are nonadjacent, and
indeed w2 has no neighbour in N1. Choose w1 ∈ W1 adjacent to w2 (necessarily in M1), and choose
w7 ∈ W7 adjacent to w1. By (S4), w2, w7 are adjacent, and by (S5), n1, w7 are adjacent. Choose
n4 ∈ N4; by 5.3, n4, w2 are adjacent, since w2, n1 are not adjacent. But then n1-w7-w2-n4 is a v-path,
a contradiction.

For the fourth statement, suppose that w4 ∈ M4 and n5 ∈ N5 are nonadjacent. Choose w6 ∈ W6

adjacent to w4; then (S5) implies that n5, w6 are adjacent. Choose n2 ∈ N2; by 5.3, n2, w4 are
adjacent. But then n2-w4-w6-n5 is a v-path, a contradiction.

For the fifth statement, suppose that w2 ∈ M2, n4 ∈ N4 and n5 ∈ N5, where n4, n5 are nonad-
jacent. By 5.3, w2, n4 are adjacent. By 5.3, there exists w7 ∈ W7 adjacent to both w2, n5; but then
n4-w2-w7-n5 is a v-path, a contradiction.

Finally, for the last statement, suppose that w6 ∈ W6 is adjacent to w4 ∈ M4 and nonadjacent
to n5 ∈ N5. Choose n1 ∈ N1. By (S5), n5, w4 are adjacent, and by 5.3, w6, n1 are adjacent; but then
n1-w6-w4-n5 is a v-path, a contradiction.

This proves that W ′ is a heptagram, contrary to the maximality of W . This completes the proof
of (3).

(4) If |I| = 3 then the first outcome of the theorem holds.

For suppose first that I = {1, 2, 3}, and choose ni ∈ Ni for i = 1, 2, 3. Since N is triangle-free,
we may assume from (S4) that n1, n2 are nonadjacent. Choose w4 ∈ W4 and w6 ∈ W6, adjacent;
then by 5.3, n2-w4-w6-n1 is a v-path, a contradiction.

Thus I does not consist of three consecutive integers (modulo seven), and so we may assume that
1, 4 ∈ I. Since there is no v-path of the form N4-W5-W7-N1, 5.3 implies one of N5, N7 is nonempty,
and from the symmetry we may assume that the former. Thus I = {1, 4, 5}. By the same argument,
N4 is anticomplete to M5, and N5 is anticomplete to M4. If N4 is not complete to N5, 5.3 implies that
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there is a v-path of the form N5-W7-W2-N4, a contradiction. Thus N4 is complete to N5. Suppose
that N1 is not complete to W2, and choose n1 ∈ N1 and w2 ∈ W2, nonadjacent. Choose w7 ∈ W7

adjacent to w2; then (S5) implies that n1, w7 are adjacent. But by 5.3, w2, n4 are adjacent, and so
n1-w7-w2-n4 is a v-path, a contradiction. Thus N1 is complete to W2 and therefore to W3, by (S4).
Similarly N1 is complete to W7,W6. But then v is a Y-vertex of type 1, and the first statement of
the theorem holds. This proves (4).

(5) If |I| = 2 then the second outcome of the theorem holds.

For then we may assume that I = {1, t} where t ∈ {2, 3, 4}. If t = 4, there is a v-path of the
form N4-W5-W7-N1, a contradiction. Thus t ∈ {2, 3}. Suppose there exist n1 ∈ N1 and nt ∈ Nt,
nonadjacent. Choose w6 ∈ W6 adjacent to n1. By 5.3, there exists w4 ∈ W4 adjacent to both
nt, w6; but then n1-w6-w4-n7 is a v-path, a contradiction. Thus N1 is complete to Nt and the second
outcome of the theorem holds. This proves (5).

From (2)–(5), we may assume that |I| ≤ 1; but then the second outcome of the theorem holds.
This proves 6.1.

7 V-vertices

Let 1 ≤ t ≤ 7. A tail, or tail of type t, is an induced path v1- · · · -vk with the following properties:

• k ≥ 1 is odd, and v1, . . . , vk ∈ V (G) \ W

• v1 has a neighbour in Wt−3 and a neighbour in Wt+3, and Wt−3,Wt+3 are anticomplete to
{v2, . . . , vk}

• Wt−1,Wt+1 and at least one of Wt−2,Wt+2 are anticomplete to {v1, . . . , vk}

• vk has a neighbour in Wt, and Wt is anticomplete to {v1, . . . , vk−1}

• for j = t − 3, t + 3 let Nj be the set of neighbours of v1 in Wj ; then Nt−3 is complete to Nt+3,
Nt−3 is anticomplete to Wt+3 \ Nt+3, and Nt+3 is anticomplete to Wt−3 \ Nt−3

• every neighbour of vk in Wt is complete to each of Wt−2,Wt−1,Wt+1,Wt+2.

We see that every Y-vertex forms a 1-vertex path that is a tail of length zero, and for every tail
of length zero, its unique vertex is a Y-vertex, by 6.1, and so we may regard tails as a generalization
of Y-vertices. If v1- · · · -vk is a tail, we say it is a tail for v1. If 1 ≤ t ≤ 7, a vertex v ∈ V (G) \ W
with neighbours in Wt−3 and in Wt+3, and anticomplete to Wj for j = t − 2, t − 1, t, t + 1, t + 2, is
called a hat of type t. If v1, . . . , vk is a tail of type t, and has length greater than zero, then v1 is a
hat of type t. We say a vertex v ∈ V (G) \ W is a V-vertex of type t if there is a tail of type t for v.
Thus, every V-vertex of type t is either a Y-vertex of type t or a hat of type t.

Before we go on, let us give some idea where we are going. If every vertex in V (G) \ W is a
V-vertex, then since every tail only contains one V-vertex it follows that every tail has length zero,
and so every vertex in V (G) \ W is a Y-vertex, and we shall deduce that the graph is of heptagram
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type. On the other hand, if some vertex in V (G)\W is not a V-vertex, we shall prove that G admits
a harmonious cutset.

If X ⊆ V (G), we define N(X) to be the set of vertices in V (G) \X with a neighbour in X. Here
is a nice property of tails:

7.1 Let X ⊆ V (G) \ W , such that G|X is connected and contains no tail of G. Then there exists

i ∈ {1, . . . , 7} such that N(X) ∩ W ⊆ Wi−1 ∪ Wi ∪ Wi+1.

Proof. Suppose this is false, and choose a minimal counterexample X. Consequently there exists
i ∈ {1, . . . , 7} such that Ni, Ni+3 are both not anticomplete to X, and we may therefore assume
that N(X) ∩ W1, N(X) ∩ W4 6= ∅. Choose a minimal path from W4 to W1 with interior in X, say
n4-v1- · · · -vk-n1. From the minimality of X, it follows that X = {v1, . . . , vk}, and from 6.1 it follows
that k > 1. From the minimality of X, W1 is anticomplete to {v1, . . . , vk−1}, and W4 is anticomplete
to {v2, . . . , vk}. Suppose first that k is even. Then by 5.3, n1, n4 have a common neighbour wj ∈ Wj

for j = 2, 3, 6, and since G has no odd hole, it follows that w2, w3, w6 each are adjacent to one of
v1, . . . , vk. But each of v1, vk is nonadjacent to one of w2, w3, by 6.1, and so one of w2, w3 is joined
to w6 by a path with interior a proper subpath of v1, . . . , vk, contrary to the minimality of X. This
proves that k is odd. Since there is no odd hole of the form

n4-v1- · · · -vk-n1-W7-W5-n4,

it follows that some vertex of W5 ∪ W7 is adjacent to one of v1, . . . , vk, and from the symmetry we
may assume this vertex is in W5. From the minimality of X, {v2, . . . , vk} is anticomplete to W5, and
so v1 a has neighbour in W5. By 6.1, and since G|X contains no tail of G and hence X contains no
Y-vertex, it follows that v1 is a hat of type 1. We will prove that v1, . . . , vk is a tail.

From the minimality of |X|, W2 and W7 are both anticomplete to {v1, . . . , vk−1}. Suppose that
vk has a neighbour n2 ∈ W2 say. Then by 6.1, vk is a hat of type 5, and so W7 is anticomplete
to X, and the minimality of X implies that W6 is anticomplete to X. If n2, n4 are adjacent then
n4-v1- · · · -vk-n2-n4 is an odd hole, and if n2, n4 are nonadjacent then there is an odd hole of the form

n4-v1- · · · -vk-n2-W7-W6-n4,

in either case a contradiction. This proves that vk has no neighbour in W2, and so X is anticomplete
to W2, and similarly to W7. Now v1 is anticomplete to both W3,W6, and from the minimality of X,
at least one of W3,W6 is anticomplete to X \ {v1}, and so at least one of W3,W6 is anticomplete to
X. We have therefore verified that v1, . . . , vk satisfies the first four conditions in the definition of a
tail.

To verify the fifth condition, let Ni be the set of neighbours of v1 in Wi for i = 4, 5. By 6.1, N4 is
complete to N5. If w4 ∈ N4 is adjacent to some w5 ∈ W5 \N5, then there is an odd hole of the form

w4-v1- · · · -vk-n1-W7-w5-w4,

a contradiction. Similarly N5 is anticomplete to W4 \ N4, and this verifies the fifth condition.
To verify the sixth and last condition, let w1 ∈ W1 be adjacent to vk. If w1 is nonadjacent to

some w2 ∈ W2, choose w7 ∈ W7 adjacent to w2; then (S5) implies that w1, w7 are adjacent, and so
by 5.3 there is an odd hole

n4-v1- · · · -vk-w1-w7-w2-n4,
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a contradiction. Thus w1 is complete to W2, and therefore to W3 by (S4), and similarly to W7,W6.
This verifies the sixth condition.

Consequently v1, . . . , vk is a tail in G|X, a contradiction. Thus there is no such X. This proves
7.1.

7.2 Let U be the set of all vertices in V (G) \ W that are not V-vertices. For 1 ≤ t ≤ 7, there is no

path x1- · · · -xk in G satisfying the following:

• x1 is either a hat or Y-vertex of type t

• x2, . . . , xk−1 ∈ U

• xk ∈ V (G) \ W has a neighbour in Wt+1 ∪ Wt−1, and

• xk is not a Y-vertex of type t + 1 or t − 1.

Proof. For suppose there is, and choose k minimum such that for some t there is such a path. We
may assume that t = 1, and x1 is either a hat or a Y -vertex of type 1, and xk ∈ V (G) \ W has a
neighbour in W2, and x2, . . . , xk−1 ∈ U , and xk is not a Y-vertex of type 2 or 7. Let X = {x1, . . . , xk}.
From the minimality of k, W2,W7 are both anticomplete to X \ {xk}. Choose w2 ∈ W2 adjacent to
xk. Choose w4 ∈ W4 adjacent to x1, and also adjacent to w2 if possible. We claim that if x1 is a
V-vertex, then w2, w4 are adjacent; for if W4 is complete to W5 then x1 is complete to W4 (since x1

is a V-vertex), and if W4 is not complete to W5 then W4 is complete to W2 by 5.3. In either case it
follows that w2, w4 are adjacent.

(1) G|X contains a tail for xk and a tail for x1, and in particular x1 and xk are V-vertices.

For suppose it contains no tail for xk. By 7.1 applied to X \ {x1} we deduce that W5,W6 are
anticomplete to X \ {x1}. From 7.1, G|X contains a tail of G, and since X contains no V-vertex
except possibly x1 and xk, we may assume that G|X contains a tail for x1. Thus x1 is a V-vertex,
and so w2, w4 are adjacent. Moreover, there exists j ≤ k such that x1- · · · -xj is a tail for x1. In
particular, W2 is anticomplete to {x1, . . . , xj}, and so j < k.

Suppose that k is even. Since there is no odd hole of the form

x1- · · · -xk-w2-W7-W5-x1,

it follows that xk has a neighbour w7 ∈ W7. But then W4 is anticomplete to X \ {x1} by 7.1, and so
there is an odd hole of the form

x1- · · · -xk-w7-W6-W4-x1,

a contradiction.
Thus k is odd. Since x1- · · · -xk-w2-w4-x1 is not an odd hole, we deduce that w4 has a neighbour

in X \{x1}. From 7.1 applied to X \{x1}, we deduce that W1,W7 are anticomplete to X \{x1}, and
therefore j = 1, and so x1 is a Y-vertex. Choose w1 ∈ W1 adjacent to x1. Then w1 is complete to W2

from the definition of a Y-vertex, and in particular w1, w2 are adjacent. But then x1- · · · -xk-w2-w1-x1

is an odd hole, a contradiction.
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This proves that G|X contains a tail for xk. In particular, xk is either a hat or Y-vertex of type
s say, where s = 5 or 6, and x1 has a neighbour in Ws−1. Thus there is symmetry between x1 and
xk, and since we have shown that G|X contains a tail for xk, it follows that it also contains a tail for
x1. This proves (1).

(2) xk is not a V-vertex of type 6.

For suppose it is; then it has neighbours in W3. From the minimality of k, W7 is anticomplete
to X, and W2 is anticomplete to X \ {xk}, and W5 is anticomplete to X \ {x1}. Since there is no
odd hole of the form

x1- · · · -xk-w2-W7-W5-x1,

it follows that k is odd. Since w4-x1- · · · -xk-w2-w4 is not an odd hole, it follows that w4 has a
neighbour in X \ {x1, xk}. By 7.1 applied to X \ {x1, xk}, it follows that W1 is anticomplete to
X \ {x1, xk}. But by (1), some vertex w1 ∈ W1 has a neighbour in a tail for x1 contained in
x1- · · · -xk; w1 is not adjacent to xk since xk is a V-vertex of type 6; and so w1 is adjacent to x1 and
to none of x2, . . . , xk. Since x1 is a V-vertex, w1 is complete to W2 and in particular adjacent to w2.
But then w1-x1- · · · -xk-w2-w1 is an odd hole, a contradiction. This proves (2).

(3) xk is not a V-vertex of type 5.

For suppose it is, and so it has neighbours in W1. By the minimality of k, W4,W6 are both an-
ticomplete to X \ {x1}. From the hole x1- · · · -xk-w2-w4-x1 we deduce that k is even. Choose
w5 ∈ W5 adjacent to x1, and w1 ∈ W1 adjacent to xk. There is no odd hole of the form

x1- · · · -xk-w2-W7-w5-x1,

and so w5 is not anticomplete to X \ {x1}. Similarly w1 is not anticomplete to X \ {xk}. By 7.1
applied to X \ {x1, xk}, not both w1, w5 have neighbours in X \ {x1, xk}; so from the symmetry we
may assume that w1 is adjacent to x1 and not to x2, . . . , xk−1. In particular x1 is a Y-vertex. Since
x1- · · · -xk-w1-x1 is not an odd hole, it follows that k = 2, and so w5 is adjacent to x2; and therefore
x2 is also a Y-vertex.

Since x1 is a Y-vertex, it has a neighbour in W1 that is complete to W2, and therefore G|(W1∪W2)
is connected. Since x2 is a Y-vertex of type 5, its set of neighbours in W1 ∪ W2 is the vertex set of
a component of G|(W1 ∪ W2); and consequently x2 is complete to W1 ∪ W2, and W1 is complete to
W2. Similarly x1 is complete to W4 ∪ W5 and W4 is complete to W5. We claim that x1 is complete
to W1. For suppose that x1 is nonadjacent to some w1 ∈ W1. Then there is an odd hole of the form

x1-x2-w1-W3-w4-x1,

a contradiction. This proves that x1 is complete to W1, and similarly x2 is complete to W5.
Define W ′

6 = W6 ∪ {x1}, and W ′

7 = W7 ∪ {x2}, and let W ′ = (W1, . . . ,W5,W
′

6,W
′

7). We claim
that W ′ is a heptagram. We must check (S1)–(S6), but they are all obvious and we leave this to the
reader. Thus W ′ is a heptagram, contrary to the maximality of W . This proves (3).

Since xk is a V-vertex with a neighbour in W2, and is not a Y-vertex of type 2, (1)–(3) are
contradictory. Consequently there is no such path x1, . . . , xk. This proves 7.2.
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We conclude this section with some more lemmas about V-vertices.

7.3 For 1 ≤ i ≤ 7, no two V-vertices of type i are adjacent.

Proof. Suppose that a, b are adjacent V-vertices of type 5 say. For j = 1, 2, let Aj , Bj be the set of
neighbours in Wj of a, b respectively. Since G is K4-free, and A1 is complete to A2, it follows that
A1 ∪A2 6= B1 ∪B2. Since A1 ∪A2 and B1 ∪B2 are both vertex sets of components of G|(W1 ∪W2),
we deduce that Aj ∩Bj = ∅ for j = 1, 2. Since G is K4-free, and A1 is complete to A2, some vertex of
A1∪A2 is not adjacent to b, and so Aj ∩Bj = ∅ for j = 1, 2. In particular, W1 is not complete to W2,
and so W1 is complete to W6 by 5.3. Choose a1 ∈ A1, b1 ∈ B1, and w6 ∈ W6. Then w6-a1-a-b-b1-w6

is a hole of length five, a contradiction. This proves 7.3.

7.4 For 1 ≤ i ≤ 7, if a is a V-vertex of type i, and a is not complete to Wi−3 ∪ Wi+3, then

Wi−2 ∪ Wi+2 is complete to Wi−3 ∪ Wi+3.

Proof. We may assume that i = 5 say. For j = 1, 2, let Nj be the set of neighbours of a in Wj , and
let Mj = Wi \Nj. Thus N1 is complete to N2, and N1 is anticomplete to M2, and M1 is anticomplete
to N2. By hypothesis M1 ∪ M2 6= ∅, and since each member of M1 has a neighbour in W2 (and
therefore in M2), and vice versa, it follows that M1,M2 6= ∅. Let w3 ∈ W3; we will show that w3 is
complete to W1 ∪W2. Suppose first that w3 is anticomplete to M1. Then w3 has a neighbour in N1,
and so by (S5), w3 is complete to M2. Yet w3 is anticomplete to M1, and every vertex in M2 has a
neighbour in M1, contrary to (S4). This proves that w3 has a neighbour in M1, say m1. By (S5),
since m1 is anticomplete to N2, it follows that w3 is complete to N2, and consequently complete to
N1, by (S4). Choose n1 ∈ N1; then since n1 is anticomplete to M2, (S5) implies that w3 is complete
to M2, and hence to M1, by (S4). This proves our claim that w3 is complete to W1 ∪W2. We deduce
that W3 is complete to W1 ∪ W2, and similarly so is W7. This proves 7.4.

7.5 For 1 ≤ i ≤ 7, if a is a V-vertex of type i, and b is a V-vertex of type i + 1, then a, b are

adjacent, and both are complete to Wi−3.

Proof. We may assume that i = 5, say. Let a, b be V-vertices of types 5 and 6 respectively, and
let their tails be S, T respectively. For j = 1, 2, let Aj be the set of neighbours of a in Wj, and for
j = 2, 3, let Bj be the set of neighbours of b in Wj. By 7.4, at least one of a, b is complete to W2.

(1) a, b are adjacent.

For suppose a, b are nonadjacent. Since at least one of a, b is complete to W2, they have a com-
mon neighbour w2 ∈ W2. Suppose first that S, T are disjoint and there is no edge between them.
Then there is an induced path Q of odd length between a, b of the form

a-S-W5-W6-T -b,

and we can complete it to an odd hole via b-w2-a (note that w2 has no neighbours in S ∪ T except
a, b), a contradiction. Thus V (S) ∪ V (T ) induces a connected subgraph of G.

Now by 7.2, a is anticomplete to V (T ) \ {b} and hence to V (T ), and similarly b is anticomplete
to V (S). Let X = V (S) ∪ V (T ) \ {a, b}. Since V (S) ∪ V (T ) induces a connected subgraph of G, it
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follows that S, T both have positive length and G|X is connected. Since X contains no V-vertex,
and N(X) has nonempty intersection with W5,W6, 7.2 implies that W1,W3 have no neighbours in
X. Choose a1 ∈ A1, and b3 ∈ B3. Since w2 is adjacent to a1, b3, (S4) implies that a1, b3 are adjacent.
But there is an induced path Q between a, b with interior in X, and it can be completed to holes via
b-w2-a and via b-b3-a1-a, and one of these is odd, a contradiction. This proves (1).

Suppose there exists a2 ∈ W2\B2, say. Thus b is not complete to W2, and so by 7.4, a is complete
to W1 ∪ W2, and in particular a2 ∈ A2. Choose b3 ∈ B3; then a2, b3 are nonadjacent since b is a
V-vertex. Choose w4 ∈ W4 adjacent to a2 and therefore to b3, by (S5). Then a-b-b3-w4-a2-a is a hole
of length five, a contradiction. This proves that B2 = W2, and similarly A2 = W2, and hence proves
7.5.

7.6 For 1 ≤ i ≤ 7, if a is a V-vertex of type i, and a is not complete to Wi−3 ∪Wi+3, then there is

no V-vertex of type j for j ∈ {i − 3, i − 1, i + 1, i + 3}.

Proof. We may assume that i = 5. By 7.5, there is no V-vertex of type 6, since a is not complete to
W2. Similarly there is none of type 4. Since no vertex in W1 is complete to W2, there is no V-vertex
of type 1, and similarly there is none of type 2. This proves 7.6.

8 Attachments of the remaining vertices

In this section we complete the proof of 3.1. The main part of this proof is the next result.

8.1 Let U be the set of all vertices in V (G) \ W that are not V-vertices. If U 6= ∅ then G admits a

harmonious cutset.

Proof. Suppose that U 6= ∅, and let X ⊆ U be maximal such that G|X is connected. Thus X 6= ∅,
and N(X) ⊆ V (G) \U . For 1 ≤ i ≤ 7, let Ni = N(X)∩Wi, let Vi be the set of all V-vertices of type
i, and let Pi = N(X) ∩ Vi. Let I = {i ∈ {1, . . . , 7} : Ni 6= ∅} and J = {i ∈ {1, . . . , 7} : Pi 6= ∅}. By
7.1 there exists t such that I ⊆ {t − 1, t, t + 1} and by 7.2 there exists t such that J ⊆ {t, t + 1}.

(1) If 1 ≤ i ≤ 7 and a, b ∈ Ni then there is an induced even path joining a, b with interior in

X.

Let Q be an induced path between a, b with interior in X. We will prove that Q is even. Let
a, b ∈ W3 say; thus 6, 7 /∈ I and not both 1, 5 ∈ I. From the symmetry we may assume that
1 /∈ I. If a, b have a common neighbour w1 ∈ W1 then the claim holds, since w1-a-Q-b-w1 is an even
hole, so we assume not; and therefore W1 is complete to W7, by 5.3. Choose a′, b′ ∈ W1 adjacent
to a, b respectively. Thus a, b′ are nonadjacent, and a′, b are nonadjacent. Choose w7 ∈ W7; then
w7-b

′-b-Q-a-a′-w7 is a hole, and so Q is even. This proves (1).

(2) For 1 ≤ i ≤ 7, Ni is complete to Ni+1.

For suppose that i = 1 say, and n1 ∈ N1 and n2 ∈ N2 are nonadjacent. Let Q be an induced
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path between n1, n2 with interior in X. By 7.1, 4, 6 /∈ I, and not both 3, 7 ∈ I and we may assume
that 3 /∈ I. Choose w3 ∈ W3 adjacent to n1; then (S5) implies that n2, w3 are adjacent. From the
hole w3-n1-Q-n2-w3 we deduce that Q is even. But there is a hole of the form

n1-Q-n2-W4-W6-n1,

and it is odd, a contradiction. This proves (2).

(3) For 1 ≤ i ≤ 7, every two members of Pi have the same neighbours in Wi−3 ∪ Wi+3, and Pi

is complete to Ni−3 ∪ Ni+3.

For we may assume that i = 5, say, and we may assume that P5 6= ∅. For j = 1, 2 let Rj be
the set of vertices in Wj with a neighbour in X ∪ P5. We claim first that R1 is complete to R2. For
suppose that r1 ∈ R1 and r2 ∈ R2 are nonadjacent, and let Q be a path joining r1, r2 with interior
in X ∪ P5. It follows from 7.2 (since P5 6= ∅) that X ∪ P5 is anticomplete to W4,W6, and (by 7.1)
anticomplete to at least one of W3,W7, say W7. Consequently Q can be completed to a hole via
r2-W7-r1 and via r2-W4-W6-r1, and one of these is odd, a contradiction. This proves that R1 is
complete to R2. Since each p5 ∈ P5 is a V-vertex, and therefore its neighbour set in W1 ∪ W2 is the
vertex set of a component of G|(W1 ∪W2), it follows that each p5 ∈ P5 is complete to R1 ∪R2. This
proves (3).

We wish to prove that G admits a harmonious cutset, and henceforth we assume (for a contra-
diction) that it does not.

(4) J 6= ∅.

For suppose that J = ∅; and we may assume that I ⊆ {1, 2, 3}. By (2), N1 is complete to N2,
and N2 to N3, so if N2 6= ∅ then N1 is complete to N3 by (S4), and by (1) and 2.3 applied to the
cutset N1 ∪N2 ∪N3, we deduce that G admits a harmonious cutset, a contradiction. We may there-
fore assume that N2 = ∅. Let n1 ∈ N1 and n3 ∈ N3 be nonadjacent; and let Q be a path between
them with interior in X. By 5.3 there is a hole of the form n1-Q-n3-W4-W6-n1, so Q is odd. Thus
it again follows from (1) and 2.3 that G admits a harmonious cutset, a contradiction. This proves (4).

(5) I ∩ J = ∅.

For suppose that 5 ∈ I ∩ J say. By 7.1, 1, 2 /∈ I. Since 5 ∈ J , 7.2 implies that 4, 6 /∈ I and
1, 2, 3, 7 /∈ J . Since 5 ∈ I, 7.2 implies that 4, 6 /∈ J . Consequently I ⊆ {3, 5, 7} and J = {5}. By 7.1
not both 3, 7 ∈ I, so we may assume that I ⊆ {3, 5}. We claim that P5 ∪ N3 ∪ N5 is a harmonious
cutset (where (P5 ∪ N3, N5) is the corresponding colouring). We must check:

• if a, b ∈ P5 ∪ N3 then there is an induced even path joining them with interior disjoint from
P5 ∪ N3 ∪ N5

• if a, b ∈ N5 then there is an induced even path joining them with interior disjoint from P5 ∪
N3 ∪ N5
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• if a ∈ P5 ∪N3 and b ∈ N5 then there is an induced odd path joining them with interior disjoint
from P5 ∪ N3 ∪ N5.

For the first, if a, b ∈ N3 this follows from (1), so we may assume that a ∈ P5. But then a, b have a
common neighbour in W2 by 7.4 and (3), and so the claim follows since 2 /∈ I. The second follows
from (1). For the third, let a ∈ P5 ∪ N3 and b ∈ N5, and we may assume that a, b are nonadjacent;
then there is an induced path of the form a-W1-W6-b satisfying the claim. Consequently, 2.3 implies
that G admits a harmonious cutset, a contradiction. This proves (5).

In view of (5), since the same conclusion holds for every choice of X, we may therefore assume
that every tail has length zero, and therefore every V-vertex is a Y-vertex.

(6) There exists t ∈ {1, . . . , 7} such that I ⊆ {t − 1, t, t + 1} and J ⊆ {t − 3, t + 3}.

For we may assume that 5 ∈ J say. By (5), 5 /∈ I; and by 7.2, 4, 6 /∈ I; and not both 3, 7 ∈ I,
say 7 /∈ I. But 7.2 implies that 7, 1, 2, 3 /∈ J , and not both 4, 6 ∈ J . If 4 /∈ J then the claim holds
with t = 2, so we may assume that 4 ∈ J . By 7.2, 3 /∈ I, and now the claim holds with t = 1. This
proves (6).

In view of (6) we henceforth assume that I ⊆ {1, 2, 3} and J ⊆ {5, 6}. We claim that N(X)
is a cutset satisfying the hypotheses of 2.3, with corresponding colouring (N2, N1 ∪ P6, N3 ∪ P5).
Certainly it is a cutset, and the three sets N2, N1 ∪ P6, N3 ∪ P5 are pairwise complete, by (1), (3)
and 7.5. It suffices therefore (by the symmetry) to show that

• if a, b ∈ N2 then they are joined by an even induced path with interior disjoint from N(X),
and

• if a, b ∈ N1∪P6 then they are joined by an even induced path with interior disjoint from N(X).

The first is proved in (1). For the second, if a, b ∈ N1, then again the claim follows from (1). If
a, b ∈ P6, then since they both have neighbours in W6 that are complete to W5, there is an induced
path between a, b of length two or four with interior in W5 ∪W6, satisfying the claim. If a ∈ N1 and
b ∈ P6, then b has a neighbour w6 ∈ W6 that is complete to W1, and so the path a-w6-b satisfies the
claim. This completes the proof of the two displayed statements above. Consequently, by 2.3, we
deduce that G admits a harmonious cutset, a contradiction. This proves 8.1.

Finally we can prove our main decomposition theorem.

Proof of 3.1. Let G be a K4-free graph with no odd hole, and with no harmonious cutset, containing
an antihole of length seven. By 4.1 we may assume that G is T11-free. Choose a maximal heptagram
W = (W1, . . . ,W7). By 8.1, every vertex of G either belongs to W or is a V-vertex; and, since a tail
contains only one V-vertex, it follows that every tail has length zero and so every V-vertex is a Y-
vertex. For 1 ≤ i ≤ 7 let Yi be the set of all Y-vertices of type i. We need to check the ten conditions
in the definition of heptagram type. The first is clear; and by 5.3 we may assume that the second
and third hold by renumbering W1, . . . ,W7. Conditions 4–7 are clear. For the eighth condition, we
see from 7.2 that Yi is anticomplete to Yi+2, Yi+3, and from 7.5 that Yi is complete to Yi+1. The
ninth condition follows from 7.4 and 7.6. For the tenth condition, suppose that yi−1 ∈ Yi−1, and
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yi ∈ Yi, and yi+1 ∈ Yi+1. Thus yi is adjacent to yi−1, yi+1, and yi−1, yi+1 are nonadjacent. But then
there is an odd hole of the form

yi-yi+1-Wi+1-Wi−1-yi−1-yi,

a contradiction. This proves 3.1.

9 A more explicit construction

We hesitate to claim that our current definition of graphs of heptagram type is an “explicit con-
struction”; it is certainly a helpful description, but the way the various hypotheses interact is not
transparent. In this section we make it more explicit.

Let us say that G is of the first heptagram type if there exist t ≥ 1 and a partition of V (G) into
ten stable sets

W1, . . . ,W7, Y2, Y4, Y7

where Y4, Y7 may be empty but the other sets are nonempty, such that, with index arithmetic modulo
seven:

• for 1 ≤ i ≤ 7, Wi is complete to Wi+2 and anticomplete to Wi+3

• for i ∈ {3, 4, 6, 7}, Wi is complete to Wi+1, and for i = 1, 2, Wi,Wi+1 are linked; and every
vertex in W2 is complete to one of W1,W3

• for i = 4, 7, every vertex in Yi is complete to Wi+3 ∪ Wi−3, has a neighbour in Wi, and has no
neighbour in Wi+1,Wi+2,Wi−1,Wi−2

• Y2, Y4, Y7 are pairwise anticomplete

• there is a nonempty subset C ⊆ W2 such that C is complete to W1 ∪W3, and Y2, C are linked,
and Y2 is anticomplete to W2 \ C

• there exist partitions M0, . . . ,Mt of W5 and N0, . . . , Nt of W6 where M0, N0 may be empty but
the other sets are nonempty, such that for 1 ≤ i ≤ t, Mi is complete to Ni, Mi is anticomplete
to W6 \ Ni, W5 \ Mi is anticomplete to Ni, and M0, N0 are linked (and consequently W5,W6

are linked)

• there is a partition X1, . . . ,Xt of Y2 where X1, . . . ,Xt are all nonempty, such that for 1 ≤ i ≤ t,
Xi is complete to Mi ∪ Ni, and anticomplete to each of

W5 \ Mi,W6 \ Ni,W7,W1,W3,W4.

That completes the definition of the first heptagram type. Before we define the second, we need
another definition. Let us say a triple (W1,W2,W3) of disjoint stable subsets of V (G) is a crescent

in G if the following hold:

• if vi ∈ Wi for i = 1, 2, 3, and v2 is adjacent to v1, v3, then v1 is adjacent to v3

• if vi ∈ Wi for i = 1, 2, 3, and v2 is nonadjacent to v1, v3, then v1 is nonadjacent to v3.
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We say that G is of the second heptagram type if there is a partition of V (G) into fourteen stable
subsets W1, . . . ,W7, Y1, . . . , Y7, where W1, . . . ,W7 are nonempty but Y1, . . . , Y7 may be empty, such
that (with index arithmetic modulo 7)

• for 1 ≤ i ≤ 7, Wi is anticomplete to Wi+3

• for 2 ≤ i ≤ 7, Wi is complete to Wi+2, and the sets W1,W2,W3 are pairwise linked

• (W1,W2,W3) is a crescent, and if W1 is not complete to W3 then Y2, Y5, Y6 = ∅

• for i ∈ {3, 4, 6, 7}, Wi is complete to Wi+1; W5,W6 are linked

• for 1 ≤ i ≤ 7, every vertex in Yi is complete to Wi+3 ∪ Wi−3, has a neighbour in Wi, and has
no neighbour in Wi+1,Wi+2,Wi−1,Wi−2

• for 1 ≤ i ≤ 7, every vertex in Wi with a neighbour in Yi is complete to Wi+1 ∪ Wi−1

• for 1 ≤ i ≤ 7, Yi is complete to Yi+1 and anticomplete to Yi+2 ∪ Yi+3

• for 1 ≤ i ≤ 7, at least one of Yi, Yi+1, Yi+2 is empty.

Then we have:

9.1 A graph is of heptagram type if and only if it is of either the first or second heptagram type.

Proof. (A sketch, we leave the details to the reader.) Let G be of heptagram type, with notation
as usual. Suppose first that some Yi is not complete to Wi−3 ∪ Wi+3. Then we may assume that
i = 2; by 7.6 Y1, Y3, Y5, Y6 are empty; and if C denotes the set of vertices in W2 with neighbours in
Y2, then C is complete to W1 ∪ W3 and so (S4) implies that W1 is complete to W3. By (S5), every
vertex in W2 is complete to one of W1,W3. By 7.4 and 5.3, Wj is complete to Wj+1 for j = 3, 7,
and so 5.1 implies that Wj is complete to Wj+2 for all j. Every two vertices in Y2 either have the
same neighbours in W5 ∪ W6 or disjoint neighbour sets in W5 ∪ W6. It follows that G is of the first
heptagram type. On the other hand, if each Yi is complete to Wi−3 ∪ Wi+3, then G is of the second
type.

The two descriptions are more explicit than before, and the first heptagram type description is
explicit and satisfactory; but there is still some degree of opacity in the description of the second
type, due principally to the use of “crescents”. We need to transform the definition of a crescent into
something transparent.

Let W1,W2,W3 be disjoint sets, and let f be a function from their union to the set of all integers,
such that there do not exist wi ∈ Wi (i = 1, 2, 3) with f(w1) = f(w2) = f(w3). We define a graph
Hf with vertex set W1 ∪ W2 ∪ W3 as follows. W1,W2,W3 are stable in Hf . For 1 ≤ i < j ≤ 3,
and all u ∈ Wi and v ∈ Wj, let u, v be adjacent if f(u) < f(v), and nonadjacent if f(u) > f(v); if
f(u) = f(v) then the adjacency between u and v is arbitrary. It is easy to check that (W1,W2,W3)
is a crescent in Hf . We prove in the next section that the converse is also true; if (W1,W2,W3) is a
crescent in G, then there is a function f as above such that Hf = G|(W1 ∪W2 ∪W3). This gives an
explicit construction of all crescents, and hence can be used to convert our definition of the second
heptagram type to an explicit construction.
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10 Constructing a crescent

Let (W1,W2,W3) be a partition of the vertex set of a graph G. We say the quadruple (G,W1,W2,W3)
is a trident if W1,W2,W3 are stable, and for all choices of wi ∈ Wi for 1 ≤ i ≤ 3, w1, w2, w3 are
not all pairwise adjacent and not all pairwise nonadjacent. How do we construct the most general
trident? This will answer the crescent problem of the previous section, because if (W1,W2,W3) is a
partition of V (G), and H is obtained from G by reversing all adjacencies between W1 and W3, then
(G,W1,W2,W3) is a trident if and only if (W1,W2,W3) is a crescent in H.

Let W1,W2,W3 be three disjoint sets with union W say, and let f be a function from W to the
set of integers, such that there do not exist wi ∈ Wi (1 ≤ i ≤ 3) satisfying f(w1) = f(w2) = f(w3).
Let G be a graph with vertex set W defined as follows. For 1 ≤ i ≤ 3, let j = i + 1 if i < 3
and j = 1 if i = 3; then for all u ∈ Wi and v ∈ Wj, let u, v be adjacent if f(u) < f(v), and
nonadjacent if f(u) > f(v), and either adjacent or nonadjacent if f(u) = f(v). It is easy to check
that (G,W1,W2,W3) is a trident.

The result of this section is the converse: that every trident arises in this way from some appro-
priate function f . More precisely, let (G,W1,W2,W3) be a trident. We say a function f from V (G)
to the set of integers is a certificate for this trident if it satisfies the following:

• there do not exist w1 ∈ W1, w2 ∈ W2 and w3 ∈ W3 such that f(w1) = f(w2) = f(w3), and

• for all i, j ∈ {1, 2, 3} such that j − i = 1 modulo 3, and all u ∈ Wi and v ∈ Wj, if f(u) < f(v)
then u, v are adjacent, and if f(u) > f(v) then u, v are nonadjacent.

We shall prove:

10.1 Every trident admits a certificate.

Proof. Let (G,W1,W2,W3) be a trident. We prove by induction on |V (G)| that (G,W1,W2,W3)
admits a certificate. If V (G) = ∅ then the claim is true, so we may assume that V (G) 6= ∅. Below,
all index arithmetic is modulo three.

(1) There exists i ∈ {1, 2, 3} and v ∈ Wi such that v is adjacent to every member of Wi+1.

For we may assume that W1 6= ∅. Choose w1 ∈ W1 with as many neighbours in W2 as possi-
ble, and let N2 be the set of vertices in W2 adjacent to w1. We may assume that some vertex w2 is
nonadjacent to w1. Similarly we may assume that some vertex w3 ∈ W3 is nonadjacent to w2. Since
{w1, w2, w3} is not a stable set it follows that w1, w3 are adjacent. For n2 ∈ N2, since {w1, n2, w3} is
not a clique, it follows that n2, w3 are nonadjacent, and so w3 is anticomplete to N2. We may assume
that there exists w′

1 ∈ W1 nonadjacent to w3. For n2 ∈ N2 ∪ {w2}, since {w′

1, n2, w3} is not a stable
set, w′

1 is adjacent to n2, and so w′

1 is complete to N2 ∪ {w2}. But then w′

1 has more neighbours in
W2 than w1, contrary to the choice of w1. This proves (1).

In view of (1), we may assume that some vertex in W1 is complete to W2. Let A1 be the set of all
vertices in W1 that are complete to W2, and let A3 be the set of all vertices in W3 with a neighbour
in A1. For each a3 ∈ A3, since a3 is adjacent to some a1 ∈ A1, and a1 is adjacent to each w2 ∈ W2,
and {a1, w2, a3} is not a clique, it follows that a3, w2 are nonadjacent, and so A3 is anticomplete
to W2. Also, for each w1 ∈ W1 \ A1, since w1 has a non-neighbour w2 ∈ W2, and each a3 ∈ A3 is
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nonadjacent to w2, and {w1, w2, a3} is not a stable set, it follows that w1, a3 are adjacent, and so A3

is complete to W1 \ A1. Let W ′ = V (G) \ (A1 ∪ A3); then

(G|W ′,W1 \ A1,W2,W3 \ A3)

is a trident, and since A1 6= ∅, it follows from the inductive hypothesis that there is a certificate, f ′

say, for this trident. Choose an integer n such that n < f ′(v) for all v ∈ W ′. Define a map f from
W to the set of integers by setting f(v) = n if v ∈ A1 ∪A3, and f(v) = f ′(v) otherwise. Then f is a
certificate for (G,W1,W2,W3) as required. This proves 10.1.
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