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Abstract

Let G be the class of all graphs with no induced four-edge path or four-edge
antipath. Hayward and Nastos [6] conjectured that every prime graph in G not
isomorphic to the cycle of length five is either a split graph or contains a certain
useful arrangement of simplicial and antisimplicial vertices. In this paper we give a
counterexample to their conjecture, and prove a slightly weaker version. Addition-
ally, applying a result of the first author and Seymour [1] we give a short proof of
Fouquet’s result [3] on the structure of the subclass of bull-free graphs contained in
G.

1 Introduction

All graphs in this paper are finite and simple. Let G be a graph. The complement G of
G is the graph with vertex set V (G), such that two vertices are adjacent in G if and only
if they are non-adjacent in G. For a subset X of V (G), we denote by G[X] the subgraph
of G induced by X, that is, the subgraph of G with vertex set X such that two vertices
are adjacent in G[X] if and only if they are adjacent in G. Let H be a graph. If G has
no induced subgraph isomorphic to H, then we say that G is H-free. If G is not H-free,
G contains H, and a copy of H in G is an induced subgraph of G isomorphic to H. For
a family F of graphs, we say that G is F-free if G is F -free for every F ∈ F .

We denote by Pn+1 the path with n + 1 vertices and n edges, that is, the graph with
distinct vertices {p0, ..., pn} such that pi is adjacent to pj if and only if |i− j| = 1. For a
graph H, and a subset X of V (G), if G[X] is a copy of H in G, then we say that X is an
H. By convention, when explicitly describing a path we will list the vertices in order. In
this paper we are interested in understanding the class of {P5, P5}-free graphs.
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Let A and B be disjoint subsets of V (G). For a vertex b ∈ V (G) \ A, we say that b
is complete to A if b is adjacent to every vertex of A, and that b is anticomplete to A if b
is non-adjacent to every vertex of A. If every vertex of A is complete to B, we say A is
complete to B, and that A is anticomplete to B if every vertex of A is anticomplete to B.
If b ∈ V (G) \ A is neither complete nor anticomplete to A, we say that b is mixed on A.
A homogeneous set in a graph G is a subset X of V (G) with 1 < |X| < |V (G)| such that
no vertex of V (G)\X is mixed on X. We say that a graph is prime if it has at least four
vertices, and no homogeneous set.

Let us now define the substitution operation. Given graphs H1 and H2, on disjoint
vertex sets, each with at least two vertices, and v ∈ V (H1), we say that H is obtained
from H1 by substituting H2 for v, or obtained from H1 and H2 by substitution (when the
details are not important) if:

• V (H) = (V (H1) ∪ V (H2)) \ {v},

• H[V (H2)] = H2,

• H[V (H1) \ {v}] = H1[V (H1) \ {v}], and

• u ∈ V (H1) is adjacent in H to w ∈ V (H2) if and only if w is adjacent to v in H1.

Thus, a graph G is obtained from smaller graphs by substitution if and only if G is
not prime. Since P5 and P5 are both prime, it follows that if H1 and H2 are {P5, P5}-free
graphs, then any graph obtained from H1 and H2 by substitution is {P5, P5}-free. Hence,
in this paper we are interested in understanding the class of prime {P5, P5}-free graphs.

Let Cn denote the cycle of length n, that is, the graph with distinct vertices {c1, ..., cn}
such that ci is adjacent to cj if and only if |i− j| = 1 or n− 1. A theorem of Fouquet [3]
tells us that:

1.1. Any {P5, P5}-free graph that contains C5 is either isomorphic to C5 or has a homo-
geneous set.

That is, C5 is the unique prime {P5,P5}-free graph that contains C5, and so we concern
ourselves with prime {P5,P5, C5}-free graphs, the main subject of this paper.

Let G be a graph. A clique in G is a set of vertices all pairwise adjacent. A stable set
in G is a set of vertices all pairwise non-adjacent. The neighborhood of a vertex v ∈ V (G)
is the set of all vertices adjacent to v, and is denoted N(v). A vertex v is simplicial if
N(v) is a clique. A vertex v is antisimplicial if V (G) \N(v) is a stable set, that is, if and
only if v is a simplicial vertex in the complement.

In [6] Hayward and Nastos proved:

1.2. If G is a prime {P5, P5, C5}-free graph, then there exists a copy of P4 in G whose
vertices of degree one are simplicial, and whose vertices of degree two are antisimplicial.
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Figure 1: H6 and H6.

A graph G is a split graph if there is a partition V (G) = A∪B such that A is a stable
set and B is a clique. Földes and Hammer [2] showed:

1.3. A graph G is a split graphs if and only if G is a {C4, C4, C5}-free graph.

Drawn in Figure 1 with its complement, H6 is the graph with vertex set {v1, v2, v3, v4, v5, v6}
and edge set {v1v2, v2v3, v3v4, v2v5, v3v6, v5v6}.

Hayward and Nastos conjectured the following:

1.4 (The H6-Conjecture). If G is a prime {P5, P5, C5}-free graph which is not split, then
there exists a copy of H6 in G or G whose two vertices of degree one are simplicial, and
whose two vertices of degree three are antisimplicial.

First, in Figure 2 we provide a counterexample to 1.4. On the other hand, we prove
the following slightly weaker version:

1.5. If G is a prime {P5, P5, C5}-free graph which is not split, then there exists a copy of
H6 in G or G whose two vertices of degree one are simplicial, and at least one of whose
vertices of degree three is antisimplicial.

We say that a graph G admits a 1-join, if V (G) can be partitioned into four non-empty
pairwise disjoint sets (A,B,C,D), where A is anticomplete to C ∪D, and B is complete
to C and anticomplete to D. In trying to use 1.5 to improve upon 1.1 we conjectured the
following:

1.6. If G is a {P5, P5}-free graph, then either

• G is isomorphic to C5, or

• G is a split graph, or

• G has a homogeneous set, or

• G or G admits a 1-join.
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However, 1.6 does not hold, and we give a counterexample in Figure 3.
The bull is a graph with vertex set {x1, x2, x3, y, z} and edge set {x1x2, x2x3, x1x3, x1y, x2z}.

Lastly, applying a result of the first author and Seymour [1] we give a short proof of 1.1,
and Fouquet’s result [3] on the structure of {P5, P5,bull}-free graphs.

This paper is organized as follows. Section 2 contains results about the existence
of simplicial and antisimplicial vertices in {P5, P5}-free graphs. In Section 3 we give a
counterexample to the H6-conjecture 1.4, and prove 1.5, a slightly weaker version of the
conjecture. We also give a simpler proof of 1.2, and provide a counterexample to 1.6.
Finally, in Section 4 we give a new proof of 1.1, and a structure theorem for {P5, P5,bull}-
free graphs.

2 Simplicial and Antisimplicial vertices

In this section we prove the following result:

2.1. All prime {P5, P5, C5}-free graphs have both a simplicial vertex, and an antisimplicial
vertex.

Along the way we establish 2.9, a result which is helpful in finding simplicial and
antisimplicial vertices in prime {P5, P5}-free graphs.

Let G be a graph. We say G is connected if V (G) cannot be partitioned into two
disjoint sets anticomplete to each other. If G is connected we say that G is anticonnected.
Let X ⊆ Y ⊆ V (G). We say X is a connected subset of Y if G[X] is connected, and
that X is an anticonnected subset of Y if G[X] is anticonnected. A component of X is a
maximal connected subset of X, and an anticomponent of X is a maximal anticonnected
subset of X.

First, we make the following three easy observations:

2.2. If G is a prime graph, then G is connected and anticonnected.

Proof. Passing to the complement if necessary, we may suppose G is not connected. Since
G has at least four vertices, there exists a component C of V (G) such that |V (G)\C| ≥ 2.
However, then V (G) \ C is a homogeneous set, a contradiction. This proves 2.2.

We say a vertex v ∈ V (G) \ X is mixed on an edge of X, if there exist adjacent
x, y ∈ X such that v is mixed on {x, y}. Similarly, a vertex v ∈ V (G) \X is mixed on a
non-edge of X, if there exist non-adjacent x, y ∈ X such that v is mixed on {x, y}.

2.3. Let G be a graph, X ⊆ V (G), and suppose v ∈ V (G) \X is mixed on X.

1. If X is a connected subset of V (G), then v is mixed on an edge of X.

2. If X is an anticonnected subset of V (G), then v is mixed on a non-edge of X.
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Proof. Suppose X is a connected subset of V (G). Since v is mixed on X, both X ∩N(v)
and X \ N(v) are non-empty. As G[X] is connected, there exists an edge given by
x ∈ X ∩N(v) and y ∈ X \N(v), and v is mixed on {x, y}. This proves 2.3.1. Passing to
the complement, we get 2.3.2.

2.4. Let G be a graph, X1, X2 ⊆ V (G) with X1 ∩X2 = ∅, and v ∈ V (G) \ (X1 ∪X2).

1. If G is P5-free, and X1, X2 are connected subsets of V (G) anticomplete to each other,
then v is not mixed on both X1 and X2.

2. If G is P5-free, and X1, X2 are anticonnected subsets of V (G) complete to each other,
then v is not mixed on both X1 and X2.

Proof. Suppose G is P5-free, X1, X2 are disjoint connected subsets of V (G) anticomplete
to each other, and v is mixed on both X1 and X2. By 2.3.1, v is mixed on an edge of X1,
given by say x1, y1 ∈ X1 with v adjacent to x1 and non-adjacent to y1, and an edge of
X2, given by say x2, y2 ∈ X2 with v adjacent to x2 and non-adjacent to y2. However, then
{y1, x1, v, x2, y2} is a P5, a contradiction. This proves 2.4.1. Passing to the complement,
we get 2.4.2.

As a consequence of 2.3 and 2.4 we obtain the following two useful results:

2.5. Let u and v be non-adjacent vertices in a P5-free graph G, and let A be an anticon-
nected subset of N(u) ∩N(v). Then no vertex w ∈ V (G) \ (A ∪ {u, v}) can be mixed on
both A and {u, v}.

Proof. Since A and {u, v} are disjoint anticonnected subsets of V (G) complete to each
other, 2.5 follows from 2.4.2.

2.6. Let u, v and w be three pairwise non-adjacent vertices in a {P5, P5}-free graph G
such that w is mixed on an anticonnected subset A of N(u) ∩ N(v). Then no vertex
z ∈ N(w) \ (A ∪ {u, v}) can be mixed on {u, v}.

Proof. Suppose there exists a vertex z ∈ N(w) \ (A ∪ {u, v}) which is mixed on {u, v},
with say z adjacent to v and non-adjacent to u. Since w is mixed on A, by 2.3.2, it follows
that w is mixed on a non-edge of A, given by say x, y ∈ A with w adjacent to x and
non-adjacent to y. By 2.5, z is not mixed on A. However, if z is anticomplete to A, then
{y, u, x, w, z} is a P5, and if z is complete to A, then {x, y, w, u, z} is a P5, in both cases
a contradiction. This proves 2.6.

Now, we can start to prove 2.1.
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2.7. Let G be a prime {P5, P5, C5}-free graph. Then G has an antisimplicial vertex, or
admits a 1-join.

Proof. Suppose G does not admit a 1-join. Let W be a maximal subset of vertices that
has a partition A1 ∪ ... ∪ Ak with k ≥ 2 such that:

• A1, ..., Ak are all anticonnected subsets of V (G), and

• A1, ..., Ak are pairwise complete to each other.

(1) V (G) \W is non-empty.

By 2.2, G is anticonnected, which implies that V (G) \W is non-empty. This proves (1).

(2) Every v ∈ V (G) \W is either anticomplete to or mixed on Ai for each i ∈ {1, ..., k}.

Suppose v ∈ V (G) \W is complete to some Ai. Take B to be the union of all the Aj to
which v is complete. However, since {v} ∪W\B is anticonnected and complete to B, it
follows that W ′ = B ∪ ({v} ∪W\B) contradicts the maximality of W . This prove (2).

(3) If for some i ∈ {1, ..., k}, v ∈ V (G) \W is mixed on Ai, then v is anticomplete to
W\Ai.

By 2.4.2, any v ∈ V (G) \W is mixed on at most one Ai, and so together with (2) this
proves (3).

(4) Every vertex in V (G) \W is mixed on exactly one Ai, for some i ∈ {1, ..., k}.

Suppose not. Let X ⊆ V (G) \ W be the set of vertices anticomplete to W , which is
non-empty by (2) and (3). By 2.2, G is connected, and so there exists an edge given by
v ∈ X and u ∈ V (G) \ (X ∪W ). By (2), u is mixed on some Ai, and so, by 2.3.2, u is
mixed on a non-edge of Ai, given by say xi, yi ∈ Ai with u adjacent to xi and non-adjacent
to yi. However, by (3), u is anticomplete to W \Ai, and so for j 6= i and a vertex z ∈ Aj

we get that {v, u, xi, z, yi} is a P5, a contradiction. This proves (4).

And so, by (3) and (4), we can partition V (G) = A1 ∪ ...∪Ak ∪B1 ∪ ...∪Bk, where each
Bi is the set of vertices mixed on Ai and anticomplete to (A1 ∪ ... ∪ Ak) \ Ai.

(5) B1, ..., Bk are pairwise anticomplete.

Suppose for i 6= j, bi ∈ Bi is adjacent to bj ∈ Bj. By 2.3.2, bi is mixed on a non-edge of
Ai, given by say xi, yi ∈ Ai with bi adjacent to xi and non-adjacent to yi. As bj is mixed
on Aj, there exists xj ∈ Aj non-adjacent to bj, however then {bj, bi, xi, xj, yi} is a P5, a
contradiction. This proves (5).
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(6) Exactly one Bi is non-empty.

By (1) and (4), at least one Bi is non-empty. Suppose for i 6= j, Bi and Bj are both non-
empty. Then, by (5), A = Bi, B = Ai, C = (A1 ∪ ...∪Ak)\Ai and D = (B1 ∪ ...∪Bk)\Bi

is a 1-join, a contradiction. This proves (6).

Hence, by (6), we may assume B1 is non-empty while B2, . . . , Bk are all empty.

(7) k = 2 and |A2| = 1.

Since A2 ∪ ... ∪ Ak is not a homogeneous set, (6) implies that k = 2 and |A2| = 1. This
proves (7).

Let a be the vertex in A2.

(8) B1 is a stable set.

Suppose not. Then there exists a component B of B1 with |B| > 1. Since a is anticomplete
to B1, and B is a component of B1, as G is prime, it follows that there exist a1 ∈ A1

which is mixed on B. Thus, by 2.3.1, a1 is mixed on an edge of B, given by say b, b′ ∈ B
with a1 adjacent to b and non-adjacent to b′. Next, partition A1 = C ∪ D with C =
A1 ∩ (N(b) \ N(b′)) and D = A1 \ C, where both C and D are non-empty, as a1 ∈ C
and b′ is mixed on A1. Since A1 is anticonnected there exists a non-edge given by c ∈ C
and d ∈ D. However, since d ∈ D, it follows that {d, a, c, b, b′} is either a P5, P5 or C5, a
contradiction. This proves (8).

Thus, by (8), a is an antisimplicial vertex. This proves 2.7.

Next, we observe:

2.8. Let u and v be non-adjacent vertices in a prime P5-free graph G. Then either

• N(u) ∩N(v) is a clique, or

• there exists a vertex w ∈ V (G) \ (N(u) ∪ N(v) ∪ {u, v}) which is mixed on an
anticonnected subset of N(u) ∩N(v).

Proof. Suppose N(u) ∩ N(v) is a not clique. Then there exists an anticomponent A
of N(u) ∩ N(v) with |A| > 1. Since {u, v} is complete to N(u) ∩ N(v), and A is a
anticomponent of N(u) ∩ N(v), as G is prime, it follows that there exists w ∈ V (G) \
((N(u) ∩ N(v)) ∪ {u, v}) which is mixed on A. Thus, by 2.5, w is not mixed on {u, v},
and so w is anticomplete to {u, v}. This proves 2.8.
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A useful consequence of 2.8 is the following:

2.9. Let v be a vertex in a prime {P5, P5}-free graph G.

1. If v is antisimplicial, and we choose u non-adjacent to v such that |N(u)∩N(v)| is
minimum, then u is a simplicial vertex.

2. If v is simplicial, and we choose u adjacent to v such that |N(u)∪N(v)| is maximum,
then u is an antisimplicial vertex.

Proof. Suppose v is antisimplicial, we choose u non-adjacent to v such that |N(u)∩N(v)|
is minimum, and u is not simplicial. Since v is antisimplicial, it follows that N(u) \N(v)
is empty, and thus, as u is not simplicial, N(u)∩N(v) is not a clique. Hence, by 2.8, there
exists some w, non-adjacent to both u and v, which is mixed on an anticonnected subset
of N(u) ∩N(v). However, then, by our choice of u, there exists a vertex z ∈ N(v)\N(u)
adjacent to w, contradicting 2.6. This proves 2.9.1. Passing to the complement, we get
2.9.2.

2.10. Let G be a prime {P5, P5, C5}-free graph. Then G has a simplicial vertex, or an
antisimplicial vertex.

Proof. Suppose G does not have an antisimpicial vertex. Then, by 2.7, it admits a 1-join
(A,B,C,D).

(1) A and D are stable sets.

By symmetry, it suffices to argue that A is a stable set. Suppose not. Then there exists
a component A′ of A with |A′| > 1. Since C ∪ D is anticomplete to A, and A′ is a
component of A, as G is prime, it follows that there exists b ∈ B which is mixed on A′.
Thus, by 2.3.1, b is mixed on an edge of A′, given by say a, a′ ∈ A′ with b adjacent to
a′ and non-adjacent to a. By 2.2, G is connected, and so there exists an edge given by
c ∈ C and d ∈ D. However, then {a, a′, b, c, d} is a P5, a contradiction. This proves (1).

Next, fix some c ∈ C, and choose a vertex a ∈ A such that |N(a) ∩N(c)| is minimum.

(2) a is a simplicial vertex.

Suppose not. Then, by (1), N(a)∩N(c) = N(a) ⊆ B is not a clique, and so, by 2.8, there
exists w, non-adjacent to both a and c, which is mixed on an anticonnected subset of
N(a) ∩N(c). Since B is complete to C and anticomplete to D, it follows that w belongs
to A. However, then, by our choice of a, there exists a vertex z ∈ N(c)\N(a) adjacent to
w, contradicting 2.6. This proves (2).

This completes the proof of 2.10.

8



Putting things together we can now prove 2.1.

Proof of 2.1. By 2.10, passing to the complement if necessary, there exists an antisimpli-
cial vertex a. And so, by 2.9.1, if we choose s non-adjacent to a such that |N(a) ∩N(s)|
is minimum, then s is simplicial. This proves 2.1.

3 The H6-Conjecture

In this section we give a counterexample to the H6-conjecture 1.4, and prove 1.5, a slightly
weaker version of the conjecture. We also give a proof of 1.2, and provide a counterexample
to 1.6.

We begin by establishing some properties of prime graphs. Recall the following theo-
rem of Seinsche [7]:

3.1. If G is a P4-free graph with at least two vertices, then G is either not connected or
not anticonnected.

Together, 2.2 and 3.1 imply the following:

3.2. Every prime graph contains P4.

Next, as first shown by Hoàng and Khouzam [4], we observe that:

3.3. Let G be a prime graph.

1. A vertex v ∈ V (G) is simplicial if and only if v is a degree one vertex in every copy
of P4 in G containing it.

2. A vertex v ∈ V (G) is antisimplicial if and only if v is a degree two vertex in every
copy of P4 in G containing it.

Proof. Both forward implications are clear. To prove the converse of 3.3.1, suppose there
exists a vertex v which is not simplicial and yet is a degree one vertex in every copy of P4

in G containing it. Then there exists an anticomponent A of N(v) with |A| > 1. Since
v is complete to A, and A is a anticomponent of N(v), as G is prime, it follows that
there exists u ∈ V (G) \ (N(v) ∪ {v}) which is mixed on A. Thus, by 2.3.2, u is mixed
on a non-edge of A, given by say x, y ∈ A with u adjacent to x and non-adjacent to y.
However, then {y, v, x, u} is a P4 with v having degree two, a contradiction. This proves
3.3.1. Passing to the complement, we get 3.3.2.

Finally, we observe that:

3.4. Let G be a prime graph.
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1. The set of antisimplicial vertices in G is a clique.

2. The set of simplicial vertices in G is a stable set.

Proof. Suppose there exist non-adjacent antisimplicial vertices a, a′ ∈ V (G). Since a is
antisimplicial, it follows that N(a′)\N(a) is empty. Similarly, N(a)\N(a′) is also empty.
However, this implies that {a, a′} is a homogeneous set in G, a contradiction. This proves
3.4.1. Passing to the complement, we get 3.4.2.

3.5. Let G be a prime {P5, P5, C5}-free graph. Let A be the set of antisimplicial vertices
in G, and let S be the set of simplicial vertices in G. Then G[A∪S] is a split graph which
is both connected and anticonnected.

Proof. 3.4 implies that G[A∪S] is a split graph, where A is a clique and S is a stable set.
By 2.9.1, every vertex in A has a non-neighbor in S, and, by 2.9.2, every vertex in S has
a neighbor in A. Thus, G[A ∪ S] is both connected and anticonnected. This proves 3.5.

We are finally ready to give a proof of 1.2, first shown in [6] by Hayward and Nastos.

3.6. If G is a prime {P5, P5, C5}-free graph, then there exists a copy of P4 in G whose
vertices of degree one are simplicial, and whose vertices of degree two are antisimplicial.

Proof. Let A be the set of antisimplicial vertices in G, and let S be the set of simplicial
vertices in G. By 2.1, both A and S are non-empty. Hence, G[A ∪ S] is a graph with at
least two vertices, which, by 3.5, is both connected and anticonnected, and so, by 3.1, it
follows that G[A ∪ S] contains P4. Since 3.4 implies that A is a clique and S is a stable
set, it follows that every copy of P4 in G[A ∪ S] is of the desired form. This proves 3.6.

Next, we turn our attention to the H6-conjecture. A result of Hoàng and Reed [5]
implies the following:

3.7. If G is a prime {P5, P5, C5}-free graph which is not split, then G or G contains H6.

In hopes of saying more along these lines, motivated by 3.6 and 3.7, Hayward and
Nastos posed 1.4, which we restate:

3.8 (The H6-Conjecture). If G is a prime {P5, P5, C5}-free graph which is not split, then
there exists a copy of H6 in G or G whose two vertices of degree one are simplicial, and
whose two vertices of degree three are antisimplicial.
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Figure 2: Counterexample to the H6-conjecture, where additionally {2, 3} is complete to
{9, 10, 11, 12}.

In Figure 2 we give a counterexample to 3.8. The graph G in Figure 2 contains C4,
and so, by 1.3, is not split. The mapping φ : V (G)→ V (G)

φ :=

(
1 2 3 4 5 6 7 8 9 10 11 12
3 1 4 2 7 5 8 6 11 9 12 10

)
is an isomorphism between G and G. Thus, as G is self-complementary, it suffices to
check that G is P5-free, which is straight forward, as is verifying that G is prime, and we
leave the details to the reader. The set of simplicial vertices in G is {1, 4}, and the set of
antisimplicial vertices in G is {2, 3}. However, no copy of C4 in G contains {2, 3}, and so
there does not exist a copy of H6 of the desired form.

However, all is not lost as we can prove 1.5, a slightly weaker version of the H6-
conjecture, which we restate:

3.9. If G is a prime {P5, P5, C5}-free graph which is not split, then there exists a copy of
H6 in G or G whose two vertices of degree one are simplicial, and at least one of whose
vertices of degree three is antisimplicial.

Proof. By 3.6, there exist simplicial vertices s, s′, and antisimplicial vertices a, a′ such
that {s, a, a′, s′} is a P4 in G. Now, choose maximal subsets A of antisimplicial vertices
in G, and S of simplicial vertices in G such that a, a′ ∈ A, s, s′ ∈ S, every vertex in A has
a neighbor in S, and every vertex in S has a non-neighbor in A.

(1) Any graph containing a vertex which is both simplicial and antisimplicial is split.

By definition, if a vertex v ∈ V (G) is both simplicial and antisimplicial, then N(v) is a
clique and V (G) \N(v) is a stable set. This proves (1).
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(2) There exists no vertex v ∈ V (G)\(A∪S) adjacent to a vertex u ∈ S and non-adjacent
to a vertex w ∈ A.

Suppose not. If u is adjacent to w, then N(u) is not a clique, and if u is non-adjacent to
w, then V (G) \N(w) is not a stable set, in both cases a contradiction. This proves (2).

By (1) and (2), we can partition V (G) = A ∪ S ∪ B ∪ C ∪ D, where B is the set of
vertices complete to A and anticomplete to S, C is the set of vertices complete to A with
a neighbor in S, and D is the set of vertices anticomplete to S with a non-neighbor in A.
Recall 3.4 implies that A is a clique and S is a stable set.

(3) No vertex of C ∪D is simplicial or antisimplicial.

Consider a vertex c ∈ C. Then there exists sc ∈ S adjacent to c. Hence, c is not antisim-
plicial, as otherwise we could add c to A contrary to maximality. By construction, sc has
a non-neighbor ac ∈ A. Since c is complete to the A, it follows that N(c) is not a clique,
and thus c is not simplicial. Hence, C contains no simplicial or antisimplicial vertices.
Passing to the complement, we get that no vertex in D is simplicial or antisimplicial. This
proves (3).

(4) We may assume that C is a clique, and D is a stable set.

By symmetry, it is enough to argue that if D is not a stable set, then the theorem holds.
Suppose we have an edge given by x, y ∈ D. By definition, any antisimplicial vertex is
adjacent to at least one of x and y. And so, as x and y both have non-neighbors in A, there
exists ax, ay ∈ A such that ax is adjacent to x and non-adjacent to y, and ay is adjacent
to y and non-adjacent to x. Since S is anticomplete to D, it follows that ax and ay do not
have a common neighbor s′′ ∈ S, as otherwise {ax, y, s′′, x, ay} is a P5. By construction,
every vertex in A has a neighbor in S, and so there exists sx ∈ S adjacent to ax and
non-adjacent to ay, and sy ∈ S adjacent to ay and non-adjacent to ax. However, then
{sx, ax, ay, sy, x, y} is a copy of H6 in G of the desired form. Passing to the complement,
we may also assume that C is a clique. This proves (4).

(5) For all d ∈ D and u ∈ A, N(d) ⊆ N(u) ∪ {u}.

By (4), A ∪ C is a clique and D ∪ S is a stable set. Thus, for any d ∈ D, it follows that
N(d) ⊆ A ∪ B ∪ C. Since A is complete to B, it follows that any a ∈ A is complete to
(A \ {a}) ∪B ∪ C. This proves (5).

(6) We may assume both C and D are empty.

By symmetry, it is enough to argue that if D is non-empty, then the theorem holds.
Suppose D is non-empty, and choose d ∈ D with |N(d)| minimum. Then there exists
ad ∈ A non-adjacent to d. By (3) and (5), N(ad) ∩ N(d) = N(d) is not a clique, and
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Figure 3: Counterexample to Conjecture 3.10.

so, by 2.8, there exists a vertex w, non-adjacent to both ad and d, which is mixed on an
anticonnected subset of N(d). Since ad is complete to (A \ {ad}) ∪B ∪ C, it follows that
w ∈ D∪S. If w ∈ D, then, by our choice of d, there exists z ∈ N(w)\N(d) which, by (5),
is adjacent to ad, contradicting 2.6. Hence, w ∈ S. Since w is mixed on an anticonnected
subset of N(d), by 2.3.2, w is mixed on a non-edge of N(d), given by say x, y ∈ N(d) with
w adjacent to x and non-adjacent to y. Since A ∪ C is a clique, and B is complete to A
and anticomplete to S, it follows that x ∈ C and y ∈ B. By construction, every vertex
in A has a neighbor in S, and so there exists sd ∈ S adjacent to ad. Since sd is mixed on
{ad, d} and non-adjacent to y, 2.5 implies that sd is anticomplete to {x, y}. However, then
{sd, ad, x, w, y, d} is a copy of H6 in G of the desired form. Passing to the complement,
we may also assume that C is empty. This proves (6).

By (6), since G is prime, it follows that |B| ≤ 1, implying that G is a split graph, a
contradiction. This proves 3.9.

Another conjecture which seemed plausible for a while is 1.6, which we restate:

3.10. If G is a {P5, P5}-free graph, then either

• G is isomorphic to C5, or

• G is a split graph, or

• G has a homogeneous set, or

• G or G admits a 1-join.
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However, with Paul Seymour we found the counterexample in Figure 3. The graph in
Figure 3 contains C4 and C4, and so, by 1.3, is not split; we leave the rest of the details
to the reader.

4 {P5, P5,bull}-free Graphs

In this section we give a short proof of 1.1, and of Fouquet’s result 4.4 on the structure
of {P5, P5,bull}-free graphs. The following is joint work with Max Ehramn.

Let Ok be the bipartite graph on 2k vertices with bipartition ({a1, . . . ak}, {b1, . . . bk})
in which ai is adjacent to bj if and only if i+ j ≥ k+ 1. If a graph G is isomorphic to Ok

for some k, then we call G a half graph. Note that by construction half graphs are prime.
In [1] the first author and Seymour proved:

4.1. Let G be a graph, and let H be a proper induced subgraph of G. Assume that both
G and H are prime, and that both G and G are not half graphs. Then there exists an
induced subgraph H ′ of G, isomorphic to H, and a vertex v ∈ V (G) \ V (H ′), such that
G[V (H ′) ∪ {v}] is prime.

Next, we give a proof of Fouquet’s result 1.1, which we restate:

4.2. If G is a prime {P5, P5}-free graph which contains C5, then G is isomorphic to C5.

Proof. Suppose not, and so C5 is a proper induced subgraph of G. Since C5 is self-
complementary both G and G contain an odd cycle, hence are non-bipartite, and thus not
half graphs. As C5 is prime, by 4.1, there exists a subgraph H induced by {v1, v2, v3, v4, v5}
isomorphic to C5, and a vertex v ∈ V (G)\V (H) such that the subgraph of G induced by
V (H) ∪ {v} is prime. Considering the complement, we may assume v is adjacent to at
most two vertices in V (H). To avoid a homogeneous set in G[V (H)∪{v}], by symmetry,
the only possibilities are for N(v) = {v1}, in which case {v, v1, v2, v3, v4} is a P5, or for
N(v) = {v1, v2}, in which case {v, v2, v3, v4, v5} is a P5, in both cases a contradiction.
This proves 4.2.

Thus, to understand prime {P5, P5,bull}-free graphs it is enough to study prime
{P5, P5, C5,bull}-free graphs.

4.3. If G is a prime {P5, P5, C5,bull}-free graph, then either G or G is a half graph.

Proof. Suppose not. By 3.2, G contains P4, which is isomorphic to O2. Since G and
G are not half graphs, it follows that P4 is a proper induced subgraph of G. As P4 is
prime, by 4.1, there exists a subgraph H induced by {v1, v2, v3, v4} isomorphic to P4, and
a vertex v ∈ V (G)\V (H) such that the subgraph of G induced by V (H) ∪ {v} is prime.
Considering the complement, we may assume v is adjacent to at most two vertices in H.
To avoid a homogeneous set in G[V (H)∪{v}], by symmetry, the only possibilities are for
N(v) = {v1}, in which case {v, v1, v2, v3, v4} is a P5, for N(v) = {v1, v4}, in which case

14



{v, v1, v2, v3, v4} is a C5, or for N(v) = {v2, v3}, in which case {v, v1, v2, v3, v4} is a bull,
in all cases a contradiction. This proves 4.3.

Putting things together we obtain Fouquet’s original structural result [3]:

4.4. If G is a {P5, P5,bull}-free graph, then either

• |V (G)| ≤ 2, or

• G is isomorphic to C5, or

• G has a homogeneous set, or

• G or G is a half graph.

Proof. As all graphs on three vertices have a homogeneous set, 4.4 immediately follows
from 4.2 and 4.3.
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[5] C.T. Hoàng and B.A. Reed, Some classes of perfectly orderable graphs, J. Graph
Theory, 13 (1989), 445-463.

[6] J. Nastos, (P5, P5)-free graphs, masters thesis, Dept. of Computer Science, University
of Alberta, Edmonton, 2006.

[7] D. Seinsche, On a property of the class of n-colorable graphs, J. Comb. Theory B 16
(1974), 191-193.

15


