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Abstract
The Erdős-Hajnal conjecture states that for every graph H, there exists a constant δ(H) > 0,

such that if a graph G has no induced subgraph isomorphic to H, then G contains a clique or a
stable set of size at least |V (G)|δ(H). This conjecture is still open. We consider a variant of the
conjecture, where instead of excluding H as an induced subgraph, both H and Hc are excluded.
We prove this modified conjecture for the case when H is the five-edge path. Our second main
result is an asymmetric version of this: we prove that for every graph G such that G contains no
induced six-edge path, and Gc contains no induced four-edge path, G contains a polynomial-size
clique or stable set.

1 Introduction

All graphs in this paper are finite and simple. Let G be a graph. The complement Gc of G is the
graph with vertex set V (G), such that two vertices are adjacent in G if and only if they are non-
adjacent in Gc. A clique in G is a set of vertices all pairwise adjacent. A stable set in G is a set of
vertices all pairwise non-adjacent (thus a stable set in G is a clique in Gc). Given a graph H, we say
that G is H-free if G has no induced subgraph isomorphic to H. If G is not H-free, we say that G
contains H. For a family F of graphs, we say that G is F-free is G is F -free for every F ∈ F .

It is a well-known theorem of Erdős [6] that for all n there exist graphs on n vertices with no
clique or stable set of size larger than log n (up to a constant factor). However, in 1989, Erdős and
Hajnal [7] conjectured that the situation is very different for graphs that are H-free for some fixed
graph H (this is the Erdős-Hajnal conjecture):

1.1 For every graph H, there exists a constant δ(H) > 0, such that every H-free graph G has either
a clique or a stable set of size at least Ω(|V (G)|δ(H)).

We say that a graph H has the Erdős-Hajnal property if there exists a constant δ(H) > 0, such
that every H-free graph G has either a clique or a stable set of size at least Ω(|V (G)|δ(H)).

Here we consider a variant of 1.1, first introduced in [9]:
∗Supported by NSF grants DMS-1001091 and IIS-1117631.
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1.2 For every graph H, there exists a constant δ(H) > 0, such that every {H,Hc}-free graph G has
either a clique or a stable set of size at least Ω(|V (G)|δ(H)).

Our first main result is that 1.2 holds if H is the five-edge-path. Let us say that a graph G is
pure if no induced subgraph of G or Gc is isomorphic to the five-edge path. We prove:

1.3 There exists δ > 0 such that every pure graph G has either a clique or a stable set of size at
least Ω(|V (G)|δ).

A subcalss of the the class of pure graphs was studied in [5], and a theorem similar to 1.3 was
obtained, with a larger value of δ. We also prove an asymmetric version of this result. Let us call
a graph G pristine if no induced subgraph of G is isomorphic to the six-edge path, and no induced
subgraph of Gc is isomorphic to the four-edge path. We prove:

1.4 There exists δ > 0 such that every pristine graph G has either a clique or a stable set of size at
least Ω(|V (G)|δ).

Since this paper was submitted for publication, Bousquet, Lagoutte and Thomassé [2] proved a
much more general result, with a completely different method:

1.5 Let k > 0 be an integer. Every graph G such that no induced subgraph of G or Gc is isomorphic
to the k-edge path has either a clique or a stable set of size at least Ω(|V (G)|δ).

Let G be a graph. For X ⊆ V (G), we denote by G|X the subgraph of G induced by X. We write
G \X for G|(V (G) \X), and G \ v for G \ {v}, where v ∈ V (G). For two disjoint subsets A and B of
V (G), we say that A is complete to B if every vertex of A is adjacent to every vertex of B, and that
A is anticomplete to B if every vertex of A is non-adjacent to every vertex of B. If A = {a} for some
a ∈ V (G), we write “a is complete (anticomplete) to B” instead of “{a} is complete (anticomplete)
to B”. If b ∈ V (G) \A is neither complete nor anticomplete to A, we say that b is mixed on A. For
v ∈ V (G) we denote by NG(v) (or N(v) when there is no risk of confusion) the set of neighbors of v
in G (in particular, v 6∈ NG(v)).

We denote by ω(G) the largest size of a clique in G, by α(G) the largest size of a stable set in G,
and by χ(G) the chromatic number of G. The graph G is perfect if χ(H) = ω(H) for every induced
subgraph H of G. The Strong Perfect Graph Theorem [3] characterizes perfect graphs by forbidden
induced subgraphs:

1.6 A graph G is perfect if and only if no induced subgraph of G or Gc is an odd cycle of length at
least five.

Let us say that a function f : V (G)→ [0, 1] is good if for every perfect induced subgraph P of G

Σv∈V (P )f(v) ≤ 1.

For α ≥ 1, the graph G is α-narrow if for every good function f

Σv∈V (G)f(v)α ≤ 1.

Thus perfect graphs are 1-narrow. The following was shown in [4], and then again, with a much
easier proof, in [5]:
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1.7 If a graph G is α-narrow for some α > 1, then G contains a clique or a stable set of size at
least |V (G)|

1
2α .

Consequently, in order to prove that a certain graph H has the Erdős-Hajnal property, it is enough to
show that there exists α ≥ 1 such that all H-free graphs are α-narrow. This conjecture was formally
stated in [5]:

1.8 For every graph H, there exists a constant α(H) ≥ 1, such that every H-free graph G is α-
narrow.

In fact, in order to prove 1.3, we show that

1.9 There exists α > 1 such that every pure graph is α-narrow.

Similarly, in order to prove 1.4, we show that

1.10 There exists α > 1 such that every pristine graph is α-narrow.

Fox [8] proved that 1.7 is in fact equivalent to 1.1, more precisely, he showed:

1.11 Let H be a graph for which there exists a constant δ(H) > 0 such for every H-free graph G
either ω(G) ≥ |V (G)|δ(H) or α(G) ≥ |V (G)|δ(H). Then every H-free graph G is 3

δ(H) -narrow.

This paper is organized as follows. In Section 2 we discuss the tools used in the proofs of 1.9 and
1.10, and prove 1.9 assuming an additional result, 2.5. In Section 3 we prove 2.5. Sections 4 and 5
are devoted to results similar to 2.5, needed for the proof of 1.10. The proof of 1.10 assuming the
results of Section 4 and Section 5 is at the end of Section 4. Finally, in Section 6 we include a proof
of 1.11.

2 The power of substitution

Given graphs H1 and H2, on disjoint vertex sets, each with at least two vertices, and v ∈ V (H1), we
say that H is obtained from H1 by substituting H2 for v, or obtained from H1 and H2 by substitution
(when the details are not important) if:

• V (H) = (V (H1) ∪ V (H2)) \ {v},

• H|V (H2) = H2,

• H|(V (H1) \ {v}) = H1 \ v, and

• u ∈ V (H1) is adjacent in H to w ∈ V (H2) if and only if w is adjacent to v in H1.

A related notion is that of a “homogeneous set” in a graph. Given a graph G, a subset X ⊆ V (G)
is a homogeneous set in G if

• 1 < |X| < |V (G)|, and

• every vertex of V (G) \X with a neighbor in X is complete to X.
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We say that G admits a homogeneous set decomposition if there is a homogeneous set in G. Thus
a graph admits a homogeneous set decomposition if and only if it is obtained from smaller graphs
by substitution. Finally, we say that a graph is prime if it is not obtained from smaller graphs by
substitution.

There are three main ingredients in our proof of 1.9. The first is a theorem of Alon, Pach and
Solymosi [1], stating that the Erdős-Hajnal property is preserved under substitution:

2.1 Let H1 and H2 be graphs, and let 0 < δ1, δ2 ≤ 1 such that for i = 1, 2, every Hi-free graph G
satisfies max(α(G), ω(G)) ≥ Ω(|V (H)|δi). Let |V (H1)| = k, and let H be obtained by substitution
H2 for a vertex of H1. Then for every δ such that

δ ≤ δ1δ2
δ1 + kδ2

,

every H-free graph G satisfies max(α(G), ω(G)) ≥ Ω(|V (H)|δ).

A class G of graphs is hereditary if for every G ∈ C, all induced subgraphs of G belong to C. In
fact, we need a slight strengthening of 2.1.

2.2 Let C be a hereditary class of graphs. Let H1 be a finite family of graphs, let H2 be a graph,
and write H2 = {H2}. Let 0 < δ1, δ2 ≤ 1 such that for i = 1, 2, every Hi-free graph G ∈ C
satisfies max(α(G), ω(G)) ≥ Ω(|V (H)|δi). Let k = maxH1∈H1 |V (H1)|, and for every H1 ∈ H1, let
v(H1) ∈ V (H1). Define H to be the family of graphs obtained by substituting H2 for v(H1) in H1 for
every H1 ∈ H1. Then for every δ such that

δ ≤ δ1δ2
δ1 + kδ2

,

every H-free graph G ∈ C satisfies max(α(G), ω(G)) ≥ Ω(|V (G)|δ).

The proof of 2.2 is essentially the same as that of 2.1, and we omit it here. Given a hereditary
graph class C, we say that a family of graphs H has the Erdős-Hajnal property for C if there exists
a constant δ(H) such that every H-free graph G ∈ C satisfies max(α(G), ω(G)) ≥ Ω(|V (G)|δ(H)). A
graph H has the the Erdős-Hajnal property for C if the family {H} does.

The second ingredient also deals with substitutions, but this time we take advantage of the fact
that the graph G, rather than H, from 1.1 is not prime. First, let us generalize the notion of a
homogeneous set a little. Let C be a hereditary class of graphs, let G ∈ C, and let (X,A,C) be a
partition of V (G), where 1 < |X| < |V (G)|. Let G′ be the graph obtained from G \X by adding a
new vertex x, complete to C and anticomplete to A. Then (X,A,C) is a C-quasi-homogeneous set
in G if

• G′ ∈ C, and

• If P is a perfect induced subgraph of G′ with x ∈ V (P ), and Q is a perfect induced subgraph
of G|X, then G|((V (P ) \ {x}) ∪ V (Q)) is perfect.

We say that G admits a C-quasi-homogeneous set decomposition if there is a C-quasi-homogeneous
set in G.
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If C is a hereditary class of graphs, G ∈ C, X is a homogeneous set in G, C is the set of vertices
of G \X complete to X, and A is the set of vertices of G \X anticomplete to X, then [10] implies
that (X,A,C) is a C-quasi-homogeneous set in G.

The following was essentially proved in [5]:

2.3 Let C be a hereditary class of graphs, let G ∈ C, and let α > 1. Let (X,A,C) be a C-quasi-
homogeneous set in G, and let G′ be the graph obtained from G\X by adding a new vertex x complete
to C and anticomplete to A. If the graphs G′ and G|X are α-narrow, then G is α-narrow.

2.3 has the following immediate corollary:

2.4 Let α > 1, and G1, G2 be α-narrow graphs. If G is obtained from G1 and G2 by substitution,
then G is α-narrow.

Finally, the third ingredient of the proof of 1.9 is a structural result that we prove in the next
section, as follows. Let C5 denote the cycle of length five. Let Q be the graph obtained from C5 by
substituting a copy of C5 for each of its vertices. More precisely,

• V (Q) =
⋃5
i=1 V

i, where V i = {vi1, vi2, vi3, vi4, vi5} for every i ∈ {1, . . . , 5}

• Q|V i is isomorphic to C5 for every i ∈ {1, . . . , 5}, and

• for 1 ≤ i < j ≤ 5, V i is complete to V j if j − i ∈ {1, 4}, and V i is anticomplete to V j if
j − i ∈ {2, 3}.

We prove:

2.5 If a pure graph G contains Q, then G admits a homogeneous set decomposition.

We can now prove 1.9 assuming 2.5.

Proof of 1.9. Let C be the class of pure graphs. Since by 1.6 every C5-free pure graph is per-
fect, and therefore 1-narrow, 1.7 implies that C5 has the Erdős-Hajnal property for C. Therefore,
by 2.2, Q has the Erdős-Hajnal property for C. Let δ be such that every Q-free graph G ∈ C has a
clique or a stable set of size at least |V (G)|δ. Let α = 3

δ .
Let G ∈ C be such that G is not α-narrow, and subject to that with |V (G)| minimum. By 1.11, G

is not Q-free. By 2.5, G is obtained from smaller graphs, G1 and G2, by substitution; and since C is
hereditary, G1, G2 ∈ C. But now, by the minimality of |V (G)|, each of G1, G2 is α-narrow, contrary
to 2.4. This proves 1.9.

The proof of 1.4 is similar, but has more steps, and we postpone it until later.

3 The proof of 2.5

Let G be a graph. A path P in G is an induced subgraph with vertices p1, . . . , pk such that either
k = 1, or for i, j ∈ {1, . . . , k}, pi is adjacent to pj if |i − j| = 1 and pi is non-adjacent to pj if
|i − j| > 1. Under these circumstances we say that P is a path from p1 to pk, its interior is the

5



set P ∗ = V (P ) \ {p1, pk}, and the length of P is k − 1. We also say that P is a (k − 1)-edge
path. Sometimes, we denote P by p1- . . . -pk. A cycle C in G is an induced subgraph with vertices
c1, . . . , ck where k ≥ 3, such that for i, j ∈ {1, . . . , k}, ci is adjacent to cj if and only if |i− j| = 1 or
|i − j| = k − 1. Under these circumstances we call k the length of the cycle. Sometimes, we denote
C by c1- . . . -ck-c1.

Given a graph G and X ⊆ V (G), we say that X is connected if X 6= ∅ and the graph G|X is
connected, and anticonnected if X 6= ∅ and the graph Gc|X is connected. We say that X is tough if
|X| ≥ 3 and for every partition (A,B) of X with A,B 6= ∅ either

• there exist a ∈ A and b1, b2 ∈ B such that a-b1-b2 is a path in G, or

• there exist a1, a2 ∈ A and b ∈ B such that a1-a2-b is a path in Gc.

We start with a few easy lemmas.

3.1 Let G be a graph, and let X ⊆ V (G). If X is tough, then X is both connected and anticonnected.

Proof. It is enough to prove that X is connected; the fact that X is anticonnected follows by taking
complements. Thus it is enough to show that Y is not anticomplete to Z for every partition (Y,Z)
of X. But this follows immediately from the definition of a tough set. This proves 3.1.

3.2 Let G be a graph, and let X ⊆ V (G). Let v ∈ V (G) \X be mixed on X. Then

1. If X is connected, then there exist x, y ∈ X such that v is adjacent to x and non-adjacent to
y, and x is adjacent to y.

2. If X is anticonnected, then there exist x, y ∈ X such that v is adjacent to x and non-adjacent
to y, and x is non-adjacent to y.

Proof. By passing to Gc if necessary, it is enough to prove 3.2.1. Since v is mixed on X, both
N(v) ∩X and X \N(v) are non-empty. Now, since X is connected it follows that N(v) ∩X is not
anticomplete to X \N(v) and 3.2.1 follows. This proves 3.2.

3.3 V (C5) is tough.

Proof. Let v1, . . . , v5 be the vertices of C5, such that for 1 ≤ i < j ≤ 5, vi is adjacent to vj if
and only if j − i ∈ {1, 4}. Let (A,B) be a partition of {v1, . . . , v5} with A,B 6= ∅. Passing to the
complement if necessary, we may assume that |A| ≤ 2. This implies that some edge of C5 has both
its ends in B, say v1, v2 ∈ B; and since A 6= ∅, we may assume that v5 ∈ A. But now setting a = v5,
b1 = v1 and b2 = v2, the first statement of the definition of a tough set holds. This proves 3.3.

We now prove 2.5 that we restate:

3.4 If a pure graph G contains Q, then G admits a homogeneous set decomposition.
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Proof. Suppose not, and let G be a pure graph that has an induced subgraph isomorphic to Q,
and such that G does not admit a homogeneous set decomposition. A Q-structure in G consists of
disjoint subsets V1, . . . , V5 such that

• for 1 ≤ i < j ≤ 5, Vi is complete to Vj if j − i ∈ {1, 4}, and Vi is anticomplete to Vj if
j − i ∈ {2, 3}, and

• Vi is tough for i ∈ {1, . . . , 5}.

We denote this Q-structure by (V1, V2, V3, V4, V5). Since G contains Q, it follows that G contains a
Q-structure. Let (V1, V2, V3, V4, V5) be a Q-structure in G with W =

⋃5
i=1 Vi maximal.

We remark that both the hypotheses and the conclusion of 3.4 are invariant under taking com-
plements, and a Q-structure in G is also a Q-structure in Gc (after re-ordering). We will use this
symmetry between G and Gc in the course of the proof. For i ∈ {1, . . . , 5}, let Xi be the set of
all vertices of V (G) \ Vi that are mixed on Vi. Since G has no homogeneous set, Xi 6= ∅ for all
i ∈ {1, . . . , 5}. From the definition of a Q-structure, we deduce that Xi∩W = ∅ for all i ∈ {1, . . . , 5}.
Let X =

⋃5
i=1Xi. For i ∈ {1, . . . , 5} and v ∈ V (G)\W , let Ai(v) = N(v)∩Vi, and Bi(v) = Vi\Ai(v).

(1) No v ∈ X1 is complete to V2 ∪ V5, and anticomplete to V3 ∪ V4.

Suppose such a vertex v exists. We claim that V1 ∪ {v} is tough. Let A = A1(v), and B = B1(v).
Since V1 is tough, by taking complements if necessary, we may assume that there exist a ∈ A and
b1, b2 ∈ B such that a-b1-b2 is a path in G. Let (A′, B′) be a partition of V1∪{v} with A′, B′ 6= ∅. We
need to prove that one of the statements of the definition of a tough set holds for (A′, B′). If both
A′∩V1 6= ∅ and B′∩V1 6= ∅, then the result follows from the fact that V1 is tough, so we may assume
that either A′ = {v}, or A′ = V1. If A′ = {v}, then v-a-b1 is a path in G, and the first statement in
the definition of a tough set is satisfied; and if A′ = V1, then a-b2-v is a path in Gc, and the second
statement in the definition of a tough set is satisfied. This proves the claim that V1 ∪ {v} is tough.
But now (V1∪{v}, V2, V3, V4, V5) is a Q-structure, contrary to the maximality of W . This proves (1).

We say that v ∈ Xi is a path vertex for Vi if there exist a ∈ Ai(v) and b1, b2 ∈ Bi(v) such that
a-b1-b2 is a path in G; and that v ∈ Xi is an antipath vertex for Vi if there exist a1, a2 ∈ Ai(v) and
b ∈ Bi(v) such that b-a1-a2 is a path in Gc.

(2) If v ∈ X1 is a path vertex for V1, then v is not mixed on V3 ∪ V4; and if v ∈ X1 is an an-
tipath vertex for V1, then v is not mixed on V2 ∪ V5. Consequently, no v ∈ X1 is mixed on both
V2 ∪ V5 and V3 ∪ V4.

Let v ∈ X1. By taking complements if necessary, we may assume that v is a path vertex for V1

and there exist a ∈ A1(v) and b1, b2 ∈ B1(v) such that a-b1-b2 is a path in G. If v is mixed on
V3 ∪ V4, then, since V3 ∪ V4 is connected, there exist x, y ∈ V3 ∪ V4 as in 3.2.1. But now b2-b1-a-v-x-y
is a five-edge path in G, contrary to the fact that G is pure. Since V1 is tough, it follows that every
vertex of X1 is either a path or an antipath vertex for V1, and so no v ∈ X1 is mixed on both V2∪V5,
and V3 ∪ V4. This proves (2).
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(3) If v ∈ X1 ∩ X2, then v is anticomplete to V3 ∪ V4 ∪ V5; and if v ∈ X1 ∩ X3, then v is com-
plete to V2 ∪ V4 ∪ V5.

By taking complements, it is enough to prove the first statement of (3). By 3.1 and 3.2.1, there exist
a1 ∈ A1(v) and b1 ∈ B1(v) such that a1 is adjacent to b1. By 3.1 and 3.2.2, there exist a2 ∈ A2(v)
and b2 ∈ B2(v) such that a2 is non-adjacent to b2. If there exists a3 ∈ A3(v), then a1-a3-b1-v-b2-a2

is a five-edge path in Gc, a contradiction. So A3(v) = ∅, and v is anticomplete to V3. Similarly, v is
anticomplete to V5. Since v ∈ X1, and v is mixed on X2 ∪ X5, (2) implies that v is not mixed on
V3∪V4, and so v is anticomplete to V4. Consequently v is anticomplete to V3∪V4∪V5, and (3) follows.

We say that v ∈
⋃5
i=1Xi is minor if it is anticomplete to at least three of the sets sets V1, . . . , V5,

major if it is complete to at least three of the sets V1, . . . , V5, and intermediate otherwise. Observe
that passing to Gc switches minor vertices with major, and leaves the set of intermediate vertices
unchanged.

(4) If v ∈ X1 and v is intermediate, v 6∈
⋃5
i=2Xi, and v is complete to Vi−2 ∪ Vi+2, and anti-

complete to Vi−1 ∪ Vi+1 (here the index arithmetic is mod 5).

By (2) and passing to the complement if necessary, we may assume that v is not mixed on V3 ∪ V4.
If v is complete to V3 ∪ V4, then by (3) v 6∈ X2 ∪X5, and since v is intermediate, it follows that v is
anticomplete to V2 ∪V5. If v is anticomplete to V3 ∪V4, then since v is intermediate, v has neighbors
in each of V2, V5; now by (3) v is complete to V2 ∪ V5, contrary to (1). This proves (4).

(5) If x1 ∈ X1 and x2 ∈ X2 are intermediate, then x1 is adjacent to x2; and if x1 ∈ X1 and
x3 ∈ X3 are intermediate, then x1 is non-adjacent to x3.

By taking complements, it is enough to prove the first statement of (5). Suppose x1 is non-adjacent
to x2. Let v1 ∈ B1(x1), v2 ∈ B2(x2), v3 ∈ V3 and v5 ∈ V5. Then x1-v3-v2-v1-v5-x2 is a five-edge path
in G, a contradiction. This proves (5).

(6) At most two of the sets X1, . . . , X5 contain intermediate vertices.

Suppose at least three of the sets X1, . . . , X5 contain intermediate vertices. By taking comple-
ments if necessary, we may assume that x1 ∈ X1, x2 ∈ X2 and x3 ∈ X3 are intermediate. By (5),
the pairs x1x2, x2x3 are adjacent, and the pair x1x3 is non-adjacent. Let v1 ∈ A1(x1), v4 ∈ V4, and
v5 ∈ V5. Then v5-x1-x3-v4-v1-x2 is a five-edge path in Gc, a contradiction. This proves (6).

(7) At most one of X1, X3 contains a minor vertex.

Suppose x1 ∈ X1 and x3 ∈ X3 are both minor. By (3), x1 6∈ X3 ∪ X4, and x3 6∈ X1 ∪ X5, and
in particular, x1 6= x3. By (2), if x1 is a path vertex for V1, then x1 is anticomplete to V3 ∪ V4,
and if x1 is an antipath vertex for V1, then x1 is anticomplete to V2 ∪ V5. Similarly, if x3 is a
path vertex for V3, then x3 is anticomplete to V1 ∪ V5, and if x3 is an antipath vertex for V3,
then x3 is anticomplete to V2 ∪ V4. Since V1, V3 are tough, 3.1 and 3.2.1 imply that there exist
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a1 ∈ A1(x1), b1 ∈ B1(x1), a3 ∈ A3(x3), b3 ∈ B3(x3) such that a1b1 and a3b3 are edges of G. By 3.1
and 3.2.2, there exist a′3 ∈ A3(x3), b′3 ∈ B3(x3) such that a′3 is non-adjacent to b′3.

Suppose first that x1 is adjacent to x3. Since b1-a1-x1-x3-a3-b3 is not a five-edge path in G,
we may assume using symmetry that x3 is complete to V1. Since x3 is minor, this implies that
x3 is anticomplete to V2 ∪ V4 ∪ V5. Suppose that exists a5 ∈ A5(x1). Then x1 is anticomplete to
V2 ∪ V3 ∪ V4 (since x1 is minor). Let v2 ∈ V2. Then b′3-v2-a′3-x3-x1-a5 is a five-edge path in G, a
contradiction. This proves that x1 is anticomplete to V5. If there exist u, v ∈ A1(x1) and w ∈ B1(x1)
such that w-v-u is a path in Gc, then u-v-w-x1-v5-x3 is a five-edge path in Gc for every v5 ∈ V5,
a contradiction. So no such u, v, w exist. Since V1 is tough, it follows that x1 is a path vertex for
V1, and x1 is anticomplete to V3 ∪ V4. But now x1-x3-b1-v5-v4-b3 is a five-edge path in G for every
v4 ∈ V4, a contradiction. This proves that x1 is non-adjacent to x3.

If x1 is anticomplete to V3∪V4∪V5, and x3 is anticomplete to V1∪V4∪V5, then x1-a1-v5-v4-a3-x3

is a five-edge path in G for every v4 ∈ V4 and v5 ∈ V5, a contradiction. So either x1 has a neighbor
in V3 ∪ V4 ∪ V5, or x3 has a neighbor in V1 ∪ V4 ∪ V5.

Suppose first that x1 is anticomplete to V3, and x3 is anticomplete to V1. From the symmetry,
we may assume that there exists v5 ∈ V5, adjacent to at least one of x1, x3. If x3 is adjacent to v5,
and x1 is non-adjacent to V5, then b3-a3-x3-v5-a1-x1 is a path in G. If x1 is adjacent to v5, and x3 is
non-adjacent to v5, then, since both x1 and x3 are minor, x1-v5-b1-v2-a3-x3 is a path in G for every
v2 ∈ B2(x3), and x1-v5-v4-b3-v2-x3 is a path in G for every v4 ∈ V4 and v2 ∈ A2(x3). Finally, if x1

and x3 are both adjacent to v5, then since x1 and x3 are both minor, b′3-v2-a′3-x3-v5-x1 is a path in
G for every v2 ∈ V2. We get a contradiction in all cases, and so we may assume that x1 is complete
to V3.

Since x1 is minor, it follows that x1 is anticomplete to V2 ∪ V4 ∪ V5. Recall that x3 is either a
path vertex for V3 and is anticomplete to V1 ∪ V5, or an antipath vertex for V3 and is anticomplete
to V2 ∪ V4. If v3 is anticomplete to V1 ∪ V5, then choosing a′1 ∈ A1(x1) and b′1 ∈ B1(x1) non-adjacent
(such a′1 and b′1 exist by 3.1 and 3.2.2), and v5 ∈ V5, we get that b′1-v5-a′1-x1-a3-x3 is a path in G, a
contradiction. So x3 is an antipath vertex, and x3 is anticomplete to V2∪V4; and since x3 6∈ X1∪X5,
we deduce that x3 is complete to at least, and therefore exactly, one of V1 and V5. If x3 is complete
to V1, then, since both x1 and x3 are minor, x1-b3-v4-v5-b1-x3 is a path in G for every v4 ∈ V4 and
v5 ∈ V5. If x3 is complete to V5, then, since x3 is minor, x3-v5-b1-v2-b3-x1 is a path in G for every
v5 ∈ V5 and v2 ∈ V2; in both cases a contradiction. This proves (7).

(8) If x1 ∈ X1 is minor, and x2 ∈ X2 is intermediate, then x1 is anticomplete to V3 ∪V4 ∪V5 ∪{x2},
and complete to B2(v2).

Since x2 ∈ X2 is intermediate, by (4) x2 is complete to V4 ∪ V5, and anticomplete to V1 ∪ V3.
By 3.1 and 3.2 there exist a1 ∈ A1(x1) and b1 ∈ B1(x1) adjacent to each other, and a′1 ∈ A1(x1) and
b′1 ∈ B1(x1) non-adjacent to each other. Let b2 ∈ B2(x2).

Assume first that x1 is adjacent to x2. If x1 is anticomplete to V3 ∪ V4, then b1-a1-x1-x2-v4-v3 is
a path in G for every v3 ∈ V3 and v4 ∈ V4. So x1 has neighbors in at least, and therefore exactly,
one of V3, V4. Consequently, by (2), x1 is an antipath vertex and x1 is anticomplete to V2 ∪ V5. If
x1 is anticomplete to V4, then b′1-b2-a′1-x1-x2-v4 is a path in G for every v4 ∈ V4, a contradiction;
therefore x1 has a neighbor in V4 and is anticomplete to V3. But now x1-x2-v5-b1-b2-v3 is a path in
G for every v3 ∈ V3 and v5 ∈ V5. This proves that x1 is non-adjacent to x2.
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Since x1-a1-b2-v3-v4-x2 is not a path in G for any v3 ∈ V3, v4 ∈ V4, it follows that x1 is complete
to at least, and therefore exactly, one of B2(x2), V3, V4. If x1 is complete to V4, then b′1-b2-a′1-x1-v4-x2

is a path in G for every v4 ∈ V4; and if x1 is complete to V3, then b1-a1-x1-v3-v4-x2 is a path in G for
every v3 ∈ V3 and v4 ∈ V4, in both cases a contradiction. This proves that x1 is complete to B2(x2).
Since x1 is minor, it follows that x1 is anticomplete to V3 ∪ V4 ∪ V5, and (8) follows.

(9) If x1 ∈ X1 is minor and x3 ∈ X3 is intermediate, then x1 is anticomplete to V4 ∪ V5, and
either

• x1 is anticomplete to V3 and complete to V2 ∪ {x3}, or

• x1 is anticomplete to V2 ∪ {x3}, and complete to V3.

Since x3 ∈ X3 is intermediate, by (4) x3 is complete to V1∪V5 and anticomplete to V2∪V5. Assume
first that x1 is adjacent to x3. Suppose that x1 is an antipath vertex for V1; and let p ∈ B1(x1) and
q, r ∈ A1(x1) such that p-q-r is a path in Gc. Since x1 is minor, it follows that x1 is anticomplete to
V2 ∪ V4. But now r-q-p-x1-v2-x3 is a path in Gc for every v2 ∈ V2, a contradiction. This proves that
x1 is a path vertex for V1, and therefore, since x1 is minor, x1 is anticomplete to V3 ∪ V4. If x1 has
a non-neighbor v2 ∈ V2, then x1-x3-b1-v2-b3-v4 is a path in G for every b1 ∈ B1(x1), b3 ∈ B3(x3) and
v4 ∈ V4, a contradiction; so x1 is complete to V2. Since x1 is minor, it is anticomplete to V5, and the
first outcome of (9) holds.

We may therefore assume that x1 is non-adjacent to x3. We may assume that x1 is anticomplete
to V3, for otherwise, since x1 is minor and by (3), the second outcome of (9) holds. Now, if x1 has a
non-neighbor v4 ∈ V4, then choosing a′3 ∈ A3(x3) and b′3 ∈ B3(x3) non-adjacent (by 3.1 and 3.2.2),
and a1 ∈ A1(x1), we get that b′3-v4-a′3-x3-a1-x1 is a path in G, a contradiction. So x1 is complete to
V4. Since x1 is minor, x1 is anticomplete to V2 ∪ V3 ∪ V5. Let b1 ∈ B1(x1), b3 ∈ B3(x3), v2 ∈ V2 and
v4 ∈ V4. Then x1-v4-b3-v2-b1-x3 is a path in G, again a contradiction. This proves (9).

By (6) and taking complements if necessary, since Xi 6= ∅ for every i ∈ {1, . . . , 5}, we may as-
sume that at least two of the sets X1, . . . , X5 contain minor vertices. By (7), it follows that there
are exactly two such sets, and we may assume that x1 ∈ X1 and x2 ∈ X2 are minor, and none of
X3, X4, X5 contain minor vertices.

(10) There are no intermediate vertices in X3 ∪X5.

From symmetry, it is enough to prove that no vertex of X3 is intermediate. Suppose x3 ∈ X3

is intermediate. By (8) applied with all indices shifted by one, we deduce that x2 is complete to
B3(x3), and anticomplete to V1 ∪ V4 ∪ V5 ∪ {x3}. By 3.1 and 3.2.2 there exist a1 ∈ A1(x1) and
b1 ∈ B1(x1) non-adjacent to each other. Let b3 ∈ B3(x3), and vi ∈ Vi for i = 4, 5.

Assume first that x1 is adjacent to x3. Then, by (9), x1 is complete to V2 and anticomplete to
V3∪V4∪V5. Now, if x1 adjacent to x2, then b1-x3-x1-x2-b3-v4 is a path in G, and if x1 is non-adjacent
to x2, then x1-x3-v5-v4-b3-x2 is a path in G; in both cases a contradiction. This proves that x1 is
non-adjacent to x3.

Consequently, by (9), x1 is complete to V3, and anticomplete to V2 ∪ V4 ∪ V5. Now, if x1 is
non-adjacent to x2, then b1-v5-a1-x1-b3-x2 is a path in G; and if x1 is adjacent to x2, then choos-
ing a2 ∈ A2(x2), we get that x1-x2-a2-b1-v5-v4 is a path in G; in both cases a contradiction. This

10



proves (10).

Using symmetry, it follows from (7) applied in Gc and (10) that every vertex of X3 ∪ X5 is ma-
jor, every vertex of X1 ∪X2 is minor, and every vertex of X4 is intermediate. Thus the symmetry
between G and Gc is restored. For i ∈ {3, 4, 5}, let xi ∈ Xi.

(11) x4 is non-adjacent to both x1, x2; and x1 is adjacent to x2.

By (9), exchanging V3 and V4, x1 is anticomplete to V2 ∪ V3; and similarly x2 is anticomplete to
V1 ∪ V5. By 3.1 and 3.2.2, there exist a1 ∈ A1(x1) and b1 ∈ B1(x1) non-adjacent to each other. For
i ∈ {2, 4}, let bi ∈ Bi(xi).

Suppose x1 is adjacent to x2. Assume that x2 has a neighbor v3 ∈ V3. Then by (2) x2 is a path
vertex for V2, and so there exist p, q, r ∈ V2 such that x2-p-q-r is a path in G. If x1 has a non-neighbor
v5 ∈ V5, then b1-v5-a1-x1-x2-v3 is a path in G, and if x1 is complete to V5, then r-q-p-x2-x1-v5 is a
path in G for every v5 ∈ V5; in both cases a contradiction. So x2 is anticomplete to V3, and similarly
x1 is anticomplete to V5. Now by (9), x4 is non-adjacent to both x1, x2, and (11) follows. So we may
assume that x1 is non-adjacent to x2.

Suppose that x4 is adjacent to both x1 and x2. By (9) and symmetry, this implies that x2 is
complete to V3 and anticomplete to V1 ∪ V4 ∪ V5, and x1 is complete to V5 and anticomplete to
V2 ∪ V3 ∪ V4. Now x1-v5-b1-b2-v3-x2 is a path in G for every v3 ∈ V3 and v5 ∈ V5, a contradiction.
This proves that x4 is non-adjacent to at least one of x1, x2.

From the symmetry, we may assume that x4 is non-adjacent to x1. By (9) and symmetry, x1 is
complete to V4 and anticomplete to V2 ∪ V3 ∪ V5. Suppose x4 is adjacent to x2. Then by (9) and
symmetry, x2 is complete to V3 and anticomplete to V1 ∪ V4 ∪ V5. But now b1-a1-x1-b4-v3-x2 is a
path in G for every v3 ∈ V3, a contradiction. So x4 is non-adjacent to x2. By (9) and symmetry, x2

is complete to V4 and anticomplete to V1 ∪ V3 ∪ V5. But now b1-b2-a1-x1-b4-x2 is a path in G, again
a contradiction. This proves (11).

By (11) and (9), x1 and x2 are complete to V4, x1 is anticomplete to V2 ∪ V3 ∪ V5, and x2 is
anticomplete to V1 ∪ V3 ∪ V5. Applying (11) and (9) in Gc, we deduce that x4 is adjacent to both x3

and x5, and x3 is non-adjacent to x5; x3 and x5 are anti-complete to V4, x3 is complete to V1∪V2∪V5,
and x5 is complete to V1 ∪ V2 ∪ V3.

(12) x3 is adjacent to x1.

Suppose not. By 3.1 and 3.2.2, there exist a1 ∈ A1(x1) and b1 ∈ B1(x1) non-adjacent to each
other. Let b3 ∈ B3(x3) and v4 ∈ V4. Then b1-x3-a1-x1-v4-b3 is a path in G, a contradiction.

By (12) applied in Gc, it follows that x2 is non-adjacent to x3. Since x3 is mixed on V2 ∪ V4,
(2) implies that x3 is a path vertex. Let p ∈ A3(x3) and q, r ∈ B3(x3) such that p-q-r is a path in
G. Now r-q-p-x3-x1-x2 is a path in G, contrary to the fact that G is pure. This proves 2.5.
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4 Pristine graphs

Let C0 be the class of pristine graphs. First we define a few pristine graphs that will be important
in the proof of 1.10.

• Let S0 be the three-edge path.

• Let S1 = C7.

• Let S1
2 be the graph with vertex set {a1, a2, a3, a4, a5, a6, b} such that a1-a2- . . . -a6-a1 is a cycle,

b is adjacent to a3, and there are no other edges in S1
2 .

• Let S2
2 be the graph with vertex set {a1, a2, a3, a4, a5, a6, b} such that a1-a2- . . . -a6-a1 is a cycle,

b is adjacent to a2 and to a3, and there are no other edges in S2
2 .

• Let S3 be the graph with vertex set {a1, a2, a3, a4, a5, b, c} such that a1-a2- . . . -a5-a1 is a cycle,
b is adjacent to a3 and c, and there are no other edges in S3.

• Let S4 be the graph with vertex set {a1, a2, a3, a4, a5, b, c, d} such that a1-a2- . . . -a5-a1 is a
cycle, the pairs a1b, a5b, a3c, a4d and bc are adjacent, and all other pairs are non-adjacent.

• Let S5 be the graph with vertex set {a1, a2, a3, a4, a5, b} such that a1-a2- . . . -a5-a1 is a cycle, b
is adjacent to a2, and there are no other edges in S5.

• Let S6 = C5.

It is easy to check that all the graphs above are pristine. We need the following subclasses of C0.

• Let C1 be the class of S1-free graphs in C0.

• Let C2 be the class of {S1
2 , S

2
2}-free graphs in C1.

• Let C3 be the class of S3-free graphs in C2.

• Let C4 be the class of S4-free graphs in C3.

• Let C5 be the class of S5-free graphs in C4.

• Let C6 be the class of S6-free graphs in C5.

In the next section, we will prove a number of structural results concerning pristine graphs, namely
5.1, 5.2, 5.3, 5.4, 5.5, and 5.6. Let us now prove 1.10, that we restate, assuming these results.

4.1 There exists α > 1 such that every pristine graph is α-narrow.

Proof. For i ∈ {1, 3, 4, 5, 6}, let S′i be the graph obtained from Si by substituting S0 for a1. For
i ∈ {1, 2} let Si2

′ be the graph obtained from Si2 by substituting S0 for a1. For i ∈ {0, . . . , 6} we will
show that:

• (Pi) There exists αi ≥ 1 such that all graphs in Ci are αi-narrow.

For i ∈ {0, . . . , 5} we will show that:
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• (Qi) If G ∈ Ci contains S′i+1 (or a member of {S1
2
′
, S2

2
′} in the case when i = 1), then G admits

a Ci-quasi-homogeneous set decomposition.

The validity of (Q5), . . ., (Q0) is established in 5.1, 5.2, 5.3, 5.4, 5.5, and 5.6, respectively.

(1) For i ∈ {1, . . . , 5}, if (Pi) holds, then (Pi−1) holds.

We need to show that there exists αi−1 ≥ 1 such that every graph in Ci−1 is αi−1-narrow. Since
by (Pi) there exists αi such that every graph in Ci is αi-narrow, it follows from 1.7 that Si has
the Erdős-Hajnal property for Ci−1 (and {S1

2 , S
2
2} has the Erdős-Hajnal property for C1, in the case

when i = 2). Since all S0-free graphs are perfect and therefore 1-narrow, 1.7 implies that S0 has
the Erdős-Hajnal property for class of all graphs, and in particular for Ci−1. Now by 2.2, S′i has
the Erdős-Hajnal property for Ci−1 (and {S1

2
′
, S2

2
′} has the Erdős-Hajnal property for C1, in the case

when i = 2). Therefore, by 1.11 that there exists αi−1 ≥ 1 such that all {S′i}-free graphs in Ci−1

(and {S1
2
′
, S2

2
′}-free graphs in C1 in the case when i = 2) are αi−1-narrow.

Let G be a graph in Ci−1 that is not αi−1-narrow with |V (G)| minimum. By (Qi−1), G admits
a Ci−1-quasi-homogeneous set decomposition. But then G is αi−1-narrow by 2.3 and the minimality
of |V (G)|, a contradiction. This proves (1).

Next we observe that 4.1 follows immediately from from (P0). By (1), in order to prove 4.1, it
is enough to prove that (P6) holds; and since all S6-free graphs in C5 are perfect by 1.6, (P6) follows.
This proves 4.1.

We conclude this section with a few technical lemmas about pristine graphs.

4.2 Let G ∈ C0, and let X1, X2 ∈ V (G) be disjoint anticonnected sets complete to each other. Then
no vertex of V (G) \ (X1 ∪X2) is mixed on both X1 and X2.

Proof. Suppose v ∈ V (G) \ (X1 ∪X2) is mixed on both X1 and X2. Let ai, bi ∈ Xi be such that v
is adjacent to ai and non-adjacent to bi, and ai is non-adjacent to bi (such ai, bi exist by 3.2.2). Now
a1-b1-v-b2-a2 is a four-edge path in Gc, a contradiction. This proves 4.2.

Let G be a graph, H an induced subgraph of G, and h ∈ V (H). Let X ⊆ {h} ∪ (V (G) \ V (H))
be such that H ′ = G|(X ∪ (V (H) \ {h})) is the graph obtained from H by substituting G|X for h.
(This implies that G|(V (H) \ {h} ∪ {x}) is isomorphic to H for every x ∈ X.) In this case we say
that H ′ is obtained from H by expanding h to X. An (H,h)-structure in G is a set X such that

• H ′ = G|(X ∪ (V (H) \ {h})) is obtained from H by expanding h to X,

• X is both connected and anticonnected in G, and

• |X| ≥ 4.

An (H,h)-structure X is maximal if X is maximal (under subset inclusion) subject to X being an
(H,h)-structure.

4.3 Let G ∈ C0, and let a-b-c-d be a path in G, say P . Let X ⊆ V (G) \ {a, b, d} and let X be a
(P, c)-structure in G. Let v ∈ V (G) \ (X ∪ {a, b, d}) be mixed on X. Then either
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1. v is complete to {b, d} and non-adjacent to a, or

2. v is anticomplete to {a, b, d}.

Proof. Since X and {b, d} are anticonnected subsets of V (G) complete to each other, 4.2 implies
that v is either complete or anticomplete to {b, d}. If v is complete to {b, d}, then since b-d-a-x-v is
not a path in Gc for any x ∈ X \ N(v), it follows that v is non-adjacent to a, and 4.3.1 holds. So
we may assume that v is anticomplete to {b, d}, and adjacent to a. Let x, y ∈ X as in 3.2.1. Now
b-v-y-a-x is a path in Gc, a contradiction. This proves 4.3.

4.4 Let G ∈ C0, and let e-a-b-c-d be a path in G, say P . Let X ⊆ V (G) \ {e, a, b, d}, and let X be
a (P, c)-structure in G. Let v ∈ V (G) \ (X ∪ {e, a, b, d}) be mixed on X. If v is complete to {b, d},
then v is anticomplete to {e, a}.

Proof. By 4.3, v is non-adjacent to a. Let x ∈ X be adjacent to v. Now since b-e-x-a-v is not a
path in Gc, it follows that v is non-adjacent to e, and 4.4 holds. This proves 4.4.

4.5 Let G ∈ C0, and let a1-a2-a3-a4-a5-a1 be a cycle in G, say C. Let X ⊆ V (G) \ {a2, . . . , a5},
and let X be a (C, a1)-structure in G. Let v ∈ V (G) \ (X ∪ {a2, . . . , a5} be mixed on X. Then either

1. v is complete to {a2, a5} and anticomplete to {a3, a4}, or

2. v is anticomplete to {a2, . . . , a5}.

Proof. Apply 4.3 to a4-a5-a1-a2 and a3-a2-a1-a5. It follows that v is anticomplete to {a3, a4}, and
either complete or anticomplete to {a2, a5}. This proves 4.5.

4.6 Let G be a graph, H an induced subgraph of G, and h ∈ V (H). Let X be a maximal (H,h)-
structure in G. Let v ∈ V (G) \ (X ∪ (V (H) \ {h})) be such that every u ∈ V (H) \ {h} is adjacent to
v if and only if u is adjacent to h. Then v is not mixed on H.

Proof. Suppose v is mixed on X. Then X ∪ {v} is both connected and anticonnected, and so
X ∪ {v} is an (H,h)-structure in G, contrary to the maximality of X. This proves 4.6.

5 Decomposing pristine graphs

In this section we prove a number of structural results for pristine graphs. We remind the reader
that for a hereditary class of graphs C, if a graph G ∈ C is not prime, then G admits a homogeneous
set decomposition, and therefore C-quasi-homogeneous set decomposition, and so the results of this
section are sufficient for the proof of 4.1.

5.1 If G ∈ C5 contains S′6, then G is not prime.

Proof. Since G contains S′6, there exists a maximal (S6, a1)-structure X in G. We may assume
that G is prime, and so X is not a homogeneous set in G. Consequently, there exists v ∈ V (G) \
(X ∪ {a2, . . . , a5}) such that v is mixed on X. Apply 4.5 to C. By 4.6 and the maximality of X,
4.5.1 does not hold, and so 4.5.2 holds. But then G|{y, a2, . . . , a5, v} is isomorphic to S5 for every
y ∈ X ∩N(v), contrary to the fact that G ∈ C5. This proves 5.1.
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5.2 If G ∈ C4 contains S′5, then G admits a C4-quasi-homogeneous set decomposition.

Proof. Since G contains S′5, there exists a maximal (S5, a1)-structure X in G. Let V be the set of
vertices of V (G) \X that are mixed on X. Then V ⊆ V (G) \ (X ∪ {a2, . . . , a5, b}). We may assume
that G is prime, and so X is not a homogeneous set in G. Consequently, V 6= ∅.

(1) V is anticomplete to {a2, . . . , a5, b}.

Let v ∈ V . By 4.5 applied to a1-a2-a3-a4-a5-a1, it follows that v is anticomplete to {a3, a4} and
either complete or anticomplete to {a2, a5}. By 4.3 applied to b-a2-a1-a5, we deduce that v is non-
adjacent to b. By 4.6 and the maximality of X, v is not complete to {a2, a5}, and so (1) follows.

Let C be the set of vertices complete to X, and let A = V (G) \ (X ∪ C). We will show that
(X,A,C) is a C4-quasi-homogeneous set in G. Let A′ be the set of vertices in A that are anticom-
plete to X. Then A = A′ ∪ V .

(2) If x ∈ X and s, t ∈ A are adjacent, then x is not mixed on {s, t}. Consequently, V is anti-
complete to A′.

Suppose x is adjacent to s and non-adjacent to t. Since X is anticomplete to A′, it follows that
s ∈ V . By (1), s is anticomplete to {a2, . . . , a5, b}. Since G|{a2, . . . , a5, x, s, t} is not isomorphic to
S3 (because G ∈ C4), it follows that t has a neighbor in {a2, . . . , a5}. Therefore, by (1), t 6∈ V , and
thus t ∈ A′. Let x′, y′ ∈ X be as in 3.2.1 (applied with v = s). Since x′-t-y′-s-a2 and x′-t-y′-s-a5

are not paths in Gc, it follows that t is anticomplete to {a2, a5}, and therefore t has a neighbor in
{a3, a4}.

If t is adjacent to both a3 and a4, then t is non-adjacent to b (since t-a2-a4-b-a3 is not a path in
Gc), and so G|{a2, . . . , a5, x, s, t, b} is isomorphic to S4, a contradiction. So t is adjacent to exactly
one of {a3, a4}. Let x′′, y′′ ∈ X be as in 3.2.2 (applied with v = s). But now if t is adjacent to a4, then
G|{x′′, a2, a3, a4, t, s, y

′′} is isomorphic to S1
2 , and if t is adjacent to a3 then G|{x′′, a5, a4, a3, t, s, y

′′}
is isomorphic to S1

2 ; both contrary to the fact that G ∈ C4. This proves (2).

(3) There do not exist non-adjacent c1, c2 ∈ C and v ∈ V such that v is mixed on {c1, c2}.

(3) follows immediately from 4.2.

Let G′ be obtained from G \ X by adding a new vertex x complete to C and anticomplete to
A.

(4) G′ ∈ C4.

Let F be the set of graphs consisting of the six-edge path, the complement of the four-edge path,
S1, S

1
2 , S

2
2 , S3, and S4. Assume that G′ has an induced subgraph B, isomorphic to a member of F .

Since B is not an induced subgraph of G, it follows that x ∈ V (B), and V (B)∩ V 6= ∅. Let b be the
number of components of B|V .
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Suppose first that b = 1. Let v ∈ V (B)∩V , and let y ∈ X be non-adjacent to v. By (2), and since
X is anticomplete to A′, it follows that y is anticomplete to V (B)∩A, and so G|((V (B)\{x})∪{y})
is an induced subgraph of G isomorphic to B, contrary to the fact that G ∈ C4. This proves that
b ≥ 2.

Since by (2) A′ is anticomplete to V , it follows that no component of B|A meets both V and A′.
Since for every F ∈ F and w ∈ V (F ), the graph F \ ({w} ∪ NF (w)) has at most two components,
we deduce that B|A has at most two components, and therefore b = 2 and V (B)∩A′ = ∅. Checking
the graphs of F one by one, we deduce that B is isomorphic either to the six-edge path, S1

2 , S3,
or S4, and NB(x) is not a clique. The last implies that there exists a component C ′ of Bc|C with
|V (C ′)| > 1. Since no member of F has a homogeneous set, there exists a vertex v ∈ V (B) \C ′ that
is mixed on C ′. Then v 6= x, and v 6∈ C \ C ′, and therefore v ∈ V . By 3.2.2, we get a contradiction
to (3). This proves (4).

(5) If P ′ is a perfect induced subgraph of G′ with x ∈ V (P ′), and Q is a perfect induced subgraph of
G|X, then P = G|((V (P ′) ∪ V (Q)) \ {x}) is perfect.

Suppose P is not perfect. Since P is an induced subgraph of G, and G ∈ C4, it follows that P
contains an induced cycle of length five, say D, with vertices d1-d2-d3-d4-d5 in order.

We claim that some vertex of V (D)∩X is adjacent to a vertex of V (D)∩V . Suppose not. Since
Q contains no induced cycle of length five, V (D) \X 6= ∅. Since V (D)∩X is not a homogeneous set
in D, it follows that |V (D)∩X| = 1. But now P ′|((V (D)\X)∪{x}) is a cycle of length five, contrary
to the fact that P ′ is perfect. This proves the claim that some vertex of V (D) ∩X is adjacent to a
vertex of V (D) ∩ V .

We may assume that d1 ∈ X and d2 ∈ V . By (2), d3 6∈ A. Since d3 is non-adjacent to d1, it
follows that d3 6∈ C, and therefore d3 ∈ X. If d4 is in X, then, by (1), a2-d2-d4-d1-d3 is a path in Gc,
a contradiction; thus d4 6∈ X. Since d4 is not adjacent to d1, it follows that d4 6∈ C, and so d4 ∈ A.
Similarly, d5 ∈ A. But now d1 is mixed on {d4, d5}, contrary to (2). This proves (5).

Now (4) and (5) imply that (X,A,C) is a C4-quasi-homogeneous set in G. This proves 5.2.

5.3 If G ∈ C3 contains S′4, then G is not prime.

Proof. Since G contains S′4, there exists a maximal (S4, a1)-structure X in G. We may as-
sume that G is prime, and so X is not a homogeneous set in G. Consequently, there exists
v ∈ V (G) \ (X ∪ {a2, . . . , a5, b, c, d}) such that v is mixed on X. By 4.5 applied to a1-a2-a3-a4-a5-a1

and a1-a2-a3-c-b-a1, it follows that v is anticomplete to {a3, a4, c} and either complete or anticomplete
to {a2, a5, b}. By 3.2.2 there exist x ∈ N(v) ∩X and y ∈ X \N(v) non-adjacent to each other.

Suppose first that v is complete to {a2, a5, b}. Since G ∈ C3, it follows that G|{b, c, a3, a4, d, v, x}
is not isomorphic to S2

2 , and therefore v is non-adjacent to d, contrary to 4.6. This proves that v is
anticomplete to {a2, a5, b}. Since G ∈ C3, it follows that G|{a2, . . . , a5, y, d, v} is not isomorphic to
S3, and so v is non-adjacent to d. Now v-x-b-c-a3-a4-d is a path of length six in G, a contradiction.
This proves 5.3.

5.4 If G ∈ C2 contains S′3, then G is not prime.
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Proof. Since G contains S′3, there exists a maximal (S3, a1)-structure X in G. We may assume
that G is prime, and so X is not a homogeneous set in G. Consequently, there exists v ∈ V (G) \
(X ∪ {a2, . . . , a5, b, c}) such that v is mixed on X. By 4.5, v is anticomplete to {a3, a4} and either
complete or anticomplete to {a2, a5}. Let x ∈ X ∩N(v).

Suppose first that v is complete to {a2, a5}. By 4.4 applied to b-a3-a2-a1-a5 we deduce that v is
non-adjacent to b. Now 4.6 implies that v is adjacent to c, and G|{a3, a4, a5, v, c, b, x} is isomorphic
to S2

2 , contrary to the fact that G ∈ C2. This proves that v is anticomplete to {a2, a5}.
If v is non-adjacent to b, then G|{v, x, a5, a4, a3, b, c} is either a path of length six, or a cycle of

length seven in G, in both cases a contradiction. So v is adjacent to b. But now G|{v, x, a5, a4, a3, b, c}
is isomorphic to S1

2 if v is non-adjacent to c, and to S2
2 if v is adjacent to c, contrary to the fact that

G ∈ C2. This proves 5.4.

5.5 If G ∈ C1 contains a member of {S1
2
′
, S2

2
′}, then G is not prime.

Proof. Since G contains a member of {S1
2
′
, S2

2
′}, there exists either a maximal (S1

2 , a1) or a maximal
(S2

2 , a1) structure in G. Denote it by X. We may assume that G is prime, and so X is not a
homogeneous set in G. Consequently, there exists v ∈ V (G) \ (X ∪ {a2, . . . , a6, b}) such that v is
mixed on X.

Applying 4.3 to the paths a3-a2-a1-a6 and a5-a6-a1-a2, we deduce that either 4.3.1 holds for both
paths, or 4.3.2 holds for both paths.

Assume first that 4.3.1 holds. Then v is complete to {a2, a6} and anticomplete to {a3, a5}. Now
applying 4.4 to a4-a3-a2-a1-a6, we deduce that v is non-adjacent to a4. We claim that v is non-
adjacent to b. This follows applying 4.3 to b-a2-a1-a6 if b is adjacent to a2 (and X is an (S2

2 , a1)
structure), and applying 4.4 to b-a3-a2-a1-a6 if b is non-adjacent to a2 (and X is an (S1

2 , a1) structure).
But now we get a contradiction to 4.6. This proves that 4.3.1 does not hold, and therefore 4.3.2
holds.

Consequently, v is anticomplete to {a2, a3, a5, a6}. Let x, y ∈ X be as in 3.2.2. If v is non-
adjacent to a4, then either b-a3-a4-a5-a6-x-v is a path of length six in G (if v is non-adjacent to b),
or b-a3-a4-a5-a6-x-v-b is a cycle of length seven in G (if v is adjacent to b); in both cases contrary
to the fact that G ∈ C1. This proves that v is adjacent to a4. If v is non-adjacent to b, then
b-a3-a4-v-x-a6-y is a path of length six in G, a contradiction; thus v is adjacent to b. This implies
that b is non-adjacent to a2, (for otherwise we get a contradiction applying 4.3 to a6-a1-a2-b), and so
X is an (S1

2 , a1)-structure. Now b-v-a4-a5-a6-y-a2 is a path of length six in G, again a contradiction.
This proves 5.5.

5.6 If G ∈ C0 contains S′1, then G is not prime.

Proof. Since G contains S′1, there exists a maximal (S1, a1)-structure X in G. We may assume that
G is prime, and so X is not a homogeneous set in G. Consequently, there exists v ∈ V (G) \ (X ∪
{a2, . . . , a7}) such that v is mixed on X. Applying 4.3 to the paths a3-a2-a1-a7 and a6-a7-a1-a2, we
deduce that either 4.3.1 holds for both paths, or 4.3.2 holds for both paths.

Assume first that 4.3.1 holds. Then v is complete to {a2, a7} and anticomplete to {a3, a6}. Now
applying 4.4 to a4-a3-a2-a1-a7 and a5-a6-a7-a1-a2, we deduce that v is anticomplete to {a4, a5},
contrary to 4.6. This proves that 4.3.1 does not hold, and therefore 4.3.2 holds.
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It follows that v is anticomplete to {a6, a7, a2, a3}. Let x ∈ X be adjacent to v, and y ∈ X non-
adjacent to v. If v is adjacent to a5, then v-a5-a6-a7-y-a2-a3 is a path of length six in G, contrary to
the fact that G ∈ C0. But now, by symmetry, v is anticomplete to {a4, a5}, and v-x-a2-a3-a4-a5-a6

is a path of length six in G, again a contradiction. This proves 5.6.

6 The proof of 1.11

In this section we prove 1.11. This is a result of Fox [8], but we include a proof for completeness.
Let us start by restating the theorem:

6.1 Let H be a graph for which there exists a constant δ(H) > 0 such for every H-free graph G
either ω(G) ≥ |V (G)|δ(H) or α(G) ≥ |V (G)|δ(H). Then every H-free graph G is 3

δ(H) -narrow.

Proof. The proof is by induction on |V (G)|. Let G be an H-free graph, and let f : V (G) → [0, 1]
be a good function. Write t = 1

δ(H) . We need to show that:

(1) Σv∈V (G)f(v)3t ≤ 1.

For every integer i ≥ 0 define:

Vi = {v ∈ V (G) :
1
2i
≤ f(v) <

1
2i−1
}.

Let Gi = G|Vi, and let
V + = {v ∈ V (G) : f(v) > 0}.

Since (1) clearly holds if f(v) = 1 for some v ∈ V (G), we may henceforth assume that V + =
⋃
i≥1 Vi.

(2) |Vi| ≤ 2it.

Let i ≥ 1 be an integer. Recall that f(v) ≥ 1
2i

for every v ∈ Vi. Since f is good, this implies
that if P is a perfect induced subgraph of Gi, then |V (P )| ≤ 2i. In particular, both α(Gi) ≤ 2i

and ω(Gi) ≤ 2i. On the other hand, since Gi is H-free, it follows that either α(Gi) ≥ |Vi|
1
t or

ω(Gi) ≥ |Vi|
1
t . Thus

2i ≥ |Vi|
1
t ,

and therefore |Vi| ≤ 2it. This proves (2).

(3) If V1 = ∅, then the theorem holds.

Since V1 = ∅, it follows that

Σv∈V (G)f(v)3t = Σv∈V +f(v)3t = Σi≥2Σv∈Vif(v)3t.

Since for i ≥ 1, f(v) < 1
2i−1 for every v ∈ Vi, it follows that

Σi≥2Σv∈Vif(v)3t ≤ Σi≥2Σv∈Vi
1

23t(i−1)
.
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By (2), for fixed i ≥ 2,

Σv∈Vi
1

23t(i−1)
≤ 2it

23t(i−1)
=

23t

22it
.

Now, exchanging variables,

Σi≥2
23t

22it
= Σj≥0

23t

22(j+2)t
= 2−tΣj≥0(

1
22t

)j =
2t

22t − 1
≤ 1.

This proves that
Σv∈V (G)f(v)3t ≤ 1,

and therefore proves (3).

By (3) we may assume that for some v0 ∈ V (G), f(v0) ≥ 1
2 . Let N = N(v0) and M = V (G) \

(N ∪ {v0}). Since if P is a perfect induced subgraph of G|N , then G|(V (P ) ∪ {v0}) is perfect, it
follows that

Σv∈V (P )f(v) ≤ 1− f(v0)

for every perfect induced subgraph P of of G|N . Consequently, g(v) = f(v)
1−f(v0) is a good function on

G|N . Inductively, this implies that
Σv∈Ng(v)3t ≤ 1,

and thus
Σv∈Nf(v)3t ≤ (1− f(v0))3t.

Similarly,
Σv∈Mf(v)3t ≤ (1− f(v0))3t.

Therefore,
Σv∈V (G)f(v)3t ≤ f(v0)3t + 2(1− f(v0))3t.

Let q = 3t and let
F (x) = xq + 2(1− x)q

Then F (x) is convex for x ∈ [12 , 1]. Consequently, F (x) ≤ max(F (1
2), F (1)) for every x ∈ [12 , 1].

Thus F (x) ≤ max( 3
2q , 1), and since q > 2, it follows that F (x) ≤ 1 for all x ∈ [12 , 1]. Now, setting

x = f(v0), we obtain (1). This proves 6.1.
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