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Abstract

Let us say two (simple) graphs G, G’ are degree-equivalent if they have the same vertex set, and for
every vertex, its degrees in G and in G’ are equal. In the early 1980’s, S. B. Rao made the conjecture
that in any infinite set of graphs, there exist two of them, say G and H, such that H is isomorphic
to an induced subgraph of some graph that is degree-equivalent to G. We prove this conjecture.



1 Introduction

Neil Robertson and the second author proved in [7] that the class of all graphs forms a “well-quasi-

order” under minor containment, that is, that in every infinite set of graphs, one of its members is
a minor of another. The same is not true for induced subgraph containment, but a conjecture of S.
B. Rao proposed a way to tweak the latter containment relation to make it a well-quasi-order; and
in this paper we prove Rao’s conjecture.

Let us be more precise. All graphs and digraphs in this paper are finite and without loops or
parallel edges, and digraphs do not have directed cycles of length two. If G is a graph and X C V(G),
we denote by G|X the subgraph of G induced on X (that is, the subgraph with vertex set X and
edge set all edges of G with both ends in X); and we say that G|X is an induced subgraph of G. Let
us say two graphs G, G’ are degree-equivalent if they have the same vertex set, and for every vertex,
its degrees in G and in G’ are equal; and H is Rao-contained in G if H is isomorphic to an induced
subgraph of some graph that is degree-equivalent to G. In the early 1980’s, S. B. Rao made the
conjecture, the main theorem of this paper, that:

1.1 In any infinite set of graphs, there exist two of them, say G and H, such that H is Rao-contained
in G.

A quasi-order ) consists of a class F(Q) and a transitive reflexive relation which we denote by
< or <g; and it is a well-quasi-order or wqo if for every infinite sequence ¢; (i = 1,2...) of elements
of E(Q) there exist j > ¢ > 1 such that ¢; <g ¢j. Rao-containment is transitive (this is an easy
exercise), and so the following is a reformulation of 1.1:

1.2 The class of all graphs, ordered by Rao-containment, is a wqo.

The proof falls into three main parts, and let us sketch them here. A “split graph” is a graph
such that there is a partition of its vertex set into a stable set and a clique. For Rao-containment of
split graphs, we will require the vertex set injection to preserve this partition. A “k-rooted graph”
means (roughly) a graph with & of its vertices designated as roots. For Rao-containment of k-rooted
graphs, we require the vertex set injection to respect the roots. (This will all be said more precisely
later.) We show three things:

e For every graph H, if G is a graph that does not Rao-contain H, then V(G) can be partitioned
into two sets (except for a bounded number of vertices), the first inducing a split graph and the
second inducing a graph of bounded degree (or the complement of one), such that the edges
between these two sets are under control. This allows us to break G into two parts; but both
parts acquire a bounded number of roots, because we need to remember how to hook them
back together to form G. This is proved in 4.2.

e For all k, the k-rooted graphs of bounded degree (except for the roots) form a wqo under
Rao-containment. This is proved in 6.1

e For all k, the k-rooted split graphs also form a wqo under Rao-containment. This is proved in
7.2.

From these three statements, the truth of 1.2 follows in a few lines, and is given immediately after
7.2. Then the proof of 7.2 occupies the remainder of the paper.



2 Rao-containment in fixed position

We need to study the structure of the graphs that do not Rao-contain a fixed graph H. For there
to be a Rao-containment of H in G, there must be an injection of V(H) into V(G), and a graph
G’ degree-equivalent to G, such that the injection is an isomorphism between H and an induced
subgraph of G’. Thus, we need to understand the graphs G such that for every injection of V(H)
into V(@) there is no suitable choice of G’. But first, a much easier question. Suppose we are
given the injection; then when is it true that no suitable G’ exists? For this we can give a good
characterization, theorem 2.1 below; either G’ exists or there is an obvious reason why it does not

exist.
Let G be a graph. If X, Y C V are disjoint, we define s(X,Y") or sg(X,Y) to be

S deg(a) + S degly) - 1X||Y,

zeX yey

where deg(x) denotes the degree of z in G and deg(y) = |V (G)| — 1 — deg(y) is the degree of y in G,
the complement graph of G.
The main result of this section is the following.

2.1 Let G, H be graphs with V(H) C V(G). Then the following are equivalent:
e there is a graph G' degree-equivalent to G, such that G'|V(H) = H

e sg(XNV(H),YNV(H)) <sq(X,Y) for every choice of disjoint X,Y C V(G).

The proof needs several steps. We begin with the following. If G is a graph and X, Y are disjoint
subsets of V(G), we denote by E(X,Y) or Eg(X,Y) the set of edges of G with one end in X and
one end in Y.

2.2 Let G be a bipartite graph, and let (A, B) be a bipartition. For each vertex v let d(v) be an
integer. Then the following are equivalent:

o there exists F C E(G) such that every vertex v is incident with exactly d(v) members of F

> cad(u) =3 cpd(v), and for every X C A andY C B,

Y d(w)+ ) (deg(v) = d(v)) > |[Ec(X,Y))].

ueX veY

Proof. Suppose that F' satisfies the first statement. Then ), 4 d(u) = |F|, and also ), .z d(v) =
|F|, and so >, d(u) = > cpd(v). Let X € A and Y C B, and let there be p edges in F'
between X and Y. Since ),y d(u) is the total number of edges in F with an end in X, it
follows that ) .y d(u) > p. On the other hand, ) .y (deg(v) — d(v)) is the number of edges in
E(G) \ F with an end in Y, and there are |[Eg(X,Y)| — p such edges between X and Y and so
> vey (deg(v) —d(v)) > |Eg(X,Y)| —p. By adding, we deduce the second statement of the theorem.

For the converse, suppose the second statement of the theorem holds. For v € A, setting X = {v}
and Y = () implies that d(v) > 0, and for v € B, setting X = A and Y = B\ {v} implies that d(v) > 0.



Thus d(v) > 0 for all v € V(G). Direct every edge of G from A to B, and add two new vertices a, b
to G, where a is adjacent to every member of A and b is adjacent from every member of B, forming a
digraph H say. For each edge e of H let c(e) =1 if e € E(G), and let ¢(e) = d(v) if e is incident with
a or b and with one vertex v of G. Since c¢(e) > 0 for all e € E(H), the max-flow min-cut theorem
implies that one of the following cases holds:

e there exists Z C V(H) with a € Z and b ¢ Z, such that ) c(e) <> ,c4d(w) , where D is
the set of edges e of H with tail in Z and head in V(H) \ Z

e there is an integer-valued flow ¢ in H from a to b of total value ) ., d(u) such that 0 <
é(e) < c(e) for every edge e of H.

Suppose that Z is as in the first case, and let X = A\ Z and Y = B\ Z. Then

ddw)+ Y dw) + [E(ANXY)| =) ele) < D d(v)

ueX veEB\Y eeD vEB
and so
> d(u) +|E(A\X,Y)| = > d(v) <0.
ueX veY
Since

veY
substituting for |F(A \ X,Y)| yields

D d(u)+ ) dega(v) — |E(X,Y)| =Y d(v) <0

ueX veY veY

that is,
S d(w) + 3 (dega(v) — dw)) < [B(X, V)],
ueX veY
a contradiction. Consequently there is no Z as in the first case.
Thus the second case holds; let ¢ be as in the second case. It follows that ¢(e) = c(e) for every
edge e incident with a or b, and setting F' to be the set of edges e of G with ¢(e) = 1 therefore
satisfies the first statement of the theorem. This proves 2.2. |

If G is an (undirected) graph, an arc of G means an ordered pair (u,v) such that u,v € V(G)
are adjacent, and we call u its tail and v its head. Let A(G) denote the set of arcs of G; thus,
[A(G)] = 2[E(G)].

2.3 Let G be a graph and for every vertex v let d(v) be an integer. Then the following are equivalent:

o there exists F C A(G), such that for every vertex v € V(G), there are exactly d(v) members of
F with tail v and d(v) members with head v

¢ > iex @) + 30 ey (dega(y) — dy)) = |Ec(X,Y)| for every pair of disjoint subsets X,Y C
V(G).



Proof. Take two new vertices a,, b, for each vertex x of G, and let A = {a, : = € V(G)} and
B ={b,: x € V(G)}. Let H be the graph with vertex set AU B and edge set A(G), where for
each arc e = (z,y) € A(G), e is incident in H with a, and b,. Consequently (A, B) is a bipartition
of H. For each x € V(G), define d'(a,) = d'(b;) = d(x). Thus ), 4 d(u) = > ,cpd(v), since
d'(ay) = d'(by) for each v € V(G). Now the first statement of the theorem holds if and only if there
exists F' C F(H) such that every vertex v € V(H) is incident with exactly d’(v) members of F. By
2.2, this is true if and only if

Y du)+ ) (degr(v) —d'(v) > [En(X'Y)

ueX’ veY’
for all X’ C A and Y’ C B. By setting X' ={a, : x € XUZ}and Y' = {b,: y € Y UZ}, we see
that the latter statement is true if and only if

Y d@)+ Y (degaly) —d(y)) > |Ea(X,Y)| + |Ea(X UY, 2)| +2|D(Z)],
reEXUZ yeYUZ

for all choices of pairwise disjoint subsets X,Y,Z C V(G), where D(Z) denotes the set of edges of
G with both ends in Z. This can be rewritten as

Y d(@) + Y (degaly) —d(y)) = [Ec(X.Y)| + ) dega(z) — |Ea(X VY, Z)| - 2|D(Z)| = 0.
zeX yey zeZ

The last three terms sum to |Eg(W, Z)|, where W = V(G) \ (X UY U Z); and this is minimized
when Z = (). Consequently the condition holds for all choices of disjoint X,Y, Z, if and only if it
holds for all disjoint X,Y with Z = ; and so the condition is equivalent to the second statement of
the theorem. This proves 2.3. |

Let us say a graph G is constricted if for every two cycles Cp,Cy of G, both of odd length, the
subgraph G|(V(C1 U C2)) is connected. (Thus, either C, Cy share a vertex, or some vertex of C is
adjacent to some vertex of Cy.) For constricted graphs we can modify 2.3 as follows:

2.4 Let G be a constricted graph, and for every vertex v let d(v) be an integer, such that Zvev(G) d(v)
1s even. Then the following are equivalent:

e there exists F C E(G) such that every vertex v € V(G) is incident with exactly d(v) members
of F'

o there exists F' C A(G), such that for every vertex v € V(G), there are exactly d(v) members
of F' with tail v and d(v) members with head v

® > ex d@) + 32, ey (dega(y) — d(y)) > |Ec(X,Y)| for every pair of disjoint subsets X,Y C
V(G).

Proof. The equivalence of the second and third statement follows from 2.3. Moreover if F' satisfies
the first statement, then the set F” of arcs of G corresponding to the edges in F' (thus |F'| = 2|F])
satisfies the second statement. Thus it suffices to show that the second statement implies the first.
Let F' satisfy the second statement. Let Fy be the set of all arcs (u,v) in F’ such that (v,u) also



belongs to F’, and let F} = F’\ F;. Choose F’ with F; minimal. Let H be the digraph with vertex
set V(G) and edge set Fy, with the natural incidence. Since every vertex v € V(G) is the head of
d(v) arcs in F” and the tail of d(v) arcs in F’, and also every vertex v is the head of the same number
of arcs in Fy as it is the tail, it follows by subtracting that H is an eulerian digraph, and therefore
its edge set can be partitioned into the edge sets of directed cycles C1, ..., Cy say.

Suppose first that one of C, ..., Cj has even length, say ', and let its vertices be vy, v1, vs, ..., V2 =

vg in order. Let F” be obtained from F’ by
e removing the arcs (ve;_1,v9;) for 1 <1i < n, and
e adding the arcs (vgjy1,v2;) for 0 < j <n—1.

Then F” also satisfies the second statement of the theorem, contrary to the minimality of F;. This
proves that C1,...,Cy all have odd length.

Next suppose that some two of C, ..., C} are not vertex-disjoint, say C1 and Co, and so we can
number the vertices of these two cycles such that C; has vertices ug, u1,...,usm+1 = wo in order,
and C9 has vertices vg, vy, ...,v2n11 = vg in order, where ug = vg. Note that since C,Cs have no
common edges and all their edges belong to Fi, it follows that no edge of C7 has the same set of
ends as an edge of Cy. Let F” be obtained from F’ by

e removing the arcs (ug;—1,uz;) for 1 <i < m, and removing (va;,v2;41) for 0 < j < n, and
e adding the arcs (ugit1,u;) for 0 <i < m, and adding (vej,v9;—1) for 1 < j < n.

Again, this contradicts the minimality of F;. Consequently C1, ...,y are pairwise vertex-disjoint.
Suppose that k£ > 2, and let C have vertices wug, u1,...,usms+1 = ug in order, and let Cs have
vertices vg,v1,...,Van+1 = vg in order. Since G is constricted, some u; is adjacent in G to some
v;, and so we may assume that wug,vg are adjacent. Since C1,...,C} are pairwise vertex-disjoint, it
follows that the arcs (ug,vo), (vo,up) do not belong to any of C1,...,Cy and hence are not in Fj.
There are two cases depending whether they belong to F5 or not.
First suppose that (ug,vo), (v, ug) ¢ Fa. Let F” be obtained from F’ by

e removing the arcs (ug;, ugi11) for 0 < i < m, and removing (va;,v2j41) for 0 < j <n

e adding the arcs (ug;, u2;—1) for 1 < i < m, and adding (vaj,v2j—1) for 1 < j < n, and adding
(UO, UD)? (UO) uO)'

This contradicts the minimality of F}.
Thus F; contains one and hence both of (ug, vg), (vo, up). Let F” be obtained from F’ by

e removing the arcs (ug;—1,u;) for 1 < i < m, and removing (vgj_1,v2;) for 1 < j < n, and
removing (ug, vo), (vo, ug)

e adding the arcs (ugit1,uz;) for 0 <i < m, and adding (vgj11, ve;) for 0 < j < n.

Again, this contradicts the minimality of Fj.
We deduce that k < 1. Since ), ¢y d(v) is even, and every vertex v is the tail of exactly d(v)

members of F'| it follows that |F”| is even. But |Fy| is even, and so |F}| is even, and since C1, ..., Cy
have odd length, it follows that k is even. Since k < 1 we deduce that k = 0, and so F' = F,. But
then the first statement of the theorem holds. This proves 2.4. |



We are almost ready to prove 2.1; first, one more lemma. If G is a graph and X C V(G), we
denote by F(X) or Eg(X) the set of edges of G with both ends in X; and we remind the reader that
if X,Y are disjoint subsets of V(G), we denote by E(X,Y) or Eq(X,Y) the set of edges of G with
one end in X and one end in Y. It is convenient to write Fg(X) or F(X) for E5(X), and Fg(X,Y)
or F(X,Y) for E#(X,Y).

2.5 Let G be a graph and let X,Y, Z be a partition of V(G); then
sG(X,Y) =2|E(X)|+|EX, 2)[ +2[F(Y)| + [F(Y, 2)].
Proof. For |[E(X,Y)|+ |F(X,Y)| = |X||Y]; but

Y deg(a) = 2|E(X)| + |E(X, 2)| + | E(X,Y)|

zeX
and o
Y degly) =2IF(Y)| + |F(Y, 2)| + | F(X,Y)],
yey
and adding these three equations yields the statement of the theorem. This proves 2.5. |

The main step in the proof of 2.1 is the following.

2.6 Let V be a finite set, and for every vertex v € V let d(v) be an integer. Let H be a graph with
vertex set a subset of V.. Then the following are equivalent:

e There is a graph J with vertex set V', such that every v € V' has degree d(v) in J, and J|V(H) =
H

® > ey d(v) is even, and

Y od@)+ ) (VI=1-d(y) —|X|IY] = su(X N V(H),Y NV(H))
zeX yey

for every pair of disjoint subsets X, Y of V.

Proof. Suppose first that .J satisfies the first statement. Then ), d(v) = 2|E(J)| and therefore
is even. Moreover, let X,Y C V(G) be disjoint. To verify the second statement we must check that
sy(X,Y) > sg(XNV(H),YNV(H)). But since H is an induced subgraph of J, this is immediate
from two applications of 2.5, to s;(X,Y) and to sg(X NV (H),Y NV (H)).

Now suppose that the second statement holds. Let V' = V(H). Let G be the graph with vertex
set V, in which every two distinct vertices are nonadjacent if and only if they both belong to V’. For
eachv € V, let d'(v) =d(v) if v ¢ V', and d'(v) = d(v) — degr (v) if v € V. If there is a subgraph of
G such that every vertex v has degree d'(v) then the first statement of the theorem holds (taking J
to be the union of this subgraph with H); so we assume not. Now G is constricted, since every odd
cycle of G has at least one vertex not in V’; so by 2.4, there exist disjoint X,Y C V such that

S @)+ 3 (degaly) — d () < |E(X, V)]

zeX yey



Let X’ =XNV'andY' =Y NV'. Now

Y d(@) =) d)- Y degu(x)

reX reX zeX’

and since every vertex in V' has degree |V| — |V'| in G, and every vertex in V' \ V' has degree |V|—1
in G, it follows that

Y (degaly) —d'(y) =D (VI-1—=d(y)) = Y_ (V'] = 1 — degn(y)).

yey yey yeyY’

Moreover |Eq(X,Y)| = | X||Y] — | X'||Y]. On substitution we obtain

Yo d@) = Y degn(a) + Y (IVI-1-d(y) = > (V| =1 —degn(y)) < |X|IY] — [X||]Y"],

zeX zeX’ yey yey’

that is,

S d@)+ Y (VI-1-d) - X[[Y] < Y degr(x)+ > (V| ~1—degn ()~ |1X|IY'| = sp (X, Y"),
zeX yey rzeX’ yey’

a contradiction. This proves that the first statement of the theorem holds, and so proves 2.6. |
2.6 extends a result of Koren [4], who proved the same statement with H the null graph.

Proof of 2.1. Let G, H be graphs with V(H) C V(G). For each vertex v € V(G), let d(v) =
degg(v). There is a graph J with vertex set V(G), such that every v € V(G) has degree d(v) in J,
and J|V(H) = H, if and only if the first statement of the theorem holds. But }_, ¢y d(v) is even,
since it equals 2| E(G)[; and so by 2.6, such a graph J exists if and only if

Yo d@)+ ) (V@) - 1-dy) —|X|IY] = su(X N V(H),Y NV(H))

reX yey

for every pair of disjoint subsets X,Y of V(G). The left side of this inequality equals s¢(X,Y), and
so this proves 2.1. |

3 Pairs of bounded surplus

Let H be a fixed graph. We will show in the next section that there are numbers m, 6 depending
only on H, such that for every graph G that does not Rao-contain H, and for every vertex v of G
except at most m, there is a pair (X,Y) of subsets of V(G) with sg(X,Y) <6 and v € X UY. This
in turn will lead to a decomposition theorem for the graphs GG that do not Rao-contain H; we will
prove they are all “almost” split graphs. In this section we develop some lemmas for that purpose.
If & > 0 is an integer, a 0-shelf in a graph G is a pair (X,Y") of disjoint subsets of V(G) such that
sq(X,Y) < 6. We begin with:



3.1 Let G be a graph and 6 > 0 an integer, and for i = 1,2, let (X;,Y;) be a O-shelf. If one of
X1NYs, XoNY; is nonempty, then one of V(G)\ (X1UY1),V(G)\ (X2UY2) has cardinality at most
26.

Proof. Let Z; = V(G)\ (X; UY;) for i = 1,2. By 2.5, we have
(1) 21E(X3)| + |E(Xi, Zi)| + 2| F(Yy)| + [F(Y:, Zi)| < 6 fori=1,2.

We may assume from the symmetry that there exists w € Y7 N Xs. Suppose first that there ex-
ists x € X1 N Zy. For each v € Z; N X, if v, w are adjacent then this edge belongs to F(X3), and if
they are nonadjacent then the edge of G joining them belongs to F(Y1, Z1); and so in either case the
pair {v,w} belongs to E(X2)UF (Y1, Z1). Similarly if v € Z1NY3 then {v, 2} € E(X1, Z1)UF(Ya, Z2),
and if v € Z1 N Z3 then {v,w} € E(X2, Z3) U F (Y1, Z1). Summing, we deduce that

|Z1| = |Z1N Xa|+|Z1NYa |+ 21N Zs| < |E(Xo)|+|F (Y1, Z1)|+|E(X1, Z1)|+|F(Ya, Z2)| +|E(X2, Z2)|

and so |Z1| < 260 by (1), as required.

Thus we may assume that X1 N Z; = (). But for each v € Y1 N Zs, {v,w} € E(X3, Z2) U F(Y1);
and as we already saw, if v € Z; N Zy then {v,w} € E(X2, Z2) U F(Y1,Z;). Summing, we deduce
that

| Z2] = Y1 N Zo| + |21 N Zo| < |E(Xa2, Zo)| + [F(Y1)| + [F(Y1, Z1)] < 26

by (1), as required. This proves 3.1. |

We need the following.

3.2 Let G be a graph and let X1, X9,Y1,Ys C V(G) such that X1 U Xy is disjoint from Y7 U Ys.
Then
56(X1U X2,Y1 UYs) < 5¢(X1, Y1) + sq(Xa2, Ya).

Proof. Define Xo = X7 UXs and Yy = Y1 UYs; and for i = 0,1,2 let Z; = V(G) \ (X; UY;). By 2.5,
for ¢ = 0,1,2 we have
sa(Xi, Yi) = 2|E(X)| + |E(Xi, Zi)| + 2[F(Y))| + [F(Yi, Zi)],
and therefore to show that sq(Xo, Yo) < sq(X1, Y1) + sq(Xa, Ya), it suffices to show that
2|E(Xy)| + |E(X1, Z1)| + 2| E(X2)| + |E(X2, Z2)| > 2|E(Xo)| + |E(X0, Zo)|
and
2[F(W)| + [F (Y1, Z0)| + 2[F(Ya)| + [F(Yz, Z2)| = 2|F(Yo)| + [F(Yo, Zo)]-

From the symmetry under replacing G by its complement, it suffices to show the first. For every
edge e = wwv, let us count the contribution of e to the right and left sides. Thus, for ¢ = 0,1,2 let
pi=1if e € E(X;), and p; = 0 otherwise; and let ¢; = 1 if e € E(X;, Z;), and ¢; = 0 otherwise. We
will show that

2p1 + q1 + 2p2 + g2 > 2po + qo-
Since q1 + g2 > qo, we may assume that pg = 1 and hence gg = 0. If p1, po are not both zero then the

claim holds, so we assume that p; = po = 0. Since py = 1, it follows that one of u,v is in X; \ X3 and
the other is in X5 \ X1; but then ¢; + g2 = 2 = 2py and again the claim holds. This proves 3.2. |



3.3 Let G be a graph and 6 > 0 an integer, and let L, R be disjoint subsets of V(G). Suppose that
for each v € LU R, there is a 0-shelf (X,Y) with X CL andY C R and v € X UY . Then either

e there exists V C L such that sq(V,R) < 40(0 + 1), and for every vertex v € V.U R there is a
0-shelf (X,Y) withve XUY and X CV andY C R, or

e there exists V. C R such that sq(L,V) < 460(0 + 1), and for every vertex v € LUV there is a
0-shelf (X,Y) withve XUY and X CLandY CV.

Proof. By hypothesis, there are §-shelves (X;,Y;) (i € I) such that | J;c; X; = L, and J;; Yi = R.
If J C I, wesay that A C L is a left J-transversal if A C UjeJ X;, and |[ANX;| <1 for each j € J.
Similarly, B C R is a right J-transversal if B C UjEJYj, and |BNYj| <1 for each j € J.

(1) If J C I and A, B are left and right J-transversals respectively, then min(|Al, |B|) < 260 4 2.

For let min(|A|, |B|) = k say. Every subset of a left J-transversal is also a left J-transversal, and
the same for right J-transversals, and so, by replacing the larger of A, B with a subset of itself with
cardinality k, we may assume that |A| = |B| = k. Let a € A, and choose j € J with a € Xj. Since
sq(X;,Y;) < 6, 2.5 implies that there are at most 6 vertices in B \ Y; adjacent to a; and there is
at most one vertex in B NY; adjacent to a, since |[BNY;| < 1. Consequently a is adjacent to at
most 6 + 1 members of B, and so (summing over all a € A) we deduce that |[Eq(A, B)| < k(0 + 1).
Similarly |Fg(A, B)| < k(6 + 1), and since |Eg(A, B)| + |Fa(A, B)| = |A||B| = k?, adding these two
inequalities yields that k? < 2k(6 + 1). This proves (1).

(2) There exists J C I with |J| <40 + 4, such that either J;c; Xi = L or U;c; Yi = R.

For we may assume that I is minimal such that |J;c; X; = L and (J;c;Y; = R. It follows that
for each i € I there exists v; € X; UY; such that v; ¢ X; UY] for all j € I with j # ¢. Let P be
the set of all ¢ € I with v; € L, and let @ be the set of all i € I with v; € R. Thus {v; : i € P}
is a left I-transversal of cardinality |P|, and {v; : i € Q} is a right I-transversal of cardinality @,
and so by (1), min(|P[,|Q|) < 20 + 2, say |Q| < 260 + 2. (This is without loss of generality, since
replacing G by its complement and exchanging I and R will provide a symmetry exchanging P and
Q.) Choose T' C P minimal such that | ;. Y; = U,cp Yi. Hence for each i € T there exists w; € Y;
such that w; ¢ Y; for j € T'\ {i}. It follows that {w; : i € T'} is a right T-transversal of cardinality
|T|. Moreover, {v; : ¢ € T} is a left T-transversal of cardinality T', and so |T'| < 260 + 2 by (1). But

U v-UnuUvi- UroUn-Uri-»
1IEQUT i€Q €T 1€Q iEP i€l
Since |Q UT| < 46 + 4, setting J = QQ UT proves (2).
Let J be as in (2); and from the symmetry we may assume that (J;c;Y; = R. Let V =, ; X;. By

repeated application of 3.2 it follows that sq(V, R) < 46(0+1), since |J| < 4(6+1) and sg(X;,Y;) <0
for each j € J. This proves 3.3. |



4 A structure theorem for Rao-containment

In this section we finish the proof that for every graph H, the graphs that do not Rao-contain H
are “almost” split graphs. It is convenient to break the proof into two steps. We first prove the
following;:

4.1 Let H be a graph, and let 0 = |V (H)|?. If G is a graph that does not Rao-contain H, then there
is a partition of V(Q) into four sets P,Q, S, T, possibly empty, such that

o cvery vertex in P has at most 6 neighbours in V(G) \ Q, and every vertex in Q has at most 6
non-neighbours in V(G) \ P

. s6(P.Q) < 10(6+ 1)
o |S] <26

e cither every vertex in T has at most 6 neighbours in V(G) \ Q, or every vertex in T has at
most 0 non-neighbours in V(G) \ P.

Proof. Let L, R be the union of the sets X, and the sets Y respectively, over all §-shelves (X,Y).

(1) For every O-shelf (X,Y), every vertex in X has at most 6 neighbours in V(G) \'Y, and ev-
ery vertex in'Y has at most 0 non-neighbours in V(G) \ X. Consequently, every vertex in L has at
most 0 neighbours in V(G) \ R, and every vertex in R has at most 6 non-neighbours in V(G) \ L.

For if (X,Y) is a @-shelf and v € X, then since sg(X,Y) < 0, 2.5 implies that v has at most 0
neighbours in V(G) \ Y, and similarly, every vertex in Y has at most 6 non-neighbours in V(G) \ X.
This proves the first assertion. Now let v € L. Then there is a §-shelf (X,Y’) such that v € X; and
since v has at most 6 neighbours in V/(G) \ Y, it follows that v has at most 6 neighbours in V(G) \ R.
Similarly every vertex in R has at most 6 non-neighbours in V(G) \ L. This proves (1).

(2) If LN R # 0 then the theorem holds.

For since L N R # (), there exist #-shelves (X1,Y7), (X2, Y2) such that X7 NY, # (. By 3.1, there
is a f-shelf (X,Y’) such that |Z| < 20, where Z = V(G) \ (X UY). But then we may take P = X,
Q=Y,S=2Zand T =0, and by (1) the theorem is satisfied. This proves (2).

Henceforth we assume that L N R = ().

@) [VIG\(LUR)| < |[V(H)|.

For suppose not. By replacing H by an isomorphic graph we may assume (to simplify notation)
that V(H) C V(G)\ (LUR). Since G does not Rao-contain H there is no graph G’ degree-equivalent
to G, such that G'|V(H) = H. By 2.1 it follows that there exist disjoint X,Y C V(@) such that
sg(XNV(H),YNV(H)) > sa(X,Y). Since sg(XNV(H),Y NV (H)) <6 it follows that (X,Y) is
a @-shelf, and so XUY C LUR. But V(H)N(LUR) =0, and so V(H)N(XUY) = (. Consequently
sg(XNV(H), Y NV(H)) =0, which is impossible since sg(X NV (H),Y NV(H)) > s¢(X,Y) and
sq(X,Y) > 0 by 2.5. This proves (3).
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By 3.3, either

e there exists V' C L such that sq(V,R) < 46(6 + 1), and for every vertex v € V U R there is a
O-shelf (X,Y) withv e XUY and X CV and Y C R, or

e there exists V' C R such that sg(L,V) < 46(6 + 1), and for every vertex v € L UV there is a
@-shelf (X,Y) withve XUY and X CLand Y CV.

In the first case, weset P=V,Q =R, S=V(G)\ (LUR),and T = L\ V. In the second case we
set P=L,Q=V,S=V(G)\(LUR),and T'= R\ V. This proves 4.1. |

Here is a slightly cleaner version of the same result:

4.2 Let H be a graph and let = |V (H)|?. If G is a graph that does not Rao-contain H, then there
is a partition of V(Q) into six sets (possibly empty) A, B,C,A’, B',C" such that

e A is stable and there are no edges between A and A’ UC U C’

e B is a clique and every vertex in B is adjacent to B'UC U’

o A" B'.C’ all have cardinality at most 46(6 + 1)

e cvery vertex in A’ has at most 0 neighbours in V(G) \ (BU B')

e cvery vertex in B’ has at most 0 non-neighbours in V(G) \ (AU A")

o cither every vertex in C has at most 6 neighbours in V(G) \ (BU B'), or every vertex in C has
at most 6 non-neighbours in V(G) \ (AU A’).

Proof. Let P,Q,S,T be as in 4.1. Let A’ be the set of vertices in P that have a neighbour in
PUSUT, and let B’ be the set of vertices in @ that have a non-neighbour in Q U.S UT. Since
sa(P,Q) <460(0 + 1), it follows that |[A'| + |B'| <46(6 +1). Set A =P\ A’, and B=Q \ B, and
C' =S, and C = T then the theorem holds. This proves 4.2. |

5 Some lemmas about wqos

Now we begin on the second of the three parts sketched in the first section, and it is convenient to
assemble here some standard results about wqos that we shall need frequently. For instance:

5.1 Let Q be a wqo, and let q¢; (i = 1,2,...) be an infinite sequence of elements of E(Q). Then
there is an infinite sequence i(1) < i(2) < ... of positive integers such that qi(jy <q i(j+1) for all
Jj=1

If Q1, Q2 are quasiorders, then Q1 X Q2 is the quasiorder with element set E(Q1) X E(Q2), ordered
by the relation (q1,¢2) < (¢1,¢5) if ¢1 <@, ¢} for i =1, 2.

5.2 If Q1,Q2 are wqo’s then so is Q1 X Q3.

11



We need a theorem of Higman [2], which we now describe. Let @ be a quasiorder, and define
a quasiorder R as follows. E(R) is the class of all finite sequences of members of @; and if a =
(u1,...,upy) and b = (v1,...,v,) are members of R, we say a <g b if m < n and there exist
J(1), ..., j(m) with 1 < j(1) < j(2) < - < j(m) < n such that u; <g vj;) for 1 <i < m. We
denote this quasiorder R by Q<%. Higman showed

5.3 If Q is a wqo then so is Q<¥.

We also need an extension of this. Let () be a quasiorder, and let £ > 0 be an integer. Define
a quasiorder R as follows. E(R) is the class of all finite sequences of odd length, z1,...,zo, 41 say,
such that xo; € @ for 1 < i < n, and for 0 < i < n, o541 is an integer with 0 < w911 < k. If
a= (u1,...,u2m+1) and b = (v1,...,v2,41) are members of R, we say a <p b if m < n and there
exist j(1),...,7(m) with 1 < j(1) < j(2) < --- < j(m) < n such that

o for 1 <1 <m, uy <@ voj()
o for 1 <i<m, ugi—1 = vgj(;—1 and uzi+1 = V()41

e for 0 <i<mand0<j<mn,if either i =0 or j > j(i), and either i =mor j+1 < j(i+ 1),
then voj11 > ugiy1.

We denote this quasiorder R by @< (k). Then we have (see for instance [5]):

5.4 If Q is a wqo then so is Q<¥(k), for all k > 0.

6 Graphs of bounded degree

Our object in this section is to show that graphs of bounded maximum degree form a wqo under
Rao-containment, and some strengthenings of this fact.

A march in a set V is a finite sequence of distinct elements of V'; and if 7 is the march vy, ..., v,
we denote the set {v1,...,vx} by 7, and call k the length of the march. If n is an injection from
V to W say, and 7 is a march vy,...,v; in V, we define n(7) to be the march n(v1),...,n(vg) in
W, and we say that n takes m to n(m). Similarly if n is an injection from V to W, and X C V, we
define n(X) to be the set {n(v) : v € X}. A rooted graph is a pair (G,n) where G is a graph and
7 is a march in V(G). We call 7 the root sequence, and its terms are the roots. A rooted graph is
k-rooted, or (< k)-rooted, if it has exactly k roots, or at most k roots, respectively. If (G,7) is a
rooted graph and X C V(G) with 7 C X, then (G|X,7) is a rooted graph and we say it is a rooted
induced subgraph of (G,m). Two rooted graphs (G, m) and (G’,7’) are degree-equivalent if G, G’ are
degree-equivalent and m = 7’.

A rooted graph (H, p) is Rao-contained in a rooted graph (G, ) if there is a rooted graph (G’, )
degree-equivalent to (G, 7), and a rooted induced subgraph (H',7) of (G',7), and an isomorphism
from H to H' taking p to m. Let C(k, D) be the class of all (< k)-rooted graphs (G, ) such that
every vertex of G not in 7 has at most D neighbours that are not int. We shall prove:

6.1 For every two integers k,D >0, C(k, D) is a wqo under Rao-containment.
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Proof. Let (G;,m;) € C(k,D) for i = 1,2,.... We need to show that there exist ¢ < j such that
(G, m;) is Rao-contained in (G, ;). By passing to an infinite subsequence, we may assume that all
the marches m; have the same length, and (by reducing k if necessary) we may assume they all have
length k. Thus, we may assume, to simplify notation, that all the marches 7; are equal to some fixed
march 7. Since there are only finitely many possibilities for the graph G;|7, we may assume (again,
by passing to an infinite subsequence) that all these graphs are the same; and so there is a graph H,
a common induced subgraph of all the graphs G;, with H = G;|7 for each 1.
Let 11(G) denote the size of the largest matching in a graph G.

(1) We may assume that |u(G5)| > 2|V(Gi)|> + D+ k+1 for all j > i > 1.

For if n is fixed, and infinitely many of the G;’s have no matching of size n, then by passing to
an infinite subsequence we may assume that in each G; there is no matching of size n, and con-
sequently in each G; there is a set of at most 2n vertices that contains at least one end of every
edge. But it is an easy exercise to show that such (rooted) graphs are well-quasi-ordered by Rao-
containment and indeed by induced subgraph containment. Thus we assume that only finitely many
have no matching of size n, for each n; and then there is an infinite subsequence satisfying the
property of (1). This proves (1).

Let F; = G; \ V(H) for i« > 1. For each i > 1, and every J C V(H), let Z;(J) be the set of
vertices in V' (G;) \ V(H) that are adjacent in G; to every vertex in J and nonadjacent to every vertex
in V(H)\ J. Fix J for the moment. Choose an ordering of each set Z;(.J), arbitrarily, and list the
degrees in F; of the vertices in Z;(J), in order. This gives a finite sequence of integers for each i > 1,
all at most D; and by 5.3 and 5.1, we may assume (by passing to an infinite subsequence) that for
all j > ¢ > 1, there is an injection from Z;(J) into Z;(J) such that each v € Z;(J) is mapped to
a vertex in Z;(J) with degree in F}j equal to the degree of v in Fj. By repeating this for all J, we
deduce that for all j > ¢ > 1, there is an injection 1 from V(G;) into V(G;) such that

o forve V(H), n(v)=v

e for each J C V(H) and each v € Z;(J), n(v) € Z;(J) and the degree of v in F; equals the
degree of n(v) in Fj.

Let n be as above, taking ¢ =1 and j = 2.

(2) For every pair of disjoint subsets Xo,Ys of V(F3), let X1 = {v € V(F1) : n(v) € Xa} and
let Yi ={v e V(F) :n(v) € Ya}; then sp, (X1, Y1) < sp, (X2, Ya).

For sp, (X1,Y1) < |V(F1)[?, and so we may assume that s, (Xa, Ys) < |V (F1)]? < |[V(G1)|?. Suppose
first that Y5 # (), and choose y € Ya. By 2.5, y has at most [V (G1)|? non-neighbours in V(F3) \ Xo;
but it has at most D neighbours in this set, since F5 has maximum degree at most D, and so
|V (F2)\ Xa| < |V(G1)|>+ D. On the other hand, by 2.5, there are at most |V (G1)|? edges with both
ends in Xo. Consequently u(Fy) < 2|V(G1)|> + D, and so u(G2) < 2|V(G1)|? + D + k, contrary to
(1).

Thus Y, = (), and so Y7 = (. But then for i = 1,2, sp,(X;,Y;) is the sum of the degrees in F; of
the vertices in X;; and this is at least as big for F; as it is for F}, since n(v) has degree in F equal to
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the degree of v in Fi, for each v € V(F}), and so s, (X1,Y1) < sp, (X2, Y2) as required. This proves

(2).

From (2) and 2.1, there is a graph Fj degree-equivalent to Fh, such that the restriction of 7
to V(F1) is an isomorphism from F; to an induced subgraph of Fj. Hence there is a graph G}
degree-equivalent to Gg, such that 7 is an isomorphism from G; to an induced subgraph of G%; and
so (Gg,m2) Rao-contains (G, ), as required. This proves 6.1. |

7 Split graphs

A graph G is a split graph if there is a partition (A, B) into a stable set A and a clique B. In this
section we begin work on the the third of the steps outlined in the first section. Let us mention a
convenient lemma:

7.1 Let G be a split graph and let (A, B) be a partition of its vertex set into a stable set A and a
clique B. Let G' be degree-equivalent to G. Then G’ is a split graph and A is a stable set and B a
clique of G'.

Proof. Since (A, B) is a partition of V(G) and A is a stable set and B is a clique of G, 2.5 implies that
sq(A,B) = 0. But sg(A, B) = sg/(A, B) since G, G’ are degree-equivalent, and so sg/(A, B) = 0.
By 2.5, we deduce that A is a stable set and B is a clique of G’. This proves 7.1. |

We promised in the introduction to prove that (< k)-rooted split graphs form a wqo under Rao-
containment, but in fact we need something a little stronger. The vertex set of a split graph is the
union of a stable set and a clique, and we need the Rao-containment to preserve this partition. We
shall prove the following:

7.2 Let k > 0 be an integer, and for all i > 1 let (G;,m;) be a (< k)-rooted split graph, and let
(A;, B;) be a partition of V(G;) such that A; is a stable set and B; is a clique. Then there exist
j>1i>1 and a graph G' degree-equivalent to G; (and therefore Aj and Bj are respectively a stable
set and a clique of G', by 7.1) and an injection n : V(G;) — V(G;), with the following properties:

e for all distinct u,v € V(G;), u,v are adjacent in G; if and only if n(u),n(v) are adjacent in G’

o mj = 1(mi)

o U(Az) - Aj and T}(Bl) - Bj.

The proof of 7.2 will occupy the remainder of the paper, but first let us see that it implies our
main result 1.2.

Proof of 1.2, assuming 7.2.

Suppose that 1.2 is false. Then there is a sequence G; (i = 0,1,2,...) of graphs, such that for all
j >1 >0, G; is not Rao-contained in G;. In particular, none of G1,Ga, ..., Rao-contains Gy. Let
6 = |V (Gp)|?; then by 4.2, for each i > 1 there is a partition of V(G;) into six sets (possibly empty)
A;, B;, Cy, AL, Bl, C! such that
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e A; is stable and there are no edges between A; and A, U C; U C!

e B;is a clique and every vertex in B; is adjacent to every vertex in B U C; U C}
e A, B, C! all have cardinality at most 40(6 + 1)

e every vertex in A} has at most 6 neighbours in V(G;) \ (B; U B})

e every vertex in B} has at most § non-neighbours in V(G;) \ (4; U A4})

e cither every vertex in C; has at most 6 neighbours in V(G;) \ (B; U B}), or every vertex in C;
has at most 6 non-neighbours in V(G;) \ (4; U 4}).

Now either there are infinitely many values ¢ such that every vertex in C; has at most 6 neighbours
in V(G;) \ (B; U B}), or there are infinitely many such that every vertex in C; has at most § non-
neighbours in V(G;) \ (4; U A%). Thus, by replacing the sequence by an infinite subsequence, we
may assume that either that the first happens for all ¢, or the second happens for all .. Now G is
Rao-contained in G if and only if the complement of G; is Rao-contained in the complement of G,
and so we may replace each G; by its complement, and exchange A; with B;, and exchange A} with
B!, and thereby obtain another sequence satisfying the same conditions. Thus we may assume that

(1) For all i > 1, every vertezx in C; has at most 6 neighbours in V(G;) \ (B; U BY).

Since all the sets A}, B}, C! have bounded size, there is an infinite subsequence of the sequence
such that all the sets A} have the same size, and to simplify notation we may assume that all the
sets A] are equal. The same applies for the sets B, and C’; and since there are only finitely many
graphs of bounded size, we may assume that for all ¢ > 1 the subgraph of G; induced on A, UB/UC!
is the same. In summary, we may assume that

(2) There are sets A',B',C’, and a graph N with vertex set A" U B’ U C’, such that A, = A,
B! =DB', and C! = C’, and G;|(A’UB'"UC") = N, for all i > 1.

Let us fix a march 7 with support A’UB’UC’, and a march «’ with support A’U B’. For each i > 1,
let P; be the graph obtained from G;|(A; U A’ U B; U B’) by removing all edges with both ends in A’
and making B’ a clique. Thus A; U A’ is a stable set of P; and B; U B’ is a clique of P;, and so P; is
a split graph. For each i > 1, let Q; be G;|(A’ U B’ UC"UC(C;). Then (Q;, ) is a rooted graph and
belongs to C(126(6 + 1), 0).

By 7.2, the set of all rooted graphs (P, 7') is a wqo under the relation described in 7.2, taking
A; U A, and B; U Bj to be the corresponding stable set and clique. By 6.1, C(120(6 + 1),6) is a
wqo under Rao-containment. By 5.2, there exist j > ¢ > 1 such that (P;, ') is contained in (Pj, )
(under the relation of 7.2) and (Q;, 7) is Rao-contained in (Q;, 7). By combining the corresponding
two injections (which agree on the intersection of their domains) we deduce that there is an injection
n from V(G;) into V(Gj), such that

e 1(v) =v for eachve A/ UB UC’

e 1n(v) € A;j for each v € A;, and 7n(v) € B; for each v € B;, and n(v) € C; for each v € C;
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o there is a graph P] degree-equivalent to P; such that the restriction of 7 to A, U A"U B; U B’
is an isomorphism between P; and an induced subgraph of PJ(

o there is a graph @} degree-equivalent to (; such that the restriction of  to AU B'UC" U C;
is an isomorphism between (); and an induced subgraph of Q;.

Let X be the set of edges of N|A’, and let Y be the set of nonedges of N|B’ (that is, the set of
unordered pairs of distinct vertices in B’ that are nonadjacent in N). Let R; = G;|(A;UA’"UB;UB’),
and R; = G|(4; UA'U B; UB’). Now P; was obtained from R; by removing the edges in X and
adding as edges all the pairs in Y, and so E(R;) = (E(F;) \Y)U X, and E(R;) = (E(P;) \Y)UX.
Let R} be the graph with vertex set V(P;) and with edge set (E(P})\Y) U X. It follows that R is
degree-equivalent to R;.

Since 7 fixes every vertex in V/(N), it follows that IV is an induced subgraph of @, and N|(A'UB’)
is an induced subgraph of R. Consequently there is a graph G with vertex set V(Gj), such that
R} and @Q’; are both induced subgraphs of G’;. But then G’ is degree-equivalent to G;, and so G
Rao-contains Gj, a contradiction. Thus there is no such sequence G; (i = 0,1,2,...). This proves
1.2. |

8 Switching-containment

If G is a digraph, the underlying graph of G is the graph obtained from G by removing the directions
of its edges, and is denoted by G~. We say digraphs G, G’ are degree-equivalent if G- = G'~ (and
therefore V(G) = V(G’)), and every vertex in V(G) has the same outdegree in G and in G’ (and
consequently has the same indegree in G and in G'). We say a digraph G switching-contains a
digraph H if there is a digraph G’ degree-equivalent to G, such that H is isomorphic to an induced
subdigraph of G'.

Before we go on, we remark that switching-containment is not a wqo of the class of all digraphs.
For instance if C is the class of digraphs G such that G~ is a cycle, then C contains infinitely
many non-isomorphic digraphs and none of them switching-contains another. For tournaments,
however, switching-containment yields a wqo (this follows from the main theorem of [1], because if
a tournament H can be immersed in a tournament G then G switching-contains H). In this paper
we show that switching-containment also yields a wqo for the digraphs whose underlying graph is
complete bipartite. We prove the following, which implies 7.2:

8.1 Let k > 0 be an integer. For all i > 1 let G; be a digraph, let (A;, B;) be a bipartition of G,
such that every vertex in A; is adjacent in G to every vertex in B;, and let m; be a march in V(G;)
with length at most k. Then there exist j > i > 1 and a digraph G' degree-equivalent to G; and an
injection n : V(G;) — V(G;), with the following properties:

e for all distinct u,v € V(G;), u is adjacent to v in G; if and only if n(u) is adjacent to n(v) in
G/

o mj =n(m)

e n(4;) C Aj and n(B;) C B;.
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Proof of 7.2, assuming 8.1.  For each i > 1 let (G;, ;) be a (< k)-rooted split graph, and
let (A;, B;) be a partition of V(G;) as in 7.2. Let H; be the digraph with vertex set V(G;), in
which a € A; is adjacent to b € B; if a,b are adjacent in G;, and « is adjacent from b in H if
a,b are nonadjacent in G;. Thus H; is complete bipartite, and (A4;, B;) is a bipartition. By 8.1
we deduce that there exist j > i > 1 and a digraph H' degree-equivalent to H; and an injection
n: V(H;) — V(Hj), satistying the three bullets of 8.1 (with G;, G}, G’ replaced by H;, H;, H'). Let
G’ be the split graph with vertex set V(G;) in which A; is stable, B; is a clique, and a € A; and
b € B; are adjacent in G’ if and only if a is adjacent to b in H'. Then G’, G; are degree-equivalent,
and it follows that n provides a Rao-containment of (G;,7;) in (G, m;). This proves 7.2. |

The remainder of the paper is devoted to proving 8.1.

9 Switching-containment in fixed position

Next we need an analogue of 2.1 for switching-containment of directed complete bipartite graphs. In
principle this is already solved, because the translation from split graphs will transform 2.1 into a
necessary and sufficient condition for switching-containment of directed complete bipartite graphs;
but we will derive a much simpler condition (still necessary and sufficient), that holds for general
digraphs, not just directed complete bipartite graphs.

We also need an extension of it to what we call “weighted” digraphs. A weighted digraph is a
triple (G, m,n) such that G is a digraph and m,n are maps from V(G) to the set of nonnegative
integers. If v is a vertex of a digraph G, d™(v) or df,(v) denote the outdegree of v in G, and d™ (v)
or dg(v) denote its indegree. Two weighted digraphs (G, m,n), (G',m’,n’) are degree-equivalent if

e G =G,
* > vev(e)y™v) = ZvGV(G’) m'(v), and 2 vev(a) () = Xev(an n'(v), and
e for every vertex v € V(G),

d&(v) + n(v) — m(v) = df, (v) +n'(v) — m'(v).

Let G be a digraph. If X C V(G), we denote by D (X) and D (X) respectively the sets of all
edges uv of G with X N{u,v} = {u} and X N{u,v} = {v}. The following is an easy consequence of
the max-flow min-cut theorem (or of Hoffman’s circulation theorem [3]), and we omit its proof.

9.1 Let G be a digraph and for every vertez v let t(v) be an integer, such that -, cy () t(v) = 0.
Let F, F' C E(G), with FNF' = 1. Then the following are equivalent:

e there is a map ¢ from E(G) to {0,1} such that ¢(e) =0 for e € F, and ¢(e) =1 fore € F’,
and Y ee a@) 2(€) = Deepw) (€) = t(v) for every vertez v, where A(v) and B(v) denote the
sets of edges with tail v and head v respectively

o for every subset X C V(G), |Dg(X)NF'|+|DLHX)NF|+ Y ,cx tv) < |DE(X))].

We deduce
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9.2 Let (G,m,n) and (H,p,q) be weighted digraphs, such that H™ is an induced subgraph of G—,
and Y- cy ) m(v) = ey P0), and 3 vy n(v) = Yy d(v). Then the following are

equivalent:
e there is a weighted digraph (G',m’,n’) degree-equivalent to (G, m,n), such that
(o) G'\V(H)=H
(b) m/(v) = p(v) and n'(v) = q(v) for every vertex v € V(H), and
(c) m'(v) =n/(v) =0 for every vertex v € V(G)\ V(H)
o for every subset X C V(QG),
IDE(X)+ Y (n( ) > [DEXAVH)+ Y (4(v) = p(v)).

veX veXNV (H)

Proof. For each vertex v € V(G), let t(v) = m(v) —
t(v) = m(v) — n(v) otherwise. Thus }° cy ) t(v) = 0.
such that uv,vu € E(H) respectively.

) q(v) — p(v) if v € V(H) and
F,F' be the sets of edges uv of G

(1) There exists (G',m',n’) as in the first statement of the theorem, if and only if there exists ¢
as in 9.1.

For suppose that ¢ is as in 9.1. For every vertex v € V(G), let m/(v) = p(v) and n/(v) = ¢(v)
if v e V(H), and m'(v) = n'(v) = 0if v ¢ V(H). Let G’ be obtained from G by reversing the
direction of all edges e € E(G) with ¢(e) =1 (and so G'|V(H) = H). Thus (G',m’,n’) is a weighted
digraph, and we claim that (G',m/,n’) and (G, m,n) are degree-equivalent. We must check the three
conditions in the definition of “degree-equivalent”. The first we have already seen. For the second,

Yo om)= Y p)= Y m(v),

veV(G") veV (H) veV(Q)

and similarly 37,y @) n(v) = X ey 7' (v). For the third, let v € V(G). Then dfb(v) = di(v) +
b — a, where b is the number of edges e of G with head v and with ¢(e) = 1, and a is the number of
edges e of G with tail v and ¢(e) = 1. Hence a = ZeeA(v) ¢(e) and b= ZeeB(v) ¢(e), with notation
as in 9.1. Since ¢ is as in the first statement of 9.1, it follows that

S de)— 3 6le) =

e€A(v) e€B(v)
and so a — b = t(v). Consequently d,(v) = df(v) — t(v), and so
d&(v) + n(v) — m(v) = df (v) + 0/ (v) — m'(v).

This proves the third condition in the definition of “degree-equivalent”, and so proves that (G',m',n’)
and (G,m,n) are degree-equivalent. Conversely, by reversing this argument it follows that every
weighted digraph satisfying the first statement of the theorem arises from some such ¢ in this way.
This proves (1).
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From (1) and 9.1 we deduce that the first statement of the theorem holds if and only if

|DG(X)NF'|+ |DEX)NF|+ ) t(v) < |DE(X)]
veEX

for every subset X C V(G). But |Dg(X) N F'| + |D5(X) N F| = |DL(X NV (H))|, and

Yo tw) =Y (m) —n@)+ Y (4(v) =),

veX veX veEXNV(H)

so the first statement of the theorem holds if and only if

IDH(X NV(H))+ ) (m )+ Y (a(v) = p(v) < [DEX),
veX veEXNV (H)
that is,
IDE(X)| + D (n( ) > [DEX NVH)[+ Y (a(v) = p(v)).
veX vEXNV (H)
This proves 9.2. |

10 Contests
A contest is a seven-tuple (G, A, B,l,m,n, ), where
e (G,m,n) is a weighted digraph
e (A, B) is a bipartition of G~ and every vertex in A is adjacent in G~ to every vertex in B
e 7 is a march in V(G), and
e [ >0 is an integer.
The type of a contest (G, 1, A, B,m,n,n) is the quadruple
(7, > m), > n().
veV(G) veV(Q)

Let C; = (Gy, A1, B1,l1,m1,n1,m1) and Co = (G2, Ag, Ba, la, ma, ng, m3) be contests. We say that
Co switching-contains Cy if l; = I and there is a weighted digraph (G, m/,n’) degree-equivalent to
(G2, m2,mn2) (and therefore (G, Ag, Ba,lo,m’,n’,m3) is a contest) and an injection n : V(Gyp) —
V(G3), with the following properties:

e for all distinct u,v € V(G1), u is adjacent to v in G if and only if n(u) is adjacent to n(v) in
G/

o m =1n(m)

[ ] 77(A1) g AQ and ?7<B1) Q BQ
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e m1(v) = m/(n(v)) and ni(v) = n'(n(v)) for each v € V(G1), and m’(v) = n/(v) = 0 for each
v e V(G2) \n(V(Gh)).

We will prove the following, which evidently implies 8.1:

10.1 Let C; (i =1,2,...) be contests, all of the same type. Then there exist j > i > 1 such that C;
switching-contains C;.

11 The pieces after a slicing

Let C = (G, A, B,l,m,n,n) be a contest. A slice of C means a partition (X,Y) of V(G), and its
order is

[+|DEX)+ D nw)+ ) m(v).

veX veY

We need the following:

11.1 Let (X,Y) and (X',Y") be slices of a contest C, of order h and h' respectively. Then (X N
XY UY') and (X UX',Y NY') are slices and the sum of their orders is at most h + h'.

Proof. Let C = (G, A, B,l,m,n,w). The sum of the orders of (XNX'YUY’) and (XUX', Y NY")
is

20+ [DEX NX)+ Y n@)+ Y. m@)+[DEXUX)+ Y n@)+ Y mv).
veXNX’ veYUY’ veXUX’ veEYNY’

But
IDE(X N X' + | DE(X U X' <|DEX)| + [DE(X)]

since every edge contributes at least as much to the right side as it does to the left; and

dYoon@+ Y n) =Y n@)+ > n),

vEXNX' vEXUX/ veX veX’
and
Z m(v) + Z m(v) = Z m(v) + Z m(v).
veEY UY’ veEYNY’ veY veY’

We deduce that the sum of the orders of (X N X', Y UY”) and (X UX', Y NY’) is at most

20+ [DL(X)| + [DEX) + D n()+ D> n()+ > m@)+ > m)=h+H

veX veX/’ veY veY’

as required. This proves 11.1. |
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Let C = (G, A, B,l,m,n,m) be a contest, and let (W1,...,W;) be a sequence of subsets of V(G),
pairwise disjoint and with union V(G) (possibly some of the sets W; are empty). (Thus ¢ > 1 unless
V(G) = 0; however, it is useful to permit ¢ = 0 when V(G) = ().) We call (W1, ..., W;) a slicing of C.
For each i with 0 <i <t ,let X; = Wi U---UW; and let Y; = W11 U---UW,. Then (X;,Y;) is a slice
for 0 <1i < t. For p > 0, we say the slicing has order at most p if each of the slices (X;,Y;) (0 < i <)
has order at most p.

Let (Wy,...,Wy) be a slicing of C = (G, A, B,l,m,n, ) and define X;,Y; for 0 <i <t as above.
For 1 <i <, let C; = (G;, Ai, B, l;,mi,n;, ;) be the contest defined as follows. Let G; = G|W;,
and Az = AﬁWi,Bi = BﬂWZ Let

Li=1+ Z n(v)+2m(v)+\ﬂ|

veEX;—1 veY;

where F; denotes the set of edges of G with tail in X; ;1 and head in Y;. For each v € W;, let
m;(v) = m(v) 4+ z(v), where x(v) denotes the number of vertices in X;_; that are adjacent to v in G,
and let n;(v) = n(v) + y(v) where y(v) denotes the number of vertices in Y; that are adjacent from v
in G. Let m; be the subsequence of 7 consisting of those terms that belong to W;. We call Cy,...,C;
the pieces of C after the slicing (W1, ..., Wy).

We observe:

11.2 Let (Wh,...,Wy) be a slicing of C = (G, A, B,l,m,n,n), and let Cq,...,Cs be the pieces of C
after the slicing. Let 1 <1i <t, and let (U, V) be a slice of C;, of order h say. Then

(W1U---UWZ‘_lUU,VUW@.;,_lU---UWt)
s a slice of C, and it has the same order h.

Proof. Let C; = (Gi,Ai,Bi,li,mi,ni,m). Let U' = WU -UW;_1UU and V' = VUW, 1U---UW,
and let the slice (U’, V') of C have order h'. Thus,

W =1+ DEUN+ D nw)+ Y mv),

vel’ veV’

and

h=1i+ DL )+ D ni(w) + D ma(v).

vel veV
We need to show that A’ = h, that is,

I =1+ [DEUN| = [DE )+ > nw) =Y ni(v) + > m(v) = Y my(v) =0.

vel’ velU veV! veV

Let X =WjU---UW;_1and Y = W1 U---UWj, and for each v € W; let z(v) denote the number
of vertices in X that are adjacent to v in G, and y(v) denote the number of vertices in Y that are
adjacent from v in G; then m;(v) = m(v) + z(v), and n;(v) = n(v) + y(v). Let F' denote the set of
edges of G with tail in X and head in Y. Now

l—li:—Zn(v)—Zm(v)—]FL

veX veY
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But

IDEUN)| = IDE, (W) =Y ylv) + Y x(v) +|F|

velU veV
and
Do) =Y mi(v) =Y () =Y (n(v) +y©) =Y nw) =Dy,
veU’ velU vel’ velU veX velU
and similarly
Z m(v) — Z m;(v) = Z m(v) — Z x(v).
veV’ veV veY veV

The sum of the right sides of these four equations is zero, and so the sum of the left sides is zero.
This proves 11.2. |

We need the following lemma.

11.3 Let C = (G, A,B,l,m,n,w) and D = (H,A’, B',l,p,q,p) be contests of the same type. Let
(Wi, ...,Wat1) be a slicing of C, and let Cy,...,Coip1 be the pieces of C after this slicing; define
X;,Y; (0<i<2t+1) as before. Let (Uy,...,Uy) be a slicing of D, and let Dy, ..., Dy be the pieces
of D after this slicing. Suppose that

o for 1l <i<t, D;is switching-contained in Cy;;
o for 1 <i<t andallj, if U contains the jth term of p, then Wa; contains the jth term of w;

o for 0 < i <t, the slices (Xo;,Yo;) and (X2i41,Y2i+1) of C have the same order, say s;; and
every slice (X,Y) of C with Xo; C X and Ya;+1 CY has order at least s;.

Then D is switching-contained in C.

Proof. For 1 < i < 2t + 1, let C; = (G4, Ai, B, li,mj,ni,m), and for 1 < i < t let D; =
(H;, AL, B],l;,pi,qi,pi). For 1 < i < t, since D; is switching-contained in Cy;, there is an injec-
tion of V(H;) into V(Gg;) with certain properties, and to simplify the notation we may as well
assume that this injection is the identity. Thus

(1) H™ is an induced subgraph of G—, and p = 7, and A" C A and B' C B, and U; C Wy; for
1 < i < t. Moreover, for 1 < i < t, li = ly;, and there is a weighted digraph (Gb;, m},, n},),
degree-equivalent to (Ga;, mai, na;), such that

o Gy|Ui = Hi,

e mh.(v) = pi(v) and nfy,;(v) = ¢;(v) for each v € U;, and

o mh.(v) = nl,(v) =0 for each v € Wy; \ Uj.

For each v € V(G), with v € W; say, let x(v) denote the number of vertices in X;_; that are

adjacent to v in G, and y(v) denote the number of vertices in Y; that are adjacent from v in G.

(2) For 0 <i <t, there is a digraph GY; | with Gl2€+1 = Gy;, 1, such that for each v € Wa;i1,

dg/2¢+1 (U) - d+2i+1 (U) — M2i+1 (U) + n2i+1(v).
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We claim first that } -, cyy,.. | (m2it1(v) — n2i41(v)) = 0. For the slices (Xg;,Y2;) and (Xoi41, Y2i41)
of C have the same order, and so

IDE(Xai)| + D () + Y m(v) = [DE(Xas)| + D n(o)+ Y m(v),
vEX2; vEYa; vEX2it1 VEY2;41
that is,
D (Xai)| = [DE(Xaip) [+ Y (m(v) —n(v)) =0.
veEW2i 41
But
D (Xai)| = [DE(Xai) = Y (2(v) — y(v))

veEW2 41

and 50 3-, ey, (2(0) —y(v) + m(v) —n(v)) =0, that is, 3°, ., (n2i41(0) — m2i41(v)) = 0. This
proves the claim.
Next, we claim that
‘ng_,_l (X)| > Z (m21‘+1(’u) — n2i+1(7}))
veEX

for all X - W2,5+1. For let X - W2i+1. Since (XQZ UX, Ygi \X) is a slice of C and XQ@' - XQ@' UX and

Yoi+1 C Y, \ X, it follows by hypothesis that this slice has order at least that of the slice (Xa;, Y2;).
Consequently

IDEXUX) [+ D )+ Y mv) 2 [DEXz) + Y nlv)+ Y m(v),

vEX2;UX v€Y2;\ X vEXo; vEY;
that is,
|DE(X2i U X)| = | DE(Xa)| + D (n(v) —m(v)) > 0.
veX
But
|DE(Xoi U X)| = [DE(Xai)| = D (y(v) — x(v)) + |DE, (X)),
veX
and so
1D, ()] > D (2(v) = y(v) +m(v) —n(v)),
veEX

that is,

DG, ()] > (maig1(v) = ngiga (v)).
veX
This proves our second claim.

From these two claims and 9.1 (setting F1 = F> = () and t(v) = ma;+1(v) — ngiy1(v) for each v),
we deduce (by taking L to be the set of edges e with ¢(e) = 1) that there is a set L C E(Ga;41) such
that for every vertex v € Wa;41, the number of edges in L with tail v minus the number with head
v is equal to mao;y1(v) — noiy1(v). Let GY;,; be the digraph obtained from Ga;11 by reversing the
direction of every edge in L; then G5, | satisfies (2). This proves (2).
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For all odd i, let m/(v) = n}(v) = 0 for all v € W;. Thus G}, m},n are defined for 1 <7 < 2¢+ 1.
Let G’ be the digraph with G~ = G~ defined as follows. Let u,v be adjacent in G~, and let u € W;
and v € W; say, where 1 <4 < j <2t+4 1. If i = j let u be adjacent to v in G’ if and only if u is
adjacent to v in G;. If i < j let u be adjacent to v in G’ if and only if

e i,j are even, say i = 2i’ and j = 2§’ where 1 <4, j' <t, and
e u €Uy and v € Uy, and
e 1 is adjacent to v in H.

Thus H is a subdigraph of G’. For each v € V(H), let m’(v) = p(v) and n’(v) = ¢q(v), and for each
v e V(G)\V(H) let m'(v) = n’(v) = 0. Thus (G',m/,n’) is a weighted digraph, and to complete
the proof of the theorem it suffices to show that (G',m’,n’) is degree-equivalent to (G, m,n).

We must check the three conditions in the definition of “degree-equivalent”. The first we have
already seen. For the second,

veV(G) VeV (H)
from the definition of m’; but
> oplw)= D> m(v)
veEV (H) veV(G)

since C, D have the same type. We deduce that

>, m)= > m(),

vEV(G) veV(G')
and similarly
Z n(v) = Z n'(v).
VeV (G) veV(GY)

This proves the second condition.

For the third condition, we need some preliminaries. For each v € V(G), if v € V(H) and v € U;
say, let y/(v) be the number of vertices in U;11 U --- U U; that are adjacent from v in H, and let
2’ (v) be the number of vertices in Uy U --- U U;_; that are adjacent to v in H. If v € V(G) \ V(H)
let 2/(v) = y/'(v) = 0. We claim that for each v € V(G), if v € W; where 1 < i < 2t + 1, then

!/

ni(v) = n'(v) + y'(v). To see this there are two cases, depending whether v € V(H) or not. If
v ¢ V(H) then nf(v) = 0, and n'(v) = 0, and y'(v) = 0 as required. If v € V(H) (and hence 4
is even, ¢ = 2h say), then n}(v) = gn(v); but g, (v) = ¢(v) + ¢/'(v) and ¢(v) = n/(v), and so again
n(v) = n/(v) + y'(v). This proves the claim. Similarly m/(v) = m’(v) + 2'(v).

Now to prove the third condition in the definition of “degree-equivalent”, let v € W; say. We
must check that

dg (v) + 1/ (v) = m'(v) = d(v) + n(v) — m(v)
and
dgi(v) —n/(v) +m/(v) = dg(v) — n(v) + m(v).

The first implies the second, since G'~ = G, so it suffices to prove the first; and from the symmetry
we may assume that v € A. Since v € A, v is adjacent in G (to or from) every vertex in X;_1 N B,
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and to or from none in X; 1 N A, and since v is adjacent from z(v) vertices in X;_; it follows that
there are | X;_1 N B| — z(v) vertices in X;_; that are adjacent from v in G. Consequently

dzg(v) = da (v) + y(v) + | X;—1 N B| — z(v),
and similarly
dé,(v) = da (v) +9'(v) + | X;—1 N B| — 2/ (v).
But
05, () + () = ml(v) = d, (v) + na(v) = ma(v)

from the choice of G}, m/,n;. Subtracting the second and third of these equations from the first
yields that

d&(v) = ddy (v) = ni(v) + mi(v) = y(v) — 2(v) — 3/ (v) + 2 (v) = ni(v) +m;(v).

=Y
Since nj(v) = n/(v) + y'(v) and mi(v) = m/(v) + 2/(v), and n;(v) = n(v) + y(v) and m;(v) =
m(v) + z(v), it follows on substitution that

d&(v) + n(v) — m(v) = dk (v) + 0/ (v) — m'(v).

This proves the third condition, and hence that (G',m’,n’) is degree-equivalent to (G, m,n); and so
completes the proof of 11.3. |

12 Reduction to incoherence

If p,q > 0, asubset Z C V(G) is called (p, q)-coherent in a contest (G, A, B,l,m,n, ) if |ZNA|,|ZN
B| > ¢, and there is no slice (X,Y’) with order less than p and with X N Z,Y N Z # (). Let us say
that (G, A, B,l,m,n,7) is (p, q)-incoherent if the slices (0, V(G)) and (V(G),0) both have order less
than p, and there is no (p, ¢)-coherent subset of V(G).

The main part of the proof of 10.1 is to prove the following, which is the same statement as 10.1
but with an extra hypothesis:

12.1 Let p,q >0, and let C; (1 = 1,2,...) be (p,q)-incoherent contests, all of the same type. Then
there exist j > 1 > 1 such that C; switching-contains C;.

For the moment we shall assume the truth of 12.1, and our object in this section is to deduce
10.1 from it. We say two slices (X1, Y1), (X2, Y2) cross if X1 NYs, Xo NY] are both nonempty. We
need the following lemma.

12.2 Let Z be a (p,q)-coherent set in a contest C; and let (X1,Y1), (X2, Y2) be slices both of order
less than min(p, q/2) that cross. Then Z is a subset of one of X1 N X2, Y1 NY3.

Proof. Let C = (G, A, B,l,m,n, ). Since Z is (p, q¢)-coherent, not both ZN X7, ZNY; are nonempty,
and so Z is a subset of one of X7,Y7, and similarly of one of X5, Y5. From the symmetry we may
therefore assume (for a contradiction) that Z C X; N Y. Since the two slices cross, there exists
v e XoNYi. Since |[ZNA|,|ZNB| > qand C is a contest, it follows that there are at least g edges
of G with one end v and the other end in Z. But fewer than ¢/2 of these edges are directed from
v to Z, since (Xo,Y2) has order less than ¢/2; and fewer than ¢/2 are directed from Z to v, since
(X1, Y1) has order less than ¢/2, a contradiction. This proves 12.2. |
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We also need:

12.3 Let (Wy,...,Wy) be a slicing of a contest C, with order at most p; and let Cy,...,C; be the
pieces of C after this slicing. Suppose that Z is (3p,q)-coherent in C;, where 1 < i <t. Then Z is
(p, q)-coherent in C.

Proof. Let C = (G, A, B,l,m,n,m). Certainly |Z N A|,|Z N B| > ¢, since Z is (3p, q)-coherent in
C;. Suppose that (U, V) is a slice of C, with U N Z, V N Z both nonempty; we shall prove that (U, V)
has order at least p. For let its order be hsay. Let X =W U---UW,_j,and Y =W, 1 U---UWs.
From 11.1 applied to the slices (U, V') and (X, W; UY'), it follows that the slice (UUX,V N(W;UY))
has order at most p + h; and by 11.1 again, applied to this slice and (X U W;,Y), we deduce
that the slice (UUX)N (X UW;), (VN (W;UY))UY) has order at most 2p + h, that is, the slice
(XU(UNW;), (VNW;)UY) has order at most 2p+h. By 11.2 it follows that the slice (UNW;, VNW;)
of C; has order at most 2p + h. But this slice has order at least 3p since Z is (3p, g)-coherent in C;,
and both U N W;,V N W; have nonempty intersection with Z. We deduce that h > p as claimed.
This proves 12.3. |

Proof of 10.1, assuming 12.1. Let T' = (T1,T>,T5,Ty) be a quadruple of non-negative integers.

A bad sequence for T is an infinite sequence of contests C; (i = 1,2...), all of type T, such that there

do not exist j > 4 > 1 such that C; switching-contains C;. We say the quadruple T" is bad if there

exists a bad sequence for T', and good otherwise. We need to prove that every quadruple is good.
Suppose not; then we may choose a bad quadruple 7" as follows:

e first, with 77 as small as possible
e subject to that, with T5 + T5 + T as small as possible.
Let C; (i =1,2...) be a bad sequence for T, and let C; = (G, A;, By, l;, m;, ng, m;) for i > 1.
(1) We may assume that for all j > i > 1, the map sending m; to m; is an isomorphism from
Gi|m; to G|, and for 1 < h < Ty, the hth term of m; belongs to A; if and only if the hth term of
mj belongs to Aj.
For there are only finitely many possibilities for the (labelled) isomorphism class of
(Gilmi, Ai N7, Bi N7,
and so we may assume they are all the same, by passing to an infinite subsequence. This proves (1).
Let ¢ = |V(G1)| + 2max(Ts + T3 + T}), and let p = |E(G1)| + To + T3 + 14.
(2) We may assume that for all i > 2, if (X,Y) is a slice in G;, and h denotes its order, then:
o h>min(Ty + T3,Ts + Ty)
o if h < Ty +T5 then T C X and some subset of X is (p,q)-coherent; and if h < Ty + Ty then

T CY and some subset of Y is (p, q)-coherent.
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e if h < p then either T; C X and some subset of X is (p,q)-coherent, or 7 CY and some subset
of Y is (p,q)-coherent.

For if there are only finitely many values of i that do not satisfy (2), then we may remove them
from the sequence and (2) would follow. Thus we assume there are infinitely many values of i > 2
with slices that fail to satisfy (2), and so by passing to a subsequence we may assume that for all
i > 2 there is a slice (X;,Y;) in G; failing to satisfy (2). It follows that (Xj,Y;) has order at most
max(Ty + T3,T» + Ty, p), and so by passing to an infinite subsequence we may assume that all the
slices (Xj,Y;) have the same order h say. Let ¢ > 2, and let C;,C! be the pieces of C; under the slicing
(X;,Y;). Let C! have type T = (T7,T5,T5,T;); then T{ < Ty, and T4 < T3, and T4 + T < h. By
passing to a subsequence we may assume that for each i > 2, the type of C; is the same; that is,
T’ does not depend on i. Similarly, we may assume that for each ¢ > 2, C/ is a contest of type T,
where T + T/ = Ty and T < Ty, and T} + T} < h. Moreover, we may assume that for 1 < j < T,
if there exists ¢ > 2 such that the jth term of m; belongs to X;, then the jth term of m; belongs to
X; for all i > 2. (Note that in these arguments where we replace our infinite sequence by an infinite
subsequence, it is important that the first term is unchanged, since p, ¢ are defined by means of the
first term; and so we cannot assume that the statement of (2) holds for all i > 1.)

Suppose that switching-containment defines a wqo on the set of all contests C, (i > 2), and also
on the set of all contests C/ (i > 2). From 5.2 it follows that there exist j > ¢ > 2 such that C; is
switching-contained in C}, and C; is switching-contained in CJ. But then C; is switching-contained
in C; by 11.3, a contradiction.

From the symmetry, we may therefore assume that switching-containment does not define a wqo
on the set of all contests C, (i > 2), and consequently 7" is a bad quadruple. Since T < Ty, and
Ty < Ty, and T4 + T; < h, it follows from the choice of T that T] = T1, and so m; C X; for each
i > 1. Since Ty < T3, and T4 + Ty < h, the choice of T implies that T + T4 < h. For i > 2, since
(X;,Y;) does not satisfy (2), it follows that A < p and no subset of X; is (p, ¢)-coherent in C;; and
hence, by 12.3, no subset of X; is (3p, ¢)-coherent in C;. But then by 12.1, switching-containment
defines a wqo on the set of all C] (i > 2), a contradiction. This proves (2).

From the symmetry we may assume that T3 < Tj.

(3) Let i > 2 and let Z be (p, q)-coherent in G;. Then either

e T} > 0 and there is a slice (X,Y) of C; of order less than p, such that Z is a subset of one of
X, Y and 7; is a subset of the other, or

e Ty =0 and there is a slice (X,Y) of C; of order less than Ty + Ty, with Z C X.

For let us construct an injection n: V(Gy) — V(G;) as follows. First, let n(m) = m;. Let n map
Ay \ ™1 injectively into (Z N A;) \ 7; (this is possibly since |Z N A;| > ¢) and similarly let n map
By \ 71 injectively into (Z N B;) \ ;. Since C; and C; have the same type, it follows that I; = [y,
and > ey (g, m1(V) = Xev(ay Mi(v), and 3o cy(qyyn1(v) = X ev(q;) ni(v). Since C; does not
switching-contain Cy, there is no weighted digraph (G',m’/,n’) degree-equivalent to (G;, m;,n;) with
the following properties:

e for all distinct u,v € V(G1), u is adjacent to v in Gy if and only if n(u) is adjacent to n(v) in
G/
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e m1(v) = m/(n(v)) and ni(v) = n'(n(v)) for each v € V(G1), and m’(v) = n/(v) = 0 for each
v e V(Gi) \n(V(G1)).

From 9.2 we deduce that there exists X C V(G;) such that, if we denote {v € V(G1) : n(v) € X}
by X1, then

D& O+ Y (ni(v) = mi(v)) < IDE (X)) + Y (na(v) —ma(v)).

veX veXq

Let Y = V(G;) \ X and Y1 = V(G1) \ Xu; then since 3 ey (g, mi(v) = X ev(qy) M1 (v), we deduce
by adding that

DG, (X + 3 niw) + Y miv) < [DE X))+ 3 m) + 3 ma(v);

veX veY veXy vEY]

that is, h < hj, where h is the order of the slice (X,Y) of C;, and h; is the order of the slice (X1, Y7)
of C;. Since hy < p from the definition of p, we deduce that h < p. Since Z is (p, q)-coherent, it
follows that one of X,Y includes Z. By the third assertion of (2), either 73 C X or 7; C Y.

By the first assertion of (2), h > Ty + T3, since T3 < Ty. Consequently hy > Ty + T3, and so
X; # (0. Hence there exists v € V(G1) such that n(v) € X; and since n(v) € Z U7 from the con-
struction of 7, we deduce that Z UT; is not a subset of Y, and so at least one of Z,7; is a nonempty
subset of X. If the other is a nonempty subset of Y, then 77 > 0 and (3) holds, so we may assume
that Z Um; C X. Hence n(v) € X for all v € V(G1), and so X1 = V(G;) and Y7 = (. Consequently
h1 = Ty + Ty. Since h < hy, it follows that h < T, 4+ Ty. By the second assertion of (2) it follows
that 7; C Y, and since we have already seen that 7m; C X, it follows that 77 = 0, and again the claim
holds. This proves (3).

(4) Ty > 0.

For suppose that 73 = 0. By 12.1 for some i > 2 there exists a set Z that is (p, g)-coherent in
Ci; and by (3) there there is a slice (X,Y") of G; of order less than Ty + Ty, with Z C X . Choose such
a slice (X,Y) with Y minimal. By the second assertion of (2), there is a (p, ¢)-coherent set Z' C Y.
By (3) there is a slice (X', Y”) of C; of order less than T5 + Ty, with Z' C X'. Since Z' C Y\ Y/, 12.2
implies that Y/ C Y, contrary to the minimality of Y. This proves (4).

(5) For every i > 2, there is a slicing (L;, M;, R;) of C;, of order less than p, such that 7 C M;
and every (p,q)-coherent set Z is a subset of one of L;, R;.

For let ¢ > 2. Since (0, V(G;)) is a slice of order Ty + T3 < p, it follows that there is a slice
(U, V) of C; with 7; C V of order less than p; choose such a slice (U, V') with U maximal. Similarly
choose a slice (U’, V') of order less than p with 7; C U’, with V' maximal. Now U’ NV # (), since it
includes 7;. Suppose first that (U, V), (U’, V') cross. The sum of the orders of (U, V) and (U’, V') is
at most 2p — 2, and so by 11.1, one of the slices (UNU', VUV’), (UUU’,V NV’) has order less than
p, and from the symmetry we may assume the first. But then (UNU',UNV’, V) is a slicing of order
less than p. Moreover, by 12.2, every (p, q)-coherent set is a subset of one of U NU',V NV’ and in
particular is a subset of one of U N U, V; and so we may set (L;, M;, R;) = (UNU, UNV' V).
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Thus we may assume that (U, V), (U’, V') do not cross, and so UNV’' = (. Hence (U, U' NV, V")
is a slicing of order less than p. Suppose that there is a (p, g)-coherent set Z that is not a subset of
one of U, V'. Since (U, V) and (U’, V') both have order less than p and Z is (p, ¢)-coherent, it follows
that Z C U'NV. By (3) there is a slice (X,Y) of C; of order less than p, such that Z is a subset of
one of X,Y and 7; is a subset of the other; and from the symmetry we may assume that Z C X and
T CY. Since Z C X NU’, 12.2 applied to (U, V) and (X,Y) implies that these two slices do not
cross, and so U NY = ; but then U C X, contrary to the maximality of U. This proves that every
(p, q)-coherent set is a subset of one of U, V', and hence we may take (L;, M;, R;) = (U, U' NV, V).
This proves (5).

Now since 17 > 0, our choice of the bad quadruple T implies that every quadruple of non-negative
integers with first term zero is good. There are three pieces of C; after the slicing described in (5),
say L;, M;, R;. Since there are only a finite number of possibilities for the type of £;, we may assume
(by passing to an infinite subsequence) that all the contests £; (i > 2) have the same type; and the
same holds for M; (i > 2) and R; (i > 2).

Now each £; with ¢ > 2 has type with first term zero, since 7; N W; = (); and so this type is good,
as we already saw. Thus switching-containment defines a wqo on the set of all contests £; (i > 2),
and the same for R; (i > 2).

Since for ¢ > 2, no subset of M; is (p, q¢)-coherent in C;, it follows from 12.3 that no subset of M; is
(3p, q)-coherent in M;; and so by 12.1, switching-containment defines a wqo on the set of all contests
M; (i > 2). By 5.3, there exist j > i > 2 such that £;, M;, R; are switching-contained in £;, M;, R;
respectively, and then by 11.3, it follows that C; is switching-contained in C;, a contradiction. This
proves 10.1. |

13 Linked slicings

Let C = (G, A, B,l,m,n,m) be a contest, and let (W7,...,W}) be a slicing of C. For 0 < i < ¢,
let X; =WiU---UW; and Y; = Wi U---UW,. We say this slicing is linked if for all h,j with
0 < h <j <t if the slices (X3, Y3) and (X;,Y;) have the same order, say ¢, and each of the slices
(X;,Y;) (h <i < j) has order at least ¢, then every slice (X,Y’) with X} C X and Y; C Y has order
at least c.

If S is a class of contests, and (W7,...,W,) is a slicing of a contest C such that all the pieces of
C after this slicing belong to S, we say that C admits a slicing over S, and if (W7y,...,W;) is linked,
we say that C admits a linked slicing over S. We need:

13.1 Let S be a class of contests that is a wqo under switching-containment, and let T be a quadruple
of non-negative integers, and let p > 0. Then the class of all contests of type T that admit a linked
slicing over S of order at most p is also a wqo under switching-containment.

Proof. Let T = (Ti,...,Ty), and let R be the class of all pairs (C,J), where C € S and J C
{1,...,T1}. Wessay (C,J) < (C',J') if C' switching-contains C and J’ = J. Since there are only
finitely many possibilities for J, this order relation is a wqo on R.

Let C = (G,A,B,l,m,n,m) be a contest of type T' that admits a linked slicing (W7i,..., W)
over S, of order at most p. For 1 <i <, let (x1,...,2241) be a sequence defined as follows. Let
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Ci,...,Cs be the pieces of C after the slicing (Wy,...,W;), and for 1 <i <, let z9; = (C;, J;), where
J;i is the set of all j € {1,...,T1} such that the jth term of m belongs to W;. Thus zy; € R. For
0 <1 <t let w9;41 be the order of the slicing

(WlU"'UWi,W/Z'+1U'“UWt)

of C. (Thus z; = To + T3 and x9y1 = To + Ty, and z1,23,...,29041 < p, and in particular
Ty + T3, Ty + Ty < p.) Let us call (x1,...,2241) the dissection of C after (Wy,...,W;). We see
that the dissection (z1,...,%2+1) belongs to R<“(p) (as defined before 5.4), where R is ordered as
described above.

Now suppose that we have an infinite sequence of contests of type T that admit linked slicings
over S, of order at most p. Then we have a corresponding infinite sequence of dissections, that
all belong to R<“(p). By 5.4, one of these dissections is at most some later one (where the “less
than” relation is the order relation of R<“(p)). But then by 11.3, it follows that the first contest is
switching-contained in the second. This proves 13.1. |

14 Dissecting incoherence

It remains to prove 12.1. Our objective in this section is to show that 12.1 is implied by a special
case of itself, 14.2 below. But first we need some definitions.

Let C = (G, A, B,l,m,n,w) be a contest. A C-slice sequence is a sequence of slices (X;,Y;) (0 <
i <t)ofC,satisfying X; C X andY; CY;for 0<i<j<t,and Xo=Y; =0. If (X;,Y;) (0<i<1)
is a C-slice sequence, let W; = Y;_1 N X; for 1 < i < t; then (Wy,...,W;) is a slicing, that we call
the corresponding slicing. Conversely, if (W1q,...,W}) is a slicing of C, let X; = Wy U--- U W, and
Yi=Wi1U---UW, for 0 < i < t¢; then (X;,Y;) (0 <i <t)is a C-slice sequence, that we call the
corresponding C-slice sequence. Thus a C-slice sequence gives another way to describe a slicing of C,
sometimes more convenient.

Let C = (G, A, B,l,m,n, ) be a contest. We call (), V(G)) and (V(G), D) its end-slices. A subset
Z CV(QG) is (0,p)-small if and only if Z = (. A subset Z C V(G) is (1,p)-small if min(JAN Z|,|BN
Z|) < 2p—2. Inductively, for k > 2, a subset Z C V(G) is (k, p)-small if there is a partition (Z1, Z2)
of Z such that there are fewer than p edges from Z; to Z3, and Z;, Z are (k—1, p)-small. We observe
that every subset of a (k, p)-small set is also (k, p)-small.

14.1 Let (X,Y),(X',Y") be slices of a contest C that cross, both of order less than p. Then X N
Y. X'NY are both (1,p)-small.

Proof. Let C = (G, A, B,l,m,n, 7). Since (X,Y), (X', Y’) cross, there exists v € X NY’. Since
(X,Y) has order less than p, v is adjacent to at most p— 1 members of X’NY, and since (X', Y”) has
order at most p—1, v is adjacent from at most p— 1 members of X’NY. From the symmetry between
A and B, we may assume that v € A, and so v is adjacent to or from every vertex in X' NY N B;
and consequently | X' NY N B| < 2p — 2. it follows that X’ NY is (1,p)-small, and similarly so is
X NY'. This proves 14.1. 1
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Now, let (X,Y) and (X',Y”’) be slices of C, that do not cross. We say that the two slices are
(k, p)-close if they both have order less than p, and (X; U X3) N (Y1 UY3) is (k, p)-small. We say C is
(k, p)-convez if both end-slices have order less than p and every slice (X,Y") of C of order less than
p is (k, p)-close to one of the end-slices. The following is 12.1 with an extra hypothesis.

14.2 Let p,q >0, and let C; (i = 1,2,...) be (p,p)-convez (p, q)-incoherent contests, all of the same
type. Then there exist j > i > 1 such that C; switching-contains C;.

As we said, the objective of this section is to show that 14.2 implies 12.1. The main part of the
proof is the following.

14.3 Let p,q > 0, and let S be the class of all contests that are (p,p)-conver and (p, q)-incoherent.
Let C be a (p, q)-incoherent contest. Then C admits a linked slicing over S of order less than p.

Proof. Let C = (G,A,B,l,m,n,n). A slicing (W1,...,W;) of C is generous if it satisfies the
following, where (X;,Y;) (0 <i < t) is the corresponding C-slice sequence, and h; is the order of the
slice (X;,Y;) for 0 <i <t:

e the slicing has order less than p, and
e for 1 <i < j <t, the slices (X;,Y;) and (Xj;,Y;) are not (|h; — hj|, p)-close.

(1) If (W1, ..., W) is a generous slicing, then t < |V (G)| + 2.

For let 2 < i <t — 1; then since the slicing is generous, the slices (W1 U---UW,;_1, W; U --- U W)
and (Wh U---UW;, W11 U---UW;) are not (0, p)-close, and so W; # (. Since Wa, ..., W;_; are all
non-empty, this proves (1).

Let (Wh,...,W}) be a generous slicing of C, and let (X;,Y;) (0 < i < t) be the corresponding
C-slice sequence. For 0 < i < t, let h; be the order of (X;,Y;). The spectrum of this slicing is the
sequence (s; : j > 0), where s; denotes the number of values of i € {1,...,t — 1} such that h; = j.
(Consequently s; = 0 for all sufficiently large j.) If (V1,..., V) is another generous slicing of C, with
spectrum (r; : j > 0), we say that (V1,...,Vs) is better than (Wy,..., W) if there exists j > 0 such
that 7; > s; and r; = s; for 0 <4 < j. We say that a generous slicing (W1, ..., W;) is optimal if it
has order less than p, and no generous slicing of order less than p is better.

Since both end-slices of C have order less than p (from the definition of (p,g)-incoherent), it
follows that (V(G)) is a generous slicing. Consequently, (1) implies that there is an optimal generous
slicing.

Let (W1y,...,W;) be an optimal generous slicing. We shall prove that (Wi, ..., W;) satisfies the
theorem. We need therefore to show that (W1y,...,W;) is linked and each piece after the slicing
belongs to S. Let (X;,Y;) (0 < i <t) be the corresponding C-slice sequence, and for 0 < i < ¢, let h;
be the order of (X;,Y;).

(2) If (X,Y) is a slice of order h < p, then either

e there exists i with 1 <1 <t —1 such that h; < h and (X,Y) crosses (X;,Y;), or
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e there exists i with 1 <1 <t —1 such that h; < h and (X,Y) is (h — h;, p)-close to (X;,Y;).

For let I be the set of all ¢ € {1,...,¢t— 1} such that (X,Y") does not cross (X;,Y;) and (X,Y) is not
(Jh — h;|,p)-close to (X;,Y;). Then the set of slices

{(Xi,Yi) (1€ TUL0, 1)} U (X,Y)

can be ordered to be the C-slice sequence of a generous slicing; and from the optimality of (W7y,..., W),
this generous slicing is not better than (Wi,...,W;). Since (X,Y) is a slice of this new C-slice se-
quence, it follows that there exists ¢ with 1 < ¢ <t — 1 such that h; < h and ¢ ¢ I. This proves (2).

(3) Let (X,Y) be a slice of C, of order h < p, and let 1 < ¢ < t — 1, such that h < h;, and
(X,Y) and (X;,Y;) do not cross. Then they are not (h; — h, p)-close.

For suppose the statement is false, and choose ¢ with 1 < ¢ < ¢t — 1 and a slice (X,Y), such
that

e (X,Y) and (X;,Y;) do not cross
e h < h;, where h is the order of (X,Y)

(X,Y) and (X;,Y;) are (h; — h,p)-close

subject to the previous three conditions, h; is minimum
e subject to the previous four conditions, (X U X;) N (Y UY;) is minimal.

Suppose first that (X,Y") crosses (X;,Y}), for some j € {1,...,t—1} with h; < h. From 14.1, X NY}
is (1, p)-small. From the symmetry we may assume that ¢ < j; and so 7 < j since (X,Y) and (X;, Y;)
do not cross. Thus X; C X;. Now since (X,Y) crosses (X;,Y;), and hence ) # X NY; C Y, it
follows that X ¢ X;, and so X; C X. Let the slice (X U X;,Y NYj) have order h'. If ' < hj,
then (X;,Y;) and (X UX;,Y NYj) are (1, p)-close and hence (h; — I, p)-close, contrary to the fourth
bullet above in the choice of ¢ and (X,Y). Thus A’ > h;. By 11.1, the slice (X N X;,Y UYj) has
order at most h. Now X NY; is (h; — h,p)-small, since (X;,Y;) and (X,Y) are (h; — h,p)-close. It
follows that X N X; NY; is also (h; — h,p)-small, since it is a subset of an (h; — h, p)-small set; and
so (X NX;,YUYj)is (h; — h,p)-close to (X;,Y;), contrary to the fifth bullet above. Thus, there is
no j € {1,...,t — 1} such that (X,Y") crosses (X;,Y;) and h; < h.

From (2) it follows that there exists j with 1 < j <t¢—1 such that h; < hand (X,Y) is (h—h;, p)-
close to (X;,Y;). If h = h; then (X,Y) is (0,p)-close to (X;,Y;) and so (X,Y) = (Xj,Y]), which is
impossible since (X, Y') and (X;,Y;) are (h; —h, p)-close, and (X}, Y;) and (X;,Y;) are not (h; —h;, p)-
close. Thus h; < h. From the symmetry we may assume that ¢ < j; and so 7 < j, since h; < h < h;.
Consequently Y; N X; is not (h; — hj,p)-small. Since (X,Y) crosses neither of (X;,Y;), (X;,Y;),
there are three cases: X C X; C Xj, or X; € X C X, or X; C X; C X. In the first case, since
Y NX;is (h— hj,p)-small, it follows that ¥; N X; is (h — h;, p)-small and hence (h; — hj, p)-small, a
contradiction. In the second case, since Y; N X is (h; — h,p)-small, and Y N X is (h — hj, p)-small, it
follows that ¥Y; N X and Y N X are both (h; —hj — 1, p)-small; and since there are fewer than p edges
from ¥; N X to Y NX; (because (X,Y) has order less than p), we deduce that Y; N X is (h; — hj, p)-
small, a contradiction. In the third case, since ¥; N X; C Y; N X, and Y; N X is (h; — h, p)-small,
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it follows that Y;N X is (h; —h, p)-small and hence (h; —h;, p)-small, a contradiction. This proves (3).
(4) Wh,...,Wy) is linked.

Let 0 < ¢ < k < t, and suppose the slices (X;,Y;) and (X, Yx) have the same order, say ¢, and
each of the slices (X;,Y;) (i < j < k) has order at least c. We must show that every slice (X,Y)
with X; € X and Y, C Y has order at least c¢. Thus, suppose (X,Y) is a slice with X; C X and
Y, CY, of order h say, where h < c¢. Now (X,Y’) does not cross (X;,Y;) if j <iorif j > k, and for
i <j <k, (X;,Y;) has order at least ¢ > h. Thus, by (2), there exists j with 1 < j <t —1 such that
hj < hand (X,Y)is (h— hj,p)-close to (X;,Y;). Since hj < h < c and therefore j ¢ {i,i+1,...,k},
we may assume from the symmetry that j < i. Now Y; N X is (h — hj,p)-small, and so ¥; N X is
(h — hj,p)-small (since Y; N X C Y; N X); and hence (h; — hj,p)-small (since h; > h). It follows that
(X;,Y;),(X;,Y;) are (h; — hj, p)-close, a contradiction. This proves (4).

Let Cyq,...,C; be the pieces after the slicing (W1,..., W}).
(5) Let 1 <i <t; then C; is (p,p)-convez.

For let (X,Y) be a slice of C;, of order h < p say; and let (X')Y') = (X U X,;_1,Y UY;). Then
(X',Y') is a slice of C, and by 11.2 it also has order h. Now (X',Y”) crosses none of the slices
(X;,Y;) (0 < j <t), so by (2), there exists j with 1 < j <t — 1 such that h; < h and (X’,Y”)
is (h — hj,p)-close to (X;,Y;). From the symmetry we may assume that i < j, and so X; C Xj.
Since Y' N X is (h — hj, p)-small and Y C Y’ N X}, it follows that Y is (h — h;, p)-small, and hence
(p,p)-small, in C. Thus Y is (p,p)-small in C;, and so (X,Y) is (p, p)-close to the end-slice (W;, D) of
Ci. This proves (5).

(6) Let 1 < i <t; then C; is (p, q)-incoherent.

For let Z C W; with |Z N A|,|Z N B| > q. Since C is (p, q)-incoherent, there is a slice (X,Y)
of order less than p with X N Z,Y N Z # (. Now (X,Y) may cross either or both of the slices
(Xi—1,Yi—1), (X;,Y5); choose (X,Y) so that it crosses as few of these two slices as possible. Suppose
that it crosses (X;,Y;). Then 0 < i < ¢, and Y;NX is (1, p)-small by 14.1. If the slice (X UX;, Y NY;)
has order less than h;, then it is (1, p)-close to (X;,Y;), contrary to (3). Thus (X U X;,Y NY;) has
order at least h;, and so by 11.1, (X N X;,Y UY;) (= (X',Y’) say) has order at most h. But then
(X',Y') is a slice of order at most h, and X' N Z,Y' N Z # (), and yet (X', Y’') crosses fewer of
(Xi-1,Yi—1), (X;,Y;) than (X,Y). This proves that (X,Y) does not cross (X;,Y;), and similarly it
does not cross (X;_1,Y;—1). But then X; 1 C X C X;, and by 11.2, (X N W;,Y N'W;) is a slice of
C; of order h. This proves that Z is not (p, g)-coherent in C;, and hence C; is (p, ¢)-incoherent. This
proves (6).

From (4)—(6), this proves 14.3. |

Proof of 12.1, assuming 14.2. Let p,g > 0, and let S be the class of all contests that are
(p, p)-convex and (p, q)-incoherent. Let C; (i = 1,2,...) be (p, ¢)-incoherent contests, all of the same
type. By 14.3, each C; admits a linked slicing over S; and the result follows from 13.1 and 14.2. This
proves 12.1. |
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15 Contests with degree constraints

Let ¢ > 0 be an integer. A contest C = (G, A, B,l, m,n,x) is c-limited if there are at most ¢ vertices
in B that both have indegree at least ¢ and outdegree at least ¢. We shall prove:

15.1 Let ¢ >0, and let C; (i = 1,2,...) be c-limited contests, all of the same type. Then there exist
Jj > 1 2>1 such that C; switching-contains C;.

In this section we prove that 15.1 implies 14.2. We begin with the following lemma.

15.2 Let C = (G, A, B,l,m,n,m) be a contest, let p > 0 be an integer, and let F be a set of slices
all of order less than p. Let Z = U(X,Y)e]-‘X' Then there is a subset F' C F of cardinality at most
6p, such that one of (Z\ Z")NA,(Z\Z')N B =0, where Z' = Jx y)er X-

Proof. For M C F, let X(M) = U(Xy)eMX. Choose M C F of cardinality at most 4p, with
| X (M)| maximal. Suppose that [(Z \ X(M)) N A[,|(Z\ X(M)) N B| > 2p. Since every member of
Z belongs to X for some (X,Y) € F, there exists N C F with cardinality at most 4p, such that
X (N) contains at least 2p members of (Z\ X(M))N A and at least 2p members of (Z\ X (M))N B.
From the choice of M, it follows that | X (N)| < |X(M)], and since | X (N) \ X (M)| > 4p, it follows
that | X (M) \ X(N)| > 4p. From the symmetry we may assume that there are at least 2p members
of AN X (M) that are not in X(N). Let P = AN (X(M)\ X(N)), and Q = BN (X(N)\ X(M));
then |P|,|Q| > 2p.

If u € P, then there exists (X,Y) € M with v € X, and X N Q = ) since Q N X (M) = (). Since
(X,Y) has order less than p, it follows that u is adjacent to at most p — 1 members of ). Hence
there are at most (p — 1)|P| < |P||Q]/2 edges from P to Q. But similarly, if v € @ then there exists
(X,Y) € N with u € X and X N P = {); and so v is adjacent to at most p — 1 members of P; and
so there are at most (p — 1)|Q| < |P||Q]/2 edges from @ to P. But there are |P||Q| edges of G~
between P and @, a contradiction.

This proves that not both [(Z\ X (M))NA|,|(Z\ X(M))N B| > 2p, and from the symmetry we
may assume that |(Z \ X(M)) N A| < 2p. For each v € (Z\ X(M)) N A, choose (X,Y) € F with
v € X, and let N be the set of these (at most 2p) slices. Then setting 7/ = M U N satisfies the
theorem. This proves 15.2. |

15.3 Let C = (G, A, B,l,m,n, ) be a contest, that is (p,p)-conver and (p,q)-incoherent, for some
p,q. Then C admits a slicing (W1, Wy, W3) of order at most 6p?, such that

o W1 and W3 are both (6p?, p)-small

e one of AN Wy, BN Wy contains fewer than max(q,2p) vertices with at least p out-neighbours
i Wy and at least p in-neighbours in Wa.

Proof. Let F be the set of all slices (X,Y) of order less than p such that X is (p, p)-small, and let F’
be the set of all slices (X,Y") of order less than p such that Y is (p, p)-small. Since C is (p, p)-convex,
every slice of order less than p belongs to one of F, F'.

(1) If there exist (X,Y) € F and (X',Y') € F' such that X NY' # () then the result holds.
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For then let Wi = X, Wy = Y N X', and W3 = Y’ \ X. The slice (W7, Wy U W3) has order less
than p < 6p?, and the slice (W; U Wo, W3) has order at most 2p < 6p? by 11.1. Moreover, W7 and
W3 are both (p, p)-small and hence (4p?, p)-small; and YN X" is (1, p)-small by 14.1 (since XNY" # (),
and so one of AN Ws, BN W, contains fewer than 2p vertices. This proves (1).

Let Z = UixyyerXs and Z' = Uxy)er Y- By (1) we may assume that Z N Z' = (. By
15 2, there exists M C F such that |[M| < 6p and one of (Z \ W1) N A, (Z\ W1) N B = (), where
= Ux,y)em X Similarly there exists M’ C F' such that [M’| < 6p and one of (Z"\W3)N A, (Z"\
W3 )N B = d where W3 = U x yyen Y- Let Wo = V(G) \ (W1 UWs). We claim that (W7, Wa, Ws)
satisfies the theorem. For since |M| < 6p, it follows that the slice (W7, Wa U W3) has order at most
6p2, by at most 6p applications of 11.1; and similarly (W; U Wy, W3) has order at most 6p®. Let
M ={(X1,Y1),...,(Xk, Yy)} say, and for 1 <i < k let Z; be the set of members of X; that are not
in X;41U---UXj. Then each Z; is (p, p)-small (since X; is (p,p)-small), and Z1, ..., Z} are pairwise
disjoint, and for 1 < i < k, there are at most p edges from Z; to Z; U ---U Z,;_1, since (X;,Y;) has
order less than p. Consequently W is (6p?, p)-small, and similarly so is W3.

Finally, let R be the set of vertices in Ws with at least p out-neighbours in Wy and at least p
in-neighbours in W5, and suppose that |[A N R|,|BN R| > q. Since C is (p, g)-incoherent, there is a
slice (X,Y) of order less than p, with X N R, Y N R # (). Since every slice of order less than p belongs
to one of F,F’, we may assume from the symmetry that (X,Y) € F. Consequently X C Z, and so
there exists v € X N RN Z. From the symmetry we may assume that v € A, and so (Z\ W7)N A # 0.
It follows from the choice of M that (Z\ W1)N B = (), and so every out-neighbour of v in W belongs
to Y; and hence v has at most p — 1 out-neighbours in Wy (since (X,Y’) has order less than p),
contradicting that v € R. This proves that one of |[AN R|,|B N R| < ¢, and hence proves 15.3. |

For k,p > 0, let us say a contest C = (G, A, B,l,m,n,n) is (k,p)-small if V(G) is (k, p)-small.

15.4 Let k,p >0, and let C; (i = 1,2,...) be (k,p)-small contests, all of the same type. Then there
exist j > 1 > 1 such that C; switching-contains C;.

Proof. The result is clear if k = 0, for if C = (G, A, B,l,m,n,7) is (0, p)-small then V(G) = 0.

Next we assume that &k = 1. Let T = (T1,T5,T5,T4) be a quadruple of non-negative integers,
and let C = (G, A, B,l,m,n,7) be a (1, p)-small contest of type T, with |B| < 2p say. It follows that
there are at most T3 vertices v € A with m(v) > 0, and at most Ty with n(v) > 0; let A’ be the set
of all vertices v € A such that either m(v) > 0, or n(v) >0, or v € 7. Thus |A'| < Ty + T35+ Ty. We
call A’ the core of C.

For each i > 1 let C; = (G;, A;, B, l;, mi,n;, ™) be a (1, p)-small contest of type T. For each 1,
either |A4;] < 2p — 2 or |B;| < 2p — 2, and passing to an infinite subsequence, we may assume that
|Bi| < 2p — 2 for each i > 1. For each i > 1, let A} be the core of C;. Since there are only finitely
many possibilities for the digraph G;|(A] U B;), we may assume (again passing to a subsequence)
that they are all the same, for all 7 > 1. Thus there is a digraph H, which is an induced subdigraph
of each G;, and V(H) is the core of each C;. Let A, = A" and B; = B for each i > 1. Since there
are only finitely many possibilities for the restriction of m; to V(H), again we can assume they are
all equal, and the same holds for n;; and we may also assume that all the marches 7; are the same.
For each i > 1, and every subset J C B, let x;(J) be the number of vertices in A; \ A’ that are
adjacent to every vertex in J and adjacent from every vertex in B\ J. By passing to a subsequence,
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we may assume that for every J, the numbers z;(J) (i = 1,2,...) are non-decreasing. But then C;
is switching-contained in Cs.

Thus the result holds when k£ = 1 (for all 7" and p), and now we proceed by induction on k.
Let k > 2, and let T' = (T1,T»,T5,T4) be a quadruple of non-negative integers. Let F be the class
of all (k —1,p)-small contests ' = (G', A", B’,l',m/,n/, ") with a type T' = (1},T3,T3,T}) that
satisfies T) < Ty, Ty < To + T3+ Ty, T4 < T3+ p and T) < Ty + p. From the inductive hypothesis,
switching-containment defines a wqo on F.

Now if C = (G, A, B,l,m,n, ) is (k,p)-small, of type T, there is a partition (X,Y") of V(G) such
that there are fewer than p edges from X to Y, and X,Y are both (k — 1, p)-small. The pieces after
this slicing are (k — 1, p)-small, and their types satisfy the four constraints above, and so the pieces
both belong to F.

For each i > 1 let C; = (G, Ai, B, l;, mi,n;, m;) be a (k,p)-small contest of type T. For each
i > 1, let (X;,Y;) be a slice as described above. By passing to an infinite subsequence, we may
assume that for 1 < j < T3, if the jth term of m; belongs to X; for some choice of 7 > 1, then the
same holds for all choices of . But then from 11.3, we deduce that there exist j > ¢ > 1 such that
C; switching-contains C;. This proves 15.4. |

Proof of 14.2, assuming 15.1. Let p,q > 0, and let T = (T1,Ts,T5,Ty) be a quadruple of
nonnegative integers. Let 7 be the set of all quadruples 77 = (17, T4, T5,T,) of nonnegative integers
such that T) < Th, Ty < Ty + T3 + Ty, T4 < T5 + 6p?, and T < Ty + 6p?. Let F; be the class of all
(6p?, p)-small contests with a type in 7. Let F» be the class of all max(q, 2p)-limited contests with
a type in 7. By 15.4, switching-containment defines a wqo on F7 , and from 15.1, the same holds
for Fs.

Let C = (G, A, B,l,m,n,m) be a (p,p)-convex (p,q)-incoherent contest of type 7. By 15.3, C
admits a slicing (W7, Wa, W3) such that

e the slices (W, Wy U W3) and (W1 U Wa, W3) both have order at most 6p?
e W; and W3 are both (6p?, p)-small

e one of AN Wy, BN Wy contains fewer than max(q, 2p) vertices with at least p out-neighbours
in W5 and at least p in-neighbours in Ws.

There are three pieces after this slicing. All three pieces have a type in 7; the first and third are
(6p?, p)-small, and so belong to Fj, and the second is max(q, 2p)-limited, and so belongs to Fo.
Now for each i > 1 let C; = (G}, A;, Bi, i, mi,n;, ;) be a (p, p)-convex (p, q)-incoherent contest
of type T'. For each i > 1, take a slicing (W;1, Wia, Wi3) as just described. By passing to an infinite
subsequence, we may assume that for 1 < j < 7T and for k = 1,2, 3, if the jth term of m; belongs to
Wi for some 7 > 1, then the same holds for all . But then the result follows from 11.3. This proves
14.2. |

16 The end

So, it remains to prove 15.1. We need a few more easy reductions: first, let us say a contest
C=(G,A,B,l,m,n,) is clean if | = 0 and m, n are identically zero. (We use 0 loosely to denote the
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function which is identically zero, so a clean contest may be written (G, A, B,0,0,0,7).) We shall
prove:

16.1 Let ¢ >0, and let C; (i = 1,2,...) be clean c-limited contests, all of the same type. Then there
exist j >4 > 1 such that C; switching-contains C;.

Proof of 15.1, assuming 16.1. Let T = (T3,T»,T5,t4) be a quadruple of nonnegative integers,
and let C = (G, A, B,l,m,n, ) be a contest of type T. Let ©’ be a march such that its first 77 terms
are w, and
' =aU{v e V(GQ): m(v) +n(v) > 0}.

Then ¢’ = (G, A, B,0,0,0,7') is a clean contest of type T" = (T7,T5,T4,Ty), where T{ < Ty + T3+ Ty
and Ty, Ty, Ty = 0, and if C is c-limited then so is C’. Let us call this an associated clean contest.

Now for each i > 1 let C; = (G;, Ai, Bi, li,mi,n;, ;) be a c-limited contest, and let C; be an
associated clean contest. By moving to an infinite subsequence we may assume that all the contests
C/ have the same type 1" say; and by the same argument, we may assume that there are two T7-tuples
m,n say, such that for all ¢ > 1 and for 1 < j <T7, if v is the jth term of « then m;(v) = m(j) and
n;(v) = n(j). Moreover, by 16.1, there exist j > i > 1 such that C} switching-contains C;. But then
C; switching-contains C;. This proves 15.1. |

Let ¢,k > 0. A (c, k)-battle B is a five-tuple (G, A, B, C, ) such that
e G is a digraph such that G~ is complete bipartite, and (A, V(G) \ A) is a bipartition

e B,C are disjoint subsets of V(G), and BUC = V(G) \ (AU 7) (thus, 4, B,C,7 have union
V(G), and they are pairwise disjoint except that A N7 may be nonempty)

e every vertex in B has at most ¢ out-neighbours in A, and every vertex in C' has at most ¢
in-neighbours in A

e 7 has length at most k.

Let By = (G1, A1, B1,C1,m) and By = (G, Az, Ba, Ca, m2) be (¢, k)-battles. We say By switching-
contains By if there is a digraph G’ degree-equivalent to G2 and an injection 7 : V(G1) — V(G2),
with the following properties:

e for all distinct u,v € V(G2), if at least one of u,v belongs to 72, then uv is an edge of Gy if
and only if uv is an edge of G’

e for all distinct u,v € V(G1), u is adjacent to v in Gy if and only if n(u) is adjacent to n(v) in
G/

o n(m) =
e 7(A1) € Az and (By) € By and n(Ch) € Cy

e for each v in V(G1) \ 71, and for 1 < j < ||, v is adjacent to the jth term of 7y if and only if
n(v) is adjacent to the jth term of ms.
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We shall prove:

16.2 Let c,k >0, and let B; (i =1,2,...) be (c, k)-battles. Then there exist j > i > 1 such that B;
switching-contains B;.

Proof of 16.1, assuming 16.2. Let ¢ > 0, let T' = (T3, T3, T3, T4) be a quadruple of non-negative
integers, and for each i > 1 let C; == (Gj, A;, Bi,0,0,0,7;) be a clean c-limited contest of type
T. For each i there is a partition of B; into three sets say D;1, Do, D;3, where every vertex in Dj;
has outdegree at most ¢, every vertex in D;y has indegree at most ¢, and |D;3| < ¢. Let 7} be a
march of which 7; is an initial subsequence, and 7?2 = 7; U Dy3; then B; = (Gy, Ai, Di1, Dio, ') is a
(¢, Th + c¢)-battle. By 16.2 there exists j > i > 1 such that B; switching-contains B;; and then C;
switching-contains C;. This proves 16.1. |

Let G be a digraph and A, B C V(G). A matching in G from A to B is a set of directed
edges {x1y1,...,2nyn} of G such that x1,y1,...,2Tn,y, are all distinct, and z1,...,2, € A, and
Y1,---,Ym € B. We denote by u(A, B) or ug(A, B) the cardinality of the largest matching in G from
A to B.

Let B = (G,A,B,C,m) be a (c, k)-battle. For each v € A, we define its B-spread to be the
maximum n such that there is a matching {z1y1,...,2Z,yn} of G from B to A such that z1,...,x,
are all adjacent from v. We define the C-spread of v € A to be the maximum n such that there is a
matching {z1y1,...,2pyn} of G from A to C such that y1,...,y, are all adjacent to v. We define the
c-pivot of the battle to be the subset of A consisting of the ¢ members of A with smallest B-spread
together with the ¢ members of A with smallest C-spread (if |A| < ¢ we define the c-pivot to be A,
and we break ties arbitrarily). A (c, k)-battle (G, A, B,C, ) is c-pivotal if its c-pivot is a subset of
7. We shall prove

16.3 Let c,k >0, and let B; (i = 1,2,...) c-piwotal (c, k)-battles. Then there exist j > i > 1 such
that Bj switching-contains B;.

Proof of 16.2, assuming 16.3. Let ¢,k > 0, and for each i > 1 let B; be a (¢, k)-battle. For each
i >1let B; = (G, Ai, Bi, C;, m;). Let 7, be a march of length at most k + 2¢ of which 7; is an initial
subsequence, such that every vertex of the c-pivot of B; belongs to 7/ (since the c-pivot has at most
2c vertices, this exists), and let B, = (G;, Ai, B;, Cy, m.). Thus B is a c¢-pivotal (¢, k + 2¢)-battle. By
16.3 there exists j > ¢ > 1 such that B; switching-contains Bj; and then B; switching-contains B;.
This proves 16.2. |

Finally, the last step:

Proof of 16.3. The imbalance of a battle (G, A, B,C, ) is
e 2if ACT
e 1if AZ 7 and at least one of B,C = ()

e 0 otherwise.
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Let ¢,k > 0. A (¢, k)-bad sequence means an infinite sequence B; (i = 1,2,...) of ¢-pivotal (c, k)-
battles, such that there do not exist j > ¢ > 1 such that B; switching-contains B;. If there is a
(¢, k)-bad sequence, we say the pair (c, k) is bad. If (¢, k) is a bad pair, its imbalance is the maximum
n such that there is a (¢, k)-bad sequence each term of which has imbalance n.

We need to show there is no bad pair; thus, suppose that there is a bad pair, and choose a bad
pair (¢, k) with maximum imbalance. Let B; (i = 1,2,...) be the corresponding (¢, k)-bad sequence,
and for each i > 1 let B; = (G;, A, By, Cj, m;); thus, each B; is a c-pivotal (¢, k)-battle. By moving
to an infinite subsequence, we may assume that either B; = ) for all 7, or B; # () for all 7; and the
same for the C;.

Since there are only finitely many possibilities for G;|7;, we may assume they are all the same;
and so there is a digraph H, a common subdigraph of G1,Ga,..., and a march © with 7 = V(H),
such that m; = 7 for each i > 1. For each i > 1, let F; = G; \ V(H).

For every subset J C V(H), let N;(J) be the set of all vertices in V(F;) that are adjacent in G;
to every vertex in J and have no other out-neighbours in V(H). (Thus, N;(J) = 0 unless J C A; or
JNA; =0.) Let A;(J) = A; N N;(J), and define B;(J),C;(J) similarly.

For the moment, let us fix J C V(H). For each ¢ > 1, take an enumeration of the members of
A;(J)\ V(H), and for each v € A;(J) \ V(H) list the pair (p;(v),¢;(v)), where p;(v) is the number
of vertices in B; adjacent to v, and ¢;(v) is the number of vertices in C; adjacent from v. This gives
a finite sequence of pairs of non-negative integers, for each ¢ > 1. By 5.2, pairs of non-negative
integers, ordered by component-wise domination, form a wqo; so by 5.3 and 5.1 and passing to an
infinite subsequence, we may assume that for all j > i > 1 there is an injection n from A;(J)\ V(H)
to A;(J)\ V(H) such that for each v € A;(J)\V(H), n(v) € A;(J)\V(H), and p;(v) < p;(n(v)), and
¢i(v) < gj(n(v)). Similarly, take an enumeration of the members of B;(J), and for each v € B;(J)
list its outdegree in F;. This gives a finite sequence of integers, all at most ¢; and so by 5.3 and 5.1,
we may assume that for all j > ¢ > 1 there is an injection 1 from B;(J) into B;(J), such that for
each v € B;(J), the outdegree of n(v) in F; equals the outdegree of v in Fj. Similarly we may assume
that for all j >4 > 1 there is an injection 7 from C;(J) into C;(J), such that for each v € C;(J), the
indegree of n(v) in F}j equals the indegree of v in F;. By repeating this for all subsets J of V(H), we
may assume

(1) For all j > i > 1, there is an injection n from V(G;) into V(G;) such that
e 7n(v) =v for each v € V(H)

o for each v € V(F;) and uw € V(H), v is adjacent to u in G; if and only if n(v) is adjacent to u
in Gj, and v is adjacent from w in G; if and only if n(v) is adjacent from u in G;

o for each v € V(F;), if v € A; then n(v) € Aj, and the number of edges of Fj from B; to n(v)
is at least the number of edges of F; from B; to v, and the number of edges of F; from n(v) to
C; is at least the number of edges of F; from v to C;

e for each v € By, n(v) € Bj, and the outdegree of v in F; equals the outdegree of n(v) in Fj
o for each v € C;, n(v) € Cj, and the indegree of v in F; equals the indegree of n(v) in Fj.

(2) No pair (¢, k') has imbalance 2.
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For suppose there were such a pair; then (¢, k) has imbalance 2, from our choice of (¢, k). But then
by (1), m1 provides an isomorphism from G to an induced subdigraph of Gg, and so Bs switching-
contains Bj, a contradiction. This proves (2).

(3) We may assume that |A;| > 2|V(G;)|? + 2¢ for all j > i > 1.

For suppose that for some n there are infinitely many values of i with |A4;] < n. Then we may
assume that this is true for all 4, by passing to an infinite subsequence. For each i > 1, let 7, be
a march of length at most n + k of which 7; is an initial subsequence, and with A; C 7;; Then
B, = (Gi, A, B;, C, 7)) is a c-pivotal (¢, k + n)-battle with imbalance 2, for each ¢ > 1, and so by
(2) there exist 7 > ¢ > 1 such that B} switching-contains B;. But then B; switching-contains B;,
a contradiction. So for each n there are only finitely many ¢ with |A;| < n. But then there is an
infinite subsequence satisfying (3). This proves (3).

(4) If By # 0 then we may assume that

uc,;(Bj, Aj) > 2|V (Gi)|* + ¢+ k)(c+1)
for all j >i>1. Also, if C1 # 0, we may assume that

pe; (A, Cy) > 2IV(G)I* + e+ k)(c+ 1)
forally >i>1.

For suppose that By # (), and for some n > 0, there are infinitely many values of 7 such that
pa,;(Bi, Ai) < n. Then by passing to a subsequence, we may assume that this is the case for all 1.
By Hall’s theorem, for each ¢ > 1 there is a subset Z; C A; U B; with |Z;| < n such that every edge
from B; to A; has at least one end in Z;. For each i > 1, let 7} be a march of length at most k + n
such that m; is an initial subsequence of 7}, and Z; UT; = TF; Then B, = (G; \ (Bi\ Z;), Ai, 0, Ci, )
is a c-pivotal (¢, k + n)-battle with imbalance greater than that of B;; and so from our choice of
(¢, k), there exists i < j such that Bj is switching-contained in B, and from (1), it follows that 5;
is switching-contained in B; a contradiction. Thus for each n there are only finitely many such i.
Similarly, if C; # 0, for each n there are only finitely many 7 such that ug,(4;,C;) < n; and then
there is an infinite subsequence satisfying (4). This proves (4).

Let n be asin (1) with ¢ =1 and j = 2.
(5) Let Xo CV(Fy), and let X1 = {v € V(F1) :n(v) € Xa}. Then |D}L2(X2)\ > |D}1(X1)\.

For suppose that |D;§2 (X2)| < |Dj§1 (X1)|, for a contradiction. Since |Dj§1 (X1)| < [V(Gy)]?, it
follows that |D;2(X2)] < |[V(G1)]?. Suppose first that Xo N Cy # () and By € X5. Let v € Xo N Co;
then v has indegree at most ¢, and therefore it is outadjacent to all members of Ay \ (X2 UV (H))
except at most c. Since it has at most |V (G1)|?> outneighbours in Ao \ (X2 U V(H)) (because
\D;,CQ(XQ)| < |V(G1)]?), it follows that |As \ (X2 UV (H))| < |V(G1)|? + c. Similarly, since By  Xo,
it follows that [As N Xa| < |V(G1)|? + ¢, and so |42 \ V(H)| < 2(|]V(G1)|? + ¢), contrary to (3).
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Thus not both Xy NCy and Bs \ X5 are nonempty. Suppose next that both these sets are empty.
Then \D}'Q (X2)| is the number of edges of F» from By to Ay \ (X2 U V(H)), plus the number of
edges of Fy from X9 to Cy. Now the number of edges of F5 from X5 to Cs is at least the number of
edges of F} from X; to Cq, since for each v € X1, n(v) € X5, and the number of edges in F5 from
n(v) to Cy is at least the number of edges of F; from v to Cj, from the choice of 7. Similarly, the
number of edges of Fy from By to Ay \ (X2 UV(H)) is at least the number of edges of Fi from B
to A1\ (X1 UV(H)). It follows that |D;2 (X2)| > |D;§1 (X1)|, a contradiction.

This proves that exactly one of Xo N Cy, By \ X2 is nonempty. There is in fact a symmetry
exchanging these two cases, as we next explain. Each B; = (G, A;, B;, Ci, ;) is a c-pivotal (c, k)-
battle; so if G} is the digraph obtained from G; by reversing the direction of all edges, then B =
(G}, A;, Cy, B;, ;) is also a c-pivotal (c, k)-battle. Moreover, the sequence B; (i = 1,2,...) is a (¢, k)-
bad sequence with imbalance n, and it has the properties listed in (1)—(4). If Xo C V(F2), let
Yo = V(Fy) \ X2; then the statement of (5) holds for By and X» if and only if the statement of (5)
holds for B) and Y;. This symmetry exchanges the two cases mentioned before.

Consequently we may assume that Xo NCy = () and By € X5. Suppose that Ao N X5 = (), and so
X9 C Bsy. For every vertex v € X7 N By, n(v) belongs to X9 N Ba, and all edges of Fy with tail n(v)
therefore belong to DFQ (X2); and since the outdegree of n(v) in Fy equals the outdegree of v in Fi,
it follows that \D},: (X2)| > \DE (X1)], a contradiction.

Thus As N Xy # 0; choose v € A3 N X5. Let n be the B-spread of v in G5. Thus there is a
matching {x1y1,...,2nyn} of Gy from By to Ag, such that z1,...,x, are all adjacent from v in Ga.
Now as before, it follows that | Ay N X3| < [V(G1)|? + ¢; and so there are at most |V (G1)|? + ¢ values
of j € {1,...,n} such that y; € Ay N X»; and there are at most k values of j with y; € V(H), since
|V(H)| < k. Thus y; € As \ (V(H) U X») for at least n — |V(G1)|? — ¢ — k values of j € {1,...,n}.
But for each such value of j, either vx; € DE (X2) (if z; ¢ Xo) or xjy; € D;,C2 (X2) (if z; € X»), and
so there are at most |V(G1)|? such values. Consequently n — |V (G1)|?> — ¢ — k < |V(G1)|?, and so
n < 2|V(G1)|? +c+ k. Since v ¢ V(H), it follows that v is not in the c-pivot of B;, and so there are
at least ¢ 4+ 1 vertices in Ay with c-spread at most n (counting v as one of them), say vi,...,vcq1.
Now By # ), and so By # (0. By (4), there is a matching {wy21,...,wn2n} of Go from By to A
with m > (2|V(G1)|?> + ¢+ k)(c+1) > n(c+1). Since v1,...,v.41 each have B-spread at most n, it
follows that each of vy,...,v.41 is adjacent to at most n of wy,...,w,,. Consequently, there are at
least (m —n)(c+ 1) edges of G from {wi,...,wy} to {vi,...,ver1}. Since each z; has outdegree
at most ¢ (since it belongs to Bg), it follows that me > (m —n)(c+ 1), and so m < n(c+ 1), a
contradiction. This proves (5).

Let G be the image of G; under 7. From (5) and 9.2, applied to the weighted digraphs (G, 0, 0)
and (G2,0,0) (where 0 denote the function which is identically zero), we deduce that there is a
digraph GY, degree-equivalent to G, such that G is an induced subdigraph of G). Consequently
By is switching-contained in By. This proves 16.3. |
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