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Abstract

A graph is Berge if no induced subgraph of it is an odd cycle of length at least five or the
complement of one. In joint work with Robertson, Seymour, and Thomas we recently proved the
Strong Perfect Graph Theorem, which was a conjecture about the chromatic number of Berge graphs.
The proof consisted of showing that every Berge graph either belongs to one of a few basic classes,
or admits one of a few kinds of decompositions. We used three kinds of decompositions: skew-
partitions, 2-joins, and proper homogeneous pairs. At that time we were not sure whether all
three decompositions were necessary. In this paper we show that the proper homogeneous pair
decomposition is in fact unnecessary. This is a consequence of a general decomposition theorem for
“Berge trigraphs”.

A trigraph T is a generalization of a graph, where the adjacency of some vertex pairs is “unde-
cided”. A trigraph is Berge if however we decide the undecided pairs, the resulting graph is Berge.

We show that the decomposition result of [2] for Berge graphs extends (with slight modifications)
to Berge trigraphs; that is for a Berge trigraph T, either T' belongs to one of a few basic classes or T
admits one of a few decompositions. Moreover, the decompositions are such that however we decide
the undecided pairs of T, the resulting graph admits the same decomposition. This last property is
crucial for the application.

The full proof of this result is over 200 pages long and was the author’s PhD thesis. In this paper
we present the parts that differ significantly from the proof of the decomposition theorem for Berge
graphs, and only in the case needed for the application.



1 Introduction

We begin with some definitions. All graphs in this paper are simple and finite. The complement G
of a graph G has the same vertex set as G, and two distinct vertices u,v are adjacent in G if and
only if they are non-adjacent in G. A hole in G is an induced cycle of length at least 4. An antihole
in G is an induced subgraph whose complement is a hole in G.

A graph is called Berge if it contains no odd hole and no odd antihole. A cligue in G is a subset
of the vertex set every two members of which are adjacent. A graph G is perfect if its chromatic
number equals the size of its maximum clique and the same holds for every induced subgraph of G.
Since this equality does not hold for odd holes and antiholes, every perfect graph is Berge.

Recently in joint work with N.Robertson, P.Seymour, and R.Thomas [2] we were able to prove
that the reverse statement holds as well—namely every Berge graph is perfect (this was conjectured
by Berge in 1961 [1] and had become known as the Strong Perfect Graph Conjecture.) To show that,
we proved a structure theorem for Berge graphs. This settled a conjecture by Conforti, Cornuéjols,
and Vuskovié¢ [6], asserting that every Berge graph either belongs to one of a few basic classes or
admits one of a few kinds of decompositions (where the decompositions are such that they cannot
occur in a minimal counterexample to the Strong Perfect Graph Conjecture).

In [3] the decomposition theorem of [2] is reproved in the more general setting of Berge trigraphs,
namely graphs in which the adjacency of some vertex pairs is “undecided” (we give precise definitions
later.) Parts of the proof are a rather straightforward generalization of [2], while in others new ideas
were needed. The full proof is over 200 pages long. Our objective here is to present the novel parts
of the proof (the rest is omitted for reasons of space).

This work is motivated by an application to Berge graphs proving that one of the decompositions
used in [2] was unnecessary (explained later). For this application we can confine ourselves to the
case when every vertex is incident with at most one “undecided” edge. In this paper we therefore
only consider this case.

Most of the proof in [2] follows the paradigm bellow:

e find a subgraph of the Berge graph that has a certain “structure”
e using this structure, prove that the whole graph is either basic, or admits a decomposition.

At first it seems that instead of using trigraphs, one could redefine the “structure” to allow more
flexibility, and say the whole proof in terms of graphs only. We would like to remark that despite a
certain amount of effort invested in this approach, we were unable to come up with consistent ways
to define the structures, and so the idea of using trigraphs seems crucial.

Let us start by stating the decomposition theorem of [2]. First we need some definitions. For a
subset X of the vertex set of G we denote by G|X the subgraph of G induced on X. The line graph
L(QG) of a graph G is the graph whose vertex set is E(G) in which two members of E(G) are adjacent
if and only if they share an end in G.

We need one other class of graphs, defined as follows. Let m,n > 2 be integers, and let
{a,...,am}, {b1,...,bn}, {c1,...,cn}, {d1,...,d,} be disjoint sets. Let G have vertex set their
union, and edges as follows:

e a; is adjacent to b; for 1 <4 < m, and ¢; is non-adjacent to d; for 1 < j <n



e there are no edges between {a;,b;} and {a;, by} for 1 <i <4’ < m, and all four edges between
{¢j,d;} and {cj,dj} for 1 < j<j <n

e there are exactly two edges between {a;,b;} and {¢;,d;} for 1 <i <mand 1 < j < n, and
these two edges are disjoint.

We call such a graph G a double split graph. Let us say a graph G is basic if either G or G is bipartite
or is the line graph of a bipartite graph, or G is a double split graph. (Note that if G is a double
split graph then so is G.) It is easy to see that all basic graphs are perfect.

A path in G is an induced subgraph of G which is non-null, connected, acyclic, and in which
every vertex has degree < 2, and an antipath is an induced subgraph whose complement is a path.
(Please note that this is different from the standard definition of a path in a graph, because of the
requirement to be induced.) The length of a path is the number of edges in it (and the length of
an antipath is the number of edges in its complement.) We therefore recognize paths and antipaths
of length 0. A path is said to be odd if it has odd length, and even otherwise. If P is a path, P*
denotes the set of internal vertices of P, called the interior of P; and similarly for antipaths.

Now we turn to the various kinds of decomposition needed in [2]. First, a decomposition essen-
tially due to Cornuéjols and Cunningham [7], a proper 2-join in G is a partition (X1, Xs) of V(G)
so that there exist disjoint nonempty A;, B; C X; (i = 1,2) satisfying:

e every vertex of A; is adjacent to every vertex of As, and every vertex of By is adjacent to every
vertex of Boy,

e there are no other edges between X7 and Xo,
e for i = 1,2, every component of G|X; meets both A; and B;, and

e fori=1,2,if |4;] = |B;| =1 and G|X; is an induced path joining the members of A; and B;,
then it has odd length > 3.

If X, Y C V(G) are disjoint, we say X is complete to Y (or the pair (X,Y") is complete) if every
vertex in X is adjacent to every vertex in Y; and we say X is anticomplete to Y if there are no edges
between X and Y. The second decomposition used in [2] is a very slight variant of the “homogeneous
sets” due to Chvatal and Sbihi [5] — a proper homogeneous pair is a pair of disjoint nonempty subsets
(A, B) of V(G), such that if A1, A2 denote respectively the sets of all A-complete and A-anticomplete
vertices and Bj, By are defined similarly, then:

e AfUAy =B UBy=V(G)\ (AU B) (and in particular every vertex in A has a neighbor and
a non-neighbor in B and vice versa)

e the four sets Ay N By, A1 N By, Ao N By, A3 N By are all nonempty.

Let A, B be disjoint subsets of V(G). We say the pair (A, B) is balanced if there is no odd path
between non-adjacent vertices in B with interior in A, and there is no odd antipath between adjacent
vertices in A with interior in B. A set X C V(G) is connected if G| X is connected (so ) is connected);
and anticonnected if G| X is connected.

The third kind of decomposition in [2] is due to Chvétal [4] — a skew-partition in G is a partition
(A, B) of V(G) so that A is not connected and B is not anticonnected. Skew-partitions pose a



difficulty that the other two decompositions do not, for it had not been shown before [2] that a
minimal counterexample to the strong perfect graph conjecture cannot admit a skew-partition. In
[2] we solved this problem by confining ourselves to balanced skew-partitions, which do not present
this difficulty. In fact, we proved the following:

1.1 For every Berge graph G, either G is basic, or one of G, G admits a proper 2-join, or G admits
a proper homogeneous pair, or G admits a balanced skew-partition.

Our main result here, a structure theorem for Berge trigraphs, is similar to 1.1— we prove that
every Berge trigraph either belongs to one of a few basic classes or has a decomposition. As a
corollary we can prove a strengthening of the structure theorem for Berge graphs, the following;:

1.2 For every Berge graph G, either G is basic, or one of G, G admits a proper 2-join or G admits
a balanced skew-partition.

(Thus the proper homogeneous pair decomposition can be avoided.)

2 Trigraphs

A trigraph T is a 4-tuple (V(T), E(T), S(T), N(T)) where V is the vertez set of T and every unordered
pair of vertices belongs to one of the three disjoint sets: the strong edges E(T'), the strong non-edges
N(T) and the switchable pairs S(T'). In this notation a graph can be viewed as a trigraph with
S(T) = 0.

A subtrigraph 7" of T is a trigraph with V(T") C V(T'), and for two vertices vi,vo € V(T”), the
pair vivy belongs to E(T"),S(T") or N(T") if it belongs to E(T),S(T) or N(T) respectively. For
X CV(T) we denote by T'|X the subtrigraph of 7" with vertex set X.

A realization of a trigraph T is a graph G on the same vertex set as T such that E(G) = S'UFE
for some subset S’ of S(T). Let us denote by G the realization of T' with the edge set EU S’.
Sometimes we will describe a realization of 1" as an assignment of values to switchable pairs of T
In G/ the switchable pairs in S’ are assigned the value “edge”, and those in S(T')\ S’ — the value
“non-edge”. The realization with edge set E U S(T) is called the full realization of T

We say that two vertices u, v of a trigraph T" are weakly adjacent if uv € EUS, weakly non-adjacent
if uv € NUS, strongly adjacent if wv € E, strongly non-adjacent if uv € N. (So if u and v are both
weakly adjacent and weakly non-adjacent then wv is a switchable pair.) We say u is a weak (strong)
neighbor of v if u is weakly (strongly) adjacent to v. We say u is a weak (strong) non-neighbor
of v if u is weakly (strongly) non-adjacent to v. A subset X of V(T') is weakly (strongly) stable if
every two members of X are weakly (strongly) non-adjacent, and it is a weak (strong) clique if every
two members of it are weakly (strongly) adjacent. If X, Y C V(T') are disjoint, we say X is weakly
(strongly) complete to Y (or the pair (X,Y") is weakly (strongly) complete, X is weakly (strongly)
Y -complete) if every vertex in X is weakly (strongly) adjacent to every vertex in Y; and we say X
is weakly (strongly ) anticomplete to Y (X is weakly (strongly) Y -anticomplete) if every vertex in X
is weakly (strongly) non-adjacent to every vertex in Y. If G is a realization of T we say that X is
(G,Y)-complete if X is Y-complete in G.

The complement T of a trigraph T is a trigraph on the same vertex set as T such that F(T) =
N(T), N(T) = E(T), S(T) = S(T). (This definition generalizes the complement of a graph.)



We say that a trigraph T is Beryge if every realization of T is a Berge graph. Since a graph is
Berge if and only if its complement is, and the complement of every realization of T is a realization
of T, a trigraph is Berge if and only if its complement is. A trigraph is called monogamous if every
vertex of it belongs to at most one switchable pair.

A trigraph is weakly connected if its full realization is a connected graph. A component of T is
a connected component of the full realization of T'. A subset X of the vertex set of T is said to be
weakly connected if the trigraph 7| X is weakly connected. A trigraph is weakly anticonnected if its
complement is weakly connected, and an anticomponent of T is a weakly connected component of 7.
A subset X of the vertex set of T is said to be weakly anticonnected if the trigraph T'|X is weakly
anticonnected. A component (anticomponent) of a set X C V(T') is a maximal weakly connected
(anticonnected) subset of X.

A path or hole in T is a realization of a subtrigraph of T which is a path or a hole. Two vertices of
a path or a hole of T are called consecutive, if they are adjacent in the path or the hole, respectively.
An antipath or an antihole in T is a path or hole in 7. Thus a trigraph is Berge if and only if it
contains no odd hole or antihole.

2.1 Let T be a Berge trigraph and let uv be a switchable pair in T. Then every even path between
u and v has length 2.

Proof. If P is an even path of length > 2 between u and v then u-P-v-u is an odd hole in T, a
contradiction. This proves 2.1. |

A trigraph T is bipartite if its vertex set can be partitioned into two strongly stable sets. Every
realization of a bipartite trigraph is a bipartite graph, and hence every bipartite trigraph is Berge,
and so is the complement of a bipartite trigraph.

A trigraph T is a line trigraph if the full realization of T is the line graph of a bipartite graph
with at least three vertices of degree at least three, and in addition, every weak clique of size at least
3 in T is a strong clique. The following is an easy fact about line trigraphs:

2.2 Every line trigraph is Berge.

Proof. Let T be a line trigraph, and let S = S(T'). We need to prove that for every subset S’ of
S the graph Gg/7 is Berge. The proof is by induction on |S \ S’|. The base case holds since Gg” is
the line graph of a bipartite graph. For the inductive step it is enough to prove that if Gg” is Berge
then GS/\GT is Berge for every e € S’. Let e be the pair u,v. Suppose GS/\eT contains an odd hole
H. Since Gg'T is Berge, both u and v belong to H. But that means that in GS/\eT there exist an
even path between v and v. Since Gy is Berge, this path has length 2 and 7" contains a weak clique
of size 3 which is not strong, a contradiction. Now assume that G Sr\eT contains an odd antihole A.
Since G/ is Berge, both u and v belong to A. But then there exists a vertex of T weakly adjacent
to both u and v, contrary to the fact that every clique of size at least 3 in T is strong. This proves
2.2 |

Let us now define the trigraph analogue of the double split graph, namely the double split trigraph.
Let m,n > 2 be integers, and let {a1,...,am}, {b1,...,bm}, {c1,...,cen}, {d1,...,d,} be disjoint
sets. Let T have vertex set their union, and

e a; is weakly adjacent to b; for 1 <1 < m, and ¢; is weakly non-adjacent to d; for 1 < j <n
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o {a;,b;} is strongly anticomplete to {a;,by} for 1 < i < i’ < m, and the {c;,d;} is strongly
complete to {cjr,dy} for 1 < j<j <n

e there are exactly two strong edges and exactly two strong non-edges between {a;,b;} and
{¢j,d;} for 1 <i<mand 1 <j <mn, and the two strong edges are disjoint.

We now show that
2.3 Every double split trigraph is Berge.

Proof. It is again enough to prove that for every S’ C S(T'), the graph G” is Berge. Let S; be
the set of all switchable pairs a;, b; with 1 < ¢ < m, and let S be the set of all switchable pairs c¢;, d;
with 1 < j < n. Hence S(T)T = S1 U S3. The proof is by induction on [Sy \ S'| +[S2 N S’| (the
number of switchable pairs whose value in the realization Gg/” is different from their value in the
“natural” realization of T' which is a double split graph.) The base case holds since G's,” is a double
split graph.

By passing to the complement, if necessary, it is enough to show that if G g7 is Berge then G S/\eT
is Berge for every e in S’ N S;. Let the e be ay,by. Since Gg/! is Berge, if GS/\eT contains an odd
hole or an odd antihole, then both a1 and b; belong to it.

Assume first that G S/\eT contains an odd hole. Then G S/\@T contains an even path between a;
and by. Since Gg/7 is Berge, this path has length 2. But then T contains a vertex weakly adjacent
to both a; and by, a contradiction.

Now assume that G S/\eT contains an odd antihole. But then again 7' contains a vertex weakly
adjacent to both aq and by, a contradiction. This proves 2.3. |

In order to state the trigraph analogue of 1.1 we also need to define three sporadic Berge trigraphs
Spory, Spors, Spors:

e V(Spory) = {x1,x2,23}
E(Spor1) = N(Spory) =0
and S(Spori) = {z;x; : 1<i<j<3}

o V(Spory) = {x1,z2, 23,24}
E(Spors) = {xax4}
N (Spora) = {x3z4}
and S(Sporg) = {z;x; : 1<i<j<3}U{z124}

e V(Spors) ={x1,x2,23,24,25}
E(Spors) = {x124, x2x5}
N(Spors) = {x4xs5, x3%4, T375}
and S(Spors) = {z;x; : 1<i<j<3}U{zowy, 125}

Now we describe the decompositions that we need. First, a proper 2-join in T is a partition
(X1, X2) of V(T) so that there exist disjoint nonempty A;, B; C X; (i = 1,2) satisfying:

e no switchable pair meets both X7 and X5,



e every vertex of A; is strongly adjacent to every vertex of A, and every vertex of By is strongly
adjacent to every vertex of Bo,

e there are no other strong edges between X; and X5, and
e for i = 1,2, every component of T'|X; meets both A; and B;,
o fori =1,2 |X;| >3, and

e for i = 1,2, if |A;| = |B;| = 1, then the full realization of T'|X; is not an even path joining the
members of A; and B;.

Our second decomposition is a “proper homogeneous pair” in 1. A proper homogeneous pair is a
pair of disjoint nonempty subsets (A, B) of V(T'), such that if A;, Ay denote respectively the sets of
all strongly A-complete and strongly A-anticomplete vertices and B1, B are defined similarly, then:

e |[A| >1and |B| > 1,

e AfjUAy = B1UBy =V(G)\ (AU B) (and in particular every vertex in A has a weak neighbor
and a weak non-neighbor in B and vice versa), and

e the four sets A; N By, A1 N By, Ay N By, Ay N By are all nonempty.

Let A, B be disjoint subsets of V(T'). We say the pair (A, B) is balanced if there is no odd path
of length greater than 1 with ends in B and interior in A, and there is no odd antipath of length
greater than 1 with ends in A and interior in B. A skew-partition is a partition (A4, B) of V(T') so
that A is not weakly connected and B is not weakly anticonnected. The third kind of decomposition
we use is a balanced skew-partition.

The three decompositions we just described generalize the decompositions that we used in [2],
and in addition all the “important” edges and non-edges in those graph decompositions are required
to be strong edges and strong non-edges of the trigraph, respectively.

We now describe two more kinds of decompositions, that have no analogue in the graph case.
We remark that these decompositions are not needed when the trigraph in question is monogamous,
which is the case we focus on in this paper, but we need them to state the full theorem.

The first one is a “l-separation”. We say that a trigraph 7" admits a I-separation if there is a
vertex v in T such that the trigraph T'|(V(T') \ v) is not weakly connected. It is easy to see that if T
and Ty are two Berge trigraphs and T is obtained from T} and T» by identifying a vertex vy € V(17)
with a vertex ve € V(Ty), then T is Berge.

The second one is the homogeneous set decomposition. We say that 1" admits a homogeneous set
decomposition (U, Vg, Vs, Vy) if U, Vg, Vs,V partition the vertex set of T and

o U|>1

e for every u € U and v € V(T') \ U the pair uv is a strong edge if v € Vg, a strong non-edge if
v € Vi and a switchable pair if v € Vg

e cither |Vg| < 1 and no realization of T'|U contains a path of length 3 or
Vs = {a, b}, a is strongly complete to Vg and U is a strongly stable set.



We say that a trigraph T is obtained from the trigraph Ty by substituting the trigraph 75 for a
vertex v of 11, if T' is obtained from T} by replacing v by a copy of 15, and making all vertices of T5
strongly and weakly adjacent (non-adjacent) to the strong and weak neighbors (non-neighbors) of v
in 77, respectively.

The homogeneous set decomposition preserves Bergeness in trigraphs in the following two senses:

2.4 LetTy be a Berge trigraph and let v be a vertex of T that belongs to at most one switchable pair.
Let T be a Berge trigraph no realization of which contains a path of length 3. Then the trigraph
obtained from T by substituting Ty for v is Berge.

2.5 Let T be a Berge trigraph and let v be a vertex of T that belongs to exactly 2 switchable pairs,
say va and vb, and assume that a is strongly adjacent to every strong neighbor of v. Let Ty be a
Berge trigraph with E(Ty) = S(T3) = (. Then the trigraph obtained from Ty by substituting To for v
1s Berge.

Proof of 2.4. Suppose T is not Berge. Then there exists a realization of T that contains an odd
hole or an odd antihole. Since T can be obtained from T by substituting T5 for v, and no realization
of Ty contains a path of length 3, passing to the complement if necessary we may assume that T
contains an odd hole H.

Since T7 is Berge, at least two vertices of H belong to V' (T3). Let Vg be the set of strong neighbors
of v in T7, let Viy be the set of strong non-neighbors of v in T3, and let Vg = V(T1) \ ({v} UVE U Vx).
By the hypothesis of the theorem, |Vg| < 1.

Since no realization of T contains a path of length 3, [V (H)\ V(T%2)| > 2, moreover, at least two
vertices of V(H) \ V(T3) have both a neighbor and a non-neighbor in V(H) N T3, consequently they
both belong to Vg, a contradiction. This proves 2.4. |

Proof of 2.5. Suppose T is not Berge. Then there exists a realization of T" that contains an odd hole
or an odd antihole. Since T} is Berge, at least two vertices of the odd hole or the odd antihole belong
to V(T»). Let Vg be the set of strong neighbors of v in Ty, let Vy be the set of strong non-neighbors
of vin Th, and let Vg = V(T1) \ ({v} UVE U Vy). (By the hypothesis of the theorem Vg = {a, b} and
a is strongly complete to Vg.)

Assume first that 7' contains an odd hole H. Since |V (H) NV (Ty)| > 2, there are three vertices
in V(H) \ V(T») with neighbors in V(H) NV (Ty) in H. Since |V (H)| > 4, at most one vertex of H
is in Vg and so H uses both a,b and |V(H) N Vg| = 1. But since a is strongly complete to Vg, H
does not use a, a contradiction.

Now assume that T contains an odd antihole A. Since A contains no stable set of size 3, exactly
two vertices of A belong to V' (T2), and they are consecutive in the antihole. Let the vertices of A
be {a1,aq,..,ar} in order such that a; and ag are in V(7). Then {as,ax} = {a,b} (for each of the
vertices as, ay is adjacent to exactly one of aj,ay in A.) Without loss of generality we may assume
that ag = a. The vertex a4 is adjacent to both a1 and as in A, and is different from b, since k > 5.
Hence a4 belongs to V. On the other hand a4 is non-adjacent to ag in A, contrary to the fact that
a is strongly complete to Vg. This proves 2.5. |

We are now ready to state the decomposition theorem for Berge trigraphs.

2.6 Let T be a Berge trigraph. Then either



o T or T is either bipartite, or a line trigraph, or a double split trigraph, or
o T or T is one of the three sporadic trigraphs Spori, Spors, Spors, or

o T or T admits either a proper 2-join, or a balanced skew-partition, or a proper homogeneous
pair, or

o T or T admits either a homogeneous set decomposition or a 1-separation.

A full proof of 2.6 can be found in [3].

3 The application—graph decomposition

In this section we show how 2.6 can be used to obtain structural results for Berge graphs, namely we
will use 2.6 to prove 1.2. In fact, to prove 1.2 it is enough to consider the class of monogamous Berge
trigraphs. We say a trigraph T is basic if T is monogamous and one of T, T is a bipartite trigraph,
a line trigraph or a double split trigraph. In this case we get a simpler decomposition theorem, the
following:

3.1 Let T be a monogamous Berge trigraph. Then either
e T is basic or
o T or T admits a proper 2-join, or
e T admits a balanced skew-partition.

Clearly 3.1 implies 1.2 for, as we have already said before, a graph can be viewed as a special
case of a trigraph with an empty set of switchable pairs, and in particular a monogamous trigraph.
As we shall see in this section, in order to prove 3.1 it is enough to prove the following

3.2 Let T be a monogamous Berge trigraph. Then either

o T is basic or

o T or T admits a proper 2-join, or

o T admits a balanced skew-partition, or
e T admits a proper homogeneous pair.

In the remainder of this section we prove 3.1 assuming 3.2. The full proof of 3.2 is in [3]. In fact,
it follows from probing closer into the proof of 2.6. In sections 4—38 of this paper we will present the
aspects of the proof of 3.2 that differ significantly from the proof of 1.1.

Proof of 3.1. Suppose the theorem is false and consider a counterexample T' with |V (7")| minimum.
By 3.2 that means that 7" admits a proper homogeneous pair decomposition and satisfies none of
the outcomes of 3.1. Let (A, B) be a proper homogeneous pair in T, let Ay, Ay respectively be the
sets of all strongly A-complete and strongly A-anticomplete vertices in T and let By, By be defined
similarly. Let C = AyN By, D = AoN By, E = Ay N By and F = A; N By. Let us define a new
trigraph 7" with V(17") = CUD U E U F U {a, b} where a,b ¢ V(T) such that



T'(CUDUEUF)=T|(CUDUEUF)
e ab is a switchable pair

for a vertex v in CU DU FE U F, ua is a strong edge or a strong non-edge in T" if u is strongly
complete or strongly anticomplete to A in T, respectively

for a vertex uin CUD U E U F, ub is a strong edge or a strong non-edge in 7" if u is strongly
complete or strongly anticomplete to B in T', respectively.

Since T"[(CUDUEUF)=T|(CUDUEUF) and the only switchable pair containing a or b is
ab, T" is monogamous.

We claim that T” is Berge. Suppose T contains an odd hole or an odd antihole H. Since T is
Berge, H is not a realization of a subtrigraph of T', so V(H)N{a,b} #0. f a € V(H) and b ¢ V(H)
then for any vertex a’ € A the trigraph T|((V(H) \ {a}) U {a’}) has a realization as an odd hole or
antihole, a contradiction. So both a and b are in H. Choose a’ € A and b’ € B, weakly adjacent if a is
adjacent to b in H, and weakly non-adjacent otherwise. Now the trigraph T'|((V (H)\{a,b})U{a’,b'})
has a realization as an odd hole or antihole in 7', a contradiction.

From the definition of a proper homogeneous pair, A and B contain at least two vertices each,
so |[V(T")| < |[V(T)|. By the minimality of T, the assertion of the theorem holds for the trigraph
T', namely either 7" is basic or 7" admits a balanced skew-partition or one of 77 or T’ admits a
proper 2-join. We show that in fact 7" cannot be basic and every decomposition of 7" extends to a
decomposition of the same type in T, thus obtaining a contradiction to the assumption that 7T is a
counterexample to the theorem.

The proof now breaks into cases according to the type of behavior of T’. We can cut down the
number of cases by noticing that if T is a minimum size counterexample to the theorem, then so
is T and the graph (T)’ obtained from T by the procedure described above is just 77. So we may
assume that T” is either bipartite, or a line trigraph, or a double split trigraph, or admits a balanced
skew-partition, or a proper 2-join.

Case 1 T is a bipartite trigraph.
This case is impossible, for {a,b, f} is a weak clique of size 3 for any vertex f € F.
Case 2 T’ is a line trigraph.

This case is impossible since {a,b, f} is a weak clique that is not a strong clique for every vertex
fevr.

Case 3 T’ is a double split trigraph.

Then V(T") = {a1,...,am}U{b1,..., by }U{c1,...,cn}U{d,...,d,} for some integers m,n > 2,
and the only possible switchable pairs in 1" are those of the form a;b; for 1 < ¢ < m and c;d; for
1 < j < n. So no switchable pair is contained in both a weak clique and a weak stable set of size 3.
But in 77, {a,b, f} is a weak triangle for every vertex f € F and {a,b, e} is a weak stable set of size
3 for every vertex e € E, a contradiction. This finishes Case 3.



Case 4 T’ admits a balanced skew-partition.

That means that V(7”) can be partitioned into two sets M and N, such that M is not weakly
connected and N is not weakly anticonnected. Let

M if agM bdM

M\ {a} UA if aeM, b¢ M
M\{YUB  if ad¢M, beM
M\{a,b} UAUB if aeM, beM

M =

Let N’ be defined similarly. Since a,b is a switchable pair, the vertices a and b either belong to
the same component of M or to the same anticomponent of NV or one of them is in M and the other
one is in N. Consequently (M’, N') is a skew-partition of T

We now show that this skew-partition is balanced. Assume it is not. By passing to the comple-
ment if necessary we may assume that there exists a path py----- pr of odd length at least 3, with
ends in N’ and interior in M’. Let P be this path. Since P is not a realization of a subtrigraph of 7’,
either [V(P)NA| > 2or |V(P)NB| > 2. Let s,t be minimum and maximum such that 1 <s <t <k
and {ps,p:} is a subset of one of A, B, say B.

Since either B C M’ or B C N’, and the ends of P are in N’ and the interior is in M’, it follows
that either p,,p; are both ends of P and P* N B = (), or they both belong to P*. In the first case
define a1 = po and as = pr_1. In the second case define a1 = p;_1 and as = py41. Since P is a path
of length at least three, in both cases a1, as are distinct and do not belong to B.

In both cases a; is adjacent in P to ps and not p;, and a9 is adjacent in P to p; and not ps. Since
every vertex in V(T') \ (AU B) is either strongly complete to B or strongly anticomplete to B, both
a1 and agy belong to A. So from the choice of s,t we deduce that s = 1,¢ = k. Hence po, pr_1 belong
to A and P* N B = (). Since pi-P-p-d-p1 is not an odd hole for d € D, it follows that P* is not
contained in A.

Let 2 < i < k be minimum such that p; does not belong to A. Then i > 2. Since p; is adjacent
to pi—1 (which is in A) and not to p; (which is in B), p; belongs to C. So p; is complete in P to
{p2,pr—1} and since P is a path ¢ = 3 and k = 5, contrary to the fact that P has odd length. This
proves that the skew-partition (N’, M’) is balanced and finishes Case 4.

Case 5 T admits a proper 2-join.

Let (X7, X2) be a proper 2-join in T'. Since ab is a switchable pair, either both a and b belong
to X1, or they both belong to Xs. Without loss of generality we may assume that both a and b are
in X7. But then, since every vertex in A has a weak neighbor in B and vice versa, it follows that
((X1\{a,b})UAUB, X») is a proper 2-join in 7', a contradiction. This finishes Case 5 and completes
the proof of 3.1. |

4 Overview of the proof of 3.2

In this section we sketch the outline of the proof of 3.2. Similarly to [2] the idea of the proof is, given
a trigraph T, to find small subtrigraphs F' of it that would force T either to be basic or to admit
a decomposition. The proof breaks into steps each of which is characterized by the subtrigraph F
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that is considered at that step. Clearly, having proved that a certain subtrigraph Fy, if present in a
Berge trigraph, forces it to either belong to a basic class or have a decomposition, we can from then
on assume that all trigraphs in question do not contain F;.

Many of the trigraphs F' we use here correspond to the subgraphs considered in [2]— such as
a trigraph that has a realization that is the line graph of a “substantial” bipartite graph, or as an
“odd prism” (precise definitions that are important for us in this paper will be given later; for others
we refer the reader to [2] or [3]). However, later in the proof, finding the right generalization of the
subgraph used in [2] becomes more difficult, and sometimes we will need to deviate from the route
of [2]. (Further complications arise if the trigraph in question is not monogamous (see [3]), but they
are outside of the scope of this paper.)

Let 71,...,713 be the following classes of monogamous Berge trigraphs:

77 is the class of all Berge trigraphs in which every appearance of K, is degenerate

7> is the class of all trigraphs T such that T, T € 7; and no subtrigraph of T has a realization
isomorphic to L(K33).

73 is the class of all Berge trigraphs T so that for every bipartite subdivision H of K4, no
subtrigraph of T" or of 1" has a realization isomorphic to the line graph of H

7, is the class of all T' € 73 so that no subtrigraph of T' is an even prism

T5 is the class of all T € T3 so that no subtrigraph of 7" or of T is a long prism

T is the class of all T' € 75 such that no subtrigraph of T" is isomorphic to a double diamond
77 is the class of all T' € T so that T and T do not contain odd wheels

Tg is the class of all T € 77 so that T and T do not contain pseudowheels

Ty is the class of all T' € Tg such that 7' and T' do not contain wheels

Tio is the class of all T' € 7y such that, for every hole C' in T of length > 6 with an origin, no
vertex of T is weakly adjacent to the origin and both of its weak neighbors in ', and the same
holds in T

711 is the class of all T' € 719 such that, for every hole C in T of_length > 6, no vertex of T" has
three consecutive weak neighbors in C, and the same holds in T’

712 is the class of all T' € 771 such that every antihole in 7" has length 4

713 is the class of all T' € 715 such that T' contains no strong clique of size three.

The following are the main steps of the proof of 3.2

1.

For every Berge trigraph T, either T is a line trigraph or 7" admits a proper 2-join or a balanced
skew-partition, or 17" € 77.

. For every T with T,T € T, either T or T is a line trigraph or one of T, T admits a proper

2-join, or 1" admits a balanced skew-partition, or T € 75.
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10.
11.
12.

13.

14.

. For every T € Ty, either T is a double split trigraph, or one of T, T admits a proper 2-join, or

T admits a balanced skew-partition, or T € 73.

. For every T' € 71, either T is an even prism with exactly 9 vertices, or T admits a proper 2-join

or a balanced skew-partition, or T' € 7y.

. For every T such that T € 7, and T € 7y, either one of T,T admits a proper 2-join, or T

admits a proper homogeneous pair, or T admits a balanced skew-partition, or T' € 75.

. For every T € T;, either one of T,T admits a proper 2-join, or T" admits a balanced skew-

partition, or T € 7g.

For every T € 7g, either T' admits a balanced skew-partition, or T' € 77.

. For every T € 77, either T' admits a balanced skew-partition, or T' € 7g.

. For every T € 7g, either T' admits a balanced skew-partition, or T' € 7.

For every T € Ty, either T admits a balanced skew-partition, or T € 7q.
For every T € Tyq, either T admits a balanced skew-partition, or T' € 77;.
For every T € 711, either T € Ti5 or T € Ti.

For every T € Tio, either T' admits a balanced skew-partition, or one of T, T is bipartite or
T € Ti3.

For every T € 713, either T or T is bipartite, or T admits a balanced skew-partition.

Steps 1—38 of the proof are a rather straightforward generalization of the proof in [2], the details
of which can be found in [3], and we omit them here. The rest of the proof (steps 9—14) is trickier,
and does not follow the outline of [2] as closely. In the remainder of this paper we present that part
of the proof, namely we prove

4.1 For every T € Ty, either T admits a balanced skew-partition or one of T, T is bipartite.

Statements 9—14 are proved in 6.21, 7.4, 7.6, 7.8, 8.5 and 8.6, and thus 4.1 follows.

Some of the theorems in this paper are proved by applying theorems from [2] to the right real-
ization of a trigraph. For this reason we need the classification of Berge graphs used in [2]. Let

Fi,..

., F11 be the classes of Berge graphs defined as follows

e Fj is the class of all Berge graphs G such that for every bipartite subdivision H of Ky, every

induced subgraph of G isomorphic to L(H) is degenerate

e F, is the class of all graphs G such that G, G € F; and no induced subgraph of G is isomorphic

to L(Kgyg)

e F3is the class of all Berge graphs GG so that for every bipartite subdivision H of K4, no induced

subgraph of G or of G is isomorphic to L(H)
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e F, is the class of all G € F3 so that no induced subgraph of GG is an even prism
e T5 is the class of all G € F3 so that no induced subgraph of G or of G is a long prism

e F; is the class of all G € F5 such that no induced subgraph of G is isomorphic to a double
diamond

e F7 is the class of all G € Fg so that G and G do not contain odd wheels
e Fg is the class of all G € Fy so that G and G do not contain pseudowheels
e Fy is the class of all G € Fg such that G and G do not contain wheels

e Fip is the class of all G € Fy such that, for every hole C' in G of length > 6, no vertex of G
has three consecutive neighbors in C, and the same holds in G

e i1 is the class of all G € Fig such that every antihole in GG has length 4.

5 Tools and some definitions

In this section we give some definitions and quote (without proofs) some lemmas from [3] that will
be needed in the subsequent sections. Please note, that since a graph can be viewed as a trigraph
with the set of switchable pairs empty, certain subtrigraphs defined here translate into subgraphs
when used in the graph case. We start with three facts about common weak and strong neighbors
of weakly anticonnected sets.

This is an easy variant of a theorem of Roussel and Rubio [8].

5.1 Let T be a Berge trigraph, let X be a weakly anticonnected subset of V(T'), and P be a path in
T\ X with odd length, such that that both ends of P are weakly X -complete. Assume that for no edge
e of P, both of its ends are weakly X -complete and the vertices of e in P* are strongly X -complete.
Then every weakly X -complete vertex has a strong neighbor in V (P*).

A prism is a trigraph consisting of two vertex-disjoint weak triangles {a1, as,as}, {b1,b2,bs} and
three vertex disjoint subtrigraphs Ry, Re, R3, such that for 1 < ¢ < 3, {a;,b;} C V(R;) and R; has a
realization as a path with ends a;,b;; and for 1 <14 < j < 3 the only possible strong edges between
V(R;) and V(R;) are a;a; and b;b;. The prism is long if |[V(R;)| > 3 for at least one value of 1.

We remind the reader that 75 is the class of all monogamous Berge trigraphs T', such that no
subtrigraph of T or T has a realization isomorphic to the line graph of a bipartite subdivision of K,
and no subtrigraph of T or T is a long prism.

5.2 Let T € Ty, let X be a weakly anticonnected subset of V(T'), and P be a path in T\ X of odd
length, such that both ends of P are weakly X -complete. Then either:

1. some edge e of P is weakly X -complete, moreover the vertices of e that belong to P* are strongly
X -complete or

2. P has length 3 and there is an odd antipath joining the internal vertices of P with interior in
X.
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The double diamond is the trigraph with eight vertices aq,...,a4,b1,...,bs and with the following
adjacencies:

e {aj,ay} is weakly complete to {as3,as} and weakly anticomplete to {bs, bs}.

e {b1,by} is weakly complete to {b3,bs} and weakly anticomplete to {as, as}.

e a1-bi-bs-as-aq is a hole.

e a3-by-b3-ay-asz is an antihole.

T is the class of all T' € 75 such that no subtrigraph of T is isomorphic to the double diamond.

5.3 Let T be a trigraph in Tg and let G be a realization of T. Let C be a hole in G, and let
X CV(GQ)\ V(C) be anticonnected in G. Let P be a path in C of length > 1 so that its ends are
(G, X)-complete and its internal vertices are not. Then P has even length.

The following is an easy corollary of 5.3.

5.4 Let T be a trigraph in Tg and let G be a realization of T. Let C be a hole in G, and let
X C V(G)\ V(C) be anticonnected in G. Then either C contains an even number of (G,X)-
complete edges, or C contains ezactly one (G, X)-complete edge and exactly two (G, X)-complete
vertices.

Let us now mention two theorems from [2] that we will need. Both of them are results about
graphs, and so for our purposes they will always be applied to a certain realization of a trigraph. Let
C be a hole in a Berge graph G, and let e = uv be an edge of it. Let u’ be the neighbor of u in C'\ v,
and let v’ be the neighbor of v in C' —u. A leap for C' (in G, at uv) is a pair of non-adjacent vertices
a,b of G, so that there are exactly six edges between a,b and C, namely au, av, au’, bu, bv,bv’. A hat
for C' (in G, at uwv) is a vertex of G adjacent to u and v and to no other vertex of C.

5.5 Let G be a Berge graph, let X C V(G) be anticonnected, let C be a hole in G \ X with length
>4, and let e = uwv be an edge of C'. Assume that u,v are X-complete and no other vertex of C is
X -complete. Then either X contains a hat for C at uv, or X contains a leap for C at uv.

Let {z1, 22,23} be a triangle in G. A reflection of this triangle is another triangle {y1,y2,y3} in
G, disjoint from the first, so that for 1 < ¢ < 3 z; is adjacent to y;, and these are the only edges
between {x1,x2, 3} and {y1,y2,y3}. A subset F of V(G) is said to catch the triangle {x1, zo, z3} if
it is connected and disjoint from the triangle, and 1, 2, z3 all have neighbors in F.

5.6 Let X = {x1, 29,23} be a triangle in a graph G € F7, and let F C V(G) \ X catch X. Then
either

1. some vertex of F' has > 2 neighbors in X or

2. F contains a reflection of X.

Next we present a lemma about properties of skew-partitions in Berge trigraphs, essentially
proved in [2] and [3].
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5.7 Let T € Tg, and assume that T admits no balanced skew-partition. Let X, Y C V(T) be
nonempty, disjoint, and strongly complete to each other.

e If XUY =V(T), then T is bipartite.

o If XUY #V(T), then V(T)\ (X UY) is weakly connected, and if in addition | X| > 1, then
every vertex in X has a weak neighbor in V(T)\ (X UY).

In particular, T admits no skew-partition.
A wheel in a trigraph T is a pair (C,Y), satisfying:
e (' is a hole of length > 6

e Y is a non-empty weakly anticonnected set disjoint from C'

e there are two disjoint edges of C', both weakly Y-complete.

Note that if (C,Y") is a wheel in some realization of 7', then it is a wheel in 7. We say that (C,Y")
is a strong wheel in T if it is a wheel and there are two disjoint edges of C', both strongly Y-complete.
We call C' the rim and Y the hub of the wheel. If H is a path or a hole, a maximal path in H whose
vertices are all strongly Y-complete, is called a segment or Y-segment of H. A wheel (C,Y) is odd
if some segment has odd length.

We conclude this section with another definition. A pseudowheel in a trigraph T is a triple
(X,Y, P), satisfying:

e XY are disjoint nonempty weakly anticonnected subsets of V(T'), strongly complete to each
other

e Pisa path pi----- pp of T\ (X UY), where n > 5
e p1,p, are weakly X-complete and there are no strongly X-complete vertices in P*

e p; is strongly Y-complete, and so is at least one other vertex of P; and ps, p, are not strongly
Y -complete.

We remark that an odd wheel (C,Y) with a Y-segment S of length one can be viewed as a pseu-
dowheel, by taking X to consist of one of the vertices of S. This is not true for wheels in general.
So trigraphs containing no pseudowheels may still contain wheels.

6 General wheels

The goal of this section is to show that if a trigraph in 7g contains a wheel, then it admits a balanced
skew-partition (that is to prove 6.21.) To do so we generalize the notion of a “wheel system” used
in [2] to the trigraph case. The main part of this section will be devoted to proving by induction
a theorem about wheel systems, which we later use in order to derive a contradiction by showing
that for every wheel in T, there is another wheel whose hub is a proper superset of the hub of the
first wheel. A similar approach was used in [2]. However the method does not carry over smoothly;
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the main difficulty being the fact that two non-consecutive vertices in the rim of a wheel can be
weakly-adjacent to each other. In order to handle this problem we need to introduce the notions of
a “weak wheel system”, and a “shadow” of a trigraph.

Let us start with some lemmas about wheels and pseudowheels.

6.1 Let T € Ts. If (C,Y) is an odd wheel in some realization of T' then (C,Y) is an odd wheel in
T.

Proof. Let G be a realization of T" such that (C,Y) is an odd wheel in G. Then C is a hole in
G and hence in T. The set Y is anticonnected in G, so it is weakly anticonnected in T'. Since C'
contains two disjoint (G, Y )-complete edges, it contains two disjoint weakly Y-complete edges in T
So (C,Y) is a wheel in T" and it remains to prove that it is an odd wheel.

Let ¢i-...-¢c; be an odd Y-segment of C' in G. We claim that both ¢; and ¢ are strongly Y-
complete in T'. For suppose c; is not strongly Y-complete. Let G’ be the graph obtained from G
by replacing the switchable pair of T between Y and c¢; by a non-edge. G’ is a realization of 7', and
hence it is Berge. By 5.3 an even number of edges of C' are (G, Y )-complete. However the number
of (G',Y)-complete edges in C differs by 1 from the number of (G, Y )-complete edges in C, and C
contains at least three (G’,Y')-complete vertices, contrary to 5.3 applied in G’. This proves that c¢;
is strongly Y-complete and similarly so is cg.

Since c¢1-...-¢; is a Y-segment of C in G, the vertex of C' consecutive with ¢; and different from
co is not strongly Y-complete in T', and neither is the vertex of C' consecutive with ¢ and different
from cx_1. If kK =2 then ¢y is an odd Y-segment of C' and the theorem holds. So we may assume
that £k > 4. By 5.3 applied to a realization of 7" in which C is a hole and all switchable pairs
containing vertices of Y are assigned the value “non-edge”, c¢q-...-c; contains an odd Y-segment in
this realization, and consequently it contains an odd Y-segment in T'. This proves 6.1. |

By 6.1, if (C,Y) is a wheel in T and is an odd wheel in some realization of T' then C' contains
an odd Y-segment in 7. Therefore by 5.4 it contains at least two, so there exists two disjoint
strongly Y-complete edges in C, and consequently (C,Y") is a strong wheel. However, (C,Y") being
a general wheel in a realization of T (and therefore in T') does not imply that any edge of C is

strongly Y-complete. For example, a hole ¢1-...-con-c1 with cg, ¢y, ..., cop strongly Y-complete and
€1,€3,...,Con—1 weakly and not strongly Y-complete is a wheel in 7", but none of its edges are strongly
Y -complete.

Let us say that distinct vertices u,v of the rim of a wheel (C,Y’) have the same wheel-parity if
there is a path of the rim joining them containing an even number of strongly Y-complete edges
(and hence by 5.3 so does the second path, if u,v are not consecutive); and opposite wheel-parity
otherwise.

If K is a subtrigraph of a trigraph 7', and F' C V(T') is a weakly connected set disjoint from
V(K), a vertex in V(K) is an attachment of F if it has a weak neighbor in F'. The following was
proved in [3]. The proof is a straightforward generalization of the proof of a corresponding statement
in [2].

6.2 Let T € Tg, and let (C,Y) be a strong wheel in T. Let FF C V(T)\ (V(C)UY) be weakly
connected, such that no vertex in F' is strongly Y -complete. Let X C V(C') be the set of attachments
of F in C. Suppose that there exist vertices in X with opposite wheel-parity, and there are two
vertices in X that are not consecutive in C. Then either:
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e there is a vertex v € F' so that C' contains two disjoint strongly Y -complete edges that are also
weakly Y U {v}-complete, or

e there is a vertex v € F with at least four weak neighbors in C, and a 3-vertex path ci-ca-c3 in
C, so that c1,co,c3 are all strongly Y -complete and weakly adjacent to v and every other weak
neighbor of v in C has the same wheel-parity as c1, or

e there is a 3-vertex path ci-ca-cg in C, all strongly Y -complete, and a path c1-f1-- - -fr-c3 with
interior in F', such {f1,..., fx} is strongly anticomplete to V(C)\ {c1, ca, c3}.

6.3 Let T € 77 and let G be a realization of T. If (X,Y,P) is a pseudowheel in some realization
of T then (X,Y, P) is a pseudowheel in T. Moreover, P has even length at least 6, and contains an
odd number, at least 3, of strongly Y -complete edges.

Proof. Let G be a realization of T such that (X,Y, P) is a pseudowheel in G. Then the following
conditions are satisfied:

e X,Y are disjoint nonempty weakly anticonnected subsets of V(T'), weakly complete to each
other

e Pisa path pi----- pp of T\ (X UY), where n > 5
e p1,p, are weakly X-complete and there are no strongly X-complete vertices in P*

e pp is weakly Y-complete, and so is at least one other vertex of P; and po,p, are not strongly
Y -complete.

To prove that (X,Y, P) is a pseudowheel in T', we need to show that

e p; is strongly Y-complete, and so is at least one other vertex of P

e X and Y are strongly complete to each other.

(1) py is strongly Y -complete.

Suppose it is not. Let G1 be the graph obtained from G by deleting all edges of G between Y
and p; that are switchable pairs of T. Then G4 is another realization of 1" and hence by 6.1 G € F7.
Moreover, none of pi,p, is (G1,Y)-complete. By theorem 18.4 of [2] applied to G, P contains an
odd number, at least 3, of (G,Y )-complete edges, and since ps is not (G, Y )-complete, P contains an
odd number, at least 3, of (G1,Y')-complete edges. But then, by theorem 18.3 of [2], an odd number
of elements of {p1,p,} is (G1,Y)-complete, a contradiction. This proves (1).

(2) At least one vertex of P\ py is strongly Y -complete.

Since (X,Y, P) is a pseudowheel in G, at least one vertex p of P* is weakly Y-complete. Let G
be the realization of T defined as follows

e P is a path
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e X is complete to Y U {p1,pn}
e {p} is complete to Y
e assign the value “non-edge” to all remaining switchable pairs.

By 6.1 G4 is a graph in F7, (X,Y, P) is a pseudowheel in G5 and by theorem 18.4 of [2] P contains
an odd number, at least three, of (G3,Y)-complete edges, and in particular P* \ {p} contains a
(G2,Y)-complete vertex. In T' it means that P*\ {p} contains a strongly Y-complete vertex and the
result follows. This proves (2).

(3) P has even length at least 6 and contains an odd number, at least 3, of strongly Y -complete edges.

Let GG3 be a realization of GG defined as follows

e P is a path

e X is complete to Y U {p1,pn}

e assign the value “non-edge” to all remaining switchable pairs.

By 6.1 G5 is a graph in F7, (X,Y, P) is a pseudowheel in G3 and by theorem 18.4 of [2] P has
length at least 6 and contains an odd number, at least 3, of (G, Y)-complete edges, and consequently
an odd number, at least 3, of strongly Y-complete edges in T'. By theorem 18.3 of [2], P has even
length. This proves (3).

(4) X and Y are strongly complete to each other.

Let GG3 be defined as before and let G4 be a realization of T' defined as follows
e P is a path

e X is complete to {p1,pn}

e assign the value “non-edge” to all remaining switchable pairs.

By 6.1 both G3 and G4 belong to F7. Let 1 < i < n be minimum such that p;_1p; is a strongly
Y-complete edge. Since ps and p,, are not strongly Y-complete, 4 < i < n — 1. Let P’ be the path
Di--..-Ppn. Since by (3) P contains at least 3 strongly Y-complete edges and p,, is not strongly Y-
complete, P’ has length at least 3. The only strongly Y-complete edge in P and not in P’ is p;_1p;.
Thus P’ contains an even number of strongly Y-complete edges, and consequently P’ contains an
even number of (G3,Y )-complete edges and an even number of (G4, Y)-complete edges.

Suppose first that i is odd. Now X is (G3,Y)-complete; the path P’ = p;-...-p, has even length
> 4; py is the unique (G3, X)-complete vertex of P’ and it is not (G3,Y )-complete; p; is (G3,Y)-
complete; and P’ contains an even number, at least two, of (G3,Y)-complete edges, contrary to
theorem 18.2 of [2] applied to P/, X and Y in G3, since p; is a (G3, X)-complete vertex, nonadjacent
in G3 to p,_1 and p,_o. This proves that ¢ is even.

Now we turn to arguing in the graph G4. In G4, X and Y are anticonnected sets; P’ is an odd
path of length at least 3; p; is (G4, Y )-complete; p,, is the unique (G4, X)-complete vertex in P’; and
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p1 € V(T)\ (XUYUV(P)) is (G4, X UY)-complete and (G4, V (P’))-anticomplete; and P’ contains
an even number of (G4, Y )-complete edges, and so by theorem 17.5 of [2] X UY is not anticonnected.
It follows that X is (G4, Y )-complete and so in T, X is strongly Y-complete. This proves (4).

From (1),(2) and (4) 6.3 follows. |

6.1 Wheel systems

We start by restating the definitions used in [2] for the graph case. Let G be a graph. A frame in G
is a pair (z, Ag), where z € V(G), and Ap is a non-empty connected subset of V(G) \ z, containing
no neighbors of z. With respect to a given frame (z, Ag), a wheel system in G of height t > 1 is a
sequence o, . .., x; of distinct vertices of G\ (A U {z}), satisfying the following conditions:

1. Ay contains neighbors of 2y and of x1, and no vertex in Ag is {xg, z1 }-complete.

2. For 2 < i < t, there is a connected subset of V(G) including Ag, containing a neighbor of z;,

containing no neighbor of z, and containing no {x, ..., z;_1 }-complete vertex.
3. For 1 <i <t x; is not {xo,...,x;—1 }-complete.
4. z is adjacent to all of xg, ..., x;.
For 1 <i <t we define X; = {xg, ..., x;}, and we define A; to be the maximal connected subset of
V(G) that includes Ay, is anticomplete to z, and contains no X;-complete vertex. We call Ay, ..., A;

the companion sets of the wheel system. So for each i, A;_1 C A;. Note that condition 2 above just
says that x; has a neighbor in A4; .

Wheel systems were an important tool for handling Berge graphs containing wheels in [2]. We will
first define their analogue for the trigraph case, and then generalize it further, to obtain machinery
powerful enough to handle wheels in trigraphs. Let T be a trigraph. A frame in T is a pair (z, Ag),
where z € V(G), and Aj is a nonempty weakly connected subset of V(T') \ z, containing no weak
neighbors of z. With respect to a given frame (z, Ag), a wheel system in T of height t > 1 is a
sequence o, . ..,z of distinct vertices of T'\ (Ap U {z}), satisfying the following conditions:

1. Ap contains two distinct vertices ag, a; such that ag is weakly adjacent to xg and weakly non-
adjacent to x1; a; is weakly adjacent to x; and weakly non-adjacent to zg; there is a path P
of the full realization of T'|Ay from ag to a; such that the set {zg, 1} is weakly anticomplete
to F§; and no vertex in Ay is strongly {zo, z1 }-complete. We call such a triple (ag, a1, Pp) an
anchor of the wheel system.

2. For 2 < i < t, there is a weakly connected subset of V(T including Ag, containing a weak

neighbor of z;, strongly anticomplete to z, and containing no strongly {x,...,z;_1}-complete
vertex.

3. For 1 <i <t, x; is not strongly {zo,...,x;—1}-complete.

4. z is weakly adjacent to all of g, ..., x;.
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Note that this definition is symmetric between x¢, x1, so z1, zg, T2, . .., Tt is another wheel system.
Let xg,...,x¢ be a wheel system of height ¢. For 1 <i <t we define X; = {xo,...,x;}, and we define
A; to be the maximal weakly connected subset of V(T') that includes Ay, is strongly anticomplete to
z, and contains no strongly X;-complete vertex. We call Aq,..., A; the companion sets of the wheel
system. So for each i, A;_1 C A;.

Let zg,...x; be a wheel system with respect to the frame (z, Ag) and let us define the standard
realization of T|(A; U Xy U {z}) to be the following:

e for ¢ = 0,1 if z;a; is a switchable pair, assign the value “edge” to x;a;
e assign the value “non-edge” to all remaining switchable pairs between A; and {xg,x1}

e for 2 < <t assign the value “edge” to all switchable pairs between z; and A;_1, and the value
“non-edge” to all remaining switchable pairs between x; and Ay

e assign the value “edge” to all remaining switchable pairs containing vertices of Ay
e assign the value “edge” to all switchable pairs containing z

e assign the value “non-edge” to all remaining switchable pairs containing vertices of X;.

6.4 Let T be a Berge trigraph and let xq,...,x: be a wheel system in T with respect to the frame
(z,A0). Let G be a realization of T such that G|(Xy U Ay U {z}) is the standard realization of
T|(X:UAU{z}). Then xg, ...,z is a wheel system in G with the same companion sets.

Proof. Aj is connected in G and contains neighbors of ¢ and of x1, and no vertex in Ag is
(G,{x0,21})-complete. For 1 < i < t, the vertex z; is not (G,{xo,...,z;—1})-complete and z is
adjacent in G to all of zq, ..., x.

(1) No vertezx of A; is (G, X;)-complete.

Suppose there exists 1 < i < ¢ such that some a € A; is (G, X;)-complete. Since xg, ...,z is a
wheel system in 7" with respect to the frame (z, Ag) with companion sets Aq,..., A, the vertex a
is not a strong common neighbor of X; in 7. Let 0 < j < i be such that z;a is a switchable pair
of T. Since T is monogamous, j is unique. Then j > 2 for xgag and x1a; are the only switchable
pairs of T between {zg,z1} and A; that are assigned the value “edge” in G. Since ax; is an edge
of G, it follows that a € A;_;. But then A;_; contains a strong common neighbor of X;_; in T, a
contradiction. This proves (1).

Now in G for 2 < i <t, A;_ is a connected subset of V(@) including Ay, containing a neighbor
of x;, containing no neighbor of z, and by (1) containing no (G, {z,...,z;—1})-complete vertex. It
remains to show that A; is the maximal connected subset of V(&) including Ag and containing no
neighbor of z and no (G, X;)-complete vertex. Suppose there exists a proper superset A’ of A; with
these properties. Then in T, A’ is weakly connected, it includes Ay, contains no weak neighbor of z
and no strong common neighbor of X;, contrary to the maximality of A; in T. This completes the
proof of 6.4. |
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Next we prove the base case of the inductive proof mentioned at the start of Section 6.

6.5 Let T € T7, and let xo,x1 be a wheel system of height one in T' with respect to the frame (z, Ag).
LetY be a weakly anticonnected set disjoint from A1U{xg,x1} and letv € V(T)\(YUA1U{xg, 21, 2}).
Assume that

e xo,x1 are both strongly Y -complete,
e v is weakly adjacent to z, weakly non-adjacent to one of xg, 1, and is not strongly Y -complete,

e cvery vertexr in Y that is weakly non-adjacent to v has a weak neighbor in A1 and is weakly
adjacent to z, and

e v has a weak neighbor in A;.
Then z is weakly Y -complete and there is a wheel (C,Y') in T with xo,x1,z € V(C) C {xg,x1,2}UA;.

Proof. Let G be a realization of T' defined as follows:
e G|(A1 U{zp,x1,2}) is the standard realization of T'|(A; U {xo,z1,2})
e assign the value “non-edge” to all switchable pairs with both ends in Y
e assign the value “edge” to all remaining switchable pairs containing vertices of Ay
e assign the value “edge” to all remaining switchable pairs containing z
e assign the value “non-edge” to all remaining switchable pairs containing vertices of Y U{z¢, x1}
e assign values to the remaining switchable pairs of 1" arbitrarily.

Since T' € 77 and G is a realization of T, G € F7. Applying theorem 19.2 of [2] to G we deduce
that z is (G,Y')-complete, and G contains a wheel (C,Y") with xg,z1,2z € V(C) C {xg, 21,2} U A;.
In T that means that z is weakly Y-complete, and (C,Y") is a wheel in T with xg, 21,2z € V(C) C
{0, 21,2} U A;. This proves 6.5. |

We need two special kinds of wheel systems. Let xg,...,z; be a wheel system in T, and define
X, A; as above. Let Y C V(T') be nonempty and weakly anticonnected, such that Y is disjoint from
{z,20,...,2¢}, o,...,24—1 are all strongly Y-complete and z; is not. We say xq, ...,z is a

e Y-diamond if t > 3, x; is strongly X;_s-complete, and x; has a weak neighbor in A;_o

e Y-square if t > 3, x; is strongly adjacent to x4_1, x; has no weak neighbor in A;_5, and there
is a vertex in A; 1 weakly adjacent to x; with a weak neighbor in A;_»

The main result of this subsection is the following.

6.6 Let T € Tz, let (z,Ag) be a frame, and let Y C V(T) \ (Ap U {z}) be nonempty and weakly
anticonnected. Suppose that there is either a Y -diamond or a Y -square in T. Then z is weakly
Y -complete and T contains a wheel (C,Y).

Proof. Let zq,...,z: be a Y-diamond or a Y-square in 1. Let G be the following realization of 7.
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G|(A: U X U{z}) is the standard realization of T'|(A; U X; U {z})

assign the value “edge” to all remaining switchable pairs containing vertices of AU {z}

assign the value “non-edge” to all remaining switchable pairs containing vertices of X; UY
e assign values arbitrarily to all remaining switchable pairs of 7.

By 6.1 G is a graph in F7 and xg, . .., z; is a Y-diamond or a Y-square in G. (It is straightforward
to verify that g, ...,z is a wheel system of the same type in 7" and in G.) Applying theorem 20.1
of [2] we deduce that z is (G,Y)-complete and G contains a wheel (C,Y"). Consequently z is weakly
Y-complete in T and T contains a wheel (C,Y").This proves 6.6. |

6.2 Finding a wheel system

In this subsection we apply the results of the previous two subsections to prove a powerful statement
about wheel systems that will be the engine behind almost all the remainder of the paper. First we
need a few lemmas about subtrigraphs of T that are wheels in some realization of 7.

6.7 Let T € 77 and let G be a realization of T containing a wheel (C,Y). Then all vertices of C
that are not (G,Y)-complete have the same wheel-parity in G.

Proof. Suppose there are two vertices of C' that are not (G, Y )-complete and have opposite wheel-
parity. Then each subpath of C' between them contains an odd number of (G,Y )-complete edges,
and consequently contains an odd Y-segment in G. But then (C,Y) is an odd wheel in G and by
6.1 (C,Y) is an odd wheel in T', contrary to the fact that 7' € 7. This proves 6.7. |

6.8 LetT € 17 and let G be a realization of T' containing a wheel (C,Y). Let e be a (G,Y)-complete
edge of C and let ¢ be an end of e. Assume that ¢ is not strongly Y -complete in T'. Then every vertex
of C that is not (G,Y)-complete has wheel-parity opposite from c in G.

Proof. Suppose the claim is false. Let the vertices of C' be cq,...,c; in order. We may assume the
vertex c; is contained in a (G, Y')-complete edge of C, that ¢ is not strongly Y-complete in T, and
that for some 2 < j < n the vertex c; is not (G,Y )-complete and has the same wheel-parity as c; in
G. Let j be minimum with this property. Since ¢; is not strongly Y-complete, there exists a vertex
y € Y such that ¢y is a switchable pair of T. The graph G’ = G \ ¢1y is a realization of T, and
hence it is Berge.

There are at least three (G',Y)-complete vertices in V(C'), so C contains an even number of
(G',Y)-complete edges. Since C' also contains an even number of (G, Y )-complete edges, and ¢; is
in a (G,Y)-complete edge, it follows that it is in two (G, Y)-complete edges, and both co and ¢, are
(G,Y)-complete. Hence 2 < j < n.

By the minimality of j, ¢j_1 is (G,Y)-complete. Since ¢; and ¢; have the same wheel-parity in
G, the path ¢;-...-¢;_; contains an even number of (G,Y)-complete edges. So the path ca-...-cj_4
contains an odd number of (G’,Y")-complete edges, and since ¢; and ¢; are not (G’,Y')-complete, in
C contains an odd Y-segment in G’ and at least three (G’,Y")-complete vertices. So (C,Y) is an odd
wheel in G’. But G’ is a realization of T', and by 6.1 G’ € F7, a contradiction. This proves 6.8. |
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6.9 Let T € 77 and let G be a realization of T containing a wheel (C,Y ). Let cq,...,c, be the
vertices of C' in order. Assume there exist 1 < i < j < n such that

e c¢; has wheel-parity opposite from some vertex of C' that is not (G,Y)-complete
i ]_Z >1 and (17]) 7& (1,71)
e ¢; is weakly adjacent to c;.

Then c; is strongly Y -complete.

Proof. By 6.7 the vertex ¢; has wheel-parity opposite from all vertices of C' that are not (G,Y)-
complete, and in particular ¢; is (G,Y)-complete. Let P; and P, be the two subpaths of C' joining
¢; and ¢j. Both P and P have odd length for otherwise one of ¢;-Pi-cj-¢; and ¢;-P-cj-¢; is an odd
hole in T'. Hence both c¢;-Pi-cj-¢; and ¢;-P>-cj-¢; are holes in T'. Let G’ be the graph obtained from
G by adding the edge a;a;.

Since C'is a hole, j —i > 1 and ¢;, ¢; are weakly adjacent, c;c; is a switchable pair of T', and so
it is the unique switchable pair containing c;. So in order to prove that c; is strongly Y-complete,
it is enough to show that it is weakly Y-complete, and in particular it is enough to prove that c; is
(G,Y)-complete.

Assume for a contradiction that ¢; is not (G,Y )-complete. Then ¢; and c¢; have opposite wheel-
parity in G and each of the paths P;, P, contains an odd number of (G,Y )-complete edges. Since
¢j is not (G,Y')-complete, the number of (G’,Y)-complete edges in ¢;-Pp,-¢j-¢; equals the number
of (G,Y)-complete edges in P, (where m = 1,2) and hence it is odd. By 5.4 applied in G’ each
¢i-Pp-cj-c; contains exactly one (G’,Y)-complete edge and exactly two (G’,Y)-complete vertices.
Since ¢; is (G',Y)-complete, both these edges are incident with ¢;. But then C' contains exactly two
(G,Y)-complete edges and they are both incident with ¢;, contrary to the fact that (C,Y) is a wheel
in G. This proves that ¢; is (G,Y)-complete and completes the proof of 6.9. |

Let Y be a nonempty weakly anticonnected subset of V(T'), let (z, Ag) be a frame with AgU {z}
disjoint from Y, and let zq,...,z¢+1 be a wheel system with respect to this frame. We say Y is a
hub for the wheel system if ¢t > 1, z,xg, ..., x; are all strongly Y-complete and x4 is not.

Next we prove a technical result, various modifications of which will be used later. (Now we need
to use that there are no pseudowheels, so we are back in 7g.)

6.10 LetT € Tz, letY C V(T) be nonempty and weakly anticonnected, and assume that there do not
exist X, P such that (X,Y, P) is a pseudowheel in T. Let (z,Agy) be a frame with Y N (AgU{z}) =0,
and let xq, ...,z be a wheel system with hub Y, and with t > 2. Define X;, A; as usual. Then
either

e 1.1 has a weak neighbor in A;_1, or
e some member of Y is weakly non-adjacent to x,y1 and has no weak neighbor in Ay, or

e there are > 2 members of Y that are weakly non-adjacent to 411 and have no weak neighbor
mn A1, or

o there is a wheel with hub'Y in T.
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Proof. Let G be the following realization of T
o G|(A: U X, U{z}) is the standard realization of T'|(A; U X; U {z})
e assign the value “edge” to all remaining switchable pairs containing vertices of A; U {z}
e assign the value “non-edge” to all remaining switchable pairs containing vertices of X1 UY
e assign values arbitrarily to all remaining switchable pairs of T

By 6.1 and 6.3 G is a graph in F7 and there do not exist X, P such that (X, Y, P) is a pseudowheel
in G.. By 6.4 xg,...,z:+1 is a wheel system with respect to the frame (z, 4p) in G with companion
sets Ay,..., Air1. Moreover Y is a hub for zg,..., 2441 in G. By theorem 21.2 of [2] applied in G
one of the following outcomes holds:

e in G x¢y1 has a neighbor in A;_1, which in T means that x;y; has a weak neighbor in A;_1, so
the theorem holds; or

e in GG some member of Y is non-adjacent to x44+1 and has no neighbor in A;, which in 7" means
that some member of Y is weakly non-adjacent to x;y1 and has no weak neighbor in A; and
the theorem holds; or

e in GG there are > 2 members of Y that are non-adjacent to x+y1 and have no neighbor in 4; 1,
which in 7" means that there are > 2 members of Y that are weakly non-adjacent to x4 and
have no weak neighbor in A;_1, and the theorem holds; or

e in (G there is a wheel with hub Y, and therefore there is a wheel with hub Y in 7', and the
theorem holds.

This proves 6.10. |
The first modification of 6.10 that we need is the following;:

6.11 LetT € Tz, letY C V(T) be nonempty and weakly anticonnected, and assume that there do not

exist X, P such that (X,Y, P) is a pseudowheel in T. Let (z, Ag) be a frame with Y N (AgU{z}) =0,
and let xg,...,Tri1 be a wheel system with hub Y, where t > 1. Define A;, X; as usual, and assume
that at most one member of Y has no weak neighbor in Ay. Suppose T contains no wheel with hub
Y. Then there exists r with 1 < r <t, and a member y € Y, with the following properties:

e y is weakly non-adjacent to x;11 and has no weak neighbor in A,

e 1,11 has a weak neighbor in A,, and a weak non-neighbor in X,.

Proof. We proceed by induction on ¢. If ¢ = 1 then 6.5 implies that there exists y € Y weakly
non-adjacent to x;11 and with no weak neighbor in A;, and the theorem holds. So we may assume
t > 2. If z;41 has no weak neighbor in A;_1, then the result follows from 6.10, since at most one
member of Y has no weak neighbor in A; ;. So we assume that x;y1 has a weak neighbor in A; ;.
If 2441 is strongly X;_j-complete then

Ly ey L1
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is a Y-diamond, and we get a contradiction by 6.6. Thus x;y is not strongly X;_i-complete, and so
Loy .-y Tt—1,Tt+1

is a wheel system with hub Y, and the result follows from the inductive hypothesis. This proves
6.11. |

Next we define a more general structure in a trigraph, called a weak wheel system, and an operation
that transforms a trigraph T into its shadow T'. The shadow is another trigraph, in which a weak
wheel system of T' becomes a “regular” wheel system.

A weak frame in T is a pair (z, Ap), where Ay C V(7T') is nonempty and weakly connected, and
z € V(T) \ Ag is weakly anticomplete to Ag. (This differs from a frame in that z may have a
weak neighbor in Ap.) We define a weak wheel system with respect to a weak frame (z, Ag) to be a
sequence g, 1, ...x; satisfying conditions 1-4 in the definition of a wheel system, except condition
2 is replaced by the following condition 2’:

2. For 2 < i < t, there is a weakly connected subset F' of V(T) including A, containing a weak
neighbor of x; and no strongly {xg, ..., z;—1 }-complete vertex, and such that F'\ A is strongly
anticomplete to z.

Let g, ...,z be a weak wheel system of height ¢. For 1 < ¢ <t we define X; = {zo,...,2;}, and
we define A; to be the maximal weakly connected subset of V' (T') that includes Ag, such that A;\ Ag
is strongly anticomplete to z, and contains no strongly X;-complete vertex. We call Aq,..., A; the

companion sets of the weak wheel system. So for each 7, A;_1 C A;. An anchor and a hub for such
wheel system are defined as before.

Let xg,...x; be a weak wheel system with respect to the weak frame (z, Ag,Y) and let us define
the standard realization of T'|(A: U X U {z}) as before, except now we add the following:

e assign the value “non-edge” to all switchable pairs between z and Ag

We need to modify 6.10 further, for our final goal is to be able to apply an analogue of it to weak
frames. To do that we define the “shadow” of T' (with respect to a weak wheel system.) Let (z, Ao)
be a weak frame in T € 7g and let xg, ..., x5 be a weak wheel system with s > 1, Let the shadow T’
of T' (with respect to the weak wheel system xq, ..., xs) be the trigraph defined as follows.

First assume that z is not strongly anticomplete to Ag. Let u be the weak neighbor of z in Ay.
Then uz is the only switchable pair containing u or z in T'. Let

V(T =V(T)\ {u} U{u v} where v, v are distinct vertices not in V(T).

T'(V(T) \ {u}) = TI(V(T) \ {u}).
forv € V(T)\{u}, if uv € E(T) then v'v,uv"v € E(T") and if uwv € N(T') then v'v,u"v € N(T").

o W'ze E(T'), 2z e N(T), vu" € S(T").

For 0 <i<slet A, = A; \ {u} U{u"}.

If z is strongly anticomplete to Ag, define the shadow T” of T to be T itself, and for 0 < i < s let
Al = A;.

Given a graph G and two vertices x,y € V(G) we say that  dominates y if x is adjacent to every
neighbor of y different from z itself.
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6.12 Let T be a trigraph in Tg and let (z, Ag) be a weak frame such that z has a weak neighbor u
in Ag. Let T' be the shadow of T relative to xg,...,xs. Let Y CV(T)\ (AgU{z}) be nonempty and
weakly anticonnected, such that xq,...,Ts,u are strongly Y -complete and z is weakly Y -complete.
Assume that T contains no wheel with hub Y. Then T' € T; and there do not exist X, P such that
(X,Y,P) is a pseudowheel in T'.

Proof. We may assume that z is not strongly anticomplete to Ag. Let u, v/, u” be defined as before.
By 6.1 to prove that T" is in 77 it is enough to show that every realization of 7' belongs to F7. We
also need to show that there do not exist X, P such that (X,Y, P) is a pseudowheel in T". Let G be
a realization of 7. The graphs G \ v/ and G \ u” are realizations of 77\ v/ and 7" \ u” respectively;
and therefore isomorphic to realizations of 7', and T' € Tg. So by 6.1 both G\ v’ and G\ v” are in F7.
Since also in G the vertex v/ dominates the vertex u” and degg(u”) = dega(u') — 1, it follows that
G is Berge. The only neighbor of v/ in G that is different from and non-adjacent to u” is z. Since
none of the excluded subgraphs in the definition of Fi,...,Fg contains two vertices, one of which
dominates the other and whose degrees differ by at most one, and G \ v/, G \ v’ belong to F; C Fg,
it follows that G € Fyg.

Next we show that G belongs to F7. Suppose not. Then G contains an odd wheel (C,Y”).
Since G \ v/ and G \ " are in F7, it follows that both u/,u” are in V(C)UY’. Since C is a hole
in G, v dominates u” and degg(u”) = dega(u’) — 1, not both «’,u” belong to V(C). Assume
that exactly one of u’,u” belongs to Y’. Since at least four vertices of C' are (G,Y”’)-complete and
degi(u') = dega(u”)+ 1, it follows that v’ € Y and u”,z € V(C'). Let ¢y, ¢y be the two vertices of C
consecutive with «”. Then the only neighbors of u’ in C are u”, ¢y, c9, z, contrary to the fact that C
contains an odd Y’-segment in G. This proves that both u’, u” belong to Y’. But now (C,Y"\ {u'})
is an odd wheel in G and «/ is not in it, a contradiction. This proves that G € Fr.

Finally we show that there do not exist X, P such that (X,Y, P) is a pseudowheel in T". Suppose
T’ contains a pseudowheel (X,Y, P). Since Y N Ag = () and u € Ay, it follows that v/, u” € Y. Since
T € Tg, 6.3 implies that both v/, «” are in V(P)U X. Now P is a path in T"; p1,p,, are weakly X-
complete and no vertex of P* is strongly X-complete; u’ is strongly adjacent to every weak neighbor
of ”, and and v’,u” do not belong to any switchable pair of T” except u’,u”. It follows that not
both «/, u” belong to V(P). Let G be a realization of 7" defined as follows:

e P isapathin G;
e p1,p, are (Gp, X)-complete
e assign the value “non-edge” to all remaining switchable pairs.

Then G; belongs to F7 since it is a realization of T”, and (X, Y, P) is a pseudowheel in G;1. Suppose
exactly one of «’, u” is in V/(P). Then the other is in X. Since Y U{p1, p,} is (G1, X)-complete and no
vertex of V(P) is adjacent in G; to both py, p,, we deduce that z € {p1,pn}, v’ € X, u” € {p2,pn_1}
and u” is (G1,Y)-complete. Since py is not (G1,Y)-complete, it follows that v” = p,_1, 2 = p1 and
v’ is adjacent in Gy to p,_2 and to no vertex of V(P)\ {p1, Pn—2,Pn—1,Pn}

Let C’ be the hole pi-...-p,_o-u’-p1. Since p, is not strongly Y-complete, by 6.3 at least three
edges of P\ {p,} are (G1,Y)-complete, and so at least three edges of C’\ {p1} are weakly Y-
complete, and (C’,Y) is a wheel in T”. But then replacing u’ by u gives a wheel in 7" with hub Y, a
contradiction. This proves that none of v/,u” is in V(P).
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So {v/,u”"} C X. Let X = X\ {«/,u”"}U{u}. Now in T the vertices p, p, are weakly X-complete
and no vertex of P* is strongly X-complete, X U {p1} and at least one other vertex of P are strongly
Y -complete and ps, p,, are not strongly Y-complete. Thus (X' ,Y, P) is a pseudowheel in T, contrary
to the fact that T' € 7g. This proves 6.12. |

6.13 Let T be a trigraph in Tg, let (z,Ag) be a weak frame. Let xg,...,zs be a weak wheel sys-

tem relative to (z,Ag). Let T' be the shadow of T relative to xg,...,xs. Assume z has a weak

neighbor u in Ao, and let u',u” be as in the definition of the shadow. Then (z,A}) is a frame in

T'; {zo,x1,...,x5,u'} is a wheel system with respect to (z, Ay) in T' and with the usual notation
Yyoo o AL are companion sets for it.

Proof. The set Ay is weakly connected in 7”7 and is strongly anticomplete to z. Thus (z, Af) is a
frame in T”. Let z511 = ' and let (ag, a1, Py) be an anchor of the weak wheel system x, ..., zs. We
need to check that the four axioms of a wheel system are satisfied.

1. First we observe that u # aq, for otherwise one of z-ag-Py-a1-z1-z and z-xg-ag-FPy-a1-x1-z would
be an odd hole, a contradiction. Analogously, u # a1. So the vertices ag and a; belong to
AN Ap. Since the strong and weak adjacencies between A{, N Ay and {xo,z1} are the same
in T as they are in T, ag is weakly adjacent to 2o and weakly non-adjacent to z1 in T”, a; is
weakly adjacent to z1 and weakly non-adjacent to xo in 7”. Let Pj be the path obtained from
Py by replacing u by u” if u € V(Pp), and otherwise let Pj = Py. Then P} is a path of the full
realization of 7| A{y from ag to a;, with V(P;) C Aj and {z¢,x;} is weakly anticomplete to Py.
Since u, and therefore u”, is not strongly {x¢, z1 }-complete and A{, \ {v"} is contained in Ay,
it follows that no vertex of Aj is strongly {z, 21 }-complete. Thus the first axiom is satisfied.

2. For 1 < < s we will show that the set A} is a weakly connected subset of V(T"”) including Aj),
strongly anticomplete to z in 7" and containing a weak neighbor of z;.1 in 7" and containing
no strongly {zo,...,z;}-complete vertex. The first three assertions are obvious. The fourth
assertion holds because for 1 <14 < s—1 the set A; contains a weak neighbor of ;1 in T, and
Ts4+1 has a weak neighbor v” in A, C A’. The final assertion holds because A; is a companion
set of the wheel system g, ...,xs in T and the vertex u” is not strongly {x¢, 21 }-complete by
the first axiom. Thus the second axiom is satisfied.

3. For 1 < i <s, x; is not strongly {zo,...,z;—1 }-complete because x, ...,z is a wheel system
in T'; and xs1 is not strongly {z¢, z1 }-complete because u is not strongly {zg, x1 }-complete in
T. So the third axiom holds.

4. z is weakly adjacent to all of xq,...,xs41 because xg,...,zs is a weak wheel system in T with
respect to the weak frame (z, Ag), and x5y is strongly adjacent to z in T”. So the fourth axiom
holds.

It is clear that A’,..., AL are companion sets for this wheel system. This proves 6.13. |

6.14 Let T € Tg, not admitting a balanced skew-partition. Let (z,Ap) be a weak frame, and let
xo, ..., %s be a weak wheel system with s > 1 relative to this frame. Let Y C V(T) be nonempty and
weakly anticonnected, with Y N (AgU{z}) =0, such that x,...,xs are strongly Y -complete and z is

27



weakly Y -complete. Let u be the weak neighbor of z in Ag if one exists and assume that u is strongly
Y -complete. Let T' be the shadow of T relative to the weak wheel system xq,...,xs. Then inT’ there
iS 4 SEqUENCE Tgiq,...,Ter1 With t > s such that xg,...,xir1 18 a wheel system with respect to the
frame (z, Aj), with hub'Y.

Proof. If u exists, let u/,u” be defined as usual, and define zs11 = v’ and k = 1. Otherwise let
k = 0. By 6.13 zg,x1,...,Zsyk is a wheel system with respect to (z, Aj) in 77. Choose a sequence
Tstk+l,---,Tt, all strongly Y-complete and such that zq,...,z; is a wheel system with respect to
(z,Ap) in T, with ¢ maximum. So ¢ > 1. Define X; as usual. Let A},... A} be the companion sets
for this wheel system.

Let V be the set of all strongly X;-complete vertices in V(T") different from z. Let X = X' = X,
and A=A, if T =T"; and let X = (X; \ {«'}) U{u}, X' = X; U{u"} and A = A} \ {u"} otherwise.
We claim that every vertex in V is strongly X-complete in 7. This is clear if T = T’, so we may
assume T # T". Since u” is not strongly {zo,z1 }-complete in 77, V' C V(T'), and hence in T every
vertex of V is strongly X-complete, and in T every vertex of V' is strongly X’-complete.

Suppose every path in 7" from z to A contains a vertex of X’ UV in its interior. Then every
path in T from z to A contains a vertex of X UV in its interior, contrary to 5.7, since T' does not
admit a balanced skew-partition. Hence in 7" there is a path P from z to A, with interior disjoint
from X’ U V. From the maximality of A}, it follows that P has length 2. Let 211 be the vertex

consecutive with z in P. So x411 has a weak neighbor in A} in 7", and therefore xq, ..., =, x4 is a
wheel system in 7. From the maximality of ¢ it follows that z;11 is not strongly Y-complete, and
therefore Y is a hub for this wheel system in 7. This proves 6.14. |

6.15 Let T € Tg, not admitting a balanced skew-partition. Let (z,Ay) be a weak frame, and let
xo,...,Zs be a weak wheel system with s > 1 relative to this frame. Let Y C V(T') be nonempty,
disjoint from AgU{z} and weakly anticonnected, such that x,...,xs are strongly Y -complete and z
is weakly Y -complete. Define A;, X; as usual, and assume that

1. every member of Y has a weak neighbor in A
2. at most one member of Y has no weak neighbor in Ay
3. if z has a weak neighbor u € Ay, then u is strongly Y -complete
4. there is no wheel with hub'Y in T.
Then there exist v with 1 <r < s, a member y of Y and a vertex v with the following properties:
e y is weakly non-adjacent to v and has no weak neighbor in A,

e v is weakly adjacent to z, and has a weak neighbor in A,, and a weak non-neighbor in X,.

Proof. Let T’ be the shadow of T relative to the weak wheel system x,...,xs. By 6.14 in T” there
is a sequence Xgy1,...,Tsr1 with ¢ > s such that xq,...,zs11 is a wheel system with respect to the
frame (z, Af)), with hub Y. By 6.12 T’ € 77 and there do not exist X, P such that (X,Y,P) is a
pseudowheel in 77. By 6.11 applied in 7", there exists » with 1 < r < ¢, and a member y € Y,
such that y is weakly non-adjacent to xsy1 and has no weak neighbor in A,, and z;11 has a weak
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neighbor in A,, and a weak non-neighbor in X,. Since every member of Y has a weak neighbor in
Ay, it follows that r < s. In T that means that y is weakly non-adjacent to x;11 and has no weak
neighbor in A,, and z;y11 has a weak neighbor in A,, and a weak non-neighbor in X, and the result
follows. This proves 6.15. |

6.3 Wheels with tails

We start with some definitions. Let (C,Y’) be a wheel in 7. Following [2] we say that (C,Y) is
optimal if there is no wheel (C’,Y’) with Y C Y’. However, in the trigraph setting we need a finer
notion of optimality. We say that (C,Y") is trioptimal if there is no wheel (C’,Y”) such that

e Y CY or
e Y =Y’ and C' contains fewer strongly Y-complete edges than C, or

e Y =Y’ the number of strongly Y-complete edges in C' and C’ is the same and C’ contains
fewer strongly Y-complete vertices than C.

We remark that if (C,T') is a trioptimal wheel in T, and G is a realization of T" in which (C,Y) is a
wheel, then (C,Y) is an optimal wheel in G.

A Fkite for (C,Y) is a vertex y € V(T') \ (Y UV(C)), not strongly Y-complete, that has at least
four weak neighbors in C, three of which are consecutive and Y-complete in some realization of T
in which (C,Y") is a wheel.

Let G be a realization of T such that (C,Y") is a wheel in T', let z € V(C), and let zg, 21 be the
vertices consecutive with z in the hole C. A path S of G \ {x¢,x1} with nonempty interior from z
to V(C) \ {z,x0, 21} is a tail for z (with respect to the wheel (C,Y) and the realization G) if

e only one vertex of S\ z has a weak neighbor in V(C) \ {z, zo, 21},

e 1,2z, x1 are all (G,Y)-complete,

there is a (G, Y')-complete edge in C'\ {zo, z, 21}

the vertex consecutive with z in S is strongly adjacent to xg, z1,

e 1o vertex of S isin Y,

no vertex of V(S) \ {z} is strongly Y-complete.

Please note that a tail in G with respect to (C,Y’) is not necessarily a tail in 7" with respect
to (C,Y) and G, for to be a tail in T the vertex consecutive with z is required to be strongly
{x0, x1 }-complete.

6.16 Let T € Tg, and let (C,Y) be a wheel in a realization G of T, such that (C,Y) is a trioptimal
wheel in T and not all vertices of C are (G,Y)-complete. Suppose z € V(C) has opposite wheel-parity
in G from some vertex of C that is not (G,Y )-complete. Let xq,z1 be the vertices consecutive with
z in C, and assume that z has a weak neighbor ¢ € V(C) \ {xo,z1,2} Then if there is a tail for z
with respect to (C,Y) and G, then some vertex of T is a kite for (C,Y); and if there is a kite y for
(C)Y), such that y is weakly adjacent to xg,x1,z, then y is strongly adjacent to c.
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Proof. Let S be a path from z to V(C) \ {xo,x1, 2z} which is either a tail for z or a two-edge path
via a kite for (C,Y") that is weakly adjacent to xg,x1,2. Let y be the vertex of S consecutive with
z, and let s be the unique vertex of S\ z with a weak neighbor in V(C) \ {x¢, 1, 2}. By choosing G
appropriately we may assume that no vertex of S\ z is (G,Y’)-complete.

Since z has opposite wheel-parity in G from some vertex of C' that is not (G,Y )-complete, and
x0, 1 have wheel-parity opposite from z in G, by 6.8 both xg and z; are strongly Y-complete, and
by 6.9 c is strongly Y-complete.

For ¢ = 0,1 let P; be the subpath of C between z and ¢ containing x;. By 2.1 both Py, P;
have length > 2. Let C; be the hole z-P;-c-z. Since each of the holes C; contains at least three
(G,Y)-complete vertices (namely z, x; and ¢), each of these holes contains an even number of (G,Y)-
complete edges. Since (C,Y) is a wheel and ¢, z are both (G,Y)-complete, at least one of Cy,C
contains two disjoint (G, Y )-complete edges, say Cy. But 21 € V/(C)\ V(Cy) is strongly Y-complete,
so by the trioptimality of (C,Y") in T it follows that (Cp,Y") is not a wheel and Py has length three.
If C; also contains two disjoint (G, Y )-complete edges, then from the symmetry P; has length three
and all the vertices of C' are (G,Y )-complete, a contradiction. So zx is the only (G,Y)-complete
edge in P.

Let ¢ be the vertex consecutive with both zg,c in C. Then ¢’ is weakly Y-complete in T' and
has the same wheel-parity as z in G. We claim that s has a weak neighbor in V(P;) \ {z,z1}. For
suppose not. Then the only weak neighbor of s in V(C) \ {zg,z1, 2} is ¢. Let S’ be a path from ¢
to x1 with interior in V(S) and let P{ = P; \ {z}. Then ¢/-c-Pj-x1-5'-¢ is a hole in G, with at least
three (G,Y)-complete vertices and exactly one (G, Y )-complete edge, contrary to 5.4. This proves
that s has a weak neighbor in V(Py) \ {z,21}.

We may assume that y is weakly non-adjacent to ¢, for otherwise y is a kite for (C,Y") and the
theorem holds. Since T is monogamous, it follows that y is strongly non-adjacent to c¢. So there is a
path M of length at least three from z to ¢ with interior in V(S)UP;*\{z1}. Since z-M-c-z is not an
odd hole in T', the path z-M-c has odd length, both its ends are weakly Y-complete in T" and no edge
of it is (G, Y )-complete. Applying 5.2 to this path and the weakly anticonnected set Y, we deduce
that M has length three and every weakly Y-complete vertex in 7" is strongly adjacent to one of the
interior vertices of M. Let m be the vertex of M* different from y. Then ¢’ is strongly adjacent to
one of y,m. If ¢ is weakly adjacent to y, then Y U {y} is weakly complete to {c¢’, xg, 2,21}, and so
(C,Y U{y}) is a wheel in T, contrary to the trioptimality of T". So ¢’ is strongly non-adjacent to
y, and therefore ¢’ is strongly adjacent to m and hence m ¢ V(C); consequently S is a tail and so
y has no weak neighbor in V(C) \ {zo, z1, 2z}, and we may assume that no vertex of 7' is a kite for
(C)Y), for otherwise the theorem holds.

Since x1-Pj-c-m~y-z1 is not an odd hole in 7', m has a strong neighbor in P;". Since m is not a
kite, it is strongly non-adjacent to xy. Let () be an antipath joining m and y with nonempty interior
in Y. Since y-Q-m-z-c-y is not an odd hole, ) has odd length. So x¢-m-Q-y-c’ is an odd antipath in
T of length at least five, all its interior vertices have weak neighbors in the weakly connected set Py
and the ends do not have any strong neighbors in it, contrary to 5.2 applied in 7. This proves 6.16.

6.17 Let T € Tg, not admitting a balanced skew-partition, and let (C,Y") be a trioptimal wheel in
T, and assume that not all vertices of C are strongly Y -complete. Then there is no kite for (C,Y)
and hence there is no kite in any realization of T in which (C,Y") is a wheel.
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Proof. Assume y is a kite for (C,Y’). Let G be a realization of T such that
e (C,Y)is a wheelin G

e not all vertices of C' are (G,Y)-complete

all switchable pairs between Y and y are assigned the value “non-edge”

all switchable pairs between V(C) and y are assigned the value “edge”

there is a subpath xg-z-z1 of C, all (G,Y)-complete and adjacent to y.

Let w € V(C) be a vertex that is not (G,Y)-complete. Define W to be the set of all vertices in
V(C) that have the same wheel-parity as w in G, and let U = V(C) \ W. By 6.7 all vertices of C
that are not (G, Y )-complete belong to W.

(1) y is strongly adjacent to xo and x1.

Suppose ¥y is weakly non-adjacent to xg. Let G’ be the graph obtained from G by deleting the
edge xoy. Then G’ is a realization of T' and is therefore Berge. Since (C,Y U{y}) is not a wheel in G,
xoz and zz are the only (G,Y U{y})-complete edges in C. By 5.4, z,z; are the only (G',Y U {y})-
complete vertices in C'. We can now apply 5.5 to C' and the anticonnected set Y U {y} in G’. Since
in G’ y has at least three neighbors in C, and the vertex x is (G’,Y)-complete, there is no hat for
C in Y U {y}. So there is a leap, and since xg is (G',Y)-complete, it follows that in G’ the only
neighbors of y in C are z,z; and the neighbor of 1 in C'\ z. But then the hole C' contains exactly
three (G, {y})-complete edges, contrary to 5.4. This proves that y is strongly adjacent to xy. By the
symmetry, y is strongly adjacent to z; and (1) holds.

(2) ze W.

Suppose not, then z € U. Let Ag = V(C) \ {z,z0,21}. Then (2, Ap) is a weak frame in T" and
0,1 18 a weak wheel system relative to it. Since z € U and x¢, x1 have wheel-parity opposite from
z in G, it follows that xg,x1 € W and by 6.8 both xy and x; are strongly Y-complete. It follows
from (1) that xg,x; are strongly Y U {y}-complete. Suppose z has a weak neighbor ¢ in Ay. Since
z € U, 6.9 implies that c is strongly Y-complete. By 6.16 c is strongly adjacent to y; consequently
¢ is strongly Y U {y}-complete. But now we get a contradiction applying 6.15, since every vertex of
Y U {y} has a weak neighbor in Ay. This proves (2).

From (2) z¢9 € U. Applying theorem 16.1 of [2] to the wheel (C,Y’) and the vertex y in G, we
deduce from the trioptimality of (C,Y") and the fact that y has at least four weak neighbors in V(C),
that all weak neighbors of y in V(C) \ {z} have the same wheel-parity as zo in G, and so they all
belong to U. So by 6.7 every weak neighbor of y in V(C) \ {zo, 2,21} is (G,Y)-complete.

Let the vertices of the subpath P of C' between xy and x1 not containing z be ¢y, ..., ¢, in order,
where ¢; = xg and ¢, = x1. By the hypothesis of the theorem there exists & such that 1 < k < m and
¢k is not (G, Y)-complete, and therefore is non-adjacent to y in G. Let i < k be maximum and j > k
be minimum such that y is weakly adjacent to ¢; and c¢;. Then ¢; and ¢; are both (G,Y)-complete
and are both in U. By 6.7 ¢, € W, and so ¢;, ¢; have wheel-parity opposite from ¢, in GG. That means
that each of the subpaths of ¢;-...-¢; and ¢-...-¢; of P contains an odd number of (G,Y")-complete
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edges and therefore j — ¢ > 4. Let C’ be the hole y-¢;-...-ck-...-¢cj-y. Then (C',Y) is a wheel in G
and ¢ and y have opposite wheel-parity in with respect to it in GG, contrary to 6.7, since neither of
them is (G,Y)-complete. This completes the proof of 6.17. |

6.18 Let T € Ty, let (C,Y) be a wheel in a realization G of T' such that not all vertices of C are
(G,Y)-complete, let (C,Y) be trioptimal in T, let z € V(C), and let xo,x1 be the vertices consecutive
with z in C. Assume there ezists a vertex ¢ € V(C), not (G,Y)-complete, and such that z and ¢
have opposite wheel-parity in G. Let S be a tail for z with respect to (C,Y) and G, and let y be the
vertez adjacent to z in S. Let Ay = V(C) \ {z,z0,21}. Assume z is strongly anticomplete to Ag,
so (z,Ap) is a frame. Let xq,...,x411 be a wheel system with respect to (z, Ag), with hub Y U {y}.
Define A1,..., A1 as usual. Then either y is strongly adjacent to x,y1, or y has a weak neighbor
m At.

Proof. Since both xg,z1 have the same wheel-parity as ¢ in G, it follows from 6.8 they they are
both strongly Y-complete. Let G’ be a realization of T such that:

o G'|(Apr1 U X1 U{z}) is the standard realization of the wheel system

assign the value “non-edge” to those switchable pairs between Y and A that are not edges in

G

assign the value “edge” to all remaining switchable pairs containing a vertex of A;y1 U {z}

assign the value “non-edge” to all remaining switchable pairs containing a vertex of Y U X1
e G'|V(S) is the path S.

By 6.3 G’ is a graph in Fg for it is a realization of T. Now (C,Y") is an optimal wheel in G’. By
6.17 G’ contains no kite. Now S is a tail for z in G’, and y is the neighbor of z in S, (2, Ag) is a frame
in G’ and by 6.4 g, ..., 211 is a wheel system with respect to it with companion sets Ay, ..., Asy1.
By theorem 22.4 of [2] either y is adjacent to x¢y1 in G', or y has a neighbor in A; in G’. In T that
means that either y is strongly adjacent to z441, or y has a weak neighbor in A;. This proves 6.18.

We combine the previous result with 6.11 to prove the following.

6.19 Let T € T, not admitting a balanced skew-partition, and let (C,Y") be a wheel in a realization

G of T, such that (C,Y) is a trioptimal wheel in T, and assume that not all vertices of C are
(G,Y)-complete. Suppose z € V(C) has opposite wheel-parity in G from some vertex of C' that is
not (G,Y)-complete. Then there is no tail for z with respect to (C,Y) and G.

Proof. Suppose S is a tail for z; let y be the vertex adjacent to z in S, and let x, x1 be the vertices
consecutive with z in C. Let Ag =V (C)\ {z,x9,21}.

By 6.16 and 6.17, z is strongly Ag-anticomplete, and so (z, Ap) is a frame. Now xg, x; is a wheel
system with respect to (z,Ap), and zg,z; are strongly Y-complete by 6.8 and therefore strongly
Y U {y}-complete by the definition of a tail.

By 6.14 there exists a wheel system x, ...,z relative to the frame (z, Ag) for which Y U{y} is
a hub. By the definition of a tail there is a (G, Y )-complete edge in A, and so all members of Y have
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weak neighbors in Ag. By 6.11, there exists r with 1 < r < t, such that y is weakly non-adjacent to
z¢+1 and has no weak neighbor in A,, and x,41 has a weak neighbor in A,, and a weak non-neighbor
in X,.. Now xq,...,2, x4y1 is a wheel system with hub Y U {y}, and S is a tail for z in T with
respect to (C,Y") and G, contrary to 6.18. This proves 6.19. |

6.4 The end of a wheel

In this subsection we complete the proof of the fact that if a trigraph in 7g contains a wheel then it
admits a balanced skew-partition.

6.20 Let T' € Tg, not admitting a balanced skew-partition, and let (C,Y) be a strong wheel in T
that is trioptimal in T. Then there is a subpath c1-ca-cg of C such that c1,co,c3 are all strongly
Y -complete, and a path c¢1-p1---- -pg-cs such that none of p1,...,pr are in V(C)UY, none of them
is strongly Y -complete, and none of them has a weak neighbor in V(C) \ {c1,ca,c3}.

Proof. Since (C,Y) is a strong wheel there are two non-consecutive strongly Y-complete vertices
in C' with opposite wheel-parity, say a,b. Since a and b are weakly non-adjacent, by 5.7 there is a
path P in T with P* # () joining them, so that none of its interior vertices is in Y or is strongly
Y -complete. There may be internal vertices of P that belong to C, but we may choose a subpath P’
of P, with ends o/, say, so that a’,b' € V(C') have opposite wheel-parity in 7" and P’ has minimum
length. Suppose a’,b’ are consecutive in C. Then since they have opposite wheel-parity, they are
both strongly Y-complete and therefore neither is in the interior of P, and so a, b are consecutive in
C, a contradiction. So a’,b’ are not consecutive in C.

Next suppose a’, b’ are weakly adjacent in 7. Let G be a realization of T" in which C is a hole
and all switchable pairs containing a vertex of Y are assigned the value “non-edge”. Then (C,Y) is
a wheel in G since it is a strong wheel in T. Now a’, b’ have opposite wheel-parity in G, and so by
6.7 one of them, say o, is (G,Y)-complete and therefore strongly Y-complete in T. Thus a’ is not in
the interior of P, and so b’ is, and therefore b is not strongly Y-complete in 7. But a’ and &’ have
opposite wheel-parity in G, contrary to 6.9. This proves that a’,b’ are strongly non-adjacent in T'
and so P’* is nonempty.

Let F be the interior of P’; then no vertex of F is in Y U V(C), no vertex of F is strongly
Y -complete, and there are attachments of F' in C' which are not consecutive in C' and have opposite
wheel-parity. The result follows from 6.17 and 6.2 applied to F' and the trioptimality of (C,Y"). This
proves 6.20. |

We can now prove the main result of this subsection.
6.21 Let T € Tg, not admitting a balanced skew-partition; then there is no wheel in T.
Proof. Let (C,Y) be a trioptimal wheel in 7T'.

(1) There exists a realization of T in which (C,Y) is a wheel and exactly four edges of C are Y -
complete.

If (C,Y) is not a strong wheel, then it contains at most two strongly Y-complete edges, and since
(C,Y) is a wheel in T, there exists a realization of 7' in which (C,Y’) is a wheel and C' contains
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exactly four edges, and the statement holds. So we may assume (C,Y) is a strong wheel in 7. By
6.20 there is a subpath ci-co-cg of C' such that cq1,co,c3 are all strongly Y-complete, and a path
¢1-p1- - - - -p-c3 such that none of py,...,pg are in V(C')UY, none of them is strongly Y-complete,
and none of them has a weak neighbor in V(C) \ {c1,c2,c3}. Let C’ be the hole formed by the
union of the paths C'\ ¢y and ¢1-p1-- - - -px-c3. Then it has length > 6, and it contains fewer strongly
Y -complete edges than C. From the choice of (C,Y) it follows that (C’,Y) is not a wheel. Since C
has at least four strongly Y-complete edges, and C’ has only two fewer, we deduce that exactly four
edges of C are strongly Y-complete. So a realization of 1" in which C' is a hole and all switchable
pairs meeting Y are assigned the value “non-edge” has the desired property. This proves (1).

Let G be a realization of T in which (C,Y) is a wheel and exactly four edges of C are (G,Y)-
complete. Since (C,Y) is not an odd wheel, there are vertices zq,z,x1,c1,c2,c3 of C, in order,
and all distinct except possibly 1 = ¢; or c3 = zg, so that the (G,Y)-complete edges in C' are
TrozZ,Zx1,C1C2,C2C3.

(2) There is no tail for z in T with respect to (C,Y) and G.

Since z has wheel-parity in G opposite from some vertex of V(C') that is not (G,Y)-complete,
there is no tail for z in 7" with respect to (C,Y) and G by 6.19. This proves (2).

Let Ag = V(C) \ {z,x0,21}. By 6.8 xp and z7 are strongly Y-complete. By 5.7 and since by
6.9 z is strongly anticomplete to all vertices of Ag that are not strongly Y-complete, there is a path
S of T'\ {zg,z1} with S* # () from 2z to Ap, such that no vertex in V(S) \ {z} is in Y or strongly
Y-complete. We may assume that S is a path of G and no vertex of S* is (G,Y )-complete. Let y be
the vertex adjacent to z in S.

(3) y is weakly non-adjacent to at least one of xg, 1.

For assume it is strongly adjacent to both. Then T is a tail for z with respect to (C,Y’) and
G (because at least one of the (G,Y)-complete edges cyca,cocs belongs to C \ {xg,z,21}). This
contradicts (2), and therefore proves (3).

(4) y has no weak neighbor in Ag.

For suppose first that it has a weak neighbor in Ag \ ¢z, say c¢. Then ¢, z are not consecutive and
have opposite wheel-parity in the wheel (C,Y") in G. Not both z,x; are strongly adjacent to y, by
(3). Since ¢ # cq, it follows that ¢ and the two vertices of C' consecutive with it are not all strongly
Y-complete. Let G’ be a realization of T such that

e (C'is a hole

assign the value “non-edge” to all switchable pairs meeting Y and V(C) \ {z¢, z, 21,1, 2,3}

assign the value “edge” to all switchable pairs meeting Y and {zq, z,21,¢1, co,c3}

assign the value “non-edge” to all switchable pairs containing y and meeting Y U {z,x1}

assign the value “edge” to all remaining switchable pairs containing y
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e assign values to remaining switchable pairs arbitrarily.

Theorem 16.1 of [2] applied to G’ implies that (C,Y U {y}) is a wheel in G’, and therefore in T,
contrary to the trioptimality of (C,Y"). So y has no weak neighbor in Ag\ c2. Next suppose that y is
weakly adjacent to co. From the symmetry we may assume that zg # c3. Let @ be the path of C'\ z
between xg, c3; so @ has length > 0, and even length by 5.3 applied in G. Since xg-Q-c3-co-y-xq is
not an odd hole, it follows that y is strongly non-adjacent to xg. But then the hole zg-Q-c3-co-y-z-2¢
is the rim of an odd wheel with hub Y, contrary to T' € 7g. So y is strongly non-adjacent to cp. This
proves (4).

Let S have vertices z-y-vi-----vny1, where v,41 € Ag. From (4), n > 1. By choosing S of
minimum length we may assume that none of y,vy,...,v,_1 have weak neighbors in Ag.

(5) If n =1 then no weak neighbor of vy in Ag is strongly Y -complete.

Suppose v, € Ay is strongly Y-complete and weakly adjacent to v;. From the symmetry we may
assume that xo # c3. Let @ be the path of C'\ z between z,cs; so @ has length > 0, and even
length by 5.3 applied in G. Since y, v1 are not strongly Y-complete, there is an antipath joining them
with interior in Y, and it is odd since it can be completed to an antihole via v1-z-vh-y. Hence every
weakly Y-complete vertex is strongly adjacent to one of y,v1, and since co, c3 are weakly Y-complete
and not adjacent to y by (4), it follows that v is strongly adjacent to ¢, c3, and so v; has two strong
neighbors in C' that are of opposite wheel-parity in G. For the same reason and by (3), vy is strongly
adjacent to one of xg,x1, and therefore v has two strong neighbors in C' that are not consecutive in

C.

C'is a hole

e assign the value “non-edge” to all switchable pairs meeting Y and V(C) \ {zo, 2,21, ¢1,¢2,c3}
e assign the value “edge” to all switchable pairs meeting Y and {x¢, z, x1, ¢1, c2,c3}

e assign the value “edge” to all switchable pairs containing v; and meeting V(C')

e assign the value “non-edge” to all switchable pairs containing v; and meeting Y

e assign values to remaining switchable pairs arbitrarily.

By theorem 16.1 of [2] applied in G’ there are three consecutive vertices in C, all (G',Y)-complete
(and therefore (G,Y)-complete) and weakly adjacent to v;. Since there is no kite in 7', v; has no
other weak neighbor in C'. Hence x; = ¢; and the neighbors of vy in C are ¢y, co, c3. Consequently
x¢ is strongly adjacent to y; but then xg-Q-c3-vi-y-zo is an odd hole, a contradiction. This proves

(5)-

(6) One of xg,x1 is strongly anticomplete to {vy,...,v,} and is weakly non-adjacent to y.
For let z-y-p1----- pr be a path P from z to some strongly Y-complete vertex py € Ap, with interior
in Ag U {y,v1,...,v,} with no strongly Y-complete vertex in P*. Since none of y,v1,...,v,—1 have

weak neighbors in Ay it follows that {y,v1,...,v,} C {y,p1,...,pp—1}. From (5), k& > 3. Since
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T € Tg, (Y, {xg,21}, P) is not a pseudowheel. But the ends of the path P are weakly Y-complete
and its internal vertices are not strongly Y-complete; the path has length > 4; Y,z are weakly
{xg, 1 }-complete, and y, pi are not strongly {xg, x1 }-complete. So no other vertices of P are weakly
{x0, z1}-complete. Let G’ be a realization of G such that

e P is a path,

assign the value “edge” to all switchable pairs meeting Y U {z} and {z¢,z1}

assign the value “non-edge” to all switchable pairs meeting {x¢,z1} and {y, px}

assign the value “non-edge” to all remaining switchable pairs containing a vertex of Y

assign the value “edge” to all remaining switchable pairs containing a vertex of {zg,x1}
e assign values to remaining switchable pairs arbitrarily.

By theorem 2.11 of [2] applied in G’ to the path P and the anticonnected sets Y and {z¢,z1}, it
follows that one of xg,x1 is strongly non-adjacent to all of pq,...,pr_1 and weakly non-adjacent to
y. Since {y,v1,...,vn} € {y,p1,...,Pk_1}, this proves (6).

Let F' = {y,v1,...,v,}. From the symmetry we may assume that z( is (G, F')-anticomplete. Let
Q@ be a path of G from zg to y with interior in F' U Ag. It follows that ) has length at least three.
Let C’ be the hole z-y-Q-z¢-z; so C’ has length > 6. Suppose that xg is different from c3 and so its
neighbor in C'\ {z} is not (G, Y )-complete. Since (C’,Y) is not an odd wheel, it follows that (C',Y")
is not a wheel, and so no vertex of C'\ {z, zo} is strongly Y-complete. By 5.5 applied in G it follows
that Y contains a leap or a hat in G. A leap would imply there are two vertices in Y, joined by an
odd path of length > 5 with interior in F'U Ay. Hence its ends are strongly {xg,x1 }-complete, and
its internal vertices are not, contrary to 5.2. So Y contains a hat, that is there exists y’ € Y that
is (G,C"\ {z,z0})-anticomplete. Let a’ be the vertex of C'\ {z} consecutive with 2. In G the set
F U Ay catches the triangle {x,7/, 2} and we apply 5.6. In G, the only neighbor of z in F'U Ay is
y, and by (4) y has at most one neighbor in F'U Ay, and hence there is no reflection of {z¢, z,%'} in
FUAj. So 5.6.1 must hold. But in G, v is non-adjacent to zq,%’, and so F'U Ay contains a common
neighbor of xg and y’. However in G, the only neighbor of 2 in F'U A is 2’ and 2’ is non-adjacent
to 9/, a contradiction. This proves that zog = c3, and therefore x1 # c;.

By exchanging x¢,x1, we deduce that in G, x1 has a neighbor in F'. Therefore in G there are
two attachments of F' in C' with opposite wheel-parity, and two that are non-adjacent. By (1), 6.17,
the trioptimality of the wheel and theorem 16.2 of [2] applied to G, and since zg = c3 is (G, F)-
anticomplete, it follows that in G there is a path R between z, co with interior in F', and no vertex of
C has neighbors in the interior of R except z,cs. But then the hole formed by the union of R and the
path C'\ z¢ is the rim of an odd wheel with hub Y in G, and therefore in T" by 6.1, a contradiction.
This proves 6.21. |

7 A hole with a triad

In this section we prove that if a trigraph in 7y contains a hole of length at least 6 and a vertex
with 3 consecutive weak neighbors in the hole (we call this configuration “a hole with a triad”), then

36



it admits a balanced skew-partition. Our proof here is different from the proof in [2]. Most of the
“hard” theorems in this section are trivial in the graph case.

7.1 A hole with an original triad

Let C be a hole in T. We say that a vertex z € V(C) is an origin of C if it has exactly two weak
neighbors in C— namely the two vertices of C' consecutive with it. For a hole C' with some origin 2z
we say that a vertex y € V(T') \ V(C) is an original triad for the pair (C,z) if y is weakly adjacent
to z and both of the vertices consecutive with it in C'. The goal of this subsection is to prove that if
a trigraph T € 7y contains a hole with an original triad, then it admits a balanced skew-partition.

7.1 Let X be a weakly anticonnected set and let P be a path of length 3 with vertices p1,p2, p3, P4
wn order, such that p1 is weakly non-adjacent to ps and both p1 and py are weakly X -complete. Then
one of pa, p3 is strongly X -complete.

Proof. Suppose none of ps, p3 is strongly X-complete and let @) be an antipath joining them with
interior in X. Then po-Q-ps-p1-ps-p2 and ps-Q-p3-p1-p2 are both antiholes of different parity in 7', a
contradiction. This proves 7.1. |

7.2 Let T be a trigraph in Ty, let (z, Ag) be a frame in T and let xq, ..., x5 be a wheel system with
respect to it. Let the sets A;, X; be defined as usual. Assume that y € V(T) \ (Ao U Xs U {z}) is
weakly X5 U {z}-complete, and with a weak neighbor in As. Then y is strongly Xs-complete.

Proof. Suppose the result is false, namely y has a weak non-neighbor in X ¢ and assume s is minimum
for which it is false. Let (ag, a1, P) be an anchor of the wheel system zg, ..., xs.

(1)s>1

For suppose s = 1. We observe that y is strongly non-adjacent to both ag and a; for otherwise
z-wg-a0-Po-a1-x1-z would be the rim of a wheel with hub {y} contrary to the fact that T is in 7y.
From the symmetry we may assume y is weakly non-adjacent to x¢. Since T' contains no odd wheel
and y is strongly non-adjacent to a1, y has no weak neighbor in Py. Since y has a weak neighbor in
Aq, there exists a path ) with interior in A; from y to Py, such that y has exactly one weak neighbor
¢ in @ and only the last vertex of @ belongs to V(Pp). Let F = V(Fy) UQ* U {xo}. Let G be the
following realization of T"

e z-xg-ag-Pp-ai-r1-2z is a hole

Q is a path

assign the value “non-edge” to the switchable pair yzg

e if gxy is a switchable pair of T, assign the value “non-edge” to it

assign the value “edge” to all remaining switchable pairs of 7'
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Now G is in F7 and F catches the triangle {z,z1,y}. Suppose ¢ is non-adjacent to 1. No vertex
of F has two neighbors in {z,z1,y} in G, for z( is the unique neighbor of z and it is non-adjacent
to both y and x1, and ¢ is only neighbor of y, and it is non-adjacent to 1. So by 5.6 F' contains a
reflection of {z,z1,y} in G. That means that in G ¢ is adjacent to ¢ and there exists a neighbor f
of x1, different from =z, g, that is adjacent to both zg and ¢. Since zg-¢-y-x1-a1-FPy-ag-To is not an
odd hole in G, we deduce that ¢ has a neighbor in Py. So F' = V(Py) U{q, 20}, and so f € V(Fp).
The only neighbor of xg in Py is ag, so f = ag, contrary to the fact that z-xg-ag-FPy-ai-x1-z is a hole
in G. This proves that ¢ is adjacent to x1, and so ¢ is strongly adjacent to x1 in T

Since ¢ is not strongly {xg,z1}-complete, ¢ is weakly non-adjacent to ¢ and there exists a path
F' from z¢ to q with ) # F"™* C Ay. But then y-¢-F’-x¢-2z-y and y-q-F’'-z¢-y are holes of different
parity, a contradiction. This proves (1).

(2) y has no weak neighbor in As_1.

Suppose it does. Since the theorem holds for the wheel system zg,...xs_1, it follows that y is
strongly complete to X,_1 and weakly non-adjacent to xs. Then

TOy.-.yLg

is a wheel system with hub y and by 6.11 there exists » with 1 <r < s — 1 such that y has no weak
neighbor in A, and z; has a weak neighbor in A,., and a weak non-neighbor in X,.

Since y has a weak neighbor in A;_1, r < s—2 and s > 2. If y has a weak neighbor in A,_o then
the wheel system =z, ..., Ts_o, s satisfies the hypotheses of the theorem, and it has height < s, so y
is strongly adjacent to xs, a contradiction. So y has no weak neighbor in A,_o and we may assume
that r = s — 2.

Let @ be a path from y to a vertex with a weak neighbor in As_o, such that y has a unique weak
neighbor ¢ in @ and only the last vertex of @) has a neighbor in As_9, and V(Q)\ {y} € As—1. Then
@ has length at least 1. Let F' = A;,_oUV(Q) \ {y}. Then F is a weakly connected set and both y
and z; have weak neighbors in it. Hence F' U {x,} contains a path P from y to zs and since P has
two completions of different parity: y-P-zs-z-y and y-P-xs-y, P has length 2. Since g is the unique
weak neighbor of y in F', x4 is weakly adjacent to q.

But ¢ € A,_1, and hence ¢ is not strongly X,_i-complete. Let W be an antipath from ¢ to =g
with nonempty interior in X, 1. Suppose W is odd. Then y-z,-W-¢-z is an odd antipath of length at
least 5, all its interior vertices have weak neighbors in the weakly connected set (A;_oUV(Q))\{q,y}
and z and y do not, contrary to 5.2 applied in . So W is even. Then y-z,W-q is an odd antipath.
Suppose ¢ has no weak neighbor in A;_o. Then all interior vertices of y-xs-W-¢q have weak neighbors
in A,_s and its ends do not and y is weakly adjacent to x,, contrary to 5.2 and 7.1 applied in T. So ¢
has a weak neighbor in As_5. Since q &€ A;_o, it follows that ¢ is strongly X, _s-complete, and since
q € As_1, we deduce that ¢ is weakly non-adjacent to xs_1. Let S be a path from ¢ to xs_1 with
nonempty interior in A;_5. Then y-¢-S-xs_1-y is a hole, and hence S is even. So ¢-S-xs_1-z is an odd
path, its ends are weakly X,_o-complete and none of its interior vertices are strongly X s_o-complete
(for they all belong to As_a U {zs_1}), so by 5.2, S has length 2. Let ¢ be the middle vertex of S.

Let U be an antipath joining ¢ and zs_; with interior in X,_». Then U is odd for it can be
completed to an antihole via t-z-¢-x5_1.

We claim that s > 3. For suppose s = 3. Since U is odd, zg,z; € V(U). Let G be a realization
of T in which xg-ag-Py-a1-x1-2-x¢ is a hole and x4_1-U-t-2-¢-xs_1 is an antihole; then G violates
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theorem 15.7 of [2]. This proves that s > 3.

Next we claim that xs_; has a weak neighbor in A;_3. For suppose it does not. Then by 5.2
applied in T to the odd antipath U and the weakly connected set A,_3, and since z is weakly complete
to U* and strongly anticomplete to As_3, t has a weak neighbor in A,_3. Since ¢ does not belong to
As_3 (for t is weakly adjacent to xs_1), t is strongly X,_s-complete, and since t € As_o, t is weakly
non-adjacent to x5 5. Since xs_9-¢-t-r5_1-2-T5 5 is not an odd hole, x;_1 is strongly adjacent to
Ts_o. But then

Ly yLg—1

is a {¢}-square, contrary to 6.6. This proves that xs_; has a weak neighbor in As_ 3. If zs_q is
strongly X_s-complete then
X0y ey Ts—1

is a {¢}-diamond, contrary to 6.6, so xs_; has a weak non-neighbor in X,_3.

Next we show that ¢ has a weak neighbor in A,_3. For suppose it does not. Let M be a path
with V(M) C As_2 U {q} from ¢ to a vertex with a weak neighbor in As_3 such that ¢ has a unique
weak neighbor in M and only the last vertex of M has a weak neighbor in A;_3. Then both ¢ and
xs—1 have weak neighbors in F' = (A,_3 UV (M)) \ {¢}, so there exists a path joining ¢ and zs_4
with interior in F’, and we may assume that S is such a path, and the vertex ¢ belongs to V(M).
Now y-t-U-z5_1-q is an odd antipath of length at least 5, all its interior vertices have weak neighbors
in F’\ {t} and the ends do not, contrary to 5.2 applied in 7. This proves that ¢ has a weak neighbor
in As_g.

Now we claim that zq,...,Zs_3,Zs_1,Zs_2,%s iS a wheel system. Certainly xzg,...,xs_3 is a
wheel system. The vertex xs_1 has a weak neighbor in A;_3 and a weak non-neighbor in X,_3, so
Tg,...,Ts—3,Ts—1 18 @ wheel system, and hence so is xg,...,Zs—3,%s—1,%s—2. Lhe vertex ¢ is not
strongly X,_3 U {zs_1}-complete, for it belongs to As_; and is strongly X, _o-complete. But then
since ¢ has a weak neighbor in A, 3, it follows that ¢ belongs to one of the companion sets of the

wheel system xg,...,zs_3,%s_1; Ts is weakly adjacent to ¢ and is not strongly Xs_s-complete. This
proves that xg,...,Zs_3,Ts—1,Ts—2,Zs is a wheel system. If z; is strongly X _3 U {zs_1}-complete,
then

LOyereyLs—3,Ls—1,Ls—-2,Ts
is a {y}-diamond, contrary to 6.6. If z is not strongly X,_sU{xs_1}-complete, then z, ..., x5 3,Ts_1, x5

is a wheel system, it satisfies the hypotheses of the theorem and has height < s, so y is strongly
adjacent to zs, a contradiction. This completes the proof of (2).

From (2) y has no weak neighbor in As_;. Let P be a path from y to a vertex with a weak
neighbor in A;_1, such that y has a unique weak neighbor in P, only the last vertex p of P has a
neighbor in A;_; and V(P) \ {y} C As. Then p is strongly X_;-complete.

(3) P has length 1.

Suppose P has length at least 2. Let p’ be the weak neighbor of y in P. Since p # p/, p’ has no
weak neighbor in A;_1. Let @ be an antipath from p’ to y with interior in X. Assume first Q is
odd. All internal vertices of ) have weak neighbors in the weakly connected set A;_1, the ends y
and p’ do not, and y is weakly adjacent to the vertex of @@ consecutive with it, contrary to 5.2 and
7.1. So Q is even. But then z-p’-Q-y is an odd antipath, all its internal vertices have weak neighbors
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in the weakly connected set As_1 UV (P)\ {p,y}, the ends y and 2 do not, and y is weakly adjacent
to the vertex of () consecutive with it, contrary to 5.2 and 7.1 applied in 7. This proves (3).

The vertex p is weakly non-adjacent to x for it belongs to A5 and is strongly X, 1-complete. So
there exists a path R with nonempty interior in A,_; joining p and x.

(4) x5 is strongly adjacent to y and R has length 2.

If x4y is a switchable pair then the path y-p-R-z, has length > 2 and has two completions of
different parity: y-z-zs and y-z, a contradiction. So x4 is strongly adjacent to y. Since p-R-xs-y-p
is a hole, R is even, and so the path p-R-z,-z is an odd path, both ends of which are weakly
Xs—1-complete and none of its internal vertices is strongly X,_j-complete (for they all belong to
As—1U{xs}), so by 5.2 p-R-x,-z has length 3 and R has length 2. This proves (4).

Let t be the middle vertex of the path R. Let (Q be an antipath between ¢ and and x; with interior
in Xs_1. Then @ is odd for it can be completed to an antihole via t-z-p-z,. Let G be a realization
of T in which xg-ag-Py-a1-21-2-2¢ is a hole and z4-Q-t-z-p-z5 is an antihole. By theorem 15.7 of [2],
this hole and antihole meet in at most two vertices, and so not both xg and x; belong to ). Hence
s > 3 since @ is odd.

(5) x5 has a weak neighbor in As_s.

Suppose x5 is strongly anticomplete to As;_o. We claim that ¢ has a weak neighbor in A;_», for
otherwise the odd antipath @, the weakly connected set A;_5 and the vertex z contradict 5.1 applied
in T (for z is a vertex weakly complete to V(Q*) and strongly anticomplete to As_2). So t has a
weak neighbor in A;_ 5, and hence ¢ is strongly Xs_o-complete and weakly non-adjacent to zs_1.
Since xs-t-p-x5_1-2-x4 is not an odd hole, x; is strongly adjacent to zs_1. But then the wheel system

Toy.--Ts

is a {p}-square, contrary to 6.6. This proves (5).
(6) p has a weak neighbor in As_o.

For suppose it does not. Let .S be a path from p to a vertex with a weak neighbor in A;_5 such
that p has a unique weak neighbor in S, V' (S)\ {p} is a subset of A;_1, and only the last vertex of S
has a weak neighbor in As_5. Then both p and =5 have weak neighbors in F' = (A;,_2 UV(5)) \ {p},
so there exists a path joining p and z with interior in F', and we may assume that R is such a path,
and the vertex t belongs to V(S). Now y-t-Q-zs-p is an odd antipath of length at least 5, all its
interior vertices have weak neighbors in F'\ {t} and the ends do not, contrary to 5.2 applied in 7.
This proves (6).

If x4 is strongly X_o-complete, then by (5) the wheel system
LOy.-+9Lg

is a {p}-diamond, contrary to 6.6. So x is not strongly X,_s-complete and xq, ..., xs_2, x5 is a wheel
system. From (6) p has a weak neighbor in A;_s and is weakly non-adjacent to x5, so p belongs
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to one of the companion sets of this wheel system. So xg,...,ZTs_o,xs satisfies the hypotheses of
the theorem and has height < s, and hence y is strongly X5 U {xs}-complete, and so it is weakly
non-adjacent to xs_1.

Since both p and x4 have weak neighbors in A;_5, we may assume that the interior of the path
R is contained in As_o, that ist € As_5. Both ¢ and x, have weak non-neighbors in X;_o and so we
may assume that the interior of the antipath @ joining them is a subset of X _o.

We claim that xq, ..., Ts_9, Ts, Ts—1 is a wheel system. We have already shown that xg,...,xs_2,xs
is a wheel system. The vertex x,_1 is not strongly X,_s-complete and not strongly A,_s-anticomplete,
SO ZQ,...,Ts_2,Ts, Ts—1 1S a wheel system. This wheel system has height s and it satisfies the hy-
pothesis of the theorem and not the conclusion, since y is not strongly adjacent to xs_1. By (4)
applied to the wheel system x,...,Ts_2, %, xs—1 is strongly adjacent to xs_1, a contradiction. This
completes the proof of 7.2. |

Next we need another transformation of 6.10.

7.3 Let T € 19, admitting no balanced skew-partition, let (z, Ag) be a frame and xg,...,zs a wheel
system with respect to it, and define X;, A; as usual. Then there is no vertexy € V(T)\{z,xo,...,zs}
that is weakly {z,xq,...,xs}-complete and has a weak neighbor in As,.

Proof. For suppose there is such a frame, wheel system, and vertex y, and choose them with s
minimum (it is important here that we minimize over all choices of the frame, not just of the wheel
system); say (z,Ap), Zo,...,xs and y respectively. By 7.2 y is strongly zg,...,zs-complete. By
6.15, there exists r with 1 < r < s, and a vertex v such that y is weakly non-adjacent to v and
has no weak neighbor in A,, and v is weakly adjacent to z, and has a weak neighbor in A,, and a
weak non-neighbor in X,.. Since zg,...,zs, v is a wheel system, it follows from 7.2 that y is strongly
non-adjacent to v. Then (y, Ap) is a frame, and xq, ..., z, is a wheel system with respect to it. The
vertex z is weakly {y,xo,...,x,}-complete and has a neighbor in A/ (namely v), where A} is the
maximal weakly connected subset of V(T') including Ay and containing no weak neighbor of y and
no strongly X,-complete vertex. But this contradicts the minimality of s. This proves 7.3. |

Now we can prove the main result of this subsection.

7.4 LetT € 1y, admitting no balanced skew-partition, and let C' be a hole in T of length > 6 with
origin z. Then there is no vertex of T'\ V(C) that is an original triad for (C,z).

Proof. Suppose that there is such a vertex, say y, and let it be weakly adjacent to =g, z,x1 € V(C),
where xg-z-x; is a subpath of C. Let Ay = V(C) \ {z,x0,21}. Since z is an origin for C, (z, Ao)
is a frame. By 7.3 applied to (z, Ag) and xg, x1, it follows that y has no other weak neighbor in C.
Choose t maximum so that there is a sequence xo, ..., x; with the following properties:

e for 2 < i < t, there is a weakly connected subset A;_1 of V(T including A;_s, containing

a weak neighbor of z;, no weak neighbor of z or y, and no strongly {xzo,...,x;—1}-complete
vertex,

e for 1 <i <t, x; is not strongly {zo,...,z;—1 }-complete, and

e xg,...,x; are weakly {y, z}-complete.
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Since T" admits no balanced skew-partition, by 5.7 there is a path P from {z,y} to Ag, disjoint
from {zg,...,z;} and containing no strongly {xg,...,z;}-complete vertex in its interior. Choose
such a path of minimum length. From the symmetry between z,y we may assume its first vertex
is y; say the path is y-pi----- Pra1, where ppi1 € Ag. From the minimality of the length of P it
follows that z is strongly non-adjacent to all of pa,...,pr+1. If 2z is weakly adjacent to p; then we
may set x;41 = p1, contrary to the maximality of t. So p1,...,prr1 are all strongly non-adjacent
to z. Hence (z,Ap) is a frame, and z,...,x; is a wheel system with respect to it. The vertex y
is weakly adjacent to all of z,xg,...,z;, and there is a weakly connected subset of V(7T') including
Ay, containing a weak neighbor of y, no weak neighbor of z, and no strongly {zo, ..., x;}-complete
vertex. But this contradicts 7.3. This proves 7.4. |

7.2 The end of a hole with a triad

In this subsection we prove that if a trigraph in 79 contains a hole of length at least 6 and a vertex
with three consecutive weak neighbors in the hole, then it admits a balanced skew-partition. By 7.4
we may assume that T € 7q.

7.5 Let T € Ti9. Let C be a hole of length at least 6 with vertices ci,...,co, in order and let
y € V(T)\V(C) be weakly adjacent to c1,ca,cs. Then k = 3, the pair caocs is switchable, y is strongly
complete to {c1,cs,c5} and both y and co are strongly anticomplete to {c4,ce}.

Proof. Let Cpgqg = {coit+1 : 0<i <k} andlet Cepep, = {c2; : 1< i <k}. First we claim that co
is strongly Ceyen-anticomplete. Clearly co is weakly Ceyen-anticomplete for C' is a hole. Since there
exists a subpath of C' between ¢y and cy; of length > 2, 2.1 implies that co, co; is not a switchable
pair. This proves that co is strongly Ceyen-anticomplete.

Now we show that y is strongly Ceyen-anticomplete. Suppose it is not. Let 1 < ¢ < k be minimum
such that y is weakly adjacent to co;. Let 1 < j < i be maximum such that y is weakly adjacent
to cgjq1. Since y-caji1-...-C2i—1-C2;-y is not an odd hole, we deduce that j = ¢ — 1. But then {y}
is a hub for a wheel with rim C, contrary to the fact that T" € 779. This proves that y is strongly
Clepen-anticomplete.

Next we show that both y and co are weakly C,q4q4-complete. Suppose not. Let 0 < ¢ < k be
minimum such that cg;41 is not weakly {ca, y}-complete. Then i > 1 for c3 is weakly {ca, y}-complete,
and cg;_1 is weakly {cg,y}-complete. Let co;-...-cp, be a minimal subpath of C'\ ¢2 such that both
¢ and y have a weak neighbor in {cg;, ¢2i+1,...,¢n}. Then ¢, is weakly adjacent to one of ¢y, y and
some z € {cg,y} is strongly anticomplete to {co;, 211, - -, Cm—_1}. But then C' = x-c9;_1-Coi- . .. Cpp-x
is a hole of length at least 6 with origin x. Let {2’} = {co,y} \ {z}. Then 2’ is weakly adjacent to x
and cg;—1 and has a weak neighbor in V(C’) \ {z, c2;—1}. We have already shown that x’ is strongly
non-adjacent to co;, so since (C’, {z’}) is not an odd wheel, 2’ is weakly adjacent to ¢,,,. But then z’
is an original triad for the hole C’, contrary to the fact that T' € 779. This proves that both y and
co are weakly C\ygq-complete. Since co belongs to at most one switchable pair and C' is a hole, k = 3
and Cyogq = {c1,¢3,¢5}.

Now it remains to show that y is strongly C,q4-complete. y is strongly adjacent to c5; because
cocs is a switchable pair, y is weakly adjacent to c; and c5 belongs to most one switchable pair in 7.
If y is weakly non-adjacent to c3 then y-co-c3-c4-c5-y is an odd hole. So y is strongly adjacent to cs,
and by symmetry to ¢y, and hence y is strongly C,gq-complete. This completes the proof of 7.5. |
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7.6 Let T € Ti9. Let C be a hole of length at least 6 with vertices ci,...,co, in order and let
y € V(T)\ V(C) be weakly adjacent to ci,ca,c3. Then T admits a balanced skew-partition.

Proof. By 7.5 k = 3, the pair cacs is switchable, y is strongly complete to {c1,c3,¢5} and both y
and ¢y are strongly anticomplete to {c4,cg}. So cacs is the unique switchable pair containing co. In
particular, y is strongly adjacent to co.

Let Y be a maximal weakly anticonnected set including y such that {c1,co,c3,c5} is strongly
Y-complete. By 7.5 applied to every member of Y, the set Y is strongly {c4, cg }-anticomplete. Let
X be the set of strong common neighbors of Y. Suppose there exists a path P in T from c¢s to cs
with P* # () and with no interior vertex in Y U X. Since ¢y is weakly adjacent to cs, it follows that
either P has length 2 or it is odd. Since co and c5 are strongly Y-complete and no vertex in the
interior of P is, it follows from 5.2 that P has length 2 or 3. Let p,p’ be the neighbors in P of c5
and ¢y respectively.

(1) P does not have length 2.

If P has length 2, then p = p’ is weakly (and therefore strongly) adjacent to both ¢y and c5, and
hence p ¢ V(C). If p is weakly adjacent to both ¢1,cs then by 7.5 applied with y = p, p is strongly
{¢c1, ¢, 3, c5 }-complete, and p is not strongly Y-complete, so Y U {p} contradicts the maximality of
Y.

Both subpaths of C between co and c5 have odd length, so they each contains an edge, e; and
eo respectively, with both ends weakly adjacent to p. Since (C,{p}) is not a wheel in T', C' does not
contain two disjoint edges with both ends weakly adjacent to p, so e; and e share an end, and hence
they are both contain cs, and in particular p is weakly adjacent to ¢4 and c¢g. By 7.5 applied to C
and p with ¢5 in place of ¢ and p in place of y, we deduce that p is strongly {cs, ¢4, g }-complete and
strongly {c1, c3 }-anticomplete. Let ¢’ € Y be a weak non-neighbor of p. Then A = c3-p-y/-c4-c2-c5-c3
is an antihole and |V (A) N V(C)| > 2, contrary to theorem 15.7 of [2] applied to a realization of T
in which C is a hole and A is an antihole. This proves (1).

(2) P does not have length 3.

If cg-P-c5 has length 3 then P = co-p’-p-c5. Let W be an antipath joining p and p’ with interior
in Y. Then A = p'-W-p-ca-c5-p’ is an antihole. The vertex ¢4 is strongly V(W*)-anticomplete and is
weakly non-adjacent to ca. If ¢4 is weakly non-adjacent to p then (A, {c4}) is a wheel in T, contrary
to the fact that T' € 719. So p is strongly adjacent to ¢4, and by symmetry p is strongly adjacent to
cg¢- By 7.5 applied to C' and p with c5 in place of ¢5 and p in place of y, we deduce that p is strongly
adjacent to ¢y, contrary to the fact that P is a path in 7. This proves (2).

It follows from (1) and (2) that no such path P exists, and so by 5.7 T admits a balanced
skew-partition. 1

7.3 Hole and antihole

In this subsection we prove a useful corollary of 7.6. We start with a lemma.
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7.7 Let T € 111, and suppose C and D are a hole and an antihole of length > 6 in T respectively.
Then |V(C)NV(D)| < 2.

Proof. Let cq,...,co. be the vertices of C in order and d1,...,dy be the vertices of D in order. If
there exists a realization of T" in which C'is a hole and D is an antihole, then the result follows from
theorem 15.7 of [2]. So we may assume that either there exist two consecutive vertices of C' that are
also consecutive in D, or there exist two non-consecutive vertices of C' that are non-consecutive in

D.
(1) For all 1,7 with 1 <14 < 7 < k‘, C2iC25 € N(T) and €2;—1C2j—1 € N(T)
This follows immediately from 2.1.

Suppose first that there exist two consecutive vertices of C' that are also consecutive in D. In
this case we may assume that ¢; = dy and co = do. From (1) for all ¢ € V/(C) \ {c1, c2}, ¢ is strongly
anticomplete to at least one of c¢1,co. On the other hand for all d € V(D) \ {dy,ds,ds,dy}, d is
weakly {d1,ds}-complete. So

V(C)NV(D) C {dy,ds,ds,dy}.

Similarly
V(C)N V(D) C {ec1,c2,c3,con}-

Note that by (1) cies,cocor € N(T). If |[V(C) NV (D)| > 3 then we may assume {ci1,ca,c3} C
V(C)N V(D) and so c3 = dy;. But then the vertex dy is is weakly adjacent to ¢, ¢, c3 contrary to
the fact that T' € 7q;.

So we may assume that there exist two non-consecutive vertices of C' that are non-consecutive in
D. Let ci,c; be such vertices and we may assume c¢; = dy. Since cic; € S(T') we deduce from (1)
that j = 2m where 2 < m < k — 1 and ¢y, = do, for some 2 < n <[ — 1. Every vertex in
V(D) \ {d1,ds,do;, don,don—1,don+1} is weakly adjacent to both ¢; and ¢y, and by 5.3 it is weakly
adjacent to both ends of at least two edges of C, contrary to the fact that T' € 77;. Since D has
length at least 6, we deduce that [ = 3, n = 2. Similarly k¥ = 3 and m = 2. Since |V(C)NV(D)| > 3,
we may assume from the symmetry that dy € V(C) and ds = ¢3. Since by (1) dg is strongly adjacent
to both do = ¢3 and dy = ¢4, it follows that dg ¢ V(C). Similarly ¢5 ¢ V(D). If dg is weakly
adjacent to cs5, then dg has three consecutive weak neighbors in C, contrary to the fact that T' € 777.
So we may assume that dg is strongly non-adjacent to cs, and then c5 has three consecutive weak
non-neighbors in D, contrary to the fact that T' € 77;. This proves 7.7. |

7.8 Let T € T11; then T does not contain both a hole of length > 6 and an antihole of length > 6.

Proof. Let C be a hole and D an antihole, both of length > 6. Let W = V(C)NV (D), A =V (C)\W,
and B =V (D)\ W. Let W, A, B have cardinality w, a,b respectively. Let there be

Pe strong edges between A and W,
ge strong edges between B and W,
re strong edges between A and B,
te strong edges with both ends in W,
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ps switchable pairs between A and W,
qs switchable pairs between B and W,
rs switchable pairs between A and B,
ts switchable pairs with both ends in W,

pn, strong non-edges between A and W,

¢n strong non-edges between B and W,

rp, strong non-edges between A and B, and
t,, strong non-edges with both ends in W.

By 5.3, and since T' € 731, every vertex in B has at most %(a + w) weak neighbors in C, and
every vertex in A has at most %(b + w) weak non-neighbors in D, so

1 1
qe+qs+re+rs+ps+pn+rn+rs§§(a+w)b+§(b+w)a.

Also, every vertex in W has at most two strong neighbors in A U W and at most two strong non-
neighbors in BU W, so
Pe + 2te + qn + 2t, < 2w.

Also, since by 7.7 w < 2,
2t < w < 2w.

Summing, we obtain

1 1
pe+ps+pn+QG+QS+qn+7‘e+27‘s+Tn+2te+2tn+2tsSdb+§bw+_aw+4w-

2
But
Pe+Ds +Dn+ e+ qs + an +7e +1s + 1y + 2t + 2t + 2t, = ab + aw + bw + w(w — 1),
SO
1 1
5aw+§bw+w(w—1) < 4w,
that is,

w(a+ b+ 2w —10) <O0.

Since a + w,b + w > 6, it follows that w = 0, and so C, D are disjoint. Moreover, equality holds
throughout this calculation, so every vertex in D is weakly adjacent to exactly half the vertices of
C' and weakly non-adjacent to exactly half of the vertices of C' and vice versa. Consequently every
vertex in D is strongly adjacent to exactly half the vertices of C' and strongly non-adjacent to exactly
half of the vertices of C' and vice versa.

By 5.3, and since T' € 7q1, it follows that for each v € D, its strong neighbors in C' are pairwise
non-adjacent in C'. Let C have vertices ci,...,¢, in order, and let D have vertices dy,...,d,.
So for every vertex of D, its set of strong neighbors in V(C) is either the set of all ¢; with i
even, or the set of all ¢; with ¢ odd, and the same with C, D exchanged. We may assume that ¢
is strongly adjacent to d;. Hence the strong edges between {ci,co,cq,c5} and {dy,da,dy,ds} are
c1dy, c1ds, cada, cady, cady, cqdy, c5dy, c5ds; and so the subtrigraph T'|{c1, ¢2, ¢4, c5,dy, d2, dg, d5} is the
double diamond, contrary to T' € 7q1. This proves 7.8. |
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8 The end
The objective of the remainder of the paper is to prove the following;:
8.1 Let T € Tia; then either T or T is bipartite, or T admits a balanced skew-partition.

8.2 Let T € 719, admitting no balanced skew-partition. Let X,Y be disjoint weakly anticonnected
subsets of V(T), weakly complete to each other, and let p1--+--p, be a path P of T\ (X UY),
with n > 2, such that p1 is weakly X -complete and none of pa,...,p, is strongly X-complete; and
D 18 weakly Y -complete and none of p1,...,pn—1 18 strongly Y -complete. Then there is no z €
V(T)\ (X UY U{p1,...,pn}), weakly complete to X UY , and weakly anticomplete to p1,py.

Proof. Suppose such z exists. Since T is monogamous, we may assume that z is strongly non-
adjacent to p,. Choose X maximal subject to being weakly anticonnected, weakly complete to
Y U {p1, 2} and such that none of po,...,p, is strongly X-complete.

(1) Y is strongly X -complete.

Suppose Y is not strongly X-complete. We claim that in this case n > 2. The set X UY is
now weakly anticonnected, and so if n = 2 there exists an antipath of length > 2 from p; to po with
interior in X UY. This antipath can be completed through pi-z-ps to an antihole of length > 4,
contrary to the fact that T" € 7q5. This proves that n > 2.

Let G1 be a realization of T defined as follows:

e assign the value “edge” to all switchable pairs zy such that r € X and y € Y

e assign the value “edge” to all switchable pairs zp; such that z € X

e assign the value “edge” to all switchable pairs yp,, such that y € Y

e assign the value “edge” to all switchable pairs vz such that v € X UY

e assign the value “non-edge” to all remaining switchable pairs containing a vertex of X UY
e assign the value “non-edge” to all switchable pairs vz with v € V(P)

e P is a path in G;.

Then G € Fi1, and p; and p,, are respectively the unique (G1, X)-complete and (G, Y )-complete
vertices of the path P. It follows from theorems 2.6 and 2.9 of [2] applied to the sets X,Y", the path
P and the vertex z in G1 that n is even.

Now let G2 be a realization of T' obtained from G; by changing to “non-edge” the value of all
switchable pairs zy with x € X and y € Y. So G4 € Fi1, and again p; and p, are respectively the
unique (G2, X)-complete and (G2, Y)-complete vertices of the path P. This contradicts theorem 17.5
of [2] applied to the sets X,Y, the path P and the vertex z in G2. This proves (1).

(2) There exists a path Q in T from z to p1, with nonempty interior, so that none of its internal
vertices is in X or is strongly X -complete.
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Let U be the set of strong common neighbors of X and let W = V(T)\{X UU}. Then by 5.7 W
is weakly connected and if |U| > 1 then every vertex of U has a weak neighbor in W. Since by (1)
Y C U and pq, z both belong to U U W, if they are strongly non-adjacent the claim follows. If pq, 2z
is a switchable pair of T', then since 1" is monogamous both p; and z belong to U, and again the
claim follows. This proves (2).

Since no vertex of P\ p; is strongly X-complete, we may choose @ as in (2) so that if z has a
weak neighbor in {ps,...,pp—1} then V(Q) C {z,p1,...,pn—1} and so that there exists a realization
of T"in which both P and @) are paths. Let G be a realization of T in which P and @ are paths and
otherwise defined as follows:

e assign the value “edge” to all switchable pairs zp; such that z € X

e assign the value “edge” to all switchable pairs yp, such that y € Y

e assign the value “edge” to all switchable pairs vz such that v € X UY

e assign the value “non-edge” to all remaining switchable pairs containing a vertex of X UY
e assign values to all remaining switchable pairs arbitrarily.

Then G € Fi;. In G the connected subset V(Q \ z) U {p1,...,pn} (= F say) contains a
(G, X)-complete vertex, a (G, Y )-complete vertex, and a (G, {z})-complete vertex. The only (G, X)-
complete vertex in F is py, and that is not (G, Y )-complete or (G, {z})-complete; so by theorem 24.4
of [2] some vertex in F'is (G, Y )-complete and adjacent to z in G. If z has a neighbor in {p1,...,pn},
then V(Q) C {z,p1,...,pn}, and so p,, is the only vertex of F' that is (G,Y )-complete; and it is not
adjacent to z, a contradiction. So z has no neighbor in {pi,...,p,}, and therefore only one vertex
in F' is adjacent to z, the neighbor of z in Q, say ¢, and ¢ is (G,Y )-complete. In T it means that ¢
is strongly Y-complete. Hence ¢ is strongly non-adjacent to py, for otherwise we could add g to X,
contrary to the maximality of X. Consequently @) has length > 2. This contradicts theorem 24.3 of
[2] applied to Q,X and any vertex y € Y in G. This proves 8.2. |

We can now prove the following:

8.3 Let T € Tia, admitting no balanced skew-partition, and let C be a hole. If z € V(T)\ V(C) has
two weak neighbors in C that are consecutive in C, then C has length 4 and z two strong neighbors
in C that are not consecutive. In particular, T contains no antipath of length 4.

Proof. Let C be the hole with vertices p1,...,pn+2 in order, and assume some z € V(T) \ V(C)
is weakly adjacent to ppn41,Pn+e. By 8.2, taking X = {pp4+1} and Y = {pn42}, we deduce that z is
strongly adjacent to at least one of p1, p,, say p1. Since T’ € Ty9 it follows that C has length 4. Since
zp1 € E(T), we may assume that zps is a switchable pair, for otherwise the theorem holds. Since
T is monogamous, zp4 is a strong edge of T. Now applying 8.2 with X = {p1} and Y = {p4} we
deduce that z is strongly adjacent to ps and the claim follows. This proves 8.3. |

8.4 LetT € Tqo, admitting no balanced skew-partition. Let X1, Xo, X3 be pairwise disjoint, nonempty,
weakly anticonnected subsets of V(T'), strongly complete to each other. Let F C V(T)\ (X1UX2UX3)
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be weakly connected, so that for at least two values of i € {1,2,3}, every member of X; has a weak
neighbor in F. Let G be a realization of T in which X1, X2, X3 are anticonnected and F' is connected,
and for at least two values of i € {1,2,3}, every member of X; has a neighbor in F. Then in G the
set F' contains a vertex complete to at least two of X1, Xo, X3.

Proof. This proof is identical to the proof of theorem 24.7 in [2], except 8.3 is used instead of
theorem 24.6 of [2]. This proves 8.4. |

8.5 Let T € Tio and assume T contains a strong triangle. Then either T is bipartite or T admits
a balanced skew-partition.

Proof. Suppose not. T contains a strong triangle, and so we may choose disjoint nonempty weakly
anticonnected sets Xi,..., Xy, strongly complete to each other, with k& > 3. Choose these with
maximal union. Let F' =V (T)\ Ule Xi.

(1) No vertex of F is strongly complete to two of X1, Xa, ..., Xk.

Suppose w € F' is strongly complete to two of X1, X5, ..., Xi. We may assume that w is strongly
complete to X1,...,X; say where 2 < ¢ < k, and not strongly complete to X;11,..., Xj. Define

X{+1:XZ'+1U...UX]€U{1,U};

)

then the sets X,...,X;, Xj  violate the optimality of the choice of X1, ..., X}. This proves (1).
Let G be a realization of T defined as follows:

e assign the value “non-edge” to all switchable pairs of 1" with both ends in X; for 1 <17 <k
e assign the value “edge” to all switchable pairs of T with both ends in F

e for all x € X;UXoU...UX} such that x has a strong neighbor in F', assign the value “non-edge”
to all switchable pairs zf with f € F

o if r € X7 UXoU...U X} is weakly anticomplete to F', assign the value “edge” to the unique
switchable pair between x and F

e assign values to all remaining switchable pairs arbitrarily.

(2) Either T is bipartite or some vertex of F is complete in G to two of X1,..., Xg.

Let N be the set of all strongly X-complete vertices in 7. If X, UN = V(T), then by 5.7 T
is bipartite and the statement holds. So we may assume that X UN # V(T). By 5.7, the set
V(T) \ (X, UN) is weakly connected and every vertex of N has a weak neighbor in it. It follows
that F' is weakly connected and all vertices of X; U Xy have a weak neighbor in it. In G it means
that F' is connected and every vertex of X; U X9 has a neighbor in F. By 8.4 some vertex v € F' is
complete in G to two of X, X9, Xi. This proves (2).
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By (2) there exists a vertex v € F that is complete in G to X1 U Xs, say. It follows from (1)
that in T, v is weakly and not strongly complete to X; U Xs5. Since T' is monogamous, v has a
weak non-neighbor in at most one of X1, Xo, and we may assume that v is strongly Xs-complete
and has a weak non-neighbor x € X;. By the definition of G that means that x has no strong
neighbor in F. Let N’ be the set of all strongly Xs-complete vertices. As before we may assume
that Xo U N’ # V(T). On the other hand Xs U N"\ {z} is not weakly anticonnected (since Xo
is an anticomponent of it) and V(T) \ (X2 U N'\ {z}) not weakly connected (for it is a subset of
{z} U F \ {v} containing = and a vertex of F'\ {v}), so by 5.7 T" admits a balanced skew-partition.
This proves 8.5. |

8.5 completes the proof of the analogue of 8.1 in [2], for a Berge graph containing no strong
triangle is bipartite. In the trigraph case, however, another step is required:

8.6 Let T € Ti3; then either T or T is bipartite, or T admits a balanced skew-partition.

Proof. We may assume that 7" admits no balanced skew-partition and is not bipartite, so T' contains
a weak triangle {x1,z2, 23}, and by 8.5 and since T' is monogamous, we may assume that z29 € S(T')
and x1x3, 2913 € F(T). Let X3 the set of all vertices of that are weakly complete to {1, z2}.

(1) X3 is weakly anticonnected and strongly {x1,xs}-complete.

Since T' is monogamous, every vertex in X3 is strongly adjacent to both x; and xs, and since
T € Tq3, no two vertices of T are strongly adjacent. This proves (1).

(2) Every path from x; to xe with nonempty interior in V(T')\ X3 contains a strong common neighbor
of X3 in its interior.

Let P be such a path and assume P* contains no strongly Xs-complete vertex. From the definition
of X3, P does not have length 2. Hence by 2.1 P is odd. By 5.2 P has length 3. Let the vertices
of P be x1-p1-pa-x5 in order. Let Q be an antipath joining p; and ps with interior in X3. Then
p1-Q-po-x1-x2-p1 is an antihole in T contrary to the fact that T' € 773. This proves (2).

Let N be the set of all strongly X3-complete vertices. If X3UN = V(T'), then by 5.7 T is bipartite
and the theorem holds. Now 5.7 implies that there is a path in T from z1 to zo with nonempty
interior in V(T') \ (X3 U N), contrary to (2). This proves 8.6. |

Now 8.1 follows from 8.5 and 8.6.
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