Berge Trigraphs

Maria Chudnovsky ${ }^{1}$
Princeton University, Princeton NJ 08544

March 15, 2004; revised December 2, 2005
${ }^{1}$ This research was partially conducted during the period the author served as a Clay Mathematics Institute Research Fellow.

Abstract

A graph is Berge if no induced subgraph of it is an odd cycle of length at least five or the complement of one. In joint work with Robertson, Seymour, and Thomas we recently proved the Strong Perfect Graph Theorem, which was a conjecture about the chromatic number of Berge graphs. The proof consisted of showing that every Berge graph either belongs to one of a few basic classes, or admits one of a few kinds of decompositions. We used three kinds of decompositions: skewpartitions, 2-joins, and proper homogeneous pairs. At that time we were not sure whether all three decompositions were necessary. In this paper we show that the proper homogeneous pair decomposition is in fact unnecessary. This is a consequence of a general decomposition theorem for "Berge trigraphs".

A trigraph T is a generalization of a graph, where the adjacency of some vertex pairs is "undecided". A trigraph is Berge if however we decide the undecided pairs, the resulting graph is Berge.

We show that the decomposition result of [2] for Berge graphs extends (with slight modifications) to Berge trigraphs; that is for a Berge trigraph T, either T belongs to one of a few basic classes or T admits one of a few decompositions. Moreover, the decompositions are such that however we decide the undecided pairs of T, the resulting graph admits the same decomposition. This last property is crucial for the application.

The full proof of this result is over 200 pages long and was the author's PhD thesis. In this paper we present the parts that differ significantly from the proof of the decomposition theorem for Berge graphs, and only in the case needed for the application.

1 Introduction

We begin with some definitions. All graphs in this paper are simple and finite. The complement \bar{G} of a graph G has the same vertex set as G, and two distinct vertices u, v are adjacent in \bar{G} if and only if they are non-adjacent in G. A hole in G is an induced cycle of length at least 4. An antihole in G is an induced subgraph whose complement is a hole in \bar{G}.

A graph is called Berge if it contains no odd hole and no odd antihole. A clique in G is a subset of the vertex set every two members of which are adjacent. A graph G is perfect if its chromatic number equals the size of its maximum clique and the same holds for every induced subgraph of G. Since this equality does not hold for odd holes and antiholes, every perfect graph is Berge.

Recently in joint work with N.Robertson, P.Seymour, and R.Thomas [2] we were able to prove that the reverse statement holds as well-namely every Berge graph is perfect (this was conjectured by Berge in 1961 [1] and had become known as the Strong Perfect Graph Conjecture.) To show that, we proved a structure theorem for Berge graphs. This settled a conjecture by Conforti, Cornuéjols, and Vušković [6], asserting that every Berge graph either belongs to one of a few basic classes or admits one of a few kinds of decompositions (where the decompositions are such that they cannot occur in a minimal counterexample to the Strong Perfect Graph Conjecture).

In [3] the decomposition theorem of [2] is reproved in the more general setting of Berge trigraphs, namely graphs in which the adjacency of some vertex pairs is "undecided" (we give precise definitions later.) Parts of the proof are a rather straightforward generalization of [2], while in others new ideas were needed. The full proof is over 200 pages long. Our objective here is to present the novel parts of the proof (the rest is omitted for reasons of space).

This work is motivated by an application to Berge graphs proving that one of the decompositions used in [2] was unnecessary (explained later). For this application we can confine ourselves to the case when every vertex is incident with at most one "undecided" edge. In this paper we therefore only consider this case.

Most of the proof in [2] follows the paradigm bellow:

- find a subgraph of the Berge graph that has a certain "structure"
- using this structure, prove that the whole graph is either basic, or admits a decomposition.

At first it seems that instead of using trigraphs, one could redefine the "structure" to allow more flexibility, and say the whole proof in terms of graphs only. We would like to remark that despite a certain amount of effort invested in this approach, we were unable to come up with consistent ways to define the structures, and so the idea of using trigraphs seems crucial.

Let us start by stating the decomposition theorem of [2]. First we need some definitions. For a subset X of the vertex set of G we denote by $G \mid X$ the subgraph of G induced on X. The line graph $L(G)$ of a graph G is the graph whose vertex set is $E(G)$ in which two members of $E(G)$ are adjacent if and only if they share an end in G.

We need one other class of graphs, defined as follows. Let $m, n \geq 2$ be integers, and let $\left\{a_{1}, \ldots, a_{m}\right\},\left\{b_{1}, \ldots, b_{m}\right\},\left\{c_{1}, \ldots, c_{n}\right\},\left\{d_{1}, \ldots, d_{n}\right\}$ be disjoint sets. Let G have vertex set their union, and edges as follows:

- a_{i} is adjacent to b_{i} for $1 \leq i \leq m$, and c_{j} is non-adjacent to d_{j} for $1 \leq j \leq n$
- there are no edges between $\left\{a_{i}, b_{i}\right\}$ and $\left\{a_{i^{\prime}}, b_{i^{\prime}}\right\}$ for $1 \leq i<i^{\prime} \leq m$, and all four edges between $\left\{c_{j}, d_{j}\right\}$ and $\left\{c_{j^{\prime}}, d_{j^{\prime}}\right\}$ for $1 \leq j<j^{\prime} \leq n$
- there are exactly two edges between $\left\{a_{i}, b_{i}\right\}$ and $\left\{c_{j}, d_{j}\right\}$ for $1 \leq i \leq m$ and $1 \leq j \leq n$, and these two edges are disjoint.

We call such a graph G a double split graph. Let us say a graph G is basic if either G or \bar{G} is bipartite or is the line graph of a bipartite graph, or G is a double split graph. (Note that if G is a double split graph then so is \bar{G}.) It is easy to see that all basic graphs are perfect.

A path in G is an induced subgraph of G which is non-null, connected, acyclic, and in which every vertex has degree ≤ 2, and an antipath is an induced subgraph whose complement is a path. (Please note that this is different from the standard definition of a path in a graph, because of the requirement to be induced.) The length of a path is the number of edges in it (and the length of an antipath is the number of edges in its complement.) We therefore recognize paths and antipaths of length 0 . A path is said to be odd if it has odd length, and even otherwise. If P is a path, P^{*} denotes the set of internal vertices of P, called the interior of P; and similarly for antipaths.

Now we turn to the various kinds of decomposition needed in [2]. First, a decomposition essentially due to Cornuéjols and Cunningham [7], a proper 2-join in G is a partition (X_{1}, X_{2}) of $V(G)$ so that there exist disjoint nonempty $A_{i}, B_{i} \subseteq X_{i}(i=1,2)$ satisfying:

- every vertex of A_{1} is adjacent to every vertex of A_{2}, and every vertex of B_{1} is adjacent to every vertex of B_{2},
- there are no other edges between X_{1} and X_{2},
- for $i=1,2$, every component of $G \mid X_{i}$ meets both A_{i} and B_{i}, and
- for $i=1,2$, if $\left|A_{i}\right|=\left|B_{i}\right|=1$ and $G \mid X_{i}$ is an induced path joining the members of A_{i} and B_{i}, then it has odd length ≥ 3.

If $X, Y \subseteq V(G)$ are disjoint, we say X is complete to Y (or the pair (X, Y) is complete) if every vertex in X is adjacent to every vertex in Y; and we say X is anticomplete to Y if there are no edges between X and Y. The second decomposition used in [2] is a very slight variant of the "homogeneous sets" due to Chvátal and Sbihi [5] - a proper homogeneous pair is a pair of disjoint nonempty subsets (A, B) of $V(G)$, such that if A_{1}, A_{2} denote respectively the sets of all A-complete and A-anticomplete vertices and B_{1}, B_{2} are defined similarly, then:

- $A_{1} \cup A_{2}=B_{1} \cup B_{2}=V(G) \backslash(A \cup B)$ (and in particular every vertex in A has a neighbor and a non-neighbor in B and vice versa)
- the four sets $A_{1} \cap B_{1}, A_{1} \cap B_{2}, A_{2} \cap B_{1}, A_{2} \cap B_{2}$ are all nonempty.

Let A, B be disjoint subsets of $V(G)$. We say the pair (A, B) is balanced if there is no odd path between non-adjacent vertices in B with interior in A, and there is no odd antipath between adjacent vertices in A with interior in B. A set $X \subseteq V(G)$ is connected if $G \mid X$ is connected (so \emptyset is connected); and anticonnected if $\bar{G} \mid X$ is connected.

The third kind of decomposition in [2] is due to Chvátal [4] - a skew-partition in G is a partition (A, B) of $V(G)$ so that A is not connected and B is not anticonnected. Skew-partitions pose a
difficulty that the other two decompositions do not, for it had not been shown before [2] that a minimal counterexample to the strong perfect graph conjecture cannot admit a skew-partition. In [2] we solved this problem by confining ourselves to balanced skew-partitions, which do not present this difficulty. In fact, we proved the following:
1.1 For every Berge graph G, either G is basic, or one of G, \bar{G} admits a proper 2-join, or G admits a proper homogeneous pair, or G admits a balanced skew-partition.

Our main result here, a structure theorem for Berge trigraphs, is similar to 1.1 - we prove that every Berge trigraph either belongs to one of a few basic classes or has a decomposition. As a corollary we can prove a strengthening of the structure theorem for Berge graphs, the following:
1.2 For every Berge graph G, either G is basic, or one of G, \bar{G} admits a proper 2-join or G admits a balanced skew-partition.
(Thus the proper homogeneous pair decomposition can be avoided.)

2 Trigraphs

A trigraph T is a 4-tuple $(V(T), E(T), S(T), N(T))$ where V is the vertex set of T and every unordered pair of vertices belongs to one of the three disjoint sets: the strong edges $E(T)$, the strong non-edges $N(T)$ and the switchable pairs $S(T)$. In this notation a graph can be viewed as a trigraph with $S(T)=\emptyset$.

A subtrigraph T^{\prime} of T is a trigraph with $V\left(T^{\prime}\right) \subseteq V(T)$, and for two vertices $v_{1}, v_{2} \in V\left(T^{\prime}\right)$, the pair $v_{1} v_{2}$ belongs to $E\left(T^{\prime}\right), S\left(T^{\prime}\right)$ or $N\left(T^{\prime}\right)$ if it belongs to $E(T), S(T)$ or $N(T)$ respectively. For $X \subseteq V(T)$ we denote by $T \mid X$ the subtrigraph of T with vertex set X.

A realization of a trigraph T is a graph G on the same vertex set as T such that $E(G)=S^{\prime} \cup E$ for some subset S^{\prime} of $S(T)$. Let us denote by $G_{S^{\prime}}{ }^{T}$ the realization of T with the edge set $E \cup S^{\prime}$. Sometimes we will describe a realization of T as an assignment of values to switchable pairs of T. In $G_{S^{\prime}}{ }^{T}$ the switchable pairs in S^{\prime} are assigned the value "edge", and those in $S(T) \backslash S^{\prime}$ - the value "non-edge". The realization with edge set $E \cup S(T)$ is called the full realization of T.

We say that two vertices u, v of a trigraph T are weakly adjacent if $u v \in E \cup S$, weakly non-adjacent if $u v \in N \cup S$, strongly adjacent if $u v \in E$, strongly non-adjacent if $u v \in N$. (So if u and v are both weakly adjacent and weakly non-adjacent then $u v$ is a switchable pair.) We say u is a weak (strong) neighbor of v if u is weakly (strongly) adjacent to v. We say u is a weak (strong) non-neighbor of v if u is weakly (strongly) non-adjacent to v. A subset X of $V(T)$ is weakly (strongly) stable if every two members of X are weakly (strongly) non-adjacent, and it is a weak (strong) clique if every two members of it are weakly (strongly) adjacent. If $X, Y \subseteq V(T)$ are disjoint, we say X is weakly (strongly) complete to Y (or the pair (X, Y) is weakly (strongly) complete, X is weakly (strongly) Y-complete) if every vertex in X is weakly (strongly) adjacent to every vertex in Y; and we say X is weakly (strongly) anticomplete to Y (X is weakly (strongly) Y-anticomplete) if every vertex in X is weakly (strongly) non-adjacent to every vertex in Y. If G is a realization of T we say that X is (G, Y)-complete if X is Y-complete in G.

The complement \bar{T} of a trigraph T is a trigraph on the same vertex set as T such that $E(\bar{T})=$ $N(T), N(\bar{T})=E(T), S(\bar{T})=S(T)$. (This definition generalizes the complement of a graph.)

We say that a trigraph T is Berge if every realization of T is a Berge graph. Since a graph is Berge if and only if its complement is, and the complement of every realization of T is a realization of \bar{T}, a trigraph is Berge if and only if its complement is. A trigraph is called monogamous if every vertex of it belongs to at most one switchable pair.

A trigraph is weakly connected if its full realization is a connected graph. A component of T is a connected component of the full realization of T. A subset X of the vertex set of T is said to be weakly connected if the trigraph $T \mid X$ is weakly connected. A trigraph is weakly anticonnected if its complement is weakly connected, and an anticomponent of T is a weakly connected component of \bar{T}. A subset X of the vertex set of T is said to be weakly anticonnected if the trigraph $T \mid X$ is weakly anticonnected. A component (anticomponent) of a set $X \subseteq V(T)$ is a maximal weakly connected (anticonnected) subset of X.

A path or hole in T is a realization of a subtrigraph of T which is a path or a hole. Two vertices of a path or a hole of T are called consecutive, if they are adjacent in the path or the hole, respectively. An antipath or an antihole in T is a path or hole in \bar{T}. Thus a trigraph is Berge if and only if it contains no odd hole or antihole.
2.1 Let T be a Berge trigraph and let uv be a switchable pair in T. Then every even path between u and v has length 2.

Proof. If P is an even path of length >2 between u and v then $u-P-v-u$ is an odd hole in T, a contradiction. This proves 2.1.

A trigraph T is bipartite if its vertex set can be partitioned into two strongly stable sets. Every realization of a bipartite trigraph is a bipartite graph, and hence every bipartite trigraph is Berge, and so is the complement of a bipartite trigraph.

A trigraph T is a line trigraph if the full realization of T is the line graph of a bipartite graph with at least three vertices of degree at least three, and in addition, every weak clique of size at least 3 in T is a strong clique. The following is an easy fact about line trigraphs:

2.2 Every line trigraph is Berge.

Proof. Let T be a line trigraph, and let $S=S(T)$. We need to prove that for every subset S^{\prime} of S the graph $G_{S^{\prime}}{ }^{T}$ is Berge. The proof is by induction on $\left|S \backslash S^{\prime}\right|$. The base case holds since $G_{S}{ }^{T}$ is the line graph of a bipartite graph. For the inductive step it is enough to prove that if $G_{S^{\prime}}{ }^{T}$ is Berge then $G_{S^{\prime} \backslash e}{ }^{T}$ is Berge for every $e \in S^{\prime}$. Let e be the pair u, v. Suppose $G_{S^{\prime} \backslash e}{ }^{T}$ contains an odd hole H. Since $G_{S^{\prime}}^{T}$ is Berge, both u and v belong to H. But that means that in $G_{S^{\prime} \backslash e}^{T}$ there exist an even path between u and v. Since $G_{S^{\prime}}{ }^{T}$ is Berge, this path has length 2 and T contains a weak clique of size 3 which is not strong, a contradiction. Now assume that $G_{S^{\prime} \backslash e}{ }^{T}$ contains an odd antihole A. Since $G_{S^{\prime}}{ }^{T}$ is Berge, both u and v belong to A. But then there exists a vertex of T weakly adjacent to both u and v, contrary to the fact that every clique of size at least 3 in T is strong. This proves 2.2

Let us now define the trigraph analogue of the double split graph, namely the double split trigraph.
Let $m, n \geq 2$ be integers, and let $\left\{a_{1}, \ldots, a_{m}\right\},\left\{b_{1}, \ldots, b_{m}\right\},\left\{c_{1}, \ldots, c_{n}\right\},\left\{d_{1}, \ldots, d_{n}\right\}$ be disjoint sets. Let T have vertex set their union, and

- a_{i} is weakly adjacent to b_{i} for $1 \leq i \leq m$, and c_{j} is weakly non-adjacent to d_{j} for $1 \leq j \leq n$
- $\left\{a_{i}, b_{i}\right\}$ is strongly anticomplete to $\left\{a_{i^{\prime}}, b_{i^{\prime}}\right\}$ for $1 \leq i<i^{\prime} \leq m$, and the $\left\{c_{j}, d_{j}\right\}$ is strongly complete to $\left\{c_{j^{\prime}}, d_{j^{\prime}}\right\}$ for $1 \leq j<j^{\prime} \leq n$
- there are exactly two strong edges and exactly two strong non-edges between $\left\{a_{i}, b_{i}\right\}$ and $\left\{c_{j}, d_{j}\right\}$ for $1 \leq i \leq m$ and $1 \leq j \leq n$, and the two strong edges are disjoint.

We now show that

2.3 Every double split trigraph is Berge.

Proof. It is again enough to prove that for every $S^{\prime} \subseteq S(T)$, the graph $G_{S^{\prime}}{ }^{T}$ is Berge. Let S_{1} be the set of all switchable pairs a_{i}, b_{i} with $1 \leq i \leq m$, and let S_{2} be the set of all switchable pairs c_{j}, d_{j} with $1 \leq j \leq n$. Hence $S(T) T=S_{1} \cup S_{2}$. The proof is by induction on $\left|S_{1} \backslash S^{\prime}\right|+\left|S_{2} \cap S^{\prime}\right|$ (the number of switchable pairs whose value in the realization $G_{S^{\prime}}{ }^{T}$ is different from their value in the "natural" realization of T which is a double split graph.) The base case holds since $G_{S_{1}}{ }^{T}$ is a double split graph.

By passing to the complement, if necessary, it is enough to show that if $G_{S^{\prime}}{ }^{T}$ is Berge then $G_{S^{\prime} \backslash e}{ }^{T}$ is Berge for every e in $S^{\prime} \cap S_{1}$. Let the e be a_{1}, b_{1}. Since $G_{S^{\prime}}{ }^{T}$ is Berge, if $G_{S^{\prime} \backslash e}{ }^{T}$ contains an odd hole or an odd antihole, then both a_{1} and b_{1} belong to it.

Assume first that $G_{S^{\prime} \backslash e^{T}}$ contains an odd hole. Then $G_{S^{\prime} \backslash e}{ }^{T}$ contains an even path between a_{1} and b_{1}. Since $G_{S^{\prime}} T$ is Berge, this path has length 2. But then T contains a vertex weakly adjacent to both a_{1} and b_{1}, a contradiction.

Now assume that $G_{S^{\prime} \backslash e^{T}}$ contains an odd antihole. But then again T contains a vertex weakly adjacent to both a_{1} and b_{1}, a contradiction. This proves 2.3.

In order to state the trigraph analogue of 1.1 we also need to define three sporadic Berge trigraphs Spor $_{1}$, Spor $_{2}$, Spor $_{3}$:

- $V\left(\right.$ Spor $\left._{1}\right)=\left\{x_{1}, x_{2}, x_{3}\right\}$
$E\left(\right.$ Spor $\left._{1}\right)=N\left(\right.$ Spor $\left._{1}\right)=\emptyset$
and $S\left(\right.$ Spor $\left._{1}\right)=\left\{x_{i} x_{j} \quad: \quad 1 \leq i<j \leq 3\right\}$
- $V\left(\right.$ Spor $\left._{2}\right)=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$
$E\left(\right.$ Spor $\left._{2}\right)=\left\{x_{2} x_{4}\right\}$
$N\left(\right.$ Spor $\left._{2}\right)=\left\{x_{3} x_{4}\right\}$
and $S\left(\right.$ Spor $\left._{2}\right)=\left\{x_{i} x_{j} \quad: \quad 1 \leq i<j \leq 3\right\} \cup\left\{x_{1} x_{4}\right\}$
- $V\left(\right.$ Spor $\left._{3}\right)=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$
$E\left(\right.$ Spor $\left._{3}\right)=\left\{x_{1} x_{4}, x_{2} x_{5}\right\}$
$N\left(\right.$ Spor $\left._{3}\right)=\left\{x_{4} x_{5}, x_{3} x_{4}, x_{3} x_{5}\right\}$
and $S\left(\right.$ Spor $\left._{3}\right)=\left\{x_{i} x_{j} \quad: \quad 1 \leq i<j \leq 3\right\} \cup\left\{x_{2} x_{4}, x_{1} x_{5}\right\}$.
Now we describe the decompositions that we need. First, a proper 2-join in T is a partition $\left(X_{1}, X_{2}\right)$ of $V(T)$ so that there exist disjoint nonempty $A_{i}, B_{i} \subseteq X_{i}(i=1,2)$ satisfying:
- no switchable pair meets both X_{1} and X_{2},
- every vertex of A_{1} is strongly adjacent to every vertex of A_{2}, and every vertex of B_{1} is strongly adjacent to every vertex of B_{2},
- there are no other strong edges between X_{1} and X_{2}, and
- for $i=1,2$, every component of $T \mid X_{i}$ meets both A_{i} and B_{i},
- for $i=1,2\left|X_{i}\right| \geq 3$, and
- for $i=1,2$, if $\left|A_{i}\right|=\left|B_{i}\right|=1$, then the full realization of $T \mid X_{i}$ is not an even path joining the members of A_{i} and B_{i}.

Our second decomposition is a "proper homogeneous pair" in T. A proper homogeneous pair is a pair of disjoint nonempty subsets (A, B) of $V(T)$, such that if A_{1}, A_{2} denote respectively the sets of all strongly A-complete and strongly A-anticomplete vertices and B_{1}, B_{2} are defined similarly, then:

- $|A|>1$ and $|B|>1$,
- $A_{1} \cup A_{2}=B_{1} \cup B_{2}=V(G) \backslash(A \cup B)$ (and in particular every vertex in A has a weak neighbor and a weak non-neighbor in B and vice versa), and
- the four sets $A_{1} \cap B_{1}, A_{1} \cap B_{2}, A_{2} \cap B_{1}, A_{2} \cap B_{2}$ are all nonempty.

Let A, B be disjoint subsets of $V(T)$. We say the pair (A, B) is balanced if there is no odd path of length greater than 1 with ends in B and interior in A, and there is no odd antipath of length greater than 1 with ends in A and interior in B. A skew-partition is a partition (A, B) of $V(T)$ so that A is not weakly connected and B is not weakly anticonnected. The third kind of decomposition we use is a balanced skew-partition.

The three decompositions we just described generalize the decompositions that we used in [2], and in addition all the "important" edges and non-edges in those graph decompositions are required to be strong edges and strong non-edges of the trigraph, respectively.

We now describe two more kinds of decompositions, that have no analogue in the graph case. We remark that these decompositions are not needed when the trigraph in question is monogamous, which is the case we focus on in this paper, but we need them to state the full theorem.

The first one is a " 1 -separation". We say that a trigraph T admits a 1 -separation if there is a vertex v in T such that the trigraph $T \mid(V(T) \backslash v)$ is not weakly connected. It is easy to see that if T_{1} and T_{2} are two Berge trigraphs and T is obtained from T_{1} and T_{2} by identifying a vertex $v_{1} \in V\left(T_{1}\right)$ with a vertex $v_{2} \in V\left(T_{2}\right)$, then T is Berge.

The second one is the homogeneous set decomposition. We say that T admits a homogeneous set decomposition (U, V_{E}, V_{S}, V_{N}) if U, V_{E}, V_{S}, V_{N} partition the vertex set of T and

- $|U|>1$
- for every $u \in U$ and $v \in V(T) \backslash U$ the pair $u v$ is a strong edge if $v \in V_{E}$, a strong non-edge if $v \in V_{N}$ and a switchable pair if $v \in V_{S}$
- either $\left|V_{S}\right| \leq 1$ and no realization of $T \mid U$ contains a path of length 3 or $V_{S}=\{a, b\}, a$ is strongly complete to V_{E} and U is a strongly stable set.

We say that a trigraph T is obtained from the trigraph T_{1} by substituting the trigraph T_{2} for a vertex v of T_{1}, if T is obtained from T_{1} by replacing v by a copy of T_{2}, and making all vertices of T_{2} strongly and weakly adjacent (non-adjacent) to the strong and weak neighbors (non-neighbors) of v in T_{1}, respectively.

The homogeneous set decomposition preserves Bergeness in trigraphs in the following two senses:
2.4 Let T_{1} be a Berge trigraph and let v be a vertex of T that belongs to at most one switchable pair. Let T_{2} be a Berge trigraph no realization of which contains a path of length 3. Then the trigraph obtained from T_{1} by substituting T_{2} for v is Berge.
2.5 Let T_{1} be a Berge trigraph and let v be a vertex of T that belongs to exactly 2 switchable pairs, say va and vb, and assume that a is strongly adjacent to every strong neighbor of v. Let T_{2} be a Berge trigraph with $E\left(T_{2}\right)=S\left(T_{2}\right)=\emptyset$. Then the trigraph obtained from T_{1} by substituting T_{2} for v is Berge.

Proof of 2.4. Suppose T is not Berge. Then there exists a realization of T that contains an odd hole or an odd antihole. Since \bar{T} can be obtained from $\overline{T_{1}}$ by substituting $\overline{T_{2}}$ for v, and no realization of $\overline{T_{2}}$ contains a path of length 3 , passing to the complement if necessary we may assume that T contains an odd hole H.

Since T_{1} is Berge, at least two vertices of H belong to $V\left(T_{2}\right)$. Let V_{E} be the set of strong neighbors of v in T_{1}, let V_{N} be the set of strong non-neighbors of v in T_{1}, and let $V_{S}=V\left(T_{1}\right) \backslash\left(\{v\} \cup V_{E} \cup V_{N}\right)$. By the hypothesis of the theorem, $\left|V_{S}\right| \leq 1$.

Since no realization of T_{2} contains a path of length $3,\left|V(H) \backslash V\left(T_{2}\right)\right| \geq 2$, moreover, at least two vertices of $V(H) \backslash V\left(T_{2}\right)$ have both a neighbor and a non-neighbor in $V(H) \cap T_{2}$, consequently they both belong to V_{S}, a contradiction. This proves 2.4.

Proof of 2.5. Suppose T is not Berge. Then there exists a realization of T that contains an odd hole or an odd antihole. Since T_{1} is Berge, at least two vertices of the odd hole or the odd antihole belong to $V\left(T_{2}\right)$. Let V_{E} be the set of strong neighbors of v in T_{1}, let V_{N} be the set of strong non-neighbors of v in T_{1}, and let $V_{S}=V\left(T_{1}\right) \backslash\left(\{v\} \cup V_{E} \cup V_{N}\right)$. (By the hypothesis of the theorem $V_{S}=\{a, b\}$ and a is strongly complete to V_{E}.)

Assume first that T contains an odd hole H. Since $\left|V(H) \cap V\left(T_{2}\right)\right| \geq 2$, there are three vertices in $V(H) \backslash V\left(T_{2}\right)$ with neighbors in $V(H) \cap V\left(T_{2}\right)$ in H. Since $|V(H)|>4$, at most one vertex of H is in V_{E} and so H uses both a, b and $\left|V(H) \cap V_{E}\right|=1$. But since a is strongly complete to V_{E}, H does not use a, a contradiction.

Now assume that T contains an odd antihole A. Since A contains no stable set of size 3 , exactly two vertices of A belong to $V\left(T_{2}\right)$, and they are consecutive in the antihole. Let the vertices of A be $\left\{a_{1}, a_{2}, . ., a_{k}\right\}$ in order such that a_{1} and a_{2} are in $V\left(T_{2}\right)$. Then $\left\{a_{3}, a_{k}\right\}=\{a, b\}$ (for each of the vertices a_{3}, a_{k} is adjacent to exactly one of a_{1}, a_{2} in A.) Without loss of generality we may assume that $a_{3}=a$. The vertex a_{4} is adjacent to both a_{1} and a_{2} in A, and is different from b, since $k \geq 5$. Hence a_{4} belongs to V_{E}. On the other hand a_{4} is non-adjacent to a_{3} in A, contrary to the fact that a is strongly complete to V_{E}. This proves 2.5.

We are now ready to state the decomposition theorem for Berge trigraphs.
2.6 Let T be a Berge trigraph. Then either

- T or \bar{T} is either bipartite, or a line trigraph, or a double split trigraph, or
- T or \bar{T} is one of the three sporadic trigraphs Spor $_{1}$, Spor $_{2}$, Spor $_{3}$, or
- T or \bar{T} admits either a proper 2-join, or a balanced skew-partition, or a proper homogeneous pair, or
- T or \bar{T} admits either a homogeneous set decomposition or a 1-separation.

A full proof of 2.6 can be found in [3].

3 The application-graph decomposition

In this section we show how 2.6 can be used to obtain structural results for Berge graphs, namely we will use 2.6 to prove 1.2. In fact, to prove 1.2 it is enough to consider the class of monogamous Berge trigraphs. We say a trigraph T is basic if T is monogamous and one of T, \bar{T} is a bipartite trigraph, a line trigraph or a double split trigraph. In this case we get a simpler decomposition theorem, the following:

3.1 Let T be a monogamous Berge trigraph. Then either

- T is basic or
- T or \bar{T} admits a proper 2-join, or
- T admits a balanced skew-partition.

Clearly 3.1 implies 1.2 for, as we have already said before, a graph can be viewed as a special case of a trigraph with an empty set of switchable pairs, and in particular a monogamous trigraph.

As we shall see in this section, in order to prove 3.1 it is enough to prove the following

3.2 Let T be a monogamous Berge trigraph. Then either

- T is basic or
- T or \bar{T} admits a proper 2-join, or
- T admits a balanced skew-partition, or
- T admits a proper homogeneous pair.

In the remainder of this section we prove 3.1 assuming 3.2. The full proof of 3.2 is in [3]. In fact, it follows from probing closer into the proof of 2.6 . In sections $4-8$ of this paper we will present the aspects of the proof of 3.2 that differ significantly from the proof of 1.1.

Proof of 3.1. Suppose the theorem is false and consider a counterexample T with $|V(T)|$ minimum. By 3.2 that means that T admits a proper homogeneous pair decomposition and satisfies none of the outcomes of 3.1. Let (A, B) be a proper homogeneous pair in T, let A_{1}, A_{2} respectively be the sets of all strongly A-complete and strongly A-anticomplete vertices in T and let B_{1}, B_{2} be defined similarly. Let $C=A_{1} \cap B_{2}, D=A_{2} \cap B_{1}, E=A_{2} \cap B_{2}$ and $F=A_{1} \cap B_{1}$. Let us define a new trigraph T^{\prime} with $V\left(T^{\prime}\right)=C \cup D \cup E \cup F \cup\{a, b\}$ where $a, b \notin V(T)$ such that

- $T^{\prime}|(C \cup D \cup E \cup F)=T|(C \cup D \cup E \cup F)$
- $a b$ is a switchable pair
- for a vertex u in $C \cup D \cup E \cup F, u a$ is a strong edge or a strong non-edge in T^{\prime} if u is strongly complete or strongly anticomplete to A in T, respectively
- for a vertex u in $C \cup D \cup E \cup F, u b$ is a strong edge or a strong non-edge in T^{\prime} if u is strongly complete or strongly anticomplete to B in T, respectively.

Since $T^{\prime}|(C \cup D \cup E \cup F)=T|(C \cup D \cup E \cup F)$ and the only switchable pair containing a or b is $a b, T^{\prime}$ is monogamous.

We claim that T^{\prime} is Berge. Suppose T^{\prime} contains an odd hole or an odd antihole H. Since T is Berge, H is not a realization of a subtrigraph of T, so $V(H) \cap\{a, b\} \neq \emptyset$. If $a \in V(H)$ and $b \notin V(H)$ then for any vertex $a^{\prime} \in A$ the trigraph $T \mid\left((V(H) \backslash\{a\}) \cup\left\{a^{\prime}\right\}\right)$ has a realization as an odd hole or antihole, a contradiction. So both a and b are in H. Choose $a^{\prime} \in A$ and $b^{\prime} \in B$, weakly adjacent if a is adjacent to b in H, and weakly non-adjacent otherwise. Now the trigraph $T \mid\left((V(H) \backslash\{a, b\}) \cup\left\{a^{\prime}, b^{\prime}\right\}\right)$ has a realization as an odd hole or antihole in T, a contradiction.

From the definition of a proper homogeneous pair, A and B contain at least two vertices each, so $\left|V\left(T^{\prime}\right)\right|<|V(T)|$. By the minimality of T, the assertion of the theorem holds for the trigraph T^{\prime}, namely either T^{\prime} is basic or T^{\prime} admits a balanced skew-partition or one of T^{\prime} or $\overline{T^{\prime}}$ admits a proper 2-join. We show that in fact T^{\prime} cannot be basic and every decomposition of T^{\prime} extends to a decomposition of the same type in T, thus obtaining a contradiction to the assumption that T is a counterexample to the theorem.

The proof now breaks into cases according to the type of behavior of T^{\prime}. We can cut down the number of cases by noticing that if T is a minimum size counterexample to the theorem, then so is \bar{T} and the graph $(\bar{T})^{\prime}$ obtained from \bar{T} by the procedure described above is just $\overline{T^{\prime}}$. So we may assume that T^{\prime} is either bipartite, or a line trigraph, or a double split trigraph, or admits a balanced skew-partition, or a proper 2-join.

Case $1 T^{\prime}$ is a bipartite trigraph.
This case is impossible, for $\{a, b, f\}$ is a weak clique of size 3 for any vertex $f \in F$.
Case $2 T^{\prime}$ is a line trigraph.
This case is impossible since $\{a, b, f\}$ is a weak clique that is not a strong clique for every vertex $f \in F$.

Case $3 T^{\prime}$ is a double split trigraph.
Then $V\left(T^{\prime}\right)=\left\{a_{1}, \ldots, a_{m}\right\} \cup\left\{b_{1}, \ldots, b_{m}\right\} \cup\left\{c_{1}, \ldots, c_{n}\right\} \cup\left\{d_{1}, \ldots, d_{n}\right\}$ for some integers $m, n \geq 2$, and the only possible switchable pairs in T are those of the form $a_{i} b_{i}$ for $1 \leq i \leq m$ and $c_{j} d_{j}$ for $1 \leq j \leq n$. So no switchable pair is contained in both a weak clique and a weak stable set of size 3 . But in $T^{\prime},\{a, b, f\}$ is a weak triangle for every vertex $f \in F$ and $\{a, b, e\}$ is a weak stable set of size 3 for every vertex $e \in E$, a contradiction. This finishes Case 3 .

Case $4 T^{\prime}$ admits a balanced skew-partition.
That means that $V\left(T^{\prime}\right)$ can be partitioned into two sets M and N, such that M is not weakly connected and N is not weakly anticonnected. Let

$$
M^{\prime}=\left\{\begin{array}{cccc}
M & \text { if } & a \notin M & b \notin M \\
M \backslash\{a\} \cup A & \text { if } & a \in M, & b \notin M \\
M \backslash\{b\} \cup B & \text { if } & a \notin M, & b \in M \\
M \backslash\{a, b\} \cup A \cup B & \text { if } & a \in M, & b \in M
\end{array}\right.
$$

Let N^{\prime} be defined similarly. Since a, b is a switchable pair, the vertices a and b either belong to the same component of M or to the same anticomponent of N or one of them is in M and the other one is in N. Consequently $\left(M^{\prime}, N^{\prime}\right)$ is a skew-partition of T.

We now show that this skew-partition is balanced. Assume it is not. By passing to the complement if necessary we may assume that there exists a path $p_{1} \cdots \cdots-p_{k}$ of odd length at least 3 , with ends in N^{\prime} and interior in M^{\prime}. Let P be this path. Since P is not a realization of a subtrigraph of T^{\prime}, either $|V(P) \cap A| \geq 2$ or $|V(P) \cap B| \geq 2$. Let s, t be minimum and maximum such that $1 \leq s<t \leq k$ and $\left\{p_{s}, p_{t}\right\}$ is a subset of one of A, B, say B.

Since either $B \subseteq M^{\prime}$ or $B \subseteq N^{\prime}$, and the ends of P are in N^{\prime} and the interior is in M^{\prime}, it follows that either p_{s}, p_{t} are both ends of P and $P^{*} \cap B=\emptyset$, or they both belong to P^{*}. In the first case define $a_{1}=p_{2}$ and $a_{2}=p_{k-1}$. In the second case define $a_{1}=p_{s-1}$ and $a_{2}=p_{t+1}$. Since P is a path of length at least three, in both cases a_{1}, a_{2} are distinct and do not belong to B.

In both cases a_{1} is adjacent in P to p_{s} and not p_{t}, and a_{2} is adjacent in P to p_{t} and not p_{s}. Since every vertex in $V(T) \backslash(A \cup B)$ is either strongly complete to B or strongly anticomplete to B, both a_{1} and a_{2} belong to A. So from the choice of s, t we deduce that $s=1, t=k$. Hence p_{2}, p_{k-1} belong to A and $P^{*} \cap B=\emptyset$. Since $p_{1}-P-p_{k}-d-p_{1}$ is not an odd hole for $d \in D$, it follows that P^{*} is not contained in A.

Let $2 \leq i \leq k$ be minimum such that p_{i} does not belong to A. Then $i>2$. Since p_{i} is adjacent to p_{i-1} (which is in A) and not to p_{1} (which is in B), p_{i} belongs to C. So p_{i} is complete in P to $\left\{p_{2}, p_{k-1}\right\}$ and since P is a path $i=3$ and $k=5$, contrary to the fact that P has odd length. This proves that the skew-partition $\left(N^{\prime}, M^{\prime}\right)$ is balanced and finishes Case 4.

Case $5 T^{\prime}$ admits a proper 2-join.
Let (X_{1}, X_{2}) be a proper 2-join in T. Since $a b$ is a switchable pair, either both a and b belong to X_{1}, or they both belong to X_{2}. Without loss of generality we may assume that both a and b are in X_{1}. But then, since every vertex in A has a weak neighbor in B and vice versa, it follows that $\left(\left(X_{1} \backslash\{a, b\}\right) \cup A \cup B, X_{2}\right)$ is a proper 2-join in T, a contradiction. This finishes Case 5 and completes the proof of 3.1.

4 Overview of the proof of 3.2

In this section we sketch the outline of the proof of 3.2 . Similarly to [2] the idea of the proof is, given a trigraph T, to find small subtrigraphs F of it that would force T either to be basic or to admit a decomposition. The proof breaks into steps each of which is characterized by the subtrigraph F
that is considered at that step. Clearly, having proved that a certain subtrigraph F_{1}, if present in a Berge trigraph, forces it to either belong to a basic class or have a decomposition, we can from then on assume that all trigraphs in question do not contain F_{1}.

Many of the trigraphs F we use here correspond to the subgraphs considered in [2]- such as a trigraph that has a realization that is the line graph of a "substantial" bipartite graph, or as an "odd prism" (precise definitions that are important for us in this paper will be given later; for others we refer the reader to [2] or [3]). However, later in the proof, finding the right generalization of the subgraph used in [2] becomes more difficult, and sometimes we will need to deviate from the route of [2]. (Further complications arise if the trigraph in question is not monogamous (see [3]), but they are outside of the scope of this paper.)

Let $\mathcal{T}_{1}, \ldots, \mathcal{T}_{13}$ be the following classes of monogamous Berge trigraphs:

- \mathcal{T}_{1} is the class of all Berge trigraphs in which every appearance of K_{4} is degenerate
- \mathcal{T}_{2} is the class of all trigraphs T such that $T, \bar{T} \in \mathcal{T}_{1}$ and no subtrigraph of T has a realization isomorphic to $L\left(K_{3,3}\right)$.
- \mathcal{T}_{3} is the class of all Berge trigraphs T so that for every bipartite subdivision H of K_{4}, no subtrigraph of T or of \bar{T} has a realization isomorphic to the line graph of H
- \mathcal{T}_{4} is the class of all $T \in \mathcal{T}_{3}$ so that no subtrigraph of T is an even prism
- \mathcal{T}_{5} is the class of all $T \in \mathcal{T}_{3}$ so that no subtrigraph of T or of \bar{T} is a long prism
- \mathcal{T}_{6} is the class of all $T \in \mathcal{T}_{5}$ such that no subtrigraph of T is isomorphic to a double diamond
- \mathcal{T}_{7} is the class of all $T \in \mathcal{T}_{6}$ so that T and \bar{T} do not contain odd wheels
- \mathcal{T}_{8} is the class of all $T \in \mathcal{T}_{7}$ so that T and \bar{T} do not contain pseudowheels
- \mathcal{T}_{9} is the class of all $T \in \mathcal{T}_{8}$ such that T and \bar{T} do not contain wheels
- \mathcal{T}_{10} is the class of all $T \in \mathcal{T}_{9}$ such that, for every hole C in T of length ≥ 6 with an origin, no vertex of T is weakly adjacent to the origin and both of its weak neighbors in C, and the same holds in \bar{T}
- \mathcal{T}_{11} is the class of all $T \in \mathcal{T}_{10}$ such that, for every hole C in T of length ≥ 6, no vertex of T has three consecutive weak neighbors in C, and the same holds in \bar{T}
- \mathcal{T}_{12} is the class of all $T \in \mathcal{T}_{11}$ such that every antihole in T has length 4
- \mathcal{T}_{13} is the class of all $T \in \mathcal{T}_{12}$ such that T contains no strong clique of size three.

The following are the main steps of the proof of 3.2

1. For every Berge trigraph T, either T is a line trigraph or T admits a proper 2 -join or a balanced skew-partition, or $T \in \mathcal{T}_{1}$.
2. For every T with $T, \bar{T} \in \mathcal{T}_{1}$, either T or \bar{T} is a line trigraph or one of T, \bar{T} admits a proper 2-join, or T admits a balanced skew-partition, or $T \in \mathcal{T}_{2}$.
3. For every $T \in \mathcal{T}_{2}$, either T is a double split trigraph, or one of T, \bar{T} admits a proper 2-join, or T admits a balanced skew-partition, or $T \in \mathcal{T}_{3}$.
4. For every $T \in \mathcal{T}_{1}$, either T is an even prism with exactly 9 vertices, or T admits a proper 2 -join or a balanced skew-partition, or $T \in \mathcal{T}_{4}$.
5. For every T such that $T \in \mathcal{T}_{4}$ and $\bar{T} \in \mathcal{T}_{4}$, either one of T, \bar{T} admits a proper 2-join, or T admits a proper homogeneous pair, or T admits a balanced skew-partition, or $T \in \mathcal{T}_{5}$.
6. For every $T \in \mathcal{T}_{5}$, either one of T, \bar{T} admits a proper 2-join, or T admits a balanced skewpartition, or $T \in \mathcal{T}_{6}$.
7. For every $T \in \mathcal{T}_{6}$, either T admits a balanced skew-partition, or $T \in \mathcal{T}_{7}$.
8. For every $T \in \mathcal{T}_{7}$, either T admits a balanced skew-partition, or $T \in \mathcal{T}_{8}$.
9. For every $T \in \mathcal{T}_{8}$, either T admits a balanced skew-partition, or $T \in \mathcal{T}_{9}$.
10. For every $T \in \mathcal{T}_{9}$, either T admits a balanced skew-partition, or $T \in \mathcal{T}_{10}$.
11. For every $T \in \mathcal{T}_{10}$, either T admits a balanced skew-partition, or $T \in \mathcal{T}_{11}$.
12. For every $T \in \mathcal{T}_{11}$, either $T \in \mathcal{T}_{12}$ or $\bar{T} \in \mathcal{T}_{12}$.
13. For every $T \in \mathcal{T}_{12}$, either T admits a balanced skew-partition, or one of T, \bar{T} is bipartite or $T \in \mathcal{T}_{13}$.
14. For every $T \in \mathcal{T}_{13}$, either T or \bar{T} is bipartite, or T admits a balanced skew-partition.

Steps 1-8 of the proof are a rather straightforward generalization of the proof in [2], the details of which can be found in [3], and we omit them here. The rest of the proof (steps 9-14) is trickier, and does not follow the outline of [2] as closely. In the remainder of this paper we present that part of the proof, namely we prove
4.1 For every $T \in \mathcal{I}_{8}$, either T admits a balanced skew-partition or one of T, \bar{T} is bipartite.

Statements 9-14 are proved in 6.21, 7.4, 7.6, 7.8, 8.5 and 8.6, and thus 4.1 follows.
Some of the theorems in this paper are proved by applying theorems from [2] to the right realization of a trigraph. For this reason we need the classification of Berge graphs used in [2]. Let $\mathcal{F}_{1}, \ldots, \mathcal{F}_{11}$ be the classes of Berge graphs defined as follows

- \mathcal{F}_{1} is the class of all Berge graphs G such that for every bipartite subdivision H of K_{4}, every induced subgraph of G isomorphic to $L(H)$ is degenerate
- \mathcal{F}_{2} is the class of all graphs G such that $G, \bar{G} \in \mathcal{F}_{1}$ and no induced subgraph of G is isomorphic to $L\left(K_{3,3}\right)$
- \mathcal{F}_{3} is the class of all Berge graphs G so that for every bipartite subdivision H of K_{4}, no induced subgraph of G or of \bar{G} is isomorphic to $L(H)$
- \mathcal{F}_{4} is the class of all $G \in \mathcal{F}_{3}$ so that no induced subgraph of G is an even prism
- \mathcal{F}_{5} is the class of all $G \in \mathcal{F}_{3}$ so that no induced subgraph of G or of \bar{G} is a long prism
- \mathcal{F}_{6} is the class of all $G \in \mathcal{F}_{5}$ such that no induced subgraph of G is isomorphic to a double diamond
- \mathcal{F}_{7} is the class of all $G \in \mathcal{F}_{6}$ so that G and \bar{G} do not contain odd wheels
- \mathcal{F}_{8} is the class of all $G \in \mathcal{F}_{7}$ so that G and \bar{G} do not contain pseudowheels
- \mathcal{F}_{9} is the class of all $G \in \mathcal{F}_{8}$ such that G and \bar{G} do not contain wheels
- \mathcal{F}_{10} is the class of all $G \in \mathcal{F}_{9}$ such that, for every hole C in G of length ≥ 6, no vertex of G has three consecutive neighbors in C, and the same holds in \bar{G}
- \mathcal{F}_{11} is the class of all $G \in \mathcal{F}_{10}$ such that every antihole in G has length 4 .

5 Tools and some definitions

In this section we give some definitions and quote (without proofs) some lemmas from [3] that will be needed in the subsequent sections. Please note, that since a graph can be viewed as a trigraph with the set of switchable pairs empty, certain subtrigraphs defined here translate into subgraphs when used in the graph case. We start with three facts about common weak and strong neighbors of weakly anticonnected sets.

This is an easy variant of a theorem of Roussel and Rubio [8].
5.1 Let T be a Berge trigraph, let X be a weakly anticonnected subset of $V(T)$, and P be a path in $T \backslash X$ with odd length, such that that both ends of P are weakly X-complete. Assume that for no edge e of P, both of its ends are weakly X-complete and the vertices of e in P^{*} are strongly X-complete. Then every weakly X-complete vertex has a strong neighbor in $V\left(P^{*}\right)$.

A prism is a trigraph consisting of two vertex-disjoint weak triangles $\left\{a_{1}, a_{2}, a_{3}\right\},\left\{b_{1}, b_{2}, b_{3}\right\}$ and three vertex disjoint subtrigraphs R_{1}, R_{2}, R_{3}, such that for $1 \leq i \leq 3,\left\{a_{i}, b_{i}\right\} \subseteq V\left(R_{i}\right)$ and R_{i} has a realization as a path with ends a_{i}, b_{i}; and for $1 \leq i<j \leq 3$ the only possible strong edges between $V\left(R_{i}\right)$ and $V\left(R_{j}\right)$ are $a_{i} a_{j}$ and $b_{i} b_{j}$. The prism is long if $\left|V\left(R_{i}\right)\right| \geq 3$ for at least one value of i.

We remind the reader that \mathcal{T}_{5} is the class of all monogamous Berge trigraphs T, such that no subtrigraph of T or \bar{T} has a realization isomorphic to the line graph of a bipartite subdivision of K_{4}, and no subtrigraph of T or \bar{T} is a long prism.
5.2 Let $T \in \mathcal{T}_{5}$, let X be a weakly anticonnected subset of $V(T)$, and P be a path in $T \backslash X$ of odd length, such that both ends of P are weakly X-complete. Then either:

1. some edge e of P is weakly X-complete, moreover the vertices of e that belong to P^{*} are strongly X-complete or
2. P has length 3 and there is an odd antipath joining the internal vertices of P with interior in X.

The double diamond is the trigraph with eight vertices $a_{1}, \ldots, a_{4}, b_{1}, \ldots, b_{4}$ and with the following adjacencies:

- $\left\{a_{1}, a_{2}\right\}$ is weakly complete to $\left\{a_{3}, a_{4}\right\}$ and weakly anticomplete to $\left\{b_{3}, b_{4}\right\}$.
- $\left\{b_{1}, b_{2}\right\}$ is weakly complete to $\left\{b_{3}, b_{4}\right\}$ and weakly anticomplete to $\left\{a_{3}, a_{4}\right\}$.
- $a_{1}-b_{1}-b_{2}-a_{2}-a_{1}$ is a hole.
- $a_{3}-b_{4}-b_{3}-a_{4}-a_{3}$ is an antihole.
\mathcal{T}_{6} is the class of all $T \in \mathcal{T}_{5}$ such that no subtrigraph of T is isomorphic to the double diamond.
5.3 Let T be a trigraph in \mathcal{T}_{6} and let G be a realization of T. Let C be a hole in G, and let $X \subseteq V(G) \backslash V(C)$ be anticonnected in G. Let P be a path in C of length >1 so that its ends are (G, X)-complete and its internal vertices are not. Then P has even length.

The following is an easy corollary of 5.3.
5.4 Let T be a trigraph in \mathcal{T}_{6} and let G be a realization of T. Let C be a hole in G, and let $X \subseteq V(G) \backslash V(C)$ be anticonnected in G. Then either C contains an even number of (G, X)complete edges, or C contains exactly one (G, X)-complete edge and exactly two (G, X)-complete vertices.

Let us now mention two theorems from [2] that we will need. Both of them are results about graphs, and so for our purposes they will always be applied to a certain realization of a trigraph. Let C be a hole in a Berge graph G, and let $e=u v$ be an edge of it. Let u^{\prime} be the neighbor of u in $C \backslash v$, and let v^{\prime} be the neighbor of v in $C-u$. A leap for C (in G, at $u v$) is a pair of non-adjacent vertices a, b of G, so that there are exactly six edges between a, b and C, namely $a u, a v, a u^{\prime}, b u, b v, b v^{\prime}$. A hat for C (in G, at $u v$) is a vertex of G adjacent to u and v and to no other vertex of C.
5.5 Let G be a Berge graph, let $X \subseteq V(G)$ be anticonnected, let C be a hole in $G \backslash X$ with length >4, and let $e=u v$ be an edge of C. Assume that u, v are X-complete and no other vertex of C is X-complete. Then either X contains a hat for C at uv, or X contains a leap for C at uv.

Let $\left\{x_{1}, x_{2}, x_{3}\right\}$ be a triangle in G. A reflection of this triangle is another triangle $\left\{y_{1}, y_{2}, y_{3}\right\}$ in G, disjoint from the first, so that for $1 \leq i \leq 3 x_{i}$ is adjacent to y_{i}, and these are the only edges between $\left\{x_{1}, x_{2}, x_{3}\right\}$ and $\left\{y_{1}, y_{2}, y_{3}\right\}$. A subset F of $V(G)$ is said to catch the triangle $\left\{x_{1}, x_{2}, x_{3}\right\}$ if it is connected and disjoint from the triangle, and x_{1}, x_{2}, x_{3} all have neighbors in F.
5.6 Let $X=\left\{x_{1}, x_{2}, x_{3}\right\}$ be a triangle in a graph $G \in \mathcal{F}_{7}$, and let $F \subseteq V(G) \backslash X$ catch X. Then either

1. some vertex of F has ≥ 2 neighbors in X or
2. F contains a reflection of X.

Next we present a lemma about properties of skew-partitions in Berge trigraphs, essentially proved in [2] and [3].
5.7 Let $T \in \mathcal{T}_{6}$, and assume that T admits no balanced skew-partition. Let $X, Y \subseteq V(T)$ be nonempty, disjoint, and strongly complete to each other.

- If $X \cup Y=V(T)$, then \bar{T} is bipartite.
- If $X \cup Y \neq V(T)$, then $V(T) \backslash(X \cup Y)$ is weakly connected, and if in addition $|X|>1$, then every vertex in X has a weak neighbor in $V(T) \backslash(X \cup Y)$.

In particular, T admits no skew-partition.
A wheel in a trigraph T is a pair (C, Y), satisfying:

- C is a hole of length ≥ 6
- Y is a non-empty weakly anticonnected set disjoint from C
- there are two disjoint edges of C, both weakly Y-complete.

Note that if (C, Y) is a wheel in some realization of T, then it is a wheel in T. We say that (C, Y) is a strong wheel in T if it is a wheel and there are two disjoint edges of C, both strongly Y-complete. We call C the rim and Y the hub of the wheel. If H is a path or a hole, a maximal path in H whose vertices are all strongly Y-complete, is called a segment or Y-segment of H. A wheel (C, Y) is odd if some segment has odd length.

We conclude this section with another definition. A pseudowheel in a trigraph T is a triple (X, Y, P), satisfying:

- X, Y are disjoint nonempty weakly anticonnected subsets of $V(T)$, strongly complete to each other
- P is a path $p_{1} \cdots-p_{n}$ of $T \backslash(X \cup Y)$, where $n \geq 5$
- p_{1}, p_{n} are weakly X-complete and there are no strongly X-complete vertices in P^{*}
- p_{1} is strongly Y-complete, and so is at least one other vertex of P; and p_{2}, p_{n} are not strongly Y-complete.

We remark that an odd wheel (C, Y) with a Y-segment S of length one can be viewed as a pseudowheel, by taking X to consist of one of the vertices of S. This is not true for wheels in general. So trigraphs containing no pseudowheels may still contain wheels.

6 General wheels

The goal of this section is to show that if a trigraph in \mathcal{T}_{8} contains a wheel, then it admits a balanced skew-partition (that is to prove 6.21.) To do so we generalize the notion of a "wheel system" used in [2] to the trigraph case. The main part of this section will be devoted to proving by induction a theorem about wheel systems, which we later use in order to derive a contradiction by showing that for every wheel in T, there is another wheel whose hub is a proper superset of the hub of the first wheel. A similar approach was used in [2]. However the method does not carry over smoothly;
the main difficulty being the fact that two non-consecutive vertices in the rim of a wheel can be weakly-adjacent to each other. In order to handle this problem we need to introduce the notions of a "weak wheel system", and a "shadow" of a trigraph.

Let us start with some lemmas about wheels and pseudowheels.
6.1 Let $T \in \mathcal{T}_{6}$. If (C, Y) is an odd wheel in some realization of T then (C, Y) is an odd wheel in T.

Proof. Let G be a realization of T such that (C, Y) is an odd wheel in G. Then C is a hole in G and hence in T. The set Y is anticonnected in G, so it is weakly anticonnected in T. Since C contains two disjoint (G, Y)-complete edges, it contains two disjoint weakly Y-complete edges in T. So (C, Y) is a wheel in T and it remains to prove that it is an odd wheel.

Let $c_{1}-\ldots-c_{k}$ be an odd Y-segment of C in G. We claim that both c_{1} and c_{k} are strongly Y complete in T. For suppose c_{1} is not strongly Y-complete. Let G^{\prime} be the graph obtained from G by replacing the switchable pair of T between Y and c_{1} by a non-edge. G^{\prime} is a realization of T, and hence it is Berge. By 5.3 an even number of edges of C are (G, Y)-complete. However the number of $\left(G^{\prime}, Y\right)$-complete edges in C differs by 1 from the number of (G, Y)-complete edges in C, and C contains at least three $\left(G^{\prime}, Y\right)$-complete vertices, contrary to 5.3 applied in G^{\prime}. This proves that c_{1} is strongly Y-complete and similarly so is c_{k}.

Since $c_{1}-\ldots-c_{k}$ is a Y-segment of C in G, the vertex of C consecutive with c_{1} and different from c_{2} is not strongly Y-complete in T, and neither is the vertex of C consecutive with c_{k} and different from c_{k-1}. If $k=2$ then $c_{1} c_{2}$ is an odd Y-segment of C and the theorem holds. So we may assume that $k \geq 4$. By 5.3 applied to a realization of T in which C is a hole and all switchable pairs containing vertices of Y are assigned the value "non-edge", $c_{1}-\ldots-c_{k}$ contains an odd Y-segment in this realization, and consequently it contains an odd Y-segment in T. This proves 6.1.

By 6.1 , if (C, Y) is a wheel in T and is an odd wheel in some realization of T then C contains an odd Y-segment in T. Therefore by 5.4 it contains at least two, so there exists two disjoint strongly Y-complete edges in C, and consequently (C, Y) is a strong wheel. However, (C, Y) being a general wheel in a realization of T (and therefore in T) does not imply that any edge of C is strongly Y-complete. For example, a hole $c_{1-} \ldots-c_{2 n}-c_{1}$ with $c_{2}, c_{4}, \ldots, c_{2 n}$ strongly Y-complete and $c_{1}, c_{3}, \ldots, c_{2 n-1}$ weakly and not strongly Y-complete is a wheel in T, but none of its edges are strongly Y-complete.

Let us say that distinct vertices u, v of the rim of a wheel (C, Y) have the same wheel-parity if there is a path of the rim joining them containing an even number of strongly Y-complete edges (and hence by 5.3 so does the second path, if u, v are not consecutive); and opposite wheel-parity otherwise.

If K is a subtrigraph of a trigraph T, and $F \subseteq V(T)$ is a weakly connected set disjoint from $V(K)$, a vertex in $V(K)$ is an attachment of F if it has a weak neighbor in F. The following was proved in [3]. The proof is a straightforward generalization of the proof of a corresponding statement in [2].
6.2 Let $T \in \mathcal{T}_{6}$, and let (C, Y) be a strong wheel in T. Let $F \subseteq V(T) \backslash(V(C) \cup Y)$ be weakly connected, such that no vertex in F is strongly Y-complete. Let $X \subseteq V(C)$ be the set of attachments of F in C. Suppose that there exist vertices in X with opposite wheel-parity, and there are two vertices in X that are not consecutive in C. Then either:

- there is a vertex $v \in F$ so that C contains two disjoint strongly Y-complete edges that are also weakly $Y \cup\{v\}$-complete, or
- there is a vertex $v \in F$ with at least four weak neighbors in C, and a 3 -vertex path $c_{1}-c_{2}-c_{3}$ in C, so that c_{1}, c_{2}, c_{3} are all strongly Y-complete and weakly adjacent to v and every other weak neighbor of v in C has the same wheel-parity as c_{1}, or
- there is a 3-vertex path $c_{1}-c_{2}-c_{3}$ in C, all strongly Y-complete, and a path $c_{1}-f_{1}-\cdots-f_{k}-c_{3}$ with interior in F, such $\left\{f_{1}, \ldots, f_{k}\right\}$ is strongly anticomplete to $V(C) \backslash\left\{c_{1}, c_{2}, c_{3}\right\}$.
6.3 Let $T \in \mathcal{I}_{7}$ and let G be a realization of T. If (X, Y, P) is a pseudowheel in some realization of T then (X, Y, P) is a pseudowheel in T. Moreover, P has even length at least 6 , and contains an odd number, at least 3, of strongly Y-complete edges.

Proof. Let G be a realization of T such that (X, Y, P) is a pseudowheel in G. Then the following conditions are satisfied:

- X, Y are disjoint nonempty weakly anticonnected subsets of $V(T)$, weakly complete to each other
- P is a path $p_{1} \cdots-p_{n}$ of $T \backslash(X \cup Y)$, where $n \geq 5$
- p_{1}, p_{n} are weakly X-complete and there are no strongly X-complete vertices in P^{*}
- p_{1} is weakly Y-complete, and so is at least one other vertex of P; and p_{2}, p_{n} are not strongly Y-complete.

To prove that (X, Y, P) is a pseudowheel in T, we need to show that

- p_{1} is strongly Y-complete, and so is at least one other vertex of P
- X and Y are strongly complete to each other.
(1) p_{1} is strongly Y-complete.

Suppose it is not. Let G_{1} be the graph obtained from G by deleting all edges of G between Y and p_{1} that are switchable pairs of T. Then G_{1} is another realization of T and hence by $6.1 G_{1} \in \mathcal{F}_{7}$. Moreover, none of p_{1}, p_{n} is $\left(G_{1}, Y\right)$-complete. By theorem 18.4 of [2] applied to G, P contains an odd number, at least 3, of (G, Y)-complete edges, and since p_{2} is not (G, Y)-complete, P contains an odd number, at least 3, of $\left(G_{1}, Y\right)$-complete edges. But then, by theorem 18.3 of [2], an odd number of elements of $\left\{p_{1}, p_{n}\right\}$ is $\left(G_{1}, Y\right)$-complete, a contradiction. This proves (1).
(2) At least one vertex of $P \backslash p_{1}$ is strongly Y-complete.

Since (X, Y, P) is a pseudowheel in G, at least one vertex p of P^{*} is weakly Y-complete. Let G_{2} be the realization of T defined as follows

- P is a path
- X is complete to $Y \cup\left\{p_{1}, p_{n}\right\}$
- $\{p\}$ is complete to Y
- assign the value "non-edge" to all remaining switchable pairs.

By $6.1 G_{2}$ is a graph in $\mathcal{F}_{7},(X, Y, P)$ is a pseudowheel in G_{2} and by theorem 18.4 of [2] P contains an odd number, at least three, of $\left(G_{2}, Y\right)$-complete edges, and in particular $P^{*} \backslash\{p\}$ contains a $\left(G_{2}, Y\right)$-complete vertex. In T it means that $P^{*} \backslash\{p\}$ contains a strongly Y-complete vertex and the result follows. This proves (2).
(3) P has even length at least 6 and contains an odd number, at least 3, of strongly Y-complete edges.

Let G_{3} be a realization of G defined as follows

- P is a path
- X is complete to $Y \cup\left\{p_{1}, p_{n}\right\}$
- assign the value "non-edge" to all remaining switchable pairs.

By $6.1 G_{3}$ is a graph in $\mathcal{F}_{7},(X, Y, P)$ is a pseudowheel in G_{3} and by theorem 18.4 of [2] P has length at least 6 and contains an odd number, at least 3 , of $\left(G_{3}, Y\right)$-complete edges, and consequently an odd number, at least 3 , of strongly Y-complete edges in T. By theorem 18.3 of [2], P has even length. This proves (3).
(4) X and Y are strongly complete to each other.

Let G_{3} be defined as before and let G_{4} be a realization of T defined as follows

- P is a path
- X is complete to $\left\{p_{1}, p_{n}\right\}$
- assign the value "non-edge" to all remaining switchable pairs.

By 6.1 both G_{3} and G_{4} belong to \mathcal{F}_{7}. Let $1 \leq i \leq n$ be minimum such that $p_{i-1} p_{i}$ is a strongly Y-complete edge. Since p_{2} and p_{n} are not strongly Y-complete, $4 \leq i \leq n-1$. Let P^{\prime} be the path $p_{i^{-}} \ldots-p_{n}$. Since by (3) P contains at least 3 strongly Y-complete edges and p_{n} is not strongly Y complete, P^{\prime} has length at least 3 . The only strongly Y-complete edge in P and not in P^{\prime} is $p_{i-1} p_{i}$. Thus P^{\prime} contains an even number of strongly Y-complete edges, and consequently P^{\prime} contains an even number of $\left(G_{3}, Y\right)$-complete edges and an even number of $\left(G_{4}, Y\right)$-complete edges.

Suppose first that i is odd. Now X is $\left(G_{3}, Y\right)$-complete; the path $P^{\prime}=p_{i^{-}} \ldots-p_{n}$ has even length $>4 ; p_{n}$ is the unique $\left(G_{3}, X\right)$-complete vertex of P^{\prime} and it is not $\left(G_{3}, Y\right)$-complete; p_{i} is $\left(G_{3}, Y\right)$ complete; and P^{\prime} contains an even number, at least two, of $\left(G_{3}, Y\right)$-complete edges, contrary to theorem 18.2 of [2] applied to P^{\prime}, X and Y in G_{3}, since p_{1} is a $\left(G_{3}, X\right)$-complete vertex, nonadjacent in G_{3} to p_{n-1} and p_{n-2}. This proves that i is even.

Now we turn to arguing in the graph G_{4}. In G_{4}, X and Y are anticonnected sets; P^{\prime} is an odd path of length at least 3; p_{i} is $\left(G_{4}, Y\right)$-complete; p_{n} is the unique $\left(G_{4}, X\right)$-complete vertex in P^{\prime}; and
$p_{1} \in V(T) \backslash\left(X \cup Y \cup V\left(P^{\prime}\right)\right)$ is $\left(G_{4}, X \cup Y\right)$-complete and $\left(G_{4}, V\left(P^{\prime}\right)\right)$-anticomplete; and P^{\prime} contains an even number of $\left(G_{4}, Y\right)$-complete edges, and so by theorem 17.5 of [2] $X \cup Y$ is not anticonnected. It follows that X is $\left(G_{4}, Y\right)$-complete and so in T, X is strongly Y-complete. This proves (4).

From (1), (2) and (4) 6.3 follows.

6.1 Wheel systems

We start by restating the definitions used in [2] for the graph case. Let G be a graph. A frame in G is a pair $\left(z, A_{0}\right)$, where $z \in V(G)$, and A_{0} is a non-empty connected subset of $V(G) \backslash z$, containing no neighbors of z. With respect to a given frame $\left(z, A_{0}\right)$, a wheel system in G of height $t \geq 1$ is a sequence x_{0}, \ldots, x_{t} of distinct vertices of $G \backslash\left(A_{0} \cup\{z\}\right)$, satisfying the following conditions:

1. A_{0} contains neighbors of x_{0} and of x_{1}, and no vertex in A_{0} is $\left\{x_{0}, x_{1}\right\}$-complete.
2. For $2 \leq i \leq t$, there is a connected subset of $V(G)$ including A_{0}, containing a neighbor of x_{i}, containing no neighbor of z, and containing no $\left\{x_{0}, \ldots, x_{i-1}\right\}$-complete vertex.
3. For $1 \leq i \leq t, x_{i}$ is not $\left\{x_{0}, \ldots, x_{i-1}\right\}$-complete.
4. z is adjacent to all of x_{0}, \ldots, x_{t}.

For $1 \leq i \leq t$ we define $X_{i}=\left\{x_{0}, \ldots, x_{i}\right\}$, and we define A_{i} to be the maximal connected subset of $V(G)$ that includes A_{0}, is anticomplete to z, and contains no X_{i}-complete vertex. We call A_{1}, \ldots, A_{t} the companion sets of the wheel system. So for each $i, A_{i-1} \subseteq A_{i}$. Note that condition 2 above just says that x_{i} has a neighbor in A_{i-1}.

Wheel systems were an important tool for handling Berge graphs containing wheels in [2]. We will first define their analogue for the trigraph case, and then generalize it further, to obtain machinery powerful enough to handle wheels in trigraphs. Let T be a trigraph. A frame in T is a pair $\left(z, A_{0}\right)$, where $z \in V(G)$, and A_{0} is a nonempty weakly connected subset of $V(T) \backslash z$, containing no weak neighbors of z. With respect to a given frame $\left(z, A_{0}\right)$, a wheel system in T of height $t \geq 1$ is a sequence x_{0}, \ldots, x_{t} of distinct vertices of $T \backslash\left(A_{0} \cup\{z\}\right)$, satisfying the following conditions:

1. A_{0} contains two distinct vertices a_{0}, a_{1} such that a_{0} is weakly adjacent to x_{0} and weakly nonadjacent to $x_{1} ; a_{1}$ is weakly adjacent to x_{1} and weakly non-adjacent to x_{0}; there is a path P_{0} of the full realization of $T \mid A_{0}$ from a_{0} to a_{1} such that the set $\left\{x_{0}, x_{1}\right\}$ is weakly anticomplete to P_{0}^{*}; and no vertex in A_{0} is strongly $\left\{x_{0}, x_{1}\right\}$-complete. We call such a triple $\left(a_{0}, a_{1}, P_{0}\right)$ an anchor of the wheel system.
2. For $2 \leq i \leq t$, there is a weakly connected subset of $V(T)$ including A_{0}, containing a weak neighbor of x_{i}, strongly anticomplete to z, and containing no strongly $\left\{x_{0}, \ldots, x_{i-1}\right\}$-complete vertex.
3. For $1 \leq i \leq t, x_{i}$ is not strongly $\left\{x_{0}, \ldots, x_{i-1}\right\}$-complete.
4. z is weakly adjacent to all of x_{0}, \ldots, x_{t}.

Note that this definition is symmetric between x_{0}, x_{1}, so $x_{1}, x_{0}, x_{2}, \ldots, x_{t}$ is another wheel system. Let x_{0}, \ldots, x_{t} be a wheel system of height t. For $1 \leq i \leq t$ we define $X_{i}=\left\{x_{0}, \ldots, x_{i}\right\}$, and we define A_{i} to be the maximal weakly connected subset of $V(T)$ that includes A_{0}, is strongly anticomplete to z, and contains no strongly X_{i}-complete vertex. We call A_{1}, \ldots, A_{t} the companion sets of the wheel system. So for each $i, A_{i-1} \subseteq A_{i}$.

Let $x_{0}, \ldots x_{t}$ be a wheel system with respect to the frame $\left(z, A_{0}\right)$ and let us define the standard realization of $T \mid\left(A_{t} \cup X_{t} \cup\{z\}\right)$ to be the following:

- for $i=0,1$ if $x_{i} a_{i}$ is a switchable pair, assign the value "edge" to $x_{i} a_{i}$
- assign the value "non-edge" to all remaining switchable pairs between A_{t} and $\left\{x_{0}, x_{1}\right\}$
- for $2 \leq i \leq t$ assign the value "edge" to all switchable pairs between x_{i} and A_{i-1}, and the value "non-edge" to all remaining switchable pairs between x_{i} and A_{t}
- assign the value "edge" to all remaining switchable pairs containing vertices of A_{t}
- assign the value "edge" to all switchable pairs containing z
- assign the value "non-edge" to all remaining switchable pairs containing vertices of X_{t}.
6.4 Let T be a Berge trigraph and let x_{0}, \ldots, x_{t} be a wheel system in T with respect to the frame $\left(z, A_{0}\right)$. Let G be a realization of T such that $G \mid\left(X_{t} \cup A_{t} \cup\{z\}\right)$ is the standard realization of $T \mid\left(X_{t} \cup A_{t} \cup\{z\}\right)$. Then x_{0}, \ldots, x_{t} is a wheel system in G with the same companion sets.

Proof. A_{0} is connected in G and contains neighbors of x_{0} and of x_{1}, and no vertex in A_{0} is $\left(G,\left\{x_{0}, x_{1}\right\}\right)$-complete. For $1 \leq i \leq t$, the vertex x_{i} is not $\left(G,\left\{x_{0}, \ldots, x_{i-1}\right\}\right)$-complete and z is adjacent in G to all of x_{0}, \ldots, x_{t}.
(1) No vertex of A_{i} is $\left(G, X_{i}\right)$-complete.

Suppose there exists $1 \leq i \leq t$ such that some $a \in A_{i}$ is $\left(G, X_{i}\right)$-complete. Since x_{0}, \ldots, x_{t} is a wheel system in T with respect to the frame $\left(z, A_{0}\right)$ with companion sets A_{1}, \ldots, A_{t}, the vertex a is not a strong common neighbor of X_{i} in T. Let $0 \leq j \leq i$ be such that $x_{j} a$ is a switchable pair of T. Since T is monogamous, j is unique. Then $j \geq 2$ for $x_{0} a_{0}$ and $x_{1} a_{1}$ are the only switchable pairs of T between $\left\{x_{0}, x_{1}\right\}$ and A_{t} that are assigned the value "edge" in G. Since $a x_{j}$ is an edge of G, it follows that $a \in A_{j-1}$. But then A_{j-1} contains a strong common neighbor of X_{j-1} in T, a contradiction. This proves (1).

Now in G for $2 \leq i \leq t, A_{i-1}$ is a connected subset of $V(G)$ including A_{0}, containing a neighbor of x_{i}, containing no neighbor of z, and by (1) containing no ($G,\left\{x_{0}, \ldots, x_{i-1}\right\}$)-complete vertex. It remains to show that A_{i} is the maximal connected subset of $V(G)$ including A_{0} and containing no neighbor of z and no $\left(G, X_{i}\right)$-complete vertex. Suppose there exists a proper superset A_{i}^{\prime} of A_{i} with these properties. Then in T, A_{i}^{\prime} is weakly connected, it includes A_{0}, contains no weak neighbor of z and no strong common neighbor of X_{i}, contrary to the maximality of A_{i} in T. This completes the proof of 6.4.

Next we prove the base case of the inductive proof mentioned at the start of Section 6.
6.5 Let $T \in \mathcal{T}_{7}$, and let x_{0}, x_{1} be a wheel system of height one in T with respect to the frame $\left(z, A_{0}\right)$. Let Y be a weakly anticonnected set disjoint from $A_{1} \cup\left\{x_{0}, x_{1}\right\}$ and let $v \in V(T) \backslash\left(Y \cup A_{1} \cup\left\{x_{0}, x_{1}, z\right\}\right)$. Assume that

- x_{0}, x_{1} are both strongly Y-complete,
- v is weakly adjacent to z, weakly non-adjacent to one of x_{0}, x_{1}, and is not strongly Y-complete,
- every vertex in Y that is weakly non-adjacent to v has a weak neighbor in A_{1} and is weakly adjacent to z, and
- v has a weak neighbor in A_{1}.

Then z is weakly Y-complete and there is a wheel (C, Y) in T with $x_{0}, x_{1}, z \in V(C) \subseteq\left\{x_{0}, x_{1}, z\right\} \cup A_{1}$.
Proof. Let G be a realization of T defined as follows:

- $G \mid\left(A_{1} \cup\left\{x_{0}, x_{1}, z\right\}\right)$ is the standard realization of $T \mid\left(A_{1} \cup\left\{x_{0}, x_{1}, z\right\}\right)$
- assign the value "non-edge" to all switchable pairs with both ends in Y
- assign the value "edge" to all remaining switchable pairs containing vertices of A_{1}
- assign the value "edge" to all remaining switchable pairs containing z
- assign the value "non-edge" to all remaining switchable pairs containing vertices of $Y \cup\left\{x_{0}, x_{1}\right\}$
- assign values to the remaining switchable pairs of T arbitrarily.

Since $T \in \mathcal{T}_{7}$ and G is a realization of $T, G \in \mathcal{F}_{7}$. Applying theorem 19.2 of [2] to G we deduce that z is (G, Y)-complete, and G contains a wheel (C, Y) with $x_{0}, x_{1}, z \in V(C) \subseteq\left\{x_{0}, x_{1}, z\right\} \cup A_{1}$. In T that means that z is weakly Y-complete, and (C, Y) is a wheel in T with $x_{0}, x_{1}, z \in V(C) \subseteq$ $\left\{x_{0}, x_{1}, z\right\} \cup A_{1}$. This proves 6.5.

We need two special kinds of wheel systems. Let x_{0}, \ldots, x_{t} be a wheel system in T, and define X_{i}, A_{i} as above. Let $Y \subseteq V(T)$ be nonempty and weakly anticonnected, such that Y is disjoint from $\left\{z, x_{0}, \ldots, x_{t}\right\}, x_{0}, \ldots, x_{t-1}$ are all strongly Y-complete and x_{t} is not. We say x_{0}, \ldots, x_{t} is a

- Y-diamond if $t \geq 3, x_{t}$ is strongly X_{t-2}-complete, and x_{t} has a weak neighbor in A_{t-2}
- Y-square if $t \geq 3, x_{t}$ is strongly adjacent to x_{t-1}, x_{t} has no weak neighbor in A_{t-2}, and there is a vertex in A_{t-1} weakly adjacent to x_{t} with a weak neighbor in A_{t-2}

The main result of this subsection is the following.
6.6 Let $T \in \mathcal{I}_{7}$, let $\left(z, A_{0}\right)$ be a frame, and let $Y \subseteq V(T) \backslash\left(A_{0} \cup\{z\}\right)$ be nonempty and weakly anticonnected. Suppose that there is either a Y-diamond or a Y-square in T. Then z is weakly Y-complete and T contains a wheel (C, Y).

Proof. Let x_{0}, \ldots, x_{t} be a Y-diamond or a Y-square in T. Let G be the following realization of T.

- $G \mid\left(A_{t} \cup X_{t} \cup\{z\}\right)$ is the standard realization of $T \mid\left(A_{t} \cup X_{t} \cup\{z\}\right)$
- assign the value "edge" to all remaining switchable pairs containing vertices of $A \cup\{z\}$
- assign the value "non-edge" to all remaining switchable pairs containing vertices of $X_{t} \cup Y$
- assign values arbitrarily to all remaining switchable pairs of T.

By 6.1 G is a graph in \mathcal{F}_{7} and x_{0}, \ldots, x_{t} is a Y-diamond or a Y-square in G. (It is straightforward to verify that x_{0}, \ldots, x_{t} is a wheel system of the same type in T and in G.) Applying theorem 20.1 of [2] we deduce that z is (G, Y)-complete and G contains a wheel (C, Y). Consequently z is weakly Y-complete in T and T contains a wheel (C, Y). This proves 6.6.

6.2 Finding a wheel system

In this subsection we apply the results of the previous two subsections to prove a powerful statement about wheel systems that will be the engine behind almost all the remainder of the paper. First we need a few lemmas about subtrigraphs of T that are wheels in some realization of T.
6.7 Let $T \in \mathcal{T}_{7}$ and let G be a realization of T containing a wheel (C, Y). Then all vertices of C that are not (G, Y)-complete have the same wheel-parity in G.

Proof. Suppose there are two vertices of C that are not (G, Y)-complete and have opposite wheelparity. Then each subpath of C between them contains an odd number of (G, Y)-complete edges, and consequently contains an odd Y-segment in G. But then (C, Y) is an odd wheel in G and by $6.1(C, Y)$ is an odd wheel in T, contrary to the fact that $T \in \mathcal{T}_{7}$. This proves 6.7.
6.8 Let $T \in \mathcal{T}_{7}$ and let G be a realization of T containing a wheel (C, Y). Let e be a (G, Y)-complete edge of C and let c be an end of e. Assume that c is not strongly Y-complete in T. Then every vertex of C that is not (G, Y)-complete has wheel-parity opposite from c in G.

Proof. Suppose the claim is false. Let the vertices of C be c_{1}, \ldots, c_{k} in order. We may assume the vertex c_{1} is contained in a (G, Y)-complete edge of C, that c_{1} is not strongly Y-complete in T, and that for some $2 \leq j \leq n$ the vertex c_{j} is not (G, Y)-complete and has the same wheel-parity as c_{1} in G. Let j be minimum with this property. Since c_{1} is not strongly Y-complete, there exists a vertex $y \in Y$ such that $c_{1} y$ is a switchable pair of T. The graph $G^{\prime}=G \backslash c_{1} y$ is a realization of T, and hence it is Berge.

There are at least three $\left(G^{\prime}, Y\right)$-complete vertices in $V(C)$, so C contains an even number of $\left(G^{\prime}, Y\right)$-complete edges. Since C also contains an even number of (G, Y)-complete edges, and c_{1} is in a (G, Y)-complete edge, it follows that it is in two (G, Y)-complete edges, and both c_{2} and c_{n} are (G, Y)-complete. Hence $2<j<n$.

By the minimality of j, c_{j-1} is (G, Y)-complete. Since c_{1} and c_{j} have the same wheel-parity in G, the path $c_{1}-\ldots-c_{j-1}$ contains an even number of (G, Y)-complete edges. So the path $c_{2}-\ldots-c_{j-1}$ contains an odd number of $\left(G^{\prime}, Y\right)$-complete edges, and since c_{1} and c_{j} are not (G^{\prime}, Y)-complete, in C contains an odd Y-segment in G^{\prime} and at least three $\left(G^{\prime}, Y\right)$-complete vertices. So (C, Y) is an odd wheel in G^{\prime}. But G^{\prime} is a realization of T, and by $6.1 G^{\prime} \in \mathcal{F}_{7}$, a contradiction. This proves 6.8.
6.9 Let $T \in \mathcal{I}_{7}$ and let G be a realization of T containing a wheel (C, Y). Let c_{1}, \ldots, c_{n} be the vertices of C in order. Assume there exist $1 \leq i<j \leq n$ such that

- c_{i} has wheel-parity opposite from some vertex of C that is not (G, Y)-complete
- $j-i>1$ and $(i, j) \neq(1, n)$
- c_{i} is weakly adjacent to c_{j}.

Then c_{j} is strongly Y-complete.
Proof. By 6.7 the vertex c_{i} has wheel-parity opposite from all vertices of C that are not (G, Y) complete, and in particular c_{i} is (G, Y)-complete. Let P_{1} and P_{2} be the two subpaths of C joining c_{i} and c_{j}. Both P_{1} and P_{2} have odd length for otherwise one of $c_{i}-P_{1}-c_{j}-c_{i}$ and $c_{i}-P_{2}-c_{j}-c_{i}$ is an odd hole in T. Hence both $c_{i}-P_{1}-c_{j}-c_{i}$ and $c_{i}-P_{2}-c_{j}-c_{i}$ are holes in T. Let G^{\prime} be the graph obtained from G by adding the edge $a_{i} a_{j}$.

Since C is a hole, $j-i>1$ and c_{i}, c_{j} are weakly adjacent, $c_{i} c_{j}$ is a switchable pair of T, and so it is the unique switchable pair containing c_{j}. So in order to prove that c_{j} is strongly Y-complete, it is enough to show that it is weakly Y-complete, and in particular it is enough to prove that c_{j} is (G, Y)-complete.

Assume for a contradiction that c_{j} is not (G, Y)-complete. Then c_{i} and c_{j} have opposite wheelparity in G and each of the paths P_{1}, P_{2} contains an odd number of (G, Y)-complete edges. Since c_{j} is not (G, Y)-complete, the number of $\left(G^{\prime}, Y\right)$-complete edges in $c_{i}-P_{m}-c_{j}-c_{i}$ equals the number of (G, Y)-complete edges in P_{m} (where $m=1,2$) and hence it is odd. By 5.4 applied in G^{\prime}, each $c_{i}-P_{m}-c_{j}-c_{i}$ contains exactly one $\left(G^{\prime}, Y\right)$-complete edge and exactly two $\left(G^{\prime}, Y\right)$-complete vertices. Since c_{i} is $\left(G^{\prime}, Y\right)$-complete, both these edges are incident with c_{i}. But then C contains exactly two (G, Y)-complete edges and they are both incident with c_{i}, contrary to the fact that (C, Y) is a wheel in G. This proves that c_{j} is (G, Y)-complete and completes the proof of 6.9.

Let Y be a nonempty weakly anticonnected subset of $V(T)$, let $\left(z, A_{0}\right)$ be a frame with $A_{0} \cup\{z\}$ disjoint from Y, and let x_{0}, \ldots, x_{t+1} be a wheel system with respect to this frame. We say Y is a $h u b$ for the wheel system if $t \geq 1, z, x_{0}, \ldots, x_{t}$ are all strongly Y-complete and x_{t+1} is not.

Next we prove a technical result, various modifications of which will be used later. (Now we need to use that there are no pseudowheels, so we are back in \mathcal{T}_{8}.)
6.10 Let $T \in \mathcal{T}_{7}$, let $Y \subseteq V(T)$ be nonempty and weakly anticonnected, and assume that there do not exist X, P such that (X, Y, P) is a pseudowheel in T. Let $\left(z, A_{0}\right)$ be a frame with $Y \cap\left(A_{0} \cup\{z\}\right)=\emptyset$, and let x_{0}, \ldots, x_{t+1} be a wheel system with hub Y, and with $t \geq 2$. Define X_{i}, A_{i} as usual. Then either

- x_{t+1} has a weak neighbor in A_{t-1}, or
- some member of Y is weakly non-adjacent to x_{t+1} and has no weak neighbor in A_{t}, or
- there are ≥ 2 members of Y that are weakly non-adjacent to x_{t+1} and have no weak neighbor in A_{t-1}, or
- there is a wheel with hub Y in T.

Proof. Let G be the following realization of T.

- $G \mid\left(A_{t} \cup X_{t} \cup\{z\}\right)$ is the standard realization of $T \mid\left(A_{t} \cup X_{t} \cup\{z\}\right)$
- assign the value "edge" to all remaining switchable pairs containing vertices of $A_{t} \cup\{z\}$
- assign the value "non-edge" to all remaining switchable pairs containing vertices of $X_{t+1} \cup Y$
- assign values arbitrarily to all remaining switchable pairs of T.

By 6.1 and $6.3 G$ is a graph in \mathcal{F}_{7} and there do not exist X, P such that (X, Y, P) is a pseudowheel in G.. By $6.4 x_{0}, \ldots, x_{t+1}$ is a wheel system with respect to the frame $\left(z, A_{0}\right)$ in G with companion sets A_{1}, \ldots, A_{t+1}. Moreover Y is a hub for x_{0}, \ldots, x_{t+1} in G. By theorem 21.2 of [2] applied in G one of the following outcomes holds:

- in $G x_{t+1}$ has a neighbor in A_{t-1}, which in T means that x_{t+1} has a weak neighbor in A_{t-1}, so the theorem holds; or
- in G some member of Y is non-adjacent to x_{t+1} and has no neighbor in A_{t}, which in T means that some member of Y is weakly non-adjacent to x_{t+1} and has no weak neighbor in A_{t} and the theorem holds; or
- in G there are ≥ 2 members of Y that are non-adjacent to x_{t+1} and have no neighbor in A_{t-1}, which in T means that there are ≥ 2 members of Y that are weakly non-adjacent to x_{t+1} and have no weak neighbor in A_{t-1}, and the theorem holds; or
- in G there is a wheel with hub Y, and therefore there is a wheel with hub Y in T, and the theorem holds.

This proves 6.10.
The first modification of 6.10 that we need is the following:
6.11 Let $T \in \mathcal{T}_{7}$, let $Y \subseteq V(T)$ be nonempty and weakly anticonnected, and assume that there do not exist X, P such that (X, Y, P) is a pseudowheel in T. Let $\left(z, A_{0}\right)$ be a frame with $Y \cap\left(A_{0} \cup\{z\}\right)=\emptyset$, and let x_{0}, \ldots, x_{t+1} be a wheel system with hub Y, where $t \geq 1$. Define A_{i}, X_{i} as usual, and assume that at most one member of Y has no weak neighbor in A_{1}. Suppose T contains no wheel with hub Y. Then there exists r with $1 \leq r \leq t$, and a member $y \in Y$, with the following properties:

- y is weakly non-adjacent to x_{t+1} and has no weak neighbor in A_{r}
- x_{t+1} has a weak neighbor in A_{r}, and a weak non-neighbor in X_{r}.

Proof. We proceed by induction on t. If $t=1$ then 6.5 implies that there exists $y \in Y$ weakly non-adjacent to x_{t+1} and with no weak neighbor in A_{t}, and the theorem holds. So we may assume $t \geq 2$. If x_{t+1} has no weak neighbor in A_{t-1}, then the result follows from 6.10 , since at most one member of Y has no weak neighbor in A_{t-1}. So we assume that x_{t+1} has a weak neighbor in A_{t-1}. If x_{t+1} is strongly $X_{t-1 \text {-complete then }}$

$$
x_{0}, \ldots, x_{t+1}
$$

is a Y-diamond, and we get a contradiction by 6.6. Thus x_{t+1} is not strongly X_{t-1}-complete, and so

$$
x_{0}, \ldots, x_{t-1}, x_{t+1}
$$

is a wheel system with hub Y, and the result follows from the inductive hypothesis. This proves 6.11.

Next we define a more general structure in a trigraph, called a weak wheel system, and an operation that transforms a trigraph T into its shadow T^{\prime}. The shadow is another trigraph, in which a weak wheel system of T becomes a "regular" wheel system.

A weak frame in T is a pair $\left(z, A_{0}\right)$, where $A_{0} \subseteq V(T)$ is nonempty and weakly connected, and $z \in V(T) \backslash A_{0}$ is weakly anticomplete to A_{0}. (This differs from a frame in that z may have a weak neighbor in A_{0}.) We define a weak wheel system with respect to a weak frame (z, A_{0}) to be a sequence $x_{0}, x_{1}, \ldots x_{t}$ satisfying conditions 1-4 in the definition of a wheel system, except condition 2 is replaced by the following condition 2^{\prime} :

2 '. For $2 \leq i \leq t$, there is a weakly connected subset F of $V(T)$ including A_{0}, containing a weak neighbor of x_{i} and no strongly $\left\{x_{0}, \ldots, x_{i-1}\right\}$-complete vertex, and such that $F \backslash A_{0}$ is strongly anticomplete to z.

Let x_{0}, \ldots, x_{t} be a weak wheel system of height t. For $1 \leq i \leq t$ we define $X_{i}=\left\{x_{0}, \ldots, x_{i}\right\}$, and we define A_{i} to be the maximal weakly connected subset of $V(T)$ that includes A_{0}, such that $A_{i} \backslash A_{0}$ is strongly anticomplete to z, and contains no strongly X_{i}-complete vertex. We call A_{1}, \ldots, A_{t} the companion sets of the weak wheel system. So for each $i, A_{i-1} \subseteq A_{i}$. An anchor and a hub for such wheel system are defined as before.

Let $x_{0}, \ldots x_{t}$ be a weak wheel system with respect to the weak frame $\left(z, A_{0}, Y\right)$ and let us define the standard realization of $T \mid\left(A_{t} \cup X_{t} \cup\{z\}\right)$ as before, except now we add the following:

- assign the value "non-edge" to all switchable pairs between z and A_{0}

We need to modify 6.10 further, for our final goal is to be able to apply an analogue of it to weak frames. To do that we define the "shadow" of T (with respect to a weak wheel system.) Let (z, A_{0}) be a weak frame in $T \in \mathcal{T}_{8}$ and let x_{0}, \ldots, x_{s} be a weak wheel system with $s \geq 1$, Let the shadow T^{\prime} of T (with respect to the weak wheel system x_{0}, \ldots, x_{s}) be the trigraph defined as follows.

First assume that z is not strongly anticomplete to A_{0}. Let u be the weak neighbor of z in A_{0}. Then $u z$ is the only switchable pair containing u or z in T. Let

- $V\left(T^{\prime}\right)=V(T) \backslash\{u\} \cup\left\{u^{\prime}, u^{\prime \prime}\right\}$ where $u^{\prime}, u^{\prime \prime}$ are distinct vertices not in $V(T)$.
- $T^{\prime}|(V(T) \backslash\{u\})=T|(V(T) \backslash\{u\})$.
- for $v \in V(T) \backslash\{u\}$, if $u v \in E(T)$ then $u^{\prime} v, u^{\prime \prime} v \in E\left(T^{\prime}\right)$ and if $u v \in N(T)$ then $u^{\prime} v, u^{\prime \prime} v \in N\left(T^{\prime}\right)$.
- $u^{\prime} z \in E\left(T^{\prime}\right), u^{\prime \prime} z \in N\left(T^{\prime}\right), u^{\prime} u^{\prime \prime} \in S\left(T^{\prime}\right)$.

For $0 \leq i \leq s$ let $A_{i}^{\prime}=A_{i} \backslash\{u\} \cup\left\{u^{\prime \prime}\right\}$.
If z is strongly anticomplete to A_{0}, define the shadow T^{\prime} of T to be T itself, and for $0 \leq i \leq s$ let $A_{i}^{\prime}=A_{i}$.

Given a graph G and two vertices $x, y \in V(G)$ we say that x dominates y if x is adjacent to every neighbor of y different from x itself.
6.12 Let T be a trigraph in \mathcal{T}_{8} and let $\left(z, A_{0}\right)$ be a weak frame such that z has a weak neighbor u in A_{0}. Let T^{\prime} be the shadow of T relative to x_{0}, \ldots, x_{s}. Let $Y \subseteq V(T) \backslash\left(A_{0} \cup\{z\}\right)$ be nonempty and weakly anticonnected, such that x_{0}, \ldots, x_{s}, u are strongly Y-complete and z is weakly Y-complete. Assume that T contains no wheel with hub Y. Then $T^{\prime} \in \mathcal{I}_{7}$ and there do not exist X, P such that (X, Y, P) is a pseudowheel in T^{\prime}.

Proof. We may assume that z is not strongly anticomplete to A_{0}. Let $u, u^{\prime}, u^{\prime \prime}$ be defined as before. By 6.1 to prove that T^{\prime} is in \mathcal{I}_{7} it is enough to show that every realization of T^{\prime} belongs to \mathcal{F}_{7}. We also need to show that there do not exist X, P such that (X, Y, P) is a pseudowheel in T^{\prime}. Let G be a realization of T^{\prime}. The graphs $G \backslash u^{\prime}$ and $G \backslash u^{\prime \prime}$ are realizations of $T^{\prime} \backslash u^{\prime}$ and $T^{\prime} \backslash u^{\prime \prime}$ respectively; and therefore isomorphic to realizations of T, and $T \in \mathcal{T}_{8}$. So by 6.1 both $G \backslash u^{\prime}$ and $G \backslash u^{\prime \prime}$ are in \mathcal{F}_{7}. Since also in G the vertex u^{\prime} dominates the vertex $u^{\prime \prime}$ and $\operatorname{deg}_{G}\left(u^{\prime \prime}\right)=\operatorname{deg}_{G}\left(u^{\prime}\right)-1$, it follows that G is Berge. The only neighbor of u^{\prime} in G that is different from and non-adjacent to $u^{\prime \prime}$ is z. Since none of the excluded subgraphs in the definition of $\mathcal{F}_{1}, \ldots, \mathcal{F}_{6}$ contains two vertices, one of which dominates the other and whose degrees differ by at most one, and $G \backslash u^{\prime}, G \backslash u^{\prime \prime}$ belong to $\mathcal{F}_{7} \subseteq \mathcal{F}_{6}$, it follows that $G \in \mathcal{F}_{6}$.

Next we show that G belongs to \mathcal{F}_{7}. Suppose not. Then G contains an odd wheel $\left(C, Y^{\prime}\right)$. Since $G \backslash u^{\prime}$ and $G \backslash u^{\prime \prime}$ are in \mathcal{F}_{7}, it follows that both $u^{\prime}, u^{\prime \prime}$ are in $V(C) \cup Y^{\prime}$. Since C is a hole in G, u^{\prime} dominates $u^{\prime \prime}$ and $\operatorname{deg}_{G}\left(u^{\prime \prime}\right)=\operatorname{deg}_{G}\left(u^{\prime}\right)-1$, not both $u^{\prime}, u^{\prime \prime}$ belong to $V(C)$. Assume that exactly one of $u^{\prime}, u^{\prime \prime}$ belongs to Y^{\prime}. Since at least four vertices of C are (G, Y^{\prime})-complete and $\operatorname{deg}_{G}\left(u^{\prime}\right)=\operatorname{deg}_{G}\left(u^{\prime \prime}\right)+1$, it follows that $u^{\prime} \in Y^{\prime}$ and $u^{\prime \prime}, z \in V(C)$. Let c_{1}, c_{2} be the two vertices of C consecutive with $u^{\prime \prime}$. Then the only neighbors of u^{\prime} in C are $u^{\prime \prime}, c_{1}, c_{2}, z$, contrary to the fact that C contains an odd Y^{\prime}-segment in G. This proves that both $u^{\prime}, u^{\prime \prime}$ belong to Y^{\prime}. But now ($C, Y^{\prime} \backslash\left\{u^{\prime}\right\}$) is an odd wheel in G and u^{\prime} is not in it, a contradiction. This proves that $G \in \mathcal{F}_{7}$.

Finally we show that there do not exist X, P such that (X, Y, P) is a pseudowheel in T^{\prime}. Suppose T^{\prime} contains a pseudowheel (X, Y, P). Since $Y \cap A_{0}=\emptyset$ and $u \in A_{0}$, it follows that $u^{\prime}, u^{\prime \prime} \notin Y$. Since $T \in \mathcal{T}_{8}, 6.3$ implies that both $u^{\prime}, u^{\prime \prime}$ are in $V(P) \cup X$. Now P is a path in $T^{\prime} ; p_{1}, p_{n}$ are weakly X complete and no vertex of P^{*} is strongly X-complete; u^{\prime} is strongly adjacent to every weak neighbor of $u^{\prime \prime}$, and and $u^{\prime}, u^{\prime \prime}$ do not belong to any switchable pair of T^{\prime} except $u^{\prime}, u^{\prime \prime}$. It follows that not both $u^{\prime}, u^{\prime \prime}$ belong to $V(P)$. Let G_{1} be a realization of T^{\prime} defined as follows:

- P is a path in G_{1}
- p_{1}, p_{n} are $\left(G_{1}, X\right)$-complete
- assign the value "non-edge" to all remaining switchable pairs.

Then G_{1} belongs to \mathcal{F}_{7} since it is a realization of T^{\prime}, and (X, Y, P) is a pseudowheel in G_{1}. Suppose exactly one of $u^{\prime}, u^{\prime \prime}$ is in $V(P)$. Then the other is in X. Since $Y \cup\left\{p_{1}, p_{n}\right\}$ is $\left(G_{1}, X\right)$-complete and no vertex of $V(P)$ is adjacent in G_{1} to both p_{1}, p_{n}, we deduce that $z \in\left\{p_{1}, p_{n}\right\}, u^{\prime} \in X, u^{\prime \prime} \in\left\{p_{2}, p_{n-1}\right\}$ and $u^{\prime \prime}$ is $\left(G_{1}, Y\right)$-complete. Since p_{2} is not $\left(G_{1}, Y\right)$-complete, it follows that $u^{\prime \prime}=p_{n-1}, z=p_{1}$ and u^{\prime} is adjacent in G_{1} to p_{n-2} and to no vertex of $V(P) \backslash\left\{p_{1}, p_{n-2}, p_{n-1}, p_{n}\right\}$.

Let C^{\prime} be the hole $p_{1}-\ldots-p_{n-2}-u^{\prime}-p_{1}$. Since p_{n} is not strongly Y-complete, by 6.3 at least three edges of $P \backslash\left\{p_{n}\right\}$ are $\left(G_{1}, Y\right)$-complete, and so at least three edges of $C^{\prime} \backslash\left\{p_{1}\right\}$ are weakly Y complete, and $\left(C^{\prime}, Y\right)$ is a wheel in T^{\prime}. But then replacing u^{\prime} by u gives a wheel in T with hub Y, a contradiction. This proves that none of $u^{\prime}, u^{\prime \prime}$ is in $V(P)$.

So $\left\{u^{\prime}, u^{\prime \prime}\right\} \subseteq X$. Let $\tilde{X}=X \backslash\left\{u^{\prime}, u^{\prime \prime}\right\} \cup\{u\}$. Now in T the vertices p_{1}, p_{n} are weakly \tilde{X}-complete and no vertex of P^{*} is strongly \tilde{X}-complete, $\tilde{X} \cup\left\{p_{1}\right\}$ and at least one other vertex of P are strongly Y-complete and p_{2}, p_{n} are not strongly Y-complete. Thus (\tilde{X}, Y, P) is a pseudowheel in T, contrary to the fact that $T \in \mathcal{T}_{8}$. This proves 6.12.
6.13 Let T be a trigraph in \mathcal{I}_{8}, let $\left(z, A_{0}\right)$ be a weak frame. Let x_{0}, \ldots, x_{s} be a weak wheel system relative to $\left(z, A_{0}\right)$. Let T^{\prime} be the shadow of T relative to x_{0}, \ldots, x_{s}. Assume z has a weak neighbor u in A_{0}, and let $u^{\prime}, u^{\prime \prime}$ be as in the definition of the shadow. Then $\left(z, A_{0}^{\prime}\right)$ is a frame in $T^{\prime} ;\left\{x_{0}, x_{1}, \ldots, x_{s}, u^{\prime}\right\}$ is a wheel system with respect to $\left(z, A_{0}^{\prime}\right)$ in T^{\prime} and with the usual notation $A_{1}^{\prime}, \ldots, A_{s}^{\prime}$ are companion sets for it.

Proof. The set A_{0} is weakly connected in T^{\prime} and is strongly anticomplete to z. Thus $\left(z, A_{0}^{\prime}\right)$ is a frame in T^{\prime}. Let $x_{s+1}=u^{\prime}$ and let $\left(a_{0}, a_{1}, P_{0}\right)$ be an anchor of the weak wheel system x_{0}, \ldots, x_{s}. We need to check that the four axioms of a wheel system are satisfied.

1. First we observe that $u \neq a_{0}$, for otherwise one of $z-a_{0}-P_{0}-a_{1}-x_{1}-z$ and $z-x_{0}-a_{0}-P_{0}-a_{1}-x_{1}-z$ would be an odd hole, a contradiction. Analogously, $u \neq a_{1}$. So the vertices a_{0} and a_{1} belong to $A_{0}^{\prime} \cap A_{0}$. Since the strong and weak adjacencies between $A_{0}^{\prime} \cap A_{0}$ and $\left\{x_{0}, x_{1}\right\}$ are the same in T^{\prime} as they are in T, a_{0} is weakly adjacent to x_{0} and weakly non-adjacent to x_{1} in T^{\prime}, a_{1} is weakly adjacent to x_{1} and weakly non-adjacent to x_{0} in T^{\prime}. Let P_{0}^{\prime} be the path obtained from P_{0} by replacing u by $u^{\prime \prime}$ if $u \in V\left(P_{0}\right)$, and otherwise let $P_{0}^{\prime}=P_{0}$. Then P_{0}^{\prime} is a path of the full realization of $T^{\prime} \mid A_{0}^{\prime}$ from a_{0} to a_{1}, with $V\left(P_{0}^{\prime}\right) \subseteq A_{0}^{\prime}$ and $\left\{x_{0}, x_{1}\right\}$ is weakly anticomplete to P_{0}^{*}. Since u, and therefore $u^{\prime \prime}$, is not strongly $\left\{x_{0}, x_{1}\right\}$-complete and $A_{0}^{\prime} \backslash\left\{u^{\prime \prime}\right\}$ is contained in A_{0}, it follows that no vertex of A_{0}^{\prime} is strongly $\left\{x_{0}, x_{1}\right\}$-complete. Thus the first axiom is satisfied.
2. For $1 \leq i \leq s$ we will show that the set A_{i}^{\prime} is a weakly connected subset of $V\left(T^{\prime}\right)$ including A_{0}^{\prime}, strongly anticomplete to z in T^{\prime} and containing a weak neighbor of x_{i+1} in T^{\prime} and containing no strongly $\left\{x_{0}, \ldots, x_{i}\right\}$-complete vertex. The first three assertions are obvious. The fourth assertion holds because for $1 \leq i \leq s-1$ the set A_{i} contains a weak neighbor of x_{i+1} in T, and x_{s+1} has a weak neighbor $u^{\prime \prime}$ in $A_{0}^{\prime} \subseteq A_{s}^{\prime}$. The final assertion holds because A_{i} is a companion set of the wheel system x_{0}, \ldots, x_{s} in T and the vertex $u^{\prime \prime}$ is not strongly $\left\{x_{0}, x_{1}\right\}$-complete by the first axiom. Thus the second axiom is satisfied.
3. For $1 \leq i \leq s, x_{i}$ is not strongly $\left\{x_{0}, \ldots, x_{i-1}\right\}$-complete because x_{0}, \ldots, x_{s} is a wheel system in T; and x_{s+1} is not strongly $\left\{x_{0}, x_{1}\right\}$-complete because u is not strongly $\left\{x_{0}, x_{1}\right\}$-complete in T. So the third axiom holds.
4. z is weakly adjacent to all of x_{0}, \ldots, x_{s+1} because x_{0}, \ldots, x_{s} is a weak wheel system in T with respect to the weak frame $\left(z, A_{0}\right)$, and x_{s+1} is strongly adjacent to z in T^{\prime}. So the fourth axiom holds.

It is clear that $A_{1}^{\prime}, \ldots, A_{s}^{\prime}$ are companion sets for this wheel system. This proves 6.13.
6.14 Let $T \in \mathcal{I}_{8}$, not admitting a balanced skew-partition. Let $\left(z, A_{0}\right)$ be a weak frame, and let x_{0}, \ldots, x_{s} be a weak wheel system with $s \geq 1$ relative to this frame. Let $Y \subseteq V(T)$ be nonempty and weakly anticonnected, with $Y \cap\left(A_{0} \cup\{z\}\right)=\emptyset$, such that x_{0}, \ldots, x_{s} are strongly Y-complete and z is
weakly Y-complete. Let u be the weak neighbor of z in A_{0} if one exists and assume that u is strongly Y-complete. Let T^{\prime} be the shadow of T relative to the weak wheel system x_{0}, \ldots, x_{s}. Then in T^{\prime} there is a sequence x_{s+1}, \ldots, x_{t+1} with $t \geq s$ such that x_{0}, \ldots, x_{t+1} is a wheel system with respect to the frame $\left(z, A_{0}^{\prime}\right)$, with hub Y.

Proof. If u exists, let $u^{\prime}, u^{\prime \prime}$ be defined as usual, and define $x_{s+1}=u^{\prime}$ and $k=1$. Otherwise let $k=0$. By $6.13 x_{0}, x_{1}, \ldots, x_{s+k}$ is a wheel system with respect to $\left(z, A_{0}^{\prime}\right)$ in T^{\prime}. Choose a sequence x_{s+k+1}, \ldots, x_{t}, all strongly Y-complete and such that x_{0}, \ldots, x_{t} is a wheel system with respect to $\left(z, A_{0}^{\prime}\right)$ in T^{\prime}, with t maximum. So $t \geq 1$. Define X_{i} as usual. Let $A_{1}^{\prime}, \ldots A_{t}^{\prime}$ be the companion sets for this wheel system.

Let V be the set of all strongly X_{t}-complete vertices in $V\left(T^{\prime}\right)$ different from z. Let $X=X^{\prime}=X_{t}$ and $A=A_{t}^{\prime}$ if $T=T^{\prime}$; and let $X=\left(X_{t} \backslash\left\{u^{\prime}\right\}\right) \cup\{u\}, X^{\prime}=X_{t} \cup\left\{u^{\prime \prime}\right\}$ and $A=A_{t}^{\prime} \backslash\left\{u^{\prime \prime}\right\}$ otherwise. We claim that every vertex in V is strongly X-complete in T. This is clear if $T=T^{\prime}$, so we may assume $T \neq T^{\prime}$. Since $u^{\prime \prime}$ is not strongly $\left\{x_{0}, x_{1}\right\}$-complete in $T^{\prime}, V \subseteq V(T)$, and hence in T every vertex of V is strongly X-complete, and in T^{\prime} every vertex of V is strongly X^{\prime}-complete.

Suppose every path in T^{\prime} from z to A contains a vertex of $X^{\prime} \cup V$ in its interior. Then every path in T from z to A contains a vertex of $X \cup V$ in its interior, contrary to 5.7, since T does not admit a balanced skew-partition. Hence in T^{\prime} there is a path P from z to A, with interior disjoint from $X^{\prime} \cup V$. From the maximality of A_{t}^{\prime}, it follows that P has length 2. Let x_{t+1} be the vertex consecutive with z in P. So x_{t+1} has a weak neighbor in A_{t}^{\prime} in T^{\prime}, and therefore $x_{0}, \ldots, x_{t}, x_{t+1}$ is a wheel system in T^{\prime}. From the maximality of t it follows that x_{t+1} is not strongly Y-complete, and therefore Y is a hub for this wheel system in T^{\prime}. This proves 6.14.
6.15 Let $T \in \mathcal{T}_{8}$, not admitting a balanced skew-partition. Let $\left(z, A_{0}\right)$ be a weak frame, and let x_{0}, \ldots, x_{s} be a weak wheel system with $s \geq 1$ relative to this frame. Let $Y \subseteq V(T)$ be nonempty, disjoint from $A_{0} \cup\{z\}$ and weakly anticonnected, such that x_{0}, \ldots, x_{s} are strongly Y-complete and z is weakly Y-complete. Define A_{i}, X_{i} as usual, and assume that

1. every member of Y has a weak neighbor in A_{s}
2. at most one member of Y has no weak neighbor in A_{1}
3. if z has a weak neighbor $u \in A_{0}$, then u is strongly Y-complete
4. there is no wheel with hub Y in T.

Then there exist r with $1 \leq r<s$, a member y of Y and a vertex v with the following properties:

- y is weakly non-adjacent to v and has no weak neighbor in A_{r}
- v is weakly adjacent to z, and has a weak neighbor in A_{r}, and a weak non-neighbor in X_{r}.

Proof. Let T^{\prime} be the shadow of T relative to the weak wheel system x_{0}, \ldots, x_{s}. By 6.14 in T^{\prime} there is a sequence x_{s+1}, \ldots, x_{t+1} with $t \geq s$ such that x_{0}, \ldots, x_{t+1} is a wheel system with respect to the frame $\left(z, A_{0}^{\prime}\right)$, with hub Y. By $6.12 T^{\prime} \in \mathcal{I}_{7}$ and there do not exist X, P such that (X, Y, P) is a pseudowheel in T^{\prime}. By 6.11 applied in T^{\prime}, there exists r with $1 \leq r \leq t$, and a member $y \in Y$, such that y is weakly non-adjacent to x_{t+1} and has no weak neighbor in A_{r}, and x_{t+1} has a weak
neighbor in A_{r}, and a weak non-neighbor in X_{r}. Since every member of Y has a weak neighbor in A_{s}, it follows that $r<s$. In T that means that y is weakly non-adjacent to x_{t+1} and has no weak neighbor in A_{r}, and x_{t+1} has a weak neighbor in A_{r}, and a weak non-neighbor in X_{r} and the result follows. This proves 6.15.

6.3 Wheels with tails

We start with some definitions. Let (C, Y) be a wheel in T. Following [2] we say that (C, Y) is optimal if there is no wheel $\left(C^{\prime}, Y^{\prime}\right)$ with $Y \subset Y^{\prime}$. However, in the trigraph setting we need a finer notion of optimality. We say that (C, Y) is trioptimal if there is no wheel $\left(C^{\prime}, Y^{\prime}\right)$ such that

- $Y \subset Y^{\prime}$ or
- $Y=Y^{\prime}$ and C^{\prime} contains fewer strongly Y-complete edges than C, or
- $Y=Y^{\prime}$, the number of strongly Y-complete edges in C and C^{\prime} is the same and C^{\prime} contains fewer strongly Y-complete vertices than C.

We remark that if (C, T) is a trioptimal wheel in T, and G is a realization of T in which (C, Y) is a wheel, then (C, Y) is an optimal wheel in G.

A kite for (C, Y) is a vertex $y \in V(T) \backslash(Y \cup V(C))$, not strongly Y-complete, that has at least four weak neighbors in C, three of which are consecutive and Y-complete in some realization of T in which (C, Y) is a wheel.

Let G be a realization of T such that (C, Y) is a wheel in T, let $z \in V(C)$, and let x_{0}, x_{1} be the vertices consecutive with z in the hole C. A path S of $G \backslash\left\{x_{0}, x_{1}\right\}$ with nonempty interior from z to $V(C) \backslash\left\{z, x_{0}, x_{1}\right\}$ is a tail for z (with respect to the wheel (C, Y) and the realization G) if

- only one vertex of $S \backslash z$ has a weak neighbor in $V(C) \backslash\left\{z, x_{0}, x_{1}\right\}$,
- x_{0}, z, x_{1} are all (G, Y)-complete,
- there is a (G, Y)-complete edge in $C \backslash\left\{x_{0}, z, x_{1}\right\}$
- the vertex consecutive with z in S is strongly adjacent to x_{0}, x_{1},
- no vertex of S is in Y,
- no vertex of $V(S) \backslash\{z\}$ is strongly Y-complete.

Please note that a tail in G with respect to (C, Y) is not necessarily a tail in T with respect to (C, Y) and G, for to be a tail in T the vertex consecutive with z is required to be strongly $\left\{x_{0}, x_{1}\right\}$-complete.
6.16 Let $T \in \mathcal{T}_{8}$, and let (C, Y) be a wheel in a realization G of T, such that (C, Y) is a trioptimal wheel in T and not all vertices of C are (G, Y)-complete. Suppose $z \in V(C)$ has opposite wheel-parity in G from some vertex of C that is not (G, Y)-complete. Let x_{0}, x_{1} be the vertices consecutive with z in C, and assume that z has a weak neighbor $c \in V(C) \backslash\left\{x_{0}, x_{1}, z\right\}$ Then if there is a tail for z with respect to (C, Y) and G, then some vertex of T is a kite for (C, Y); and if there is a kite y for (C, Y), such that y is weakly adjacent to x_{0}, x_{1}, z, then y is strongly adjacent to c.

Proof. Let S be a path from z to $V(C) \backslash\left\{x_{0}, x_{1}, z\right\}$ which is either a tail for z or a two-edge path via a kite for (C, Y) that is weakly adjacent to x_{0}, x_{1}, z. Let y be the vertex of S consecutive with z, and let s be the unique vertex of $S \backslash z$ with a weak neighbor in $V(C) \backslash\left\{x_{0}, x_{1}, z\right\}$. By choosing G appropriately we may assume that no vertex of $S \backslash z$ is (G, Y)-complete.

Since z has opposite wheel-parity in G from some vertex of C that is not (G, Y)-complete, and x_{0}, x_{1} have wheel-parity opposite from z in G, by 6.8 both x_{0} and x_{1} are strongly Y-complete, and by 6.9 c is strongly Y-complete.

For $i=0,1$ let P_{i} be the subpath of C between z and c containing x_{i}. By 2.1 both P_{0}, P_{1} have length >2. Let C_{i} be the hole $z-P_{i}-c-z$. Since each of the holes C_{i} contains at least three (G, Y)-complete vertices (namely z, x_{i} and c), each of these holes contains an even number of (G, Y) complete edges. Since (C, Y) is a wheel and c, z are both (G, Y)-complete, at least one of C_{0}, C_{1} contains two disjoint (G, Y)-complete edges, say C_{0}. But $x_{1} \in V(C) \backslash V\left(C_{0}\right)$ is strongly Y-complete, so by the trioptimality of (C, Y) in T it follows that $\left(C_{0}, Y\right)$ is not a wheel and P_{0} has length three. If C_{1} also contains two disjoint (G, Y)-complete edges, then from the symmetry P_{1} has length three and all the vertices of C are (G, Y)-complete, a contradiction. So $z x_{1}$ is the only (G, Y)-complete edge in P_{1}.

Let c^{\prime} be the vertex consecutive with both x_{0}, c in C. Then c^{\prime} is weakly Y-complete in T and has the same wheel-parity as z in G. We claim that s has a weak neighbor in $V\left(P_{1}\right) \backslash\left\{z, x_{1}\right\}$. For suppose not. Then the only weak neighbor of s in $V(C) \backslash\left\{x_{0}, x_{1}, z\right\}$ is c^{\prime}. Let S^{\prime} be a path from c^{\prime} to x_{1} with interior in $V(S)$ and let $P_{1}^{\prime}=P_{1} \backslash\{z\}$. Then $c^{\prime}-c-P_{1}^{\prime}-x_{1}-S^{\prime}-c^{\prime}$ is a hole in G, with at least three (G, Y)-complete vertices and exactly one (G, Y)-complete edge, contrary to 5.4. This proves that s has a weak neighbor in $V\left(P_{1}\right) \backslash\left\{z, x_{1}\right\}$.

We may assume that y is weakly non-adjacent to c, for otherwise y is a kite for (C, Y) and the theorem holds. Since T is monogamous, it follows that y is strongly non-adjacent to c. So there is a path M of length at least three from z to c with interior in $V(S) \cup P_{1}{ }^{*} \backslash\left\{x_{1}\right\}$. Since $z-M-c-z$ is not an odd hole in T, the path $z-M-c$ has odd length, both its ends are weakly Y-complete in T and no edge of it is (G, Y)-complete. Applying 5.2 to this path and the weakly anticonnected set Y, we deduce that M has length three and every weakly Y-complete vertex in T is strongly adjacent to one of the interior vertices of M. Let m be the vertex of M^{*} different from y. Then c^{\prime} is strongly adjacent to one of y, m. If c^{\prime} is weakly adjacent to y, then $Y \cup\{y\}$ is weakly complete to $\left\{c^{\prime}, x_{0}, z, x_{1}\right\}$, and so $(C, Y \cup\{y\})$ is a wheel in T, contrary to the trioptimality of T. So c^{\prime} is strongly non-adjacent to y, and therefore c^{\prime} is strongly adjacent to m and hence $m \notin V(C)$; consequently S is a tail and so y has no weak neighbor in $V(C) \backslash\left\{x_{0}, x_{1}, z\right\}$, and we may assume that no vertex of T is a kite for (C, Y), for otherwise the theorem holds.

Since $x_{1}-P_{1}^{\prime}-c-m-y-x_{1}$ is not an odd hole in T, m has a strong neighbor in P_{1}^{*}. Since m is not a kite, it is strongly non-adjacent to x_{0}. Let Q be an antipath joining m and y with nonempty interior in Y. Since $y-Q-m-z-c-y$ is not an odd hole, Q has odd length. So $x_{0}-m-Q-y-c^{\prime}$ is an odd antipath in T of length at least five, all its interior vertices have weak neighbors in the weakly connected set P_{1}^{*} and the ends do not have any strong neighbors in it, contrary to 5.2 applied in \bar{T}. This proves 6.16.
6.17 Let $T \in \mathcal{T}_{8}$, not admitting a balanced skew-partition, and let (C, Y) be a trioptimal wheel in T, and assume that not all vertices of C are strongly Y-complete. Then there is no kite for (C, Y) and hence there is no kite in any realization of T in which (C, Y) is a wheel.

Proof. Assume y is a kite for (C, Y). Let G be a realization of T such that

- (C, Y) is a wheel in G
- not all vertices of C are (G, Y)-complete
- all switchable pairs between Y and y are assigned the value "non-edge"
- all switchable pairs between $V(C)$ and y are assigned the value "edge"
- there is a subpath $x_{0}-z-x_{1}$ of C, all (G, Y)-complete and adjacent to y.

Let $w \in V(C)$ be a vertex that is not (G, Y)-complete. Define W to be the set of all vertices in $V(C)$ that have the same wheel-parity as w in G, and let $U=V(C) \backslash W$. By 6.7 all vertices of C that are not (G, Y)-complete belong to W.
(1) y is strongly adjacent to x_{0} and x_{1}.

Suppose y is weakly non-adjacent to x_{0}. Let G^{\prime} be the graph obtained from G by deleting the edge $x_{0} y$. Then G^{\prime} is a realization of T and is therefore Berge. Since $(C, Y \cup\{y\})$ is not a wheel in G, $x_{0} z$ and $z x_{1}$ are the only $(G, Y \cup\{y\})$-complete edges in C. By 5.4, z, x_{1} are the only ($\left.G^{\prime}, Y \cup\{y\}\right)$ complete vertices in C. We can now apply 5.5 to C and the anticonnected set $Y \cup\{y\}$ in G^{\prime}. Since in $G^{\prime} y$ has at least three neighbors in C, and the vertex x_{0} is $\left(G^{\prime}, Y\right)$-complete, there is no hat for C in $Y \cup\{y\}$. So there is a leap, and since x_{0} is $\left(G^{\prime}, Y\right)$-complete, it follows that in G^{\prime} the only neighbors of y in C are z, x_{1} and the neighbor of x_{1} in $C \backslash z$. But then the hole C contains exactly three $(G,\{y\})$-complete edges, contrary to 5.4. This proves that y is strongly adjacent to x_{0}. By the symmetry, y is strongly adjacent to x_{1} and (1) holds.
(2) $z \in W$.

Suppose not, then $z \in U$. Let $A_{0}=V(C) \backslash\left\{z, x_{0}, x_{1}\right\}$. Then $\left(z, A_{0}\right)$ is a weak frame in T and x_{0}, x_{1} is a weak wheel system relative to it. Since $z \in U$ and x_{0}, x_{1} have wheel-parity opposite from z in G, it follows that $x_{0}, x_{1} \in W$ and by 6.8 both x_{0} and x_{1} are strongly Y-complete. It follows from (1) that x_{0}, x_{1} are strongly $Y \cup\{y\}$-complete. Suppose z has a weak neighbor c in A_{0}. Since $z \in U, 6.9$ implies that c is strongly Y-complete. By $6.16 c$ is strongly adjacent to y; consequently c is strongly $Y \cup\{y\}$-complete. But now we get a contradiction applying 6.15 , since every vertex of $Y \cup\{y\}$ has a weak neighbor in A_{0}. This proves (2).

From (2) $x_{0} \in U$. Applying theorem 16.1 of [2] to the wheel (C, Y) and the vertex y in G, we deduce from the trioptimality of (C, Y) and the fact that y has at least four weak neighbors in $V(C)$, that all weak neighbors of y in $V(C) \backslash\{z\}$ have the same wheel-parity as x_{0} in G, and so they all belong to U. So by 6.7 every weak neighbor of y in $V(C) \backslash\left\{x_{0}, z, x_{1}\right\}$ is (G, Y)-complete.

Let the vertices of the subpath P of C between x_{0} and x_{1} not containing z be c_{1}, \ldots, c_{m} in order, where $c_{1}=x_{0}$ and $c_{m}=x_{1}$. By the hypothesis of the theorem there exists k such that $1 \leq k \leq m$ and c_{k} is not (G, Y)-complete, and therefore is non-adjacent to y in G. Let $i<k$ be maximum and $j>k$ be minimum such that y is weakly adjacent to c_{i} and c_{j}. Then c_{i} and c_{j} are both (G, Y)-complete and are both in U. By $6.7 c_{k} \in W$, and so c_{i}, c_{j} have wheel-parity opposite from c_{k} in G. That means that each of the subpaths of $c_{i}-\ldots-c_{k}$ and $c_{k^{-}} \ldots-c_{j}$ of P contains an odd number of (G, Y)-complete
edges and therefore $j-i \geq 4$. Let C^{\prime} be the hole $y-c_{i^{-}} \ldots-c_{k^{-}} \ldots-c_{j}-y$. Then $\left(C^{\prime}, Y\right)$ is a wheel in G and c and y have opposite wheel-parity in with respect to it in G, contrary to 6.7 , since neither of them is (G, Y)-complete. This completes the proof of 6.17.
6.18 Let $T \in \mathcal{T}_{8}$, let (C, Y) be a wheel in a realization G of T such that not all vertices of C are (G, Y)-complete, let (C, Y) be trioptimal in T, let $z \in V(C)$, and let x_{0}, x_{1} be the vertices consecutive with z in C. Assume there exists a vertex $c \in V(C)$, not (G, Y)-complete, and such that z and c have opposite wheel-parity in G. Let S be a tail for z with respect to (C, Y) and G, and let y be the vertex adjacent to z in S. Let $A_{0}=V(C) \backslash\left\{z, x_{0}, x_{1}\right\}$. Assume z is strongly anticomplete to A_{0}, so $\left(z, A_{0}\right)$ is a frame. Let x_{0}, \ldots, x_{t+1} be a wheel system with respect to $\left(z, A_{0}\right)$, with hub $Y \cup\{y\}$. Define A_{1}, \ldots, A_{t+1} as usual. Then either y is strongly adjacent to x_{t+1}, or y has a weak neighbor in A_{t}.

Proof. Since both x_{0}, x_{1} have the same wheel-parity as c in G, it follows from 6.8 they they are both strongly Y-complete. Let G^{\prime} be a realization of T such that:

- $G^{\prime} \mid\left(A_{t+1} \cup X_{t+1} \cup\{z\}\right)$ is the standard realization of the wheel system
- assign the value "non-edge" to those switchable pairs between Y and A_{0} that are not edges in G
- assign the value "edge" to all remaining switchable pairs containing a vertex of $A_{t+1} \cup\{z\}$
- assign the value "non-edge" to all remaining switchable pairs containing a vertex of $Y \cup X_{t+1}$
- $G^{\prime} \mid V(S)$ is the path S.

By $6.3 G^{\prime}$ is a graph in \mathcal{F}_{8} for it is a realization of T. Now (C, Y) is an optimal wheel in G^{\prime}. By 6.17 G^{\prime} contains no kite. Now S is a tail for z in G^{\prime}, and y is the neighbor of z in $S,\left(z, A_{0}\right)$ is a frame in G^{\prime} and by $6.4 x_{0}, \ldots, x_{t+1}$ is a wheel system with respect to it with companion sets A_{1}, \ldots, A_{t+1}. By theorem 22.4 of [2] either y is adjacent to x_{t+1} in G^{\prime}, or y has a neighbor in A_{t} in G^{\prime}. In T that means that either y is strongly adjacent to x_{t+1}, or y has a weak neighbor in A_{t}. This proves 6.18.

We combine the previous result with 6.11 to prove the following.
6.19 Let $T \in \mathcal{T}_{8}$, not admitting a balanced skew-partition, and let (C, Y) be a wheel in a realization G of T, such that (C, Y) is a trioptimal wheel in T, and assume that not all vertices of C are (G, Y)-complete. Suppose $z \in V(C)$ has opposite wheel-parity in G from some vertex of C that is not (G, Y)-complete. Then there is no tail for z with respect to (C, Y) and G.

Proof. Suppose S is a tail for z; let y be the vertex adjacent to z in S, and let x_{0}, x_{1} be the vertices consecutive with z in C. Let $A_{0}=V(C) \backslash\left\{z, x_{0}, x_{1}\right\}$.

By 6.16 and $6.17, z$ is strongly A_{0}-anticomplete, and so $\left(z, A_{0}\right)$ is a frame. Now x_{0}, x_{1} is a wheel system with respect to $\left(z, A_{0}\right)$, and x_{0}, x_{1} are strongly Y-complete by 6.8 and therefore strongly $Y \cup\{y\}$-complete by the definition of a tail.

By 6.14 there exists a wheel system x_{0}, \ldots, x_{t+1} relative to the frame $\left(z, A_{0}\right)$ for which $Y \cup\{y\}$ is a hub. By the definition of a tail there is a (G, Y)-complete edge in A_{0}, and so all members of Y have
weak neighbors in A_{0}. By 6.11, there exists r with $1 \leq r \leq t$, such that y is weakly non-adjacent to x_{t+1} and has no weak neighbor in A_{r}, and x_{t+1} has a weak neighbor in A_{r}, and a weak non-neighbor in X_{r}. Now $x_{0}, \ldots, x_{r}, x_{t+1}$ is a wheel system with hub $Y \cup\{y\}$, and S is a tail for z in T with respect to (C, Y) and G, contrary to 6.18 . This proves 6.19.

6.4 The end of a wheel

In this subsection we complete the proof of the fact that if a trigraph in \mathcal{T}_{8} contains a wheel then it admits a balanced skew-partition.
6.20 Let $T \in \mathcal{I}_{8}$, not admitting a balanced skew-partition, and let (C, Y) be a strong wheel in T that is trioptimal in T. Then there is a subpath $c_{1}-c_{2}-c_{3}$ of C such that c_{1}, c_{2}, c_{3} are all strongly Y-complete, and a path $c_{1}-p_{1}-\cdots-p_{k}-c_{3}$ such that none of p_{1}, \ldots, p_{k} are in $V(C) \cup Y$, none of them is strongly Y-complete, and none of them has a weak neighbor in $V(C) \backslash\left\{c_{1}, c_{2}, c_{3}\right\}$.

Proof. Since (C, Y) is a strong wheel there are two non-consecutive strongly Y-complete vertices in C with opposite wheel-parity, say a, b. Since a and b are weakly non-adjacent, by 5.7 there is a path P in T with $P^{*} \neq \emptyset$ joining them, so that none of its interior vertices is in Y or is strongly Y-complete. There may be internal vertices of P that belong to C, but we may choose a subpath P^{\prime} of P, with ends a^{\prime}, b^{\prime} say, so that $a^{\prime}, b^{\prime} \in V(C)$ have opposite wheel-parity in T and P^{\prime} has minimum length. Suppose a^{\prime}, b^{\prime} are consecutive in C. Then since they have opposite wheel-parity, they are both strongly Y-complete and therefore neither is in the interior of P, and so a, b are consecutive in C, a contradiction. So a^{\prime}, b^{\prime} are not consecutive in C.

Next suppose a^{\prime}, b^{\prime} are weakly adjacent in T. Let G be a realization of T in which C is a hole and all switchable pairs containing a vertex of Y are assigned the value "non-edge". Then (C, Y) is a wheel in G since it is a strong wheel in T. Now a^{\prime}, b^{\prime} have opposite wheel-parity in G, and so by 6.7 one of them, say a^{\prime}, is (G, Y)-complete and therefore strongly Y-complete in T. Thus a^{\prime} is not in the interior of P, and so b^{\prime} is, and therefore b^{\prime} is not strongly Y-complete in T. But a^{\prime} and b^{\prime} have opposite wheel-parity in G, contrary to 6.9 . This proves that a^{\prime}, b^{\prime} are strongly non-adjacent in T and so $P^{* *}$ is nonempty.

Let F be the interior of P^{\prime}; then no vertex of F is in $Y \cup V(C)$, no vertex of F is strongly Y-complete, and there are attachments of F in C which are not consecutive in C and have opposite wheel-parity. The result follows from 6.17 and 6.2 applied to F and the trioptimality of (C, Y). This proves 6.20.

We can now prove the main result of this subsection.
6.21 Let $T \in \mathcal{T}_{8}$, not admitting a balanced skew-partition; then there is no wheel in T.

Proof. Let (C, Y) be a trioptimal wheel in T.
(1) There exists a realization of T in which (C, Y) is a wheel and exactly four edges of C are Y complete.

If (C, Y) is not a strong wheel, then it contains at most two strongly Y-complete edges, and since (C, Y) is a wheel in T, there exists a realization of T in which (C, Y) is a wheel and C contains
exactly four edges, and the statement holds. So we may assume (C, Y) is a strong wheel in T. By 6.20 there is a subpath $c_{1}-c_{2}-c_{3}$ of C such that c_{1}, c_{2}, c_{3} are all strongly Y-complete, and a path $c_{1}-p_{1}-\cdots-p_{k}-c_{3}$ such that none of p_{1}, \ldots, p_{k} are in $V(C) \cup Y$, none of them is strongly Y-complete, and none of them has a weak neighbor in $V(C) \backslash\left\{c_{1}, c_{2}, c_{3}\right\}$. Let C^{\prime} be the hole formed by the union of the paths $C \backslash c_{2}$ and $c_{1}-p_{1} \cdots-p_{k}-c_{3}$. Then it has length ≥ 6, and it contains fewer strongly Y-complete edges than C. From the choice of (C, Y) it follows that $\left(C^{\prime}, Y\right)$ is not a wheel. Since C has at least four strongly Y-complete edges, and C^{\prime} has only two fewer, we deduce that exactly four edges of C are strongly Y-complete. So a realization of T in which C is a hole and all switchable pairs meeting Y are assigned the value "non-edge" has the desired property. This proves (1).

Let G be a realization of T in which (C, Y) is a wheel and exactly four edges of C are (G, Y) complete. Since (C, Y) is not an odd wheel, there are vertices $x_{0}, z, x_{1}, c_{1}, c_{2}, c_{3}$ of C, in order, and all distinct except possibly $x_{1}=c_{1}$ or $c_{3}=x_{0}$, so that the (G, Y)-complete edges in C are $x_{0} z, z x_{1}, c_{1} c_{2}, c_{2} c_{3}$.

(2) There is no tail for z in T with respect to (C, Y) and G.

Since z has wheel-parity in G opposite from some vertex of $V(C)$ that is not (G, Y)-complete, there is no tail for z in T with respect to (C, Y) and G by 6.19. This proves (2).

Let $A_{0}=V(C) \backslash\left\{z, x_{0}, x_{1}\right\}$. By $6.8 x_{0}$ and x_{1} are strongly Y-complete. By 5.7 and since by $6.9 z$ is strongly anticomplete to all vertices of A_{0} that are not strongly Y-complete, there is a path S of $T \backslash\left\{x_{0}, x_{1}\right\}$ with $S^{*} \neq \emptyset$ from z to A_{0}, such that no vertex in $V(S) \backslash\{z\}$ is in Y or strongly Y-complete. We may assume that S is a path of G and no vertex of S^{*} is (G, Y)-complete. Let y be the vertex adjacent to z in S.
(3) y is weakly non-adjacent to at least one of x_{0}, x_{1}.

For assume it is strongly adjacent to both. Then T is a tail for z with respect to (C, Y) and G (because at least one of the (G, Y)-complete edges $c_{1} c_{2}, c_{2} c_{3}$ belongs to $C \backslash\left\{x_{0}, z, x_{1}\right\}$). This contradicts (2), and therefore proves (3).
(4) y has no weak neighbor in A_{0}.

For suppose first that it has a weak neighbor in $A_{0} \backslash c_{2}$, say c. Then c, z are not consecutive and have opposite wheel-parity in the wheel (C, Y) in G. Not both x_{0}, x_{1} are strongly adjacent to y, by (3). Since $c \neq c_{2}$, it follows that c and the two vertices of C consecutive with it are not all strongly Y-complete. Let G^{\prime} be a realization of T such that

- C is a hole
- assign the value "non-edge" to all switchable pairs meeting Y and $V(C) \backslash\left\{x_{0}, z, x_{1}, c_{1}, c_{2}, c_{3}\right\}$
- assign the value "edge" to all switchable pairs meeting Y and $\left\{x_{0}, z, x_{1}, c_{1}, c_{2}, c_{3}\right\}$
- assign the value "non-edge" to all switchable pairs containing y and meeting $Y \cup\left\{x_{0}, x_{1}\right\}$
- assign the value "edge" to all remaining switchable pairs containing y
- assign values to remaining switchable pairs arbitrarily.

Theorem 16.1 of [2] applied to G^{\prime} implies that $(C, Y \cup\{y\})$ is a wheel in G^{\prime}, and therefore in T, contrary to the trioptimality of (C, Y). So y has no weak neighbor in $A_{0} \backslash c_{2}$. Next suppose that y is weakly adjacent to c_{2}. From the symmetry we may assume that $x_{0} \neq c_{3}$. Let Q be the path of $C \backslash z$ between x_{0}, c_{3}; so Q has length >0, and even length by 5.3 applied in G. Since $x_{0}-Q-c_{3}-c_{2}-y-x_{0}$ is not an odd hole, it follows that y is strongly non-adjacent to x_{0}. But then the hole $x_{0}-Q-c_{3}-c_{2}-y-z-x_{0}$ is the rim of an odd wheel with hub Y, contrary to $T \in \mathcal{T}_{8}$. So y is strongly non-adjacent to c_{2}. This proves (4).

Let S have vertices $z-y-v_{1}-\cdots-v_{n+1}$, where $v_{n+1} \in A_{0}$. From (4), $n \geq 1$. By choosing S of minimum length we may assume that none of $y, v_{1}, \ldots, v_{n-1}$ have weak neighbors in A_{0}.
(5) If $n=1$ then no weak neighbor of v_{1} in A_{0} is strongly Y-complete.

Suppose $v_{2}^{\prime} \in A_{0}$ is strongly Y-complete and weakly adjacent to v_{1}. From the symmetry we may assume that $x_{0} \neq c_{3}$. Let Q be the path of $C \backslash z$ between x_{0}, c_{3}; so Q has length >0, and even length by 5.3 applied in G. Since y, v_{1} are not strongly Y-complete, there is an antipath joining them with interior in Y, and it is odd since it can be completed to an antihole via $v_{1}-z-v_{2}^{\prime}-y$. Hence every weakly Y-complete vertex is strongly adjacent to one of y, v_{1}, and since c_{2}, c_{3} are weakly Y-complete and not adjacent to y by (4), it follows that v_{1} is strongly adjacent to c_{2}, c_{3}, and so v_{1} has two strong neighbors in C that are of opposite wheel-parity in G. For the same reason and by (3), v_{1} is strongly adjacent to one of x_{0}, x_{1}, and therefore v_{1} has two strong neighbors in C that are not consecutive in C.

- C is a hole
- assign the value "non-edge" to all switchable pairs meeting Y and $V(C) \backslash\left\{x_{0}, z, x_{1}, c_{1}, c_{2}, c_{3}\right\}$
- assign the value "edge" to all switchable pairs meeting Y and $\left\{x_{0}, z, x_{1}, c_{1}, c_{2}, c_{3}\right\}$
- assign the value "edge" to all switchable pairs containing v_{1} and meeting $V(C)$
- assign the value "non-edge" to all switchable pairs containing v_{1} and meeting Y
- assign values to remaining switchable pairs arbitrarily.

By theorem 16.1 of [2] applied in G^{\prime} there are three consecutive vertices in C, all $\left(G^{\prime}, Y\right)$-complete (and therefore (G, Y)-complete) and weakly adjacent to v_{1}. Since there is no kite in T, v_{1} has no other weak neighbor in C. Hence $x_{1}=c_{1}$ and the neighbors of v_{1} in C are c_{1}, c_{2}, c_{3}. Consequently x_{0} is strongly adjacent to y; but then $x_{0}-Q-c_{3}-v_{1}-y-x_{0}$ is an odd hole, a contradiction. This proves (5).
(6) One of x_{0}, x_{1} is strongly anticomplete to $\left\{v_{1}, \ldots, v_{n}\right\}$ and is weakly non-adjacent to y.

For let $z-y-p_{1}-\cdots-p_{k}$ be a path P from z to some strongly Y-complete vertex $p_{k} \in A_{0}$, with interior in $A_{0} \cup\left\{y, v_{1}, \ldots, v_{n}\right\}$ with no strongly Y-complete vertex in P^{*}. Since none of $y, v_{1}, \ldots, v_{n-1}$ have weak neighbors in A_{0} it follows that $\left\{y, v_{1}, \ldots, v_{n}\right\} \subseteq\left\{y, p_{1}, \ldots, p_{k-1}\right\}$. From (5), $k \geq 3$. Since
$T \in \mathcal{T}_{8},\left(Y,\left\{x_{0}, x_{1}\right\}, P\right)$ is not a pseudowheel. But the ends of the path P are weakly Y-complete and its internal vertices are not strongly Y-complete; the path has length $\geq 4 ; Y, z$ are weakly $\left\{x_{0}, x_{1}\right\}$-complete, and y, p_{k} are not strongly $\left\{x_{0}, x_{1}\right\}$-complete. So no other vertices of P are weakly $\left\{x_{0}, x_{1}\right\}$-complete. Let G^{\prime} be a realization of G such that

- P is a path,
- assign the value "edge" to all switchable pairs meeting $Y \cup\{z\}$ and $\left\{x_{0}, x_{1}\right\}$
- assign the value "non-edge" to all switchable pairs meeting $\left\{x_{0}, x_{1}\right\}$ and $\left\{y, p_{k}\right\}$
- assign the value "non-edge" to all remaining switchable pairs containing a vertex of Y
- assign the value "edge" to all remaining switchable pairs containing a vertex of $\left\{x_{0}, x_{1}\right\}$
- assign values to remaining switchable pairs arbitrarily.

By theorem 2.11 of [2] applied in G^{\prime} to the path P and the anticonnected sets Y and $\left\{x_{0}, x_{1}\right\}$, it follows that one of x_{0}, x_{1} is strongly non-adjacent to all of p_{1}, \ldots, p_{k-1} and weakly non-adjacent to y. Since $\left\{y, v_{1}, \ldots, v_{n}\right\} \subseteq\left\{y, p_{1}, \ldots, p_{k-1}\right\}$, this proves (6).

Let $F=\left\{y, v_{1}, \ldots, v_{n}\right\}$. From the symmetry we may assume that x_{0} is (G, F)-anticomplete. Let Q be a path of G from x_{0} to y with interior in $F \cup A_{0}$. It follows that Q has length at least three. Let C^{\prime} be the hole $z-y-Q-x_{0}-z$; so C^{\prime} has length ≥ 6. Suppose that x_{0} is different from c_{3} and so its neighbor in $C \backslash\{z\}$ is not (G, Y)-complete. Since $\left(C^{\prime}, Y\right)$ is not an odd wheel, it follows that (C^{\prime}, Y) is not a wheel, and so no vertex of $C^{\prime} \backslash\left\{z, x_{0}\right\}$ is strongly Y-complete. By 5.5 applied in G it follows that Y contains a leap or a hat in G. A leap would imply there are two vertices in Y, joined by an odd path of length ≥ 5 with interior in $F \cup A_{0}$. Hence its ends are strongly $\left\{x_{0}, x_{1}\right\}$-complete, and its internal vertices are not, contrary to 5.2. So Y contains a hat, that is there exists $y^{\prime} \in Y$ that is $\left(G, C^{\prime} \backslash\left\{z, x_{0}\right\}\right)$-anticomplete. Let x^{\prime} be the vertex of $C \backslash\{z\}$ consecutive with x_{0}. In G the set $F \cup A_{0}$ catches the triangle $\left\{x_{0}, y^{\prime}, z\right\}$ and we apply 5.6. In G, the only neighbor of z in $F \cup A_{0}$ is y, and by (4) y has at most one neighbor in $F \cup A_{0}$, and hence there is no reflection of $\left\{x_{0}, z, y^{\prime}\right\}$ in $F \cup A_{0}$. So 5.6.1 must hold. But in G, y is non-adjacent to x_{0}, y^{\prime}, and so $F \cup A_{0}$ contains a common neighbor of x_{0} and y^{\prime}. However in G, the only neighbor of x_{0} in $F \cup A_{0}$ is x^{\prime} and x^{\prime} is non-adjacent to y^{\prime}, a contradiction. This proves that $x_{0}=c_{3}$, and therefore $x_{1} \neq c_{1}$.

By exchanging x_{0}, x_{1}, we deduce that in G, x_{1} has a neighbor in F. Therefore in G there are two attachments of F in C with opposite wheel-parity, and two that are non-adjacent. By (1), 6.17, the trioptimality of the wheel and theorem 16.2 of [2] applied to G, and since $x_{0}=c_{3}$ is (G, F) anticomplete, it follows that in G there is a path R between z, c_{2} with interior in F, and no vertex of C has neighbors in the interior of R except z, c_{2}. But then the hole formed by the union of R and the path $C \backslash x_{0}$ is the rim of an odd wheel with hub Y in G, and therefore in T by 6.1, a contradiction. This proves 6.21.

7 A hole with a triad

In this section we prove that if a trigraph in \mathcal{T}_{9} contains a hole of length at least 6 and a vertex with 3 consecutive weak neighbors in the hole (we call this configuration "a hole with a triad"), then
it admits a balanced skew-partition. Our proof here is different from the proof in [2]. Most of the "hard" theorems in this section are trivial in the graph case.

7.1 A hole with an original triad

Let C be a hole in T. We say that a vertex $z \in V(C)$ is an origin of C if it has exactly two weak neighbors in C - namely the two vertices of C consecutive with it. For a hole C with some origin z we say that a vertex $y \in V(T) \backslash V(C)$ is an original triad for the pair (C, z) if y is weakly adjacent to z and both of the vertices consecutive with it in C. The goal of this subsection is to prove that if a trigraph $T \in \mathcal{T}_{9}$ contains a hole with an original triad, then it admits a balanced skew-partition.
7.1 Let X be a weakly anticonnected set and let P be a path of length 3 with vertices $p_{1}, p_{2}, p_{3}, p_{4}$ in order, such that p_{1} is weakly non-adjacent to p_{2} and both p_{1} and p_{4} are weakly X-complete. Then one of p_{2}, p_{3} is strongly X-complete.

Proof. Suppose none of p_{2}, p_{3} is strongly X-complete and let Q be an antipath joining them with interior in X. Then $p_{2}-Q-p_{3}-p_{1}-p_{4}-p_{2}$ and $p_{2}-Q-p_{3}-p_{1}-p_{2}$ are both antiholes of different parity in T, a contradiction. This proves 7.1.
7.2 Let T be a trigraph in \mathcal{T}_{9}, let $\left(z, A_{0}\right)$ be a frame in T and let x_{0}, \ldots, x_{s} be a wheel system with respect to it. Let the sets A_{i}, X_{i} be defined as usual. Assume that $y \in V(T) \backslash\left(A_{0} \cup X_{s} \cup\{z\}\right)$ is weakly $X_{s} \cup\{z\}$-complete, and with a weak neighbor in A_{s}. Then y is strongly X_{s}-complete.

Proof. Suppose the result is false, namely y has a weak non-neighbor in X_{s} and assume s is minimum for which it is false. Let $\left(a_{0}, a_{1}, P\right)$ be an anchor of the wheel system x_{0}, \ldots, x_{s}.
(1) $s>1$

For suppose $s=1$. We observe that y is strongly non-adjacent to both a_{0} and a_{1} for otherwise $z-x_{0}-a_{0}-P_{0}-a_{1}-x_{1}-z$ would be the rim of a wheel with hub $\{y\}$ contrary to the fact that T is in \mathcal{T}_{9}. From the symmetry we may assume y is weakly non-adjacent to x_{0}. Since T contains no odd wheel and y is strongly non-adjacent to a_{1}, y has no weak neighbor in P_{0}. Since y has a weak neighbor in A_{1}, there exists a path Q with interior in A_{1} from y to P_{0}, such that y has exactly one weak neighbor q in Q and only the last vertex of Q belongs to $V\left(P_{0}\right)$. Let $F=V\left(P_{0}\right) \cup Q^{*} \cup\left\{x_{0}\right\}$. Let G be the following realization of T :

- $z-x_{0}-a_{0}-P_{0}-a_{1}-x_{1}-z$ is a hole
- Q is a path
- assign the value "non-edge" to the switchable pair $y x_{0}$
- if $q x_{1}$ is a switchable pair of T, assign the value "non-edge" to it
- assign the value "edge" to all remaining switchable pairs of T.

Now G is in \mathcal{F}_{7} and F catches the triangle $\left\{z, x_{1}, y\right\}$. Suppose q is non-adjacent to x_{1}. No vertex of F has two neighbors in $\left\{z, x_{1}, y\right\}$ in G, for x_{0} is the unique neighbor of z and it is non-adjacent to both y and x_{1}, and q is only neighbor of y, and it is non-adjacent to x_{1}. So by 5.6 F contains a reflection of $\left\{z, x_{1}, y\right\}$ in G. That means that in $G q$ is adjacent to x_{0} and there exists a neighbor f of x_{1}, different from x_{0}, q, that is adjacent to both x_{0} and q. Since $x_{0}-q-y-x_{1}-a_{1}-P_{0}-a_{0}-x_{0}$ is not an odd hole in G, we deduce that q has a neighbor in P_{0}. So $F=V\left(P_{0}\right) \cup\left\{q, x_{0}\right\}$, and so $f \in V\left(P_{0}\right)$. The only neighbor of x_{0} in P_{0} is a_{0}, so $f=a_{0}$, contrary to the fact that $z-x_{0}-a_{0}-P_{0}-a_{1}-x_{1}-z$ is a hole in G. This proves that q is adjacent to x_{1}, and so q is strongly adjacent to x_{1} in T.

Since q is not strongly $\left\{x_{0}, x_{1}\right\}$-complete, q is weakly non-adjacent to x_{0} and there exists a path F^{\prime} from x_{0} to q with $\emptyset \neq F^{* *} \subseteq A_{1}$. But then $y-q-F^{\prime}-x_{0}-z-y$ and $y-q-F^{\prime}-x_{0}-y$ are holes of different parity, a contradiction. This proves (1).
(2) y has no weak neighbor in A_{s-1}.

Suppose it does. Since the theorem holds for the wheel system $x_{0}, \ldots x_{s-1}$, it follows that y is strongly complete to X_{s-1} and weakly non-adjacent to x_{s}. Then

$$
x_{0}, \ldots, x_{s}
$$

is a wheel system with hub y and by 6.11 there exists r with $1 \leq r \leq s-1$ such that y has no weak neighbor in A_{r} and x_{s} has a weak neighbor in A_{r}, and a weak non-neighbor in X_{r}.

Since y has a weak neighbor in $A_{s-1}, r \leq s-2$ and $s>2$. If y has a weak neighbor in A_{s-2} then the wheel system $x_{0}, \ldots, x_{s-2}, x_{s}$ satisfies the hypotheses of the theorem, and it has height $<s$, so y is strongly adjacent to x_{s}, a contradiction. So y has no weak neighbor in A_{s-2} and we may assume that $r=s-2$.

Let Q be a path from y to a vertex with a weak neighbor in A_{s-2}, such that y has a unique weak neighbor q in Q and only the last vertex of Q has a neighbor in A_{s-2}, and $V(Q) \backslash\{y\} \subseteq A_{s-1}$. Then Q has length at least 1. Let $F=A_{s-2} \cup V(Q) \backslash\{y\}$. Then F is a weakly connected set and both y and x_{s} have weak neighbors in it. Hence $F \cup\left\{x_{s}\right\}$ contains a path P from y to x_{s} and since P has two completions of different parity: $y-P-x_{s^{-}} z-y$ and $y-P-x_{s}-y, P$ has length 2. Since q is the unique weak neighbor of y in F, x_{s} is weakly adjacent to q.

But $q \in A_{s-1}$, and hence q is not strongly X_{s-1}-complete. Let W be an antipath from q to x_{s} with nonempty interior in X_{s-1}. Suppose W is odd. Then $y-x_{s}-W-q-z$ is an odd antipath of length at least 5 , all its interior vertices have weak neighbors in the weakly connected set $\left(A_{s-2} \cup V(Q)\right) \backslash\{q, y\}$ and z and y do not, contrary to 5.2 applied in \bar{T}. So W is even. Then $y-x_{s}-W-q$ is an odd antipath. Suppose q has no weak neighbor in A_{s-2}. Then all interior vertices of $y-x_{s}-W-q$ have weak neighbors in A_{s-2} and its ends do not and y is weakly adjacent to x_{s}, contrary to 5.2 and 7.1 applied in \bar{T}. So q has a weak neighbor in A_{s-2}. Since $q \notin A_{s-2}$, it follows that q is strongly X_{s-2}-complete, and since $q \in A_{s-1}$, we deduce that q is weakly non-adjacent to x_{s-1}. Let S be a path from q to x_{s-1} with nonempty interior in A_{s-2}. Then $y-q-S-x_{s-1}-y$ is a hole, and hence S is even. So $q-S-x_{s-1}-z$ is an odd path, its ends are weakly X_{s-2}-complete and none of its interior vertices are strongly X_{s-2}-complete (for they all belong to $A_{s-2} \cup\left\{x_{s-1}\right\}$), so by $5.2, S$ has length 2 . Let t be the middle vertex of S.

Let U be an antipath joining t and x_{s-1} with interior in X_{s-2}. Then U is odd for it can be completed to an antihole via $t-z-q-x_{s-1}$.

We claim that $s>3$. For suppose $s=3$. Since U is odd, $x_{0}, x_{1} \in V(U)$. Let G be a realization of T in which $x_{0}-a_{0}-P_{0}-a_{1}-x_{1}-z-x_{0}$ is a hole and $x_{s-1}-U-t-z-q-x_{s-1}$ is an antihole; then G violates
theorem 15.7 of [2]. This proves that $s>3$.
Next we claim that x_{s-1} has a weak neighbor in A_{s-3}. For suppose it does not. Then by 5.2 applied in \bar{T} to the odd antipath U and the weakly connected set A_{s-3}, and since z is weakly complete to U^{*} and strongly anticomplete to A_{s-3}, t has a weak neighbor in A_{s-3}. Since t does not belong to A_{s-3} (for t is weakly adjacent to x_{s-1}), t is strongly X_{s-3}-complete, and since $t \in A_{s-2}, t$ is weakly non-adjacent to x_{s-2}. Since $x_{s-2}-q-t-x_{s-1}-z-x_{s-2}$ is not an odd hole, x_{s-1} is strongly adjacent to x_{s-2}. But then

$$
x_{0}, \ldots, x_{s-1}
$$

is a $\{q\}$-square, contrary to 6.6. This proves that x_{s-1} has a weak neighbor in A_{s-3}. If x_{s-1} is strongly X_{s-3}-complete then

$$
x_{0}, \ldots, x_{s-1}
$$

is a $\{q\}$-diamond, contrary to 6.6 , so x_{s-1} has a weak non-neighbor in X_{s-3}.
Next we show that q has a weak neighbor in A_{s-3}. For suppose it does not. Let M be a path with $V(M) \subseteq A_{s-2} \cup\{q\}$ from q to a vertex with a weak neighbor in A_{s-3} such that q has a unique weak neighbor in M and only the last vertex of M has a weak neighbor in A_{s-3}. Then both q and x_{s-1} have weak neighbors in $F^{\prime}=\left(A_{s-3} \cup V(M)\right) \backslash\{q\}$, so there exists a path joining q and x_{s-1} with interior in F^{\prime}, and we may assume that S is such a path, and the vertex t belongs to $V(M)$. Now $y-t-U-x_{s-1}-q$ is an odd antipath of length at least 5 , all its interior vertices have weak neighbors in $F^{\prime} \backslash\{t\}$ and the ends do not, contrary to 5.2 applied in \bar{T}. This proves that q has a weak neighbor in A_{s-3}.

Now we claim that $x_{0}, \ldots, x_{s-3}, x_{s-1}, x_{s-2}, x_{s}$ is a wheel system. Certainly x_{0}, \ldots, x_{s-3} is a wheel system. The vertex x_{s-1} has a weak neighbor in A_{s-3} and a weak non-neighbor in X_{s-3}, so $x_{0}, \ldots, x_{s-3}, x_{s-1}$ is a wheel system, and hence so is $x_{0}, \ldots, x_{s-3}, x_{s-1}, x_{s-2}$. The vertex q is not strongly $X_{s-3} \cup\left\{x_{s-1}\right\}$-complete, for it belongs to A_{s-1} and is strongly X_{s-2}-complete. But then since q has a weak neighbor in A_{s-3}, it follows that q belongs to one of the companion sets of the wheel system $x_{0}, \ldots, x_{s-3}, x_{s-1} ; x_{s}$ is weakly adjacent to q and is not strongly X_{s-2}-complete. This proves that $x_{0}, \ldots, x_{s-3}, x_{s-1}, x_{s-2}, x_{s}$ is a wheel system. If x_{s} is strongly $X_{s-3} \cup\left\{x_{s-1}\right\}$-complete, then

$$
x_{0}, \ldots, x_{s-3}, x_{s-1}, x_{s-2}, x_{s}
$$

is a $\{y\}$-diamond, contrary to 6.6 . If x_{s} is not strongly $X_{s-3} \cup\left\{x_{s-1}\right\}$-complete, then $x_{0}, \ldots, x_{s-3}, x_{s-1}, x_{s}$ is a wheel system, it satisfies the hypotheses of the theorem and has height $<s$, so y is strongly adjacent to x_{s}, a contradiction. This completes the proof of (2).

From (2) y has no weak neighbor in A_{s-1}. Let P be a path from y to a vertex with a weak neighbor in A_{s-1}, such that y has a unique weak neighbor in P, only the last vertex p of P has a neighbor in A_{s-1} and $V(P) \backslash\{y\} \subseteq A_{s}$. Then p is strongly X_{s-1}-complete.

(3) P has length 1.

Suppose P has length at least 2. Let p^{\prime} be the weak neighbor of y in P. Since $p \neq p^{\prime}, p^{\prime}$ has no weak neighbor in A_{s-1}. Let Q be an antipath from p^{\prime} to y with interior in X_{s}. Assume first Q is odd. All internal vertices of Q have weak neighbors in the weakly connected set A_{s-1}, the ends y and p^{\prime} do not, and y is weakly adjacent to the vertex of Q consecutive with it, contrary to 5.2 and 7.1. So Q is even. But then $z-p^{\prime}-Q-y$ is an odd antipath, all its internal vertices have weak neighbors
in the weakly connected set $A_{s-1} \cup V(P) \backslash\left\{p^{\prime}, y\right\}$, the ends y and z do not, and y is weakly adjacent to the vertex of Q consecutive with it, contrary to 5.2 and 7.1 applied in \bar{T}. This proves (3).

The vertex p is weakly non-adjacent to x_{s} for it belongs to A_{s} and is strongly X_{s-1}-complete. So there exists a path R with nonempty interior in A_{s-1} joining p and x_{s}.
(4) x_{s} is strongly adjacent to y and R has length 2 .

If $x_{s} y$ is a switchable pair then the path $y-p-R-x_{s}$ has length >2 and has two completions of different parity: $y-z-x_{s}$ and $y-x_{s}$, a contradiction. So x_{s} is strongly adjacent to y. Since $p-R-x_{s}-y-p$ is a hole, R is even, and so the path $p-R-x_{s^{-}} z$ is an odd path, both ends of which are weakly X_{s-1}-complete and none of its internal vertices is strongly X_{s-1}-complete (for they all belong to $A_{s-1} \cup\left\{x_{s}\right\}$), so by $5.2 p-R-x_{s^{-}} z$ has length 3 and R has length 2 . This proves (4).

Let t be the middle vertex of the path R. Let Q be an antipath between t and and x_{s} with interior in X_{s-1}. Then Q is odd for it can be completed to an antihole via $t-z-p-x_{s}$. Let G be a realization of T in which $x_{0}-a_{0}-P_{0}-a_{1}-x_{1}-z-x_{0}$ is a hole and $x_{s}-Q-t-z-p-x_{s}$ is an antihole. By theorem 15.7 of [2], this hole and antihole meet in at most two vertices, and so not both x_{0} and x_{1} belong to Q. Hence $s \geq 3$ since Q is odd.
(5) x_{s} has a weak neighbor in A_{s-2}.

Suppose x_{s} is strongly anticomplete to A_{s-2}. We claim that t has a weak neighbor in A_{s-2}, for otherwise the odd antipath Q, the weakly connected set A_{s-2} and the vertex z contradict 5.1 applied in \bar{T} (for z is a vertex weakly complete to $V\left(Q^{*}\right)$ and strongly anticomplete to A_{s-2}). So t has a weak neighbor in A_{s-2}, and hence t is strongly X_{s-2}-complete and weakly non-adjacent to x_{s-1}. Since $x_{s}-t-p-x_{s-1}-z-x_{s}$ is not an odd hole, x_{s} is strongly adjacent to x_{s-1}. But then the wheel system

$$
x_{0}, \ldots x_{s}
$$

is a $\{p\}$-square, contrary to 6.6 . This proves (5).
(6) p has a weak neighbor in A_{s-2}.

For suppose it does not. Let S be a path from p to a vertex with a weak neighbor in A_{s-2} such that p has a unique weak neighbor in $S, V(S) \backslash\{p\}$ is a subset of A_{s-1}, and only the last vertex of S has a weak neighbor in A_{s-2}. Then both p and x_{s} have weak neighbors in $F=\left(A_{s-2} \cup V(S)\right) \backslash\{p\}$, so there exists a path joining p and x_{s} with interior in F, and we may assume that R is such a path, and the vertex t belongs to $V(S)$. Now $y-t-Q-x_{s}-p$ is an odd antipath of length at least 5 , all its interior vertices have weak neighbors in $F \backslash\{t\}$ and the ends do not, contrary to 5.2 applied in \bar{T}. This proves (6).

If x_{s} is strongly X_{s-2}-complete, then by (5) the wheel system

$$
x_{0}, \ldots, x_{s}
$$

is a $\{p\}$-diamond, contrary to 6.6. So x_{s} is not strongly X_{s-2}-complete and $x_{0}, \ldots, x_{s-2}, x_{s}$ is a wheel system. From (6) p has a weak neighbor in A_{s-2} and is weakly non-adjacent to x_{s}, so p belongs
to one of the companion sets of this wheel system. So $x_{0}, \ldots, x_{s-2}, x_{s}$ satisfies the hypotheses of the theorem and has height $<s$, and hence y is strongly $X_{s-2} \cup\left\{x_{s}\right\}$-complete, and so it is weakly non-adjacent to x_{s-1}.

Since both p and x_{s} have weak neighbors in A_{s-2}, we may assume that the interior of the path R is contained in A_{s-2}, that is $t \in A_{s-2}$. Both t and x_{s} have weak non-neighbors in X_{s-2} and so we may assume that the interior of the antipath Q joining them is a subset of X_{s-2}.

We claim that $x_{0}, \ldots, x_{s-2}, x_{s}, x_{s-1}$ is a wheel system. We have already shown that $x_{0}, \ldots, x_{s-2}, x_{s}$ is a wheel system. The vertex x_{s-1} is not strongly X_{s-2}-complete and not strongly A_{s-2}-anticomplete, so $x_{0}, \ldots, x_{s-2}, x_{s}, x_{s-1}$ is a wheel system. This wheel system has height s and it satisfies the hypothesis of the theorem and not the conclusion, since y is not strongly adjacent to x_{s-1}. By (4) applied to the wheel system $x_{0}, \ldots, x_{s-2}, x_{s}, x_{s-1}$ is strongly adjacent to x_{s-1}, a contradiction. This completes the proof of 7.2.

Next we need another transformation of 6.10.
7.3 Let $T \in \mathcal{T}_{9}$, admitting no balanced skew-partition, let $\left(z, A_{0}\right)$ be a frame and x_{0}, \ldots, x_{s} a wheel system with respect to $i t$, and define X_{i}, A_{i} as usual. Then there is no vertex $y \in V(T) \backslash\left\{z, x_{0}, \ldots, x_{s}\right\}$ that is weakly $\left\{z, x_{0}, \ldots, x_{s}\right\}$-complete and has a weak neighbor in A_{s}.

Proof. For suppose there is such a frame, wheel system, and vertex y, and choose them with s minimum (it is important here that we minimize over all choices of the frame, not just of the wheel system); say $\left(z, A_{0}\right), x_{0}, \ldots, x_{s}$ and y respectively. By $7.2 y$ is strongly x_{0}, \ldots, x_{s}-complete. By 6.15 , there exists r with $1 \leq r<s$, and a vertex v such that y is weakly non-adjacent to v and has no weak neighbor in A_{r}, and v is weakly adjacent to z, and has a weak neighbor in A_{r}, and a weak non-neighbor in X_{r}. Since x_{0}, \ldots, x_{s}, v is a wheel system, it follows from 7.2 that y is strongly non-adjacent to v. Then $\left(y, A_{0}\right)$ is a frame, and x_{0}, \ldots, x_{r} is a wheel system with respect to it. The vertex z is weakly $\left\{y, x_{0}, \ldots, x_{r}\right\}$-complete and has a neighbor in A_{r}^{\prime} (namely v), where A_{r}^{\prime} is the maximal weakly connected subset of $V(T)$ including A_{0} and containing no weak neighbor of y and no strongly X_{r}-complete vertex. But this contradicts the minimality of s. This proves 7.3.

Now we can prove the main result of this subsection.
7.4 Let $T \in \mathcal{T}_{9}$, admitting no balanced skew-partition, and let C be a hole in T of length ≥ 6 with origin z. Then there is no vertex of $T \backslash V(C)$ that is an original triad for (C, z).

Proof. Suppose that there is such a vertex, say y, and let it be weakly adjacent to $x_{0}, z, x_{1} \in V(C)$, where $x_{0}-z-x_{1}$ is a subpath of C. Let $A_{0}=V(C) \backslash\left\{z, x_{0}, x_{1}\right\}$. Since z is an origin for $C,\left(z, A_{0}\right)$ is a frame. By 7.3 applied to $\left(z, A_{0}\right)$ and x_{0}, x_{1}, it follows that y has no other weak neighbor in C. Choose t maximum so that there is a sequence x_{2}, \ldots, x_{t} with the following properties:

- for $2 \leq i \leq t$, there is a weakly connected subset A_{i-1} of $V(T)$ including A_{i-2}, containing a weak neighbor of x_{i}, no weak neighbor of z or y, and no strongly $\left\{x_{0}, \ldots, x_{i-1}\right\}$-complete vertex,
- for $1 \leq i \leq t, x_{i}$ is not strongly $\left\{x_{0}, \ldots, x_{i-1}\right\}$-complete, and
- x_{0}, \ldots, x_{t} are weakly $\{y, z\}$-complete.

Since T admits no balanced skew-partition, by 5.7 there is a path P from $\{z, y\}$ to A_{0}, disjoint from $\left\{x_{0}, \ldots, x_{t}\right\}$ and containing no strongly $\left\{x_{0}, \ldots, x_{t}\right\}$-complete vertex in its interior. Choose such a path of minimum length. From the symmetry between z, y we may assume its first vertex is y; say the path is $y-p_{1} \cdots-p_{k+1}$, where $p_{k+1} \in A_{0}$. From the minimality of the length of P it follows that z is strongly non-adjacent to all of p_{2}, \ldots, p_{k+1}. If z is weakly adjacent to p_{1} then we may set $x_{t+1}=p_{1}$, contrary to the maximality of t. So p_{1}, \ldots, p_{k+1} are all strongly non-adjacent to z. Hence $\left(z, A_{0}\right)$ is a frame, and x_{0}, \ldots, x_{t} is a wheel system with respect to it. The vertex y is weakly adjacent to all of z, x_{0}, \ldots, x_{t}, and there is a weakly connected subset of $V(T)$ including A_{0}, containing a weak neighbor of y, no weak neighbor of z, and no strongly $\left\{x_{0}, \ldots, x_{t}\right\}$-complete vertex. But this contradicts 7.3. This proves 7.4.

7.2 The end of a hole with a triad

In this subsection we prove that if a trigraph in \mathcal{T}_{9} contains a hole of length at least 6 and a vertex with three consecutive weak neighbors in the hole, then it admits a balanced skew-partition. By 7.4 we may assume that $T \in \mathcal{T}_{10}$.
7.5 Let $T \in \mathcal{T}_{10}$. Let C be a hole of length at least 6 with vertices $c_{1}, \ldots, c_{2 k}$ in order and let $y \in V(T) \backslash V(C)$ be weakly adjacent to c_{1}, c_{2}, c_{3}. Then $k=3$, the pair $c_{2} c_{5}$ is switchable, y is strongly complete to $\left\{c_{1}, c_{3}, c_{5}\right\}$ and both y and c_{2} are strongly anticomplete to $\left\{c_{4}, c_{6}\right\}$.

Proof. Let $C_{\text {odd }}=\left\{c_{2 i+1}: 0 \leq i<k\right\}$ and let $C_{\text {even }}=\left\{c_{2 i}: 1<i \leq k\right\}$. First we claim that c_{2} is strongly $C_{\text {even }}$-anticomplete. Clearly c_{2} is weakly $C_{\text {even }}$-anticomplete for C is a hole. Since there exists a subpath of C between c_{2} and $c_{2 i}$ of length $>2,2.1$ implies that $c_{2}, c_{2 i}$ is not a switchable pair. This proves that c_{2} is strongly $C_{\text {even }}$-anticomplete.

Now we show that y is strongly $C_{e v e n}$-anticomplete. Suppose it is not. Let $1<i \leq k$ be minimum such that y is weakly adjacent to $c_{2 i}$. Let $1 \leq j<i$ be maximum such that y is weakly adjacent to $c_{2 j+1}$. Since $y-c_{2 j+1^{-}} \ldots-c_{2 i-1}-c_{2 i}-y$ is not an odd hole, we deduce that $j=i-1$. But then $\{y\}$ is a hub for a wheel with $\operatorname{rim} C$, contrary to the fact that $T \in \mathcal{T}_{10}$. This proves that y is strongly $C_{\text {even-anticomplete. }}$

Next we show that both y and c_{2} are weakly $C_{o d d}$-complete. Suppose not. Let $0 \leq i<k$ be minimum such that $c_{2 i+1}$ is not weakly $\left\{c_{2}, y\right\}$-complete. Then $i>1$ for c_{3} is weakly $\left\{c_{2}, y\right\}$-complete, and $c_{2 i-1}$ is weakly $\left\{c_{2}, y\right\}$-complete. Let $c_{2 i}-\ldots-c_{m}$ be a minimal subpath of $C \backslash c_{2}$ such that both c_{2} and y have a weak neighbor in $\left\{c_{2 i}, c_{2 i+1}, \ldots, c_{m}\right\}$. Then c_{m} is weakly adjacent to one of c_{2}, y and some $x \in\left\{c_{2}, y\right\}$ is strongly anticomplete to $\left\{c_{2 i}, c_{2 i+1}, \ldots, c_{m-1}\right\}$. But then $C^{\prime}=x-c_{2 i-1}-c_{2 i}-\ldots c_{m}-x$ is a hole of length at least 6 with origin x. Let $\left\{x^{\prime}\right\}=\left\{c_{2}, y\right\} \backslash\{x\}$. Then x^{\prime} is weakly adjacent to x and $c_{2 i-1}$ and has a weak neighbor in $V\left(C^{\prime}\right) \backslash\left\{x, c_{2 i-1}\right\}$. We have already shown that x^{\prime} is strongly non-adjacent to $c_{2 i}$, so since $\left(C^{\prime},\left\{x^{\prime}\right\}\right)$ is not an odd wheel, x^{\prime} is weakly adjacent to c_{m}. But then x^{\prime} is an original triad for the hole C^{\prime}, contrary to the fact that $T \in \mathcal{T}_{10}$. This proves that both y and c_{2} are weakly $C_{o d d}$-complete. Since c_{2} belongs to at most one switchable pair and C is a hole, $k=3$ and $C_{\text {odd }}=\left\{c_{1}, c_{3}, c_{5}\right\}$.

Now it remains to show that y is strongly $C_{o d d}$-complete. y is strongly adjacent to c_{5} because $c_{2} c_{5}$ is a switchable pair, y is weakly adjacent to c_{5} and c_{5} belongs to most one switchable pair in T. If y is weakly non-adjacent to c_{3} then $y-c_{2}-c_{3}-c_{4}-c_{5}-y$ is an odd hole. So y is strongly adjacent to c_{3}, and by symmetry to c_{1}, and hence y is strongly $C_{o d d}$-complete. This completes the proof of 7.5 .
7.6 Let $T \in \mathcal{T}_{10}$. Let C be a hole of length at least 6 with vertices $c_{1}, \ldots, c_{2 k}$ in order and let $y \in V(T) \backslash V(C)$ be weakly adjacent to c_{1}, c_{2}, c_{3}. Then T admits a balanced skew-partition.

Proof. By $7.5 k=3$, the pair $c_{2} c_{5}$ is switchable, y is strongly complete to $\left\{c_{1}, c_{3}, c_{5}\right\}$ and both y and c_{2} are strongly anticomplete to $\left\{c_{4}, c_{6}\right\}$. So $c_{2} c_{5}$ is the unique switchable pair containing c_{2}. In particular, y is strongly adjacent to c_{2}.

Let Y be a maximal weakly anticonnected set including y such that $\left\{c_{1}, c_{2}, c_{3}, c_{5}\right\}$ is strongly Y-complete. By 7.5 applied to every member of Y, the set Y is strongly $\left\{c_{4}, c_{6}\right\}$-anticomplete. Let X be the set of strong common neighbors of Y. Suppose there exists a path P in T from c_{2} to c_{5} with $P^{*} \neq \emptyset$ and with no interior vertex in $Y \cup X$. Since c_{2} is weakly adjacent to c_{5}, it follows that either P has length 2 or it is odd. Since c_{2} and c_{5} are strongly Y-complete and no vertex in the interior of P is, it follows from 5.2 that P has length 2 or 3 . Let p, p^{\prime} be the neighbors in P of c_{5} and c_{2} respectively.
(1) P does not have length 2 .

If P has length 2, then $p=p^{\prime}$ is weakly (and therefore strongly) adjacent to both c_{2} and c_{5}, and hence $p \notin V(C)$. If p is weakly adjacent to both c_{1}, c_{3} then by 7.5 applied with $y=p, p$ is strongly $\left\{c_{1}, c_{2}, c_{3}, c_{5}\right\}$-complete, and p is not strongly Y-complete, so $Y \cup\{p\}$ contradicts the maximality of Y.

Both subpaths of C between c_{2} and c_{5} have odd length, so they each contains an edge, e_{1} and e_{2} respectively, with both ends weakly adjacent to p. Since $(C,\{p\})$ is not a wheel in T, C does not contain two disjoint edges with both ends weakly adjacent to p, so e_{1} and e_{2} share an end, and hence they are both contain c_{5}, and in particular p is weakly adjacent to c_{4} and c_{6}. By 7.5 applied to C and p with c_{5} in place of c_{2} and p in place of y, we deduce that p is strongly $\left\{c_{2}, c_{4}, c_{6}\right\}$-complete and strongly $\left\{c_{1}, c_{3}\right\}$-anticomplete. Let $y^{\prime} \in Y$ be a weak non-neighbor of p. Then $A=c_{3}-p-y^{\prime}-c_{4}-c_{2}-c_{5}-c_{3}$ is an antihole and $|V(A) \cap V(C)|>2$, contrary to theorem 15.7 of [2] applied to a realization of T in which C is a hole and A is an antihole. This proves (1).

(2) P does not have length 3 .

If $c_{2}-P-c_{5}$ has length 3 then $P=c_{2}-p^{\prime}-p-c_{5}$. Let W be an antipath joining p and p^{\prime} with interior in Y. Then $A=p^{\prime}-W-p-c_{2}-c_{5}-p^{\prime}$ is an antihole. The vertex c_{4} is strongly $V\left(W^{*}\right)$-anticomplete and is weakly non-adjacent to c_{2}. If c_{4} is weakly non-adjacent to p then $\left(A,\left\{c_{4}\right\}\right)$ is a wheel in \bar{T}, contrary to the fact that $T \in \mathcal{T}_{10}$. So p is strongly adjacent to c_{4}, and by symmetry p is strongly adjacent to c_{6}. By 7.5 applied to C and p with c_{5} in place of c_{2} and p in place of y, we deduce that p is strongly adjacent to c_{2}, contrary to the fact that P is a path in T. This proves (2).

It follows from (1) and (2) that no such path P exists, and so by $5.7 T$ admits a balanced skew-partition.

7.3 Hole and antihole

In this subsection we prove a useful corollary of 7.6. We start with a lemma.
7.7 Let $T \in \mathcal{T}_{11}$, and suppose C and D are a hole and an antihole of length ≥ 6 in T respectively. Then $|V(C) \cap V(D)| \leq 2$.

Proof. Let $c_{1}, \ldots, c_{2 k}$ be the vertices of C in order and $d_{1}, \ldots, d_{2 l}$ be the vertices of D in order. If there exists a realization of T in which C is a hole and D is an antihole, then the result follows from theorem 15.7 of [2]. So we may assume that either there exist two consecutive vertices of C that are also consecutive in D, or there exist two non-consecutive vertices of C that are non-consecutive in D.
(1) For all i, j with $1 \leq i<j \leq k, c_{2 i} c_{2 j} \in N(T)$ and $c_{2 i-1} c_{2 j-1} \in N(T)$.

This follows immediately from 2.1.
Suppose first that there exist two consecutive vertices of C that are also consecutive in D. In this case we may assume that $c_{1}=d_{1}$ and $c_{2}=d_{2}$. From (1) for all $c \in V(C) \backslash\left\{c_{1}, c_{2}\right\}, c$ is strongly anticomplete to at least one of c_{1}, c_{2}. On the other hand for all $d \in V(D) \backslash\left\{d_{1}, d_{2}, d_{3}, d_{2 l}\right\}, d$ is weakly $\left\{d_{1}, d_{2}\right\}$-complete. So

$$
V(C) \cap V(D) \subseteq\left\{d_{1}, d_{2}, d_{3}, d_{2 l}\right\} .
$$

Similarly

$$
V(C) \cap V(D) \subseteq\left\{c_{1}, c_{2}, c_{3}, c_{2 k}\right\}
$$

Note that by (1) $c_{1} c_{3}, c_{2} c_{2 k} \in N(T)$. If $|V(C) \cap V(D)| \geq 3$ then we may assume $\left\{c_{1}, c_{2}, c_{3}\right\} \subseteq$ $V(C) \cap V(D)$ and so $c_{3}=d_{2 l}$. But then the vertex d_{4} is is weakly adjacent to c_{1}, c_{2}, c_{3} contrary to the fact that $T \in \mathcal{T}_{11}$.

So we may assume that there exist two non-consecutive vertices of C that are non-consecutive in D. Let c_{1}, c_{j} be such vertices and we may assume $c_{1}=d_{1}$. Since $c_{1} c_{j} \in S(T)$ we deduce from (1) that $j=2 m$ where $2 \leq m \leq k-1$ and $c_{2 m}=d_{2 n}$ for some $2 \leq n \leq l-1$. Every vertex in $V(D) \backslash\left\{d_{1}, d_{2}, d_{2 l}, d_{2 n}, d_{2 n-1}, d_{2 n+1}\right\}$ is weakly adjacent to both c_{1} and $c_{2 m}$ and by 5.3 it is weakly adjacent to both ends of at least two edges of C, contrary to the fact that $T \in \mathcal{T}_{11}$. Since D has length at least 6 , we deduce that $l=3, n=2$. Similarly $k=3$ and $m=2$. Since $|V(C) \cap V(D)| \geq 3$, we may assume from the symmetry that $d_{2} \in V(C)$ and $d_{2}=c_{3}$. Since by (1) d_{6} is strongly adjacent to both $d_{2}=c_{3}$ and $d_{4}=c_{4}$, it follows that $d_{6} \notin V(C)$. Similarly $c_{5} \notin V(D)$. If d_{6} is weakly adjacent to c_{5}, then d_{6} has three consecutive weak neighbors in C, contrary to the fact that $T \in \mathcal{T}_{11}$. So we may assume that d_{6} is strongly non-adjacent to c_{5}, and then c_{5} has three consecutive weak non-neighbors in D, contrary to the fact that $T \in \mathcal{T}_{11}$. This proves 7.7.
7.8 Let $T \in \mathcal{T}_{11}$; then T does not contain both a hole of length ≥ 6 and an antihole of length ≥ 6.

Proof. Let C be a hole and D an antihole, both of length ≥ 6. Let $W=V(C) \cap V(D), A=V(C) \backslash W$, and $B=V(D) \backslash W$. Let W, A, B have cardinality w, a, b respectively. Let there be
p_{e} strong edges between A and W,
q_{e} strong edges between B and W,
r_{e} strong edges between A and B,
t_{e} strong edges with both ends in W,
p_{s} switchable pairs between A and W, q_{s} switchable pairs between B and W, r_{s} switchable pairs between A and B, t_{s} switchable pairs with both ends in W,
p_{n} strong non-edges between A and W, q_{n} strong non-edges between B and W, r_{n} strong non-edges between A and B, and t_{n} strong non-edges with both ends in W.

By 5.3, and since $T \in \mathcal{T}_{11}$, every vertex in B has at most $\frac{1}{2}(a+w)$ weak neighbors in C, and every vertex in A has at most $\frac{1}{2}(b+w)$ weak non-neighbors in D, so

$$
q_{e}+q_{s}+r_{e}+r_{s}+p_{s}+p_{n}+r_{n}+r_{s} \leq \frac{1}{2}(a+w) b+\frac{1}{2}(b+w) a .
$$

Also, every vertex in W has at most two strong neighbors in $A \cup W$ and at most two strong nonneighbors in $B \cup W$, so

$$
p_{e}+2 t_{e}+q_{n}+2 t_{n} \leq 2 w .
$$

Also, since by $7.7 w \leq 2$,

$$
2 t_{s} \leq w \leq 2 w
$$

Summing, we obtain

$$
p_{e}+p_{s}+p_{n}+q_{e}+q_{s}+q_{n}+r_{e}+2 r_{s}+r_{n}+2 t_{e}+2 t_{n}+2 t_{s} \leq a b+\frac{1}{2} b w+\frac{1}{2} a w+4 w .
$$

But

$$
p_{e}+p_{s}+p_{n}+q_{e}+q_{s}+q_{n}+r_{e}+r_{s}+r_{n}+2 t_{e}+2 t_{s}+2 t_{n}=a b+a w+b w+w(w-1),
$$

so

$$
\frac{1}{2} a w+\frac{1}{2} b w+w(w-1) \leq 4 w,
$$

that is,

$$
w(a+b+2 w-10) \leq 0 .
$$

Since $a+w, b+w \geq 6$, it follows that $w=0$, and so C, D are disjoint. Moreover, equality holds throughout this calculation, so every vertex in D is weakly adjacent to exactly half the vertices of C and weakly non-adjacent to exactly half of the vertices of C and vice versa. Consequently every vertex in D is strongly adjacent to exactly half the vertices of C and strongly non-adjacent to exactly half of the vertices of C and vice versa.

By 5.3, and since $T \in \mathcal{T}_{11}$, it follows that for each $v \in D$, its strong neighbors in C are pairwise non-adjacent in C. Let C have vertices c_{1}, \ldots, c_{m} in order, and let D have vertices d_{1}, \ldots, d_{n}. So for every vertex of D, its set of strong neighbors in $V(C)$ is either the set of all c_{i} with i even, or the set of all c_{i} with i odd, and the same with C, D exchanged. We may assume that c_{1} is strongly adjacent to d_{1}. Hence the strong edges between $\left\{c_{1}, c_{2}, c_{4}, c_{5}\right\}$ and $\left\{d_{1}, d_{2}, d_{4}, d_{5}\right\}$ are $c_{1} d_{1}, c_{1} d_{5}, c_{2} d_{2}, c_{2} d_{4}, c_{4} d_{2}, c_{4} d_{4}, c_{5} d_{1}, c_{5} d_{5}$; and so the subtrigraph $T \mid\left\{c_{1}, c_{2}, c_{4}, c_{5}, d_{1}, d_{2}, d_{4}, d_{5}\right\}$ is the double diamond, contrary to $T \in \mathcal{T}_{11}$. This proves 7.8.

8 The end

The objective of the remainder of the paper is to prove the following:
8.1 Let $T \in \mathcal{T}_{12}$; then either T or \bar{T} is bipartite, or T admits a balanced skew-partition.
8.2 Let $T \in \mathcal{T}_{12}$, admitting no balanced skew-partition. Let X, Y be disjoint weakly anticonnected subsets of $V(T)$, weakly complete to each other, and let $p_{1} \cdots-p_{n}$ be a path P of $T \backslash(X \cup Y)$, with $n \geq 2$, such that p_{1} is weakly X-complete and none of p_{2}, \ldots, p_{n} is strongly X-complete; and p_{n} is weakly Y-complete and none of p_{1}, \ldots, p_{n-1} is strongly Y-complete. Then there is no $z \in$ $V(T) \backslash\left(X \cup Y \cup\left\{p_{1}, \ldots, p_{n}\right\}\right)$, weakly complete to $X \cup Y$, and weakly anticomplete to p_{1}, p_{n}.

Proof. Suppose such z exists. Since T is monogamous, we may assume that z is strongly nonadjacent to p_{n}. Choose X maximal subject to being weakly anticonnected, weakly complete to $Y \cup\left\{p_{1}, z\right\}$ and such that none of p_{2}, \ldots, p_{n} is strongly X-complete.
(1) Y is strongly X-complete.

Suppose Y is not strongly X-complete. We claim that in this case $n>2$. The set $X \cup Y$ is now weakly anticonnected, and so if $n=2$ there exists an antipath of length >2 from p_{1} to p_{2} with interior in $X \cup Y$. This antipath can be completed through $p_{1}-z-p_{2}$ to an antihole of length >4, contrary to the fact that $T \in \mathcal{T}_{12}$. This proves that $n>2$.

Let G_{1} be a realization of T defined as follows:

- assign the value "edge" to all switchable pairs $x y$ such that $x \in X$ and $y \in Y$
- assign the value "edge" to all switchable pairs $x p_{1}$ such that $x \in X$
- assign the value "edge" to all switchable pairs $y p_{n}$ such that $y \in Y$
- assign the value "edge" to all switchable pairs $v z$ such that $v \in X \cup Y$
- assign the value "non-edge" to all remaining switchable pairs containing a vertex of $X \cup Y$
- assign the value "non-edge" to all switchable pairs $v z$ with $v \in V(P)$
- P is a path in G_{1}.

Then $G_{1} \in \mathcal{F}_{11}$, and p_{1} and p_{n} are respectively the unique $\left(G_{1}, X\right)$-complete and $\left(G_{1}, Y\right)$-complete vertices of the path P. It follows from theorems 2.6 and 2.9 of [2] applied to the sets X, Y, the path P and the vertex z in G_{1} that n is even.

Now let G_{2} be a realization of T obtained from G_{1} by changing to "non-edge" the value of all switchable pairs $x y$ with $x \in X$ and $y \in Y$. So $G_{2} \in \mathcal{F}_{11}$, and again p_{1} and p_{n} are respectively the unique $\left(G_{2}, X\right)$-complete and $\left(G_{2}, Y\right)$-complete vertices of the path P. This contradicts theorem 17.5 of [2] applied to the sets X, Y, the path P and the vertex z in G_{2}. This proves (1).
(2) There exists a path Q in T from z to p_{1}, with nonempty interior, so that none of its internal vertices is in X or is strongly X-complete.

Let U be the set of strong common neighbors of X and let $W=V(T) \backslash\{X \cup U\}$. Then by $5.7 W$ is weakly connected and if $|U|>1$ then every vertex of U has a weak neighbor in W. Since by (1) $Y \subseteq U$ and p_{1}, z both belong to $U \cup W$, if they are strongly non-adjacent the claim follows. If p_{1}, z is a switchable pair of T, then since T is monogamous both p_{1} and z belong to U, and again the claim follows. This proves (2).

Since no vertex of $P \backslash p_{1}$ is strongly X-complete, we may choose Q as in (2) so that if z has a weak neighbor in $\left\{p_{2}, \ldots, p_{n-1}\right\}$ then $V(Q) \subseteq\left\{z, p_{1}, \ldots, p_{n-1}\right\}$ and so that there exists a realization of T in which both P and Q are paths. Let G be a realization of T in which P and Q are paths and otherwise defined as follows:

- assign the value "edge" to all switchable pairs $x p_{1}$ such that $x \in X$
- assign the value "edge" to all switchable pairs $y p_{n}$ such that $y \in Y$
- assign the value "edge" to all switchable pairs $v z$ such that $v \in X \cup Y$
- assign the value "non-edge" to all remaining switchable pairs containing a vertex of $X \cup Y$
- assign values to all remaining switchable pairs arbitrarily.

Then $G \in \mathcal{F}_{11}$. In G the connected subset $V(Q \backslash z) \cup\left\{p_{1}, \ldots, p_{n}\right\}$ ($=F$ say) contains a (G, X)-complete vertex, a (G, Y)-complete vertex, and a $(G,\{z\})$-complete vertex. The only (G, X) complete vertex in F is p_{1}, and that is not (G, Y)-complete or $(G,\{z\})$-complete; so by theorem 24.4 of [2] some vertex in F is (G, Y)-complete and adjacent to z in G. If z has a neighbor in $\left\{p_{1}, \ldots, p_{n}\right\}$, then $V(Q) \subseteq\left\{z, p_{1}, \ldots, p_{n}\right\}$, and so p_{n} is the only vertex of F that is (G, Y)-complete; and it is not adjacent to z, a contradiction. So z has no neighbor in $\left\{p_{1}, \ldots, p_{n}\right\}$, and therefore only one vertex in F is adjacent to z, the neighbor of z in Q, say q, and q is (G, Y)-complete. In T it means that q is strongly Y-complete. Hence q is strongly non-adjacent to p_{1}, for otherwise we could add q to X, contrary to the maximality of X. Consequently Q has length >2. This contradicts theorem 24.3 of [2] applied to Q, X and any vertex $y \in Y$ in G. This proves 8.2.

We can now prove the following:
8.3 Let $T \in \mathcal{T}_{12}$, admitting no balanced skew-partition, and let C be a hole. If $z \in V(T) \backslash V(C)$ has two weak neighbors in C that are consecutive in C, then C has length 4 and z two strong neighbors in C that are not consecutive. In particular, T contains no antipath of length 4.

Proof. Let C be the hole with vertices p_{1}, \ldots, p_{n+2} in order, and assume some $z \in V(T) \backslash V(C)$ is weakly adjacent to p_{n+1}, p_{n+2}. By 8.2 , taking $X=\left\{p_{n+1}\right\}$ and $Y=\left\{p_{n+2}\right\}$, we deduce that z is strongly adjacent to at least one of p_{1}, p_{n}, say p_{1}. Since $T \in \mathcal{T}_{12}$ it follows that C has length 4 . Since $z p_{1} \in E(T)$, we may assume that $z p_{3}$ is a switchable pair, for otherwise the theorem holds. Since T is monogamous, $z p_{4}$ is a strong edge of T. Now applying 8.2 with $X=\left\{p_{1}\right\}$ and $Y=\left\{p_{4}\right\}$ we deduce that z is strongly adjacent to p_{2} and the claim follows. This proves 8.3.
8.4 Let $T \in \mathcal{T}_{12}$, admitting no balanced skew-partition. Let X_{1}, X_{2}, X_{3} be pairwise disjoint, nonempty, weakly anticonnected subsets of $V(T)$, strongly complete to each other. Let $F \subseteq V(T) \backslash\left(X_{1} \cup X_{2} \cup X_{3}\right)$
be weakly connected, so that for at least two values of $i \in\{1,2,3\}$, every member of X_{i} has a weak neighbor in F. Let G be a realization of T in which X_{1}, X_{2}, X_{3} are anticonnected and F is connected, and for at least two values of $i \in\{1,2,3\}$, every member of X_{i} has a neighbor in F. Then in G the set F contains a vertex complete to at least two of X_{1}, X_{2}, X_{3}.

Proof. This proof is identical to the proof of theorem 24.7 in [2], except 8.3 is used instead of theorem 24.6 of [2]. This proves 8.4.
8.5 Let $T \in \mathcal{T}_{12}$ and assume T contains a strong triangle. Then either \bar{T} is bipartite or T admits a balanced skew-partition.

Proof. Suppose not. T contains a strong triangle, and so we may choose disjoint nonempty weakly anticonnected sets X_{1}, \ldots, X_{k}, strongly complete to each other, with $k \geq 3$. Choose these with maximal union. Let $F=V(T) \backslash \bigcup_{i=1}^{k} X_{i}$.
(1) No vertex of F is strongly complete to two of $X_{1}, X_{2}, \ldots, X_{k}$.

Suppose $w \in F$ is strongly complete to two of $X_{1}, X_{2}, \ldots, X_{k}$. We may assume that w is strongly complete to X_{1}, \ldots, X_{i} say where $2 \leq i \leq k$, and not strongly complete to X_{i+1}, \ldots, X_{k}. Define

$$
X_{i+1}^{\prime}=X_{i+1} \cup \ldots \cup X_{k} \cup\{w\} ;
$$

then the sets $X_{1}, \ldots, X_{i}, X_{i+1}^{\prime}$ violate the optimality of the choice of X_{1}, \ldots, X_{k}. This proves (1).
Let G be a realization of T defined as follows:

- assign the value "non-edge" to all switchable pairs of T with both ends in X_{i} for $1 \leq i \leq k$
- assign the value "edge" to all switchable pairs of T with both ends in F
- for all $x \in X_{1} \cup X_{2} \cup \ldots \cup X_{k}$ such that x has a strong neighbor in F, assign the value "non-edge" to all switchable pairs $x f$ with $f \in F$
- if $x \in X_{1} \cup X_{2} \cup \ldots \cup X_{k}$ is weakly anticomplete to F, assign the value "edge" to the unique switchable pair between x and F
- assign values to all remaining switchable pairs arbitrarily.
(2) Either \bar{T} is bipartite or some vertex of F is complete in G to two of X_{1}, \ldots, X_{k}.

Let N be the set of all strongly X_{k}-complete vertices in T. If $X_{k} \cup N=V(T)$, then by $5.7 \bar{T}$ is bipartite and the statement holds. So we may assume that $X_{k} \cup N \neq V(T)$. By 5.7, the set $V(T) \backslash\left(X_{k} \cup N\right)$ is weakly connected and every vertex of N has a weak neighbor in it. It follows that F is weakly connected and all vertices of $X_{1} \cup X_{2}$ have a weak neighbor in it. In G it means that F is connected and every vertex of $X_{1} \cup X_{2}$ has a neighbor in F. By 8.4 some vertex $v \in F$ is complete in G to two of X_{1}, X_{2}, X_{k}. This proves (2).

By (2) there exists a vertex $v \in F$ that is complete in G to $X_{1} \cup X_{2}$, say. It follows from (1) that in T, v is weakly and not strongly complete to $X_{1} \cup X_{2}$. Since T is monogamous, v has a weak non-neighbor in at most one of X_{1}, X_{2}, and we may assume that v is strongly X_{2}-complete and has a weak non-neighbor $x \in X_{1}$. By the definition of G that means that x has no strong neighbor in F. Let N^{\prime} be the set of all strongly X_{2}-complete vertices. As before we may assume that $X_{2} \cup N^{\prime} \neq V(T)$. On the other hand $X_{2} \cup N^{\prime} \backslash\{x\}$ is not weakly anticonnected (since X_{2} is an anticomponent of it) and $V(T) \backslash\left(X_{2} \cup N^{\prime} \backslash\{x\}\right)$ not weakly connected (for it is a subset of $\{x\} \cup F \backslash\{v\}$ containing x and a vertex of $F \backslash\{v\}$), so by $5.7 T$ admits a balanced skew-partition. This proves 8.5.
8.5 completes the proof of the analogue of 8.1 in [2], for a Berge graph containing no strong triangle is bipartite. In the trigraph case, however, another step is required:
8.6 Let $T \in \mathcal{T}_{13}$; then either T or \bar{T} is bipartite, or T admits a balanced skew-partition.

Proof. We may assume that T admits no balanced skew-partition and is not bipartite, so T contains a weak triangle $\left\{x_{1}, x_{2}, x_{3}\right\}$, and by 8.5 and since T is monogamous, we may assume that $x_{1} x_{2} \in S(T)$ and $x_{1} x_{3}, x_{2} x_{3} \in E(T)$. Let X_{3} the set of all vertices of that are weakly complete to $\left\{x_{1}, x_{2}\right\}$.
(1) X_{3} is weakly anticonnected and strongly $\left\{x_{1}, x_{2}\right\}$-complete.

Since T is monogamous, every vertex in X_{3} is strongly adjacent to both x_{1} and x_{2}, and since $T \in \mathcal{T}_{13}$, no two vertices of T are strongly adjacent. This proves (1).
(2) Every path from x_{1} to x_{2} with nonempty interior in $V(T) \backslash X_{3}$ contains a strong common neighbor of X_{3} in its interior.

Let P be such a path and assume P^{*} contains no strongly X_{3}-complete vertex. From the definition of X_{3}, P does not have length 2 . Hence by $2.1 P$ is odd. By $5.2 P$ has length 3 . Let the vertices of P be $x_{1}-p_{1}-p_{2}-x_{2}$ in order. Let Q be an antipath joining p_{1} and p_{2} with interior in X_{3}. Then $p_{1}-Q-p_{2}-x_{1}-x_{2}-p_{1}$ is an antihole in T contrary to the fact that $T \in \mathcal{T}_{13}$. This proves (2).

Let N be the set of all strongly X_{3}-complete vertices. If $X_{3} \cup N=V(T)$, then by $5.7 \bar{T}$ is bipartite and the theorem holds. Now 5.7 implies that there is a path in T from x_{1} to x_{2} with nonempty interior in $V(T) \backslash\left(X_{3} \cup N\right)$, contrary to (2). This proves 8.6.

Now 8.1 follows from 8.5 and 8.6.

9 Acknowledgment

I would like to thank my Ph.D. adviser Paul Seymour, for many helpful discussions and insightful comments, and for extremely useful suggestions regarding the exposition in the current version of the paper. And, of course, for his support and guidance.

References

[1] C. Berge, "Some classes of perfect graphs" in Six Papers on Graph Theory (Indian Statistical Institute, Calcutta, 1963), 1-21.
[2] M. Chudnovsky, N. Robertson, P. Seymour and R. Thomas, "The strong perfect graph theorem", Annals of Mathematics, to appear.
[3] M. Chudnovsky, "Berge trigraphs and their applications", PhD thesis, Princeton University, 2003.
[4] V. Chvátal, "Star-cutsets and perfect graphs", J. Combinatorial Theory, Ser. B, 39 (1985), 189-199.
[5] V. Chvátal and N. Sbihi, "Bull-free Berge graphs are perfect", Graphs and Combinatorics, 3 (1987), 127-139.
[6] M. Conforti, G. Cornuéjols and K. Vušković, "Square-free perfect graphs", J. Combinatorial Theory, Ser. B, 90 (2004), 257-307.
[7] G. Cornuéjols and W.H. Cunningham, "Compositions for perfect graphs", Discrete Math. 55 (1985), 245-254.
[8] F. Roussel and P. Rubio, "About skew-partitions in minimal imperfect graphs", J. Combinatorial Theory, Ser. B 83 (2001), 171-190.

