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email: pierreaboulker@gmail.com

Maria Chudnovsky†

Columbia University, New York, NY 10027, USA
e-mail: mchudnov@columbia.edu

Paul Seymour‡

Princeton University, Princeton, NJ 08544, USA
e-mail: pds@math.princeton.edu

Nicolas Trotignon§

CNRS, LIP, ENS de Lyon, Lyon, France
e-mail: nicolas.trotignon@ens-lyon.fr

September 24, 2013

1 Introduction

All graphs in this paper are finite and simple. A graph G contains a graph
F if an induced subgraph of G is isomorphic to F . A graph G is F -free if
G does not contain F . For a set of graphs F , G is F-free if it is F -free for
every F ∈ F . An element of a graph is a vertex or an edge. When S is a set
of elements of G, we denote by G\S the graph obtained from G by deleting
all edges of S and all vertices of S.
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A wheel is a graph formed by a chordless cycle C and a vertex u not in C
that has at least three neighbors in C. Such a wheel is denoted by (u,C); u is
the center of the wheel and C the rim. Observe that K4 is a wheel (in some
papers on the same subject, K4 is not considered as a wheel). Little is known
about wheel-free graphs. Diot, Tavenas and Trotignon [4] proved that it is
NP-hard to recognize them. The only positive result is due to Chudnovsky
(see [1] for a proof). It states that every non-null wheel-free graph contains a
vertex whose neighborhood is made of disjoint cliques with no edges between
them. No bound is known on the chromatic number of wheel-free graphs.
No decomposition theorem is known for wheel-free graphs. It might be that
none exists, as suggested by the NP-hardness result. In [2], there is a short
survey about several subclasses of wheel-free graphs.

A clique cutset of a graph G is a clique K such that G\K is disconnected.
When the clique has size three, it is referred to as a K3-cutset. Our goal is
to prove the next two theorems.

Theorem 1.1 If G is a 3-connected wheel-free planar graph, then G either
is a line graph or G has a clique cutset.

Theorem 1.2 Every wheel-free planar graph is 3-colorable.

We now describe how to transform Theorem 1.1 into a complete descrip-
tion of 3-connected wheel-free planar graphs by adding several conditions.
When G is a line graph, say G = L(H), it is easy to add conditions to H
that ensure that G is really 3-connected, wheel-free and planar. Here are
the conditions:

• To ensure that G is 3-connected, add the condition that H has at least
four edges, and that no edge of H can be separated from another edge
of H by the removal of at most two edges of H. This condition is
equivalent to the 3-connectivity of G.

• To ensure that G is wheel-free, add the condition that H has maximum
degree at most three and is chordless. A graph is chordless if every
cycle in it is chordless. Chordless graphs have a simple structural
description (not needed here, see [2]). It is easy to check that a line
graph of a graph H is wheel-free if and only if H is chordless and has
maximum degree at most three.

In fact, it is easy to prove that if a line graph of a chordless graph H
of maximum degree at most three is 3-connected, then H is sparse,
where a graph is sparse when it does not contain two adjacent vertices
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Figure 1: Some wheel-free planar graphs

of degree at least three. Since sparse graphs are trivially chordless
(they form the basic class in the decomposition theorem of chordless
graphs that we do not need), in our structure theorem, “chordless”
can be replaced by “sparse”.

• To ensure that G is planar, add the condition that H is planar (because
as proved by Sedlaček [8], when H is of maximum degree at most three,
L(H) is planar if and only if H is planar).

In view of the preceding remarks, we say a graph is basic if it is the line
graph of a graph H such that either H is K2,3, or H can be obtained from a
three-connected cubic planar graph by subdividing every edge exactly once.
It follows that:

Theorem 1.3 The class of 3-connected wheel-free planar graphs is the class
of graphs that can be constructed as follows: start with basic graphs and
repeatedly glue previously constructed graphs along cliques of size three that
are also face boundaries.

The condition about the cutsets having size three and originating from face
boundaries is guaranteed by the 3-connectivity and the planarity of G.

We have no conjecture (and no theorem) about the structure of wheel-
free planar graphs in general (possibly not 3-connected). In Figure 1 several
wheel-free planar graphs of connectivity 2 are represented. We leave the
description of the most general wheel-free planar graph as an open question.

Section 2 gives the proof of Theorem 1.1, and in fact of a slight general-
ization that we need in Section 3. Theorem 1.2 is proved in Section 3.

Notation, definitions and preliminaries

We use notation and classical results from [3]. Let G be a graph, X ⊆ V (G)
and u ∈ V (G). We denote by G[X] the subgraph of G induced on X, by
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N(u) the set of neighbors of u, and by N(X) the set of vertices of V (G) \X
adjacent to at least one vertex of X; and we define NX(u) = N(u)∩X. We
sometimes write G\u instead of G\{u}. When e is an edge of G, we denote
by G/e the graph obtained from G by contracting e.

A path P is a graph with k ≥ 1 vertices that can be numbered p1, . . . , pk,
and with k − 1 edges pipi+1 for 1 ≤ i < k. The vertices p1 and pk are
the end-vertices of P , and {p2, . . . , pk−1} is the interior of P . We also say
that P is a p1pk-path. If P,Q are paths, disjoint except that they have one
end-vertex v in common, then their union is a path and we often denote it
by P -v-Q. If a, b are vertices of a path p, we denote the subpath of P with
end-vertices a, b by a-P -b.

A cycle C is a graph with k ≥ 3 vertices that can be numbered p1, . . . , pk,
and with k edges pipi+1 for 1 ≤ i ≤ k (where pk+1 = p1).

Let Q be a path or a cycle. The length of Q is the number of its edges.
An edge e = xy is a chord of Q if x, y ∈ V (Q), but xy is not an edge of Q.
A chord is short if its ends are joined by a two-edge path in Q.

By the Jordan curve theorem, a simple closed curve C of the plane
partitions its complement into a bounded open set and an unbounded open
set. They are respectively the interior and the exterior of C, and are denoted
respectively by int(C) and ext(C).

The claw is the graph with four vertices, one of degree three and the
three others of degree one. The vertex of degree three is the center of the
claw. The diamond is the graph obtained from K4 by removing an edge.
We need the following.

Theorem 1.4 (Harary and Holzmann) [5] A graph is the line graph of
a triangle-free graph if and only if it is {diamond, claw}-free.

2 Almost 3-connected wheel-free planar graphs

A graph G is almost 3-connected if it is 3-connected or if it can be obtained
from a 3-connected graph by subdividing one edge exactly once. For a two-
connected graph drawn in the plane, the boundary of every face is a cycle.
We need the following consequence:

Theorem 2.1 Let G be an almost 3-connected graph drawn in the plane,
and let x be a vertex of G such that all its neighbors have degree at least
three. Let R be the face of G \ {x} in which x is drawn. Then the boundary
of R is a cycle C, and C goes through every vertex of N(x).
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In this section, we prove the theorem below, which clearly implies The-
orem 1.1. We prove the stronger statement below because we need it in the
proof of Theorem 1.2.

Theorem 2.2 If a graph G is an almost 3-connected wheel-free planar graph
with no clique cutset, then G is the line graph of a chordless graph of maxi-
mum degree three.

proof — The proof is by contradiction, so suppose that G is an almost
3-connected wheel-free planar graph that has no clique cutset and that is
not the line graph of a chordless graph of maximum degree three.

(1) Let {a, b, c} be a clique in G, and let P be a chordless path of G \ {b, c}
with one end a. Then at least one of b, c has no neighbor in V (P ) \ {a}.
Suppose b, c both have neighbors in V (P )\{a}, and P ′ be a minimal subpath
of P , such that a ∈ V (P ′), and both b and c have neighbors in V (P ′) \ {a}.
We may assume that P ′ is from a to x, x is adjacent to b, and b has no
neighbor in V (P ′)\{a, x}. Then a-P ′-x-b-a is an induced cycle, say C. Now
since c is adjacent to a and b, and has a neighbor in V (P ′) \ {a}, it follows
that (c, C) is a wheel, a contradiction. This proves (1).

(2) G is diamond-free.

Suppose that {a, x, b, y} induces a diamond of G, and xy /∈ E(G). Since
{a, b} is not a cutset of G, there exists a chordless xy-path P in G \ {a, b},
contrary to 1. This proves (2).

A vertex e of G is a corner if e has degree two, and there exist four
vertices a, b, c, d such that E(G[{a, b, c, d, e}]) = {ab, ac, bc, cd, de, eb}.
(3) No vertex of G is a corner.

Suppose that e ∈ V (G) is a corner and let a, b, c, d be four vertices as in the
definition. Since {b, c} is not a cutset of G, there exists a chordless ad-path
P in G \ {b, c}. But now the path a-P -d-e contradicts (1). This proves (3).

(4) G contains a claw.

Otherwise, by (2) and Theorem 1.4, G is a line graph, say G = L(H). If
H contains a cycle with a chord or a vertex of degree at least four, then
obviously G contains a wheel. Therefore, H is chordless and of maximum
degree at most three, a contradiction. This proves (4).
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The rest of the proof is in two steps. We first prove the existence of a
special cutset, called an “I-cutset” (defined below). Then we use the I-cutset
to obtain a contradiction.

Let {u, x, y} be a cutset of G. A component of G \ {u, x, y} is said
to be degenerate if it has only one vertex, or it has exactly two vertices
a, b and G[{u, x, y, a, b}] has the following edge-set: {xy, ax, ay, ab, bu}, and
nondegenerate otherwise.

A cutset {u, x, y} of G is an I-cutset if G[{u, x, y}] induces at least one
edge and G \ {u, x, y} has at least two connected components that are non-
degenerate.

(5) G admits an I-cutset.

Fix a drawing of G is the plane. By (4), G contains a claw. Let u be the
center of a claw. Let u′1, u2, . . . , uk (k ≥ 3) be the neighbors of u, in cyclic
order around u, where u2, . . . , uk have degree at least three. If u′1 has degree
two, let u1 be its neighbor different from u, and otherwise let u1 = u′1.

Deleting u, and also deleting u′1 if u′1 has degree two, yields a two-
connected graph, drawn in the plane, and therefore the face R of this drawing
in which u is drawn is bounded by a cycle C. Consequently u1, u2, . . . , uk all
belong to C, and are in order in C. For i = 1, . . . , k, let Suiui+1 (subscripts
are taken modulo k) be the unique uiui+1-path included in C that contains
none of u1, . . . , uk except ui and ui+1.

Assume that xy is a chord of C. Vertices x and y edge-wise partition
C into two xy-paths, say P ′ and P ′′. Since R is a face of G \ {u} or of
G\{u, u′1}, it follows that {u, x, y} is a cutset of G that separates the interior
of P ′ from the interior of P ′′. If xy is not a short chord, then both these
interiors contain at least two vertices and therefore {u, x, y} is an I-cutset
of G. So we may assume that xy is short. If x, y both belong to Suiui+1 for
some i, then {x, y} is a clique-cutset of G, a contradiction. Thus we may
assume that for every chord xy of C, there exists i ∈ {1, . . . , k} such that
x ∈ Sui−1ui , y ∈ Suiui+1 and both xui and yui are edges.

Suppose first that we can choose u with at least three neighbors of degree
at least three. Since G is wheel-free, C must have chords. Let xy be a chord,
and choose i ∈ {1, . . . , k} such that xui and yui are edges of C. Suppose that
we cannot choose xy and i such that ui is adjacent to u. Consequently i = 1,
and u′1 has degree two; moreover, the cycle obtained from C by replacing
the edges xu1 and u1y by xy is induced. Since in this case k ≥ 4, it follows
that u has at least three neighbors in this cycle and so G contains a wheel,
a contradiction. We can therefore choose xy and i such that ui is adjacent
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to u.
It follows that ui+1, ui−1 are not consecutive in C, since u is the center

of a claw. We claim that there are no edges between Suiui+1 \ {ui} and
Sui−1ui \ {ui}, except xy. For suppose such an edge exists, say ab. Since
ui+1, ui−1 are not consecutive in C, it follows that ab is a chord of C. Since
every chord of C is short, it follows that {a, b} = {ui+1, ui−1}. But now
{u, ui+1, ui−1} is a clique cutset of G, a contradiction. So

(ui, x-y-Suiui+1-ui+1-u-ui−1-Sui−1ui-x)

is a wheel of G, a contradiction.
Thus we may assume that such a choice of u is impossible; and so every

center of a claw in G has degree three and is adjacent to the (unique) vertex
of degree 2. In particular, k = 3 and u′1 has degree two.

Let x, y be the neighbors of u2 in Su1u2 , Su2u3 respectively. Note that
possibly x = u1. Observe that, since u is the center of a claw, y 6= u3. Since
every center of a claw is adjacent to u′1, it follows that u2 is not the center
of a claw and thus xy is an edge. Now,

x-y-Su2u3-u3-u-u′1-u1-Su1u2-x

must admit a chord, for otherwise u2 is the center of a wheel of G. Hence
u1u3 is an edge. Let z be the neighbor of u3 in Su2u3 . Since u3 is not the
center of claw, u1z is an edge and thus u′1 is a corner, a contradiction to (3).
This proves (5).

(6) Let {u, x, y} be an I-cutset of G where xy is an edge and let C be a
connected component of G \ {u, x, y} with |V (C)| > 1. Then there exist
v ∈ {x, y} and a path P of G[C ∪{u, x, y}] from u to v, such that the vertex
of {x, y} \ {v} has no neighbor in V (P ) \ {v}.

Since G does not admit a clique cutset, it follows that u is non-adjacent
to at least one of x, y. If u is adjacent to exactly one vertex among x and
y, then the claim holds. So we may assume that u is adjacent to neither x
nor y.

Since G is {diamond, K4}-free, at most one vertex of G is adjacent to
both x and y. Let a be such a vertex, if it exists. Let K = {x, y, a} if a
exists, and let K = {x, y} otherwise.

Since K is not a clique cutset in G, we deduce that u has a neighbor in
every component of C \ K. Suppose first that there is a component C ′ of
C \K containing a neighbor of one of x, y. Let P be a path with interior in
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C ′, one of whose ends is u, and the other one is in x, y, and subject to that
as short as possible. Then only one of x, y has a neighbor in V (P ) \ {x, y},
and (6) holds. So we may assume that no such component C ′ exists, and
thus neither of x, y has neighbors in V (C) \K.

Let L = {a, u} if a exists, and otherwise let L = {u}. Then L is a cutset
in G separating C \ L from x, y. Since G is almost 3-connected, it follows
that L = {a, u}, and C\L consists of a unique vertex of degree two, contrary
to the fact that {u, x, y} is an I-cutset. This proves (6).

For every I-cutset {u, x, y}, some nondegenerate component C1 of G \
{u, x, y} has no vertex with degree two in G; choose an I-cutset {u, x, y}
and C1 such that |V (C1)| is minimum. We refer to this property as the
minimality of C1. Put G1 = G[C1 ∪ {u, x, y}], and G2 = G \ C1. Assume
without loss of generality that xy is an edge, and let C2 6= C1 be another
nondegenerate component.

From (6) and the symmetry between x, y, we may assume without loss
of generality that there is a chordless path Q of G2 from u to x such that
y has no neighbor in V (Q) \ {x}, and in particular u, y are non-adjacent.
Also, since u, y both have neighbors in C2, there is a chordless path R of G2

between u, y not containing x. Since u, y both have neighbors in C1, there is
a chordless path P of G1 between u, y not containing x. Consequently the
union of P,Q and the edge xy is a cycle S. Let D be the disc bounded by
S.

Suppose that some edge of G1 incident with x is in the interior of D, and
some other such edge is in the exterior of D. By adding these two edges to
an appropriate path within G|C1, we obtain a cycle S0 drawn in the plane,
such that the path formed by the union of xy and P crosses it exacly once;
and so one of y, u is in the interior of the disc bounded by S0, and the other
in the exterior. But this is impossible, because y, u are also joined by the
path R, which is disjoint from V (S0). We deduce that we may arrange the
drawing such that every edge of G1 incident with x belongs to the interior of
D. In addition we may arrange that the edge xy is incident with the infinite
face.

Subject to this condition (and from now on with the drawing fixed), let
us choose P such that D is minimum. Since u, x, y ∈ V (S), every component
of G\V (S) has vertex set either a subset of C1 or disjoint from C1. Suppose
that some vertex c of C1 is drawn in the interior of D, and let K be the
component of G \ V (S) containing it. From the choice of P , it follows that
there do not exist two non-consecutive vertices of P both with neighbors
in K; and since |N(K)| ≥ 3, and N(K) ⊆ V (P ) ∪ {x}, we deduce that
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|N(K)| = 3, and N(K) = {x, a, b} say, where a, b are consecutive vertices of
P . From the minimality of C1, {x, a, b} is not an I-cutset, and so |V (K)| = 1;
and therefore c has degree three, with neighbors x, a, b. But then c has three
neighbors in S, and so G contains a wheel, a contradiction.

Thus no vertex in C1 is drawn in the interior of D. Every neighbor of x
in C1 therefore belongs to P . Since P ∪R is a chordless cycle, it follows that
x has at most two neighbors in P (counting y), and so only one neighbor in
C1. Let x1 be the unique neighbor of x in C1.

Since |V (C1)| ≥ 2, there is a vertex x2 different from x1 in C1, and since
G is almost three-connected, there are two paths of G, from x2 to u, y respec-
tively, vertex-disjoint except for x2, and not containing x1. Consequently
both these paths are paths of G1, and so there is a path of G1 between u, y,
containing neither of x, x1. We may therefore choose a chordless path P ′

of G1 between u, y, containing neither of x, x1. It follows that the union of
P ′, Q and the edge xy is a chordless cycle S′ say, bounding a disc D′ say;
choose P ′ such that D′ is minimal. Since xy is incident with the infinite face,
it follows that x1 belongs to the interior of D′. Let Z be the set of vertices
in C1 \{x1} that are drawn in the interior of D′. We claim that every vertex
in Z has degree three, and is adjacent to x1 and to two consecutive vertices
of P ′. For let c ∈ X, and let K be the component of G \ (V (S′) ∪ {x1})
that contains c. From the choice of P ′, no two non-consecutive vertices of
P ′ have neighbors in K, and so as before, N(K) = {a, b, x1}, where a, b are
consecutive vertices of P ′, and |V (K)| = 1. It follows that every vertex in
Z has degree three and is adjacent to x1 and to two consecutive vertices of
P ′.

Let x1 have t neighbors in P ′. Thus x1 has at least t+1 neighbors in the
chordless cycle S′, and consequently t ≤ 1 since G does not contain a wheel.
The degree of x1 equals |Z| + t + 1, and since x1 has degree at least three
and t ≤ 1, we deduce that Z 6= ∅, and either t = 1, or t = 0 and |Z| > 1.
Choose z ∈ Z, and let z be adjacent to a, b, x1, where u, a, b, y are in order
in P ′. If x1 has a neighbor in P ′ between u and a, choose such a neighbor
as close to a along P ′ as possible, say v; and then x1 has three neighbors in
the chordless cycle formed by the union of x1v, the subpath of P ′ between
v and y, and the edge xy. On the other hand, if x1 has a neighbor in P ′

between b and y, choose such a neighbor as close to b along P ′ as possible,
say v; and then x1 has three neighbors in the chordless cycle formed by the
union of x1v, the subpath of P ′ between v and u, and the path Q. Thus x1
has no neighbor in P ′, and so t = 0 and |Z| ≥ 2. Let z′ ∈ Z \ {z}, adjacent
to x1, a

′, b′ say, where a′, b′ are consecutive vertices of P ′, and u, a′, b′, y are
in order on P ′. From planarity, {a, b} 6= {a′, b′}, and so we may assume that
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u, a, a′, y are in order on P ′. But then z′ has three neighbors in the chordless
cycle formed by the path y-x-x1-z-b and the subpath of P ′ between b and y,
a contradiction. 2

3 Coloring wheel-free planar graphs

A coloring of G is a function π : V (G) → C such that no two adjacent
vertices receive the same color c ∈ C. If C = {1, 2, . . . , k}, we say that π is
a k-coloring of G. An edge-coloring of G is a function π : E(G) → C such
that no two adjacent edges receive the same color c ∈ C. If C = {1, 2, . . . , k},
we say that π is a k-edge-coloring of G.

Observe that an edge-coloring of a graph H is also a coloring of L(H).
It is proved in [7] that for all ∆ ≥ 3 and all chordless graphs G of maximum
degree ∆, G is ∆-edge-colorable (for ∆ = 3, a simpler proof is given in [6]).
Unfortunately, this result is not enough for our purpose and we reprove it
in a slightly more general form. A graph is almost chordless if at most one
of its edges is the chord of a cycle.

Theorem 3.1 If G is an almost chordless graph with maximum degree
three, then G is 3-edge-colorable.

proof — Let G be a counter-example with a minimum number of edges.
Let X ⊆ V (G) be the set of vertices of degree three and Y = V (G) \X the
set of vertices of degree at most two.

(1) Y is a stable set.

For suppose that there exists an edge uv such that u and v belongs to Y .
From the minimality of G there exists a 3-edge-coloring of G \ uv. Since
u, v ∈ Y , it is easy to extend the 3-edge-coloring of G \ uv to a 3-edge-
coloring of G, a contradiction. This proves (1).

(2) G is 2-connected.

Otherwise G has a cut-vertex v, so V (G)\{v} partitions into two nonempty
sets of vertices C1 and C2 with no edges between them. A 3-edge-coloring of
G can be obtained easily from 3-edge-colorings ofG[C1∪{v}] andG[C2∪{v}].
This proves (2).

(3) If e, f are disjoint edges of G, then G \ {e, f} is connected.
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Suppose that G \ {u1u2, v1v2} is not connected; then V (G) \ {u1u2, v1v2}
partitions into two nonempty sets of vertices C1 and C2 with no edges be-
tween them. By 2 we may assume that {u1, v1} ⊆ C1 and {u2, v2} ⊆ C2.
For i = 1, 2, let Gi be the graph obtained from G[Ci] by adding a vertex mi

adjacent to both ui and vi. If G1 contains a cycle C with a chord ab, then
ab is a chord of a cycle of G (this is clear when C does not contain m1, and
when C contain m1, the cycle is obtained by replacing m1 by a u2v2-path
included in C2 that exists by (2)). It follows that G1 and symmetrically G2

are almost chordless. Moreover they both clearly have maximum degree at
most three and, by (1), both C1 and C2 contain vertices of degree at least
three, so G1 and G2 have fewer edges then G. Therefore G1 and G2 admit
a 3-edge-coloring.

Let π1 and π2 be 3-edge-colorings of respectively G1 and G2. We may
assume without loss of generality that π1(u1m1) = π2(u2m2) = 1 and
π1(v1m1) = π2(v2m2) = 2. Now, the following coloring π is a 3-edge-coloring
of G: π(u1v1) = 1, π(u2v2) = 2, π(e) = π1(e) if e ∈ E(G1) and π(e) = π2(e)
if e ∈ E(G2). This proves (3).

(4) G[X] has at most one edge, and if it has one, it is a chord of a cycle
of G.

Suppose that xy is an edge of G[X] such that G \ xy is not 2-connected.
Then, there exists a vertex w such that G \ {uv,w} is disconnected. Let Cu

and Cv be the two components of G \ {uv,w}, where u ∈ Cu and v ∈ Cv.
Since w is of degree at most three, w has a unique neighbor w′ in one of
Cu, Cv, say in Cu. If w′ = u, then u is a cutvertex of G (because |Cu| > 1
since u has degree three), a contradiction to (2). So w′ 6= u and hence
uv,ww′ are disjoint, a contradiction to (3).

Therefore, for every edge xy of G[X], G \ xy is 2-connected. So, if such
an edge exists, by Menger’s theorem there exists a cycle C going through
both x and y in G \ xy, and thus xy is a chord of C. Since G is almost
chordless, there is at most one such edge. This proves (4).

If G is chordless, then by (1) and (4), (X,Y ) forms a bipartition of G,
so by a classical theorem of Kőnig, G is 3-edge-colorable, a contradiction.
So let xy be a chord of a cycle of G. Let x′ and x′′ be the two neighbors of
x distinct from y and let y′ and y′′ be the two neighbors of y distinct from
x. By (4), x′, x′′, y′ and y′′ are all of degree 2 and by (1), they induce a
stable set. If {x′, x′′} = {y′, y′′}, then G is the diamond and thus is 3-edge-
colorable. If |{x′, x′′} ∩ {y′, y′′}| = 1, say x′ = y′ and x′′ 6= y′′, then xx′′, yy′′
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are disjoint and their deletion disconnects G, a contradiction to (3). Hence
x′, x′′, y′ and y′′ are pairwise distinct.

Let x′1 (resp. x′′1, y′1, y
′′
1) be the unique neighbor of x′ (resp. x′′, y′1, y

′′
1)

distinct from x (resp. y). Let G′ be the graph obtained from G by deleting
the edge xy and contracting edges xx′, xx′′, yy′ and yy′′. Since G′ has
maximum degree at most three and is bipartite by (1) and (4), it follows
that G′ has a 3-edge-coloring π′ by Kőnig’s theorem.

Assume without loss of generality that π′(xx′1) = 1, π′(xx′′1) = 2,
π′(yy′1) = a and π′(yy′′1) = b where {a, b} ⊆ {1, 2, 3}. Since {a, b}∩{1, 2} 6= ∅,
we may assume without loss of generality that a = 1, so b 6= 1. Let us
now extend this coloring to a 3-edge-coloring π of G. For any edge e of G
such that its extremities are not both in {x, y, x′, x′′, y′, y′′, x′1, x′′1, y′1, y′′1}, set
π(e) = π′(e). Set π′(x′x′1) = 1, π′(x′′x′′1) = 2, π′(y′y′1) = 1 and π′(y′′y′′1) = b.
Now we can set π(xx′) = 2, π(xx′′) = 1, π(yy′) = 2, π(yy′′) = 1, π(yy′′) = 1
and π(xy) = 3. So π is a 3-edge-coloring of G. 2

Note that in the next proof, we do not use planarity, except when we
apply Theorem 2.2.

Proof of Theorem 1.2
We argue by induction on |V (G)|. Suppose first that G admits a clique

cutset K. Let C1 be the vertex set of a component of G \ K and C2 =
V (G) \ (K ∪ C1). By induction G[C1 ∪ K] and G[C2 ∪ K] are both 3-
colorable and thus G is 3-colorable. So we may assume that G does not
admit clique cutsets. If G has a vertex u of degree two, then we can 3-color
G \ {u} by induction and extend the coloring to a 3-coloring of G. So we
may assume that every vertex of G has degree at least three.

Assume now that G is 3-connected. By Theorem 2.2, there exists a
chordless graph H of maximum degree three such that G = L(H). Hence,
by Theorem 3.1, H is 3-edge-colorable and thus G is 3-colorable. So we may
assume that the connectivity of G is two.

Let {a, b} ⊆ V (G) be such that G \ {a, b} is disconnected. We choose
{a, b} to minimize one of the components of G \ {a, b}, and let C be the
vertex set of this component. If |C| = 1, then the vertex in C is of degree
two in G, a contradiction. So |C| ≥ 2. Let G′C be the graph obtained
from G[C ∪ {a, b}] by adding the edge ab (that did not exist since G has
no clique cutset). Let us prove that G′C is 3-connected. Since |C| ≥ 2 and
G′C therefore has at least four vertices, we may assume by contradiction
that G′C admits a 2-cutset {x, y}. Let C1, . . . , Ck (k ≥ 2) be the vertex sets
of the components of G′C \ {x, y}. Since ab is an edge of G′C , a and b are
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included in G′C [Ci ∪ {x, y}] for some i ≤ k, say i = 2. Hence {x, y} is a
cutset of G and C1 is a component of G \ {x, y} that is a proper subset of
C, a contradiction to the minimality of C. So G′C is 3-connected. (But it
might not be wheel-free.)

Let GC be the graph obtained from G′C by subdividing ab once, and let
m be the vertex of degree two of GC . Since G′C is 3-connected, GC is almost
3-connected. Suppose that GC admits a wheel (u,R). Since G is wheel-free,
m must be a vertex of (u,R). Since m is of degree two, m is in R, and so
a-m-b is a subpath of R. Since G is 2-connected, there exists a chordless
ab-path P in G\C. Hence by replacing a-m-b by P , we obtain a wheel in G,
a contradiction. Therefore GC is an almost 3-connected wheel-free planar
graph.

By Theorem 2.2, there exists a chordless graph H of maximum degree
three such that L(H) = GC . We are now going to prove there exist two
ways to 3-edge-color H, one giving the same color to a and b (that are edges
of H), and the other giving distinct colors to a and b. This implies that
there exist two ways to 3-color G[C ∪ {a, b}], one giving the same color to a
and b and the other giving distinct colors to a and b. Since by the inductive
hypothesis there exists a 3-coloring of G \ C, it follows that this 3-coloring
can be extended to a 3-coloring of G.

We first prove that there exists a 3-edge-coloring π of H such that π(a) 6=
π(b). Observe that both ends of m are of degree two in H. Hence, H/m is
also a chordless graph with maximum degree at most three. Therefore there
exists a 3-edge-coloring π of H/m and clearly π statisfies π(a) 6= π(b). It is
easy to extend π to a 3-edge-coloring of H by giving a color distinct from a
and b to m.

Let us now prove that there is a 3-edge-coloring of H such that π(a) =
π(b). Let m = mamb, a = maa1 and b = mbb1. Since L(H) = GC is almost
3-connected, and H has maximum degree three, it follows that a1, b1 are
non-adjacent in H. Let H ′ be the graph obtained from H by deleting the
vertices ma and mb and adding the edge a1b1. If an edge xy distinct from
a1b1 is the chord of a cycle C, then since it is not a chord in H, C must
contain a1b1. Then by replacing a1b1 by a1-ma-mb-b1, we deduce that xy is
also the chord of a cycle in H, a contradiction. Hence H ′ is almost chordless
and thus, by Theorem 3.1, H ′ admits a 3-edge-coloring π′. Assume that
π′(a1b1) = 1. Then setting π(a1ma) = π(b1mb) = 1 and π(mamb) = 2, we
obtain a 3-edge-coloring of H satisfying π(a1ma) = π(b1mb). This completes
the proof of Theorem 1.2. 2
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elimination orderings for hereditary graph classes”, manuscript, 2013.
arXiv:1205.2535.
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