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Abstract

Chudnovsky and Seymour’s structure theorem for claw-free graphs has led to a
multitude of recent results that exploit two structural operations: compositions of
strips and thickenings. In this paper we consider the latter, proving that every claw-
free graph has a unique optimal antithickening, where our definition of optimal is
chosen carefully to respect the structural foundation of the graph. Furthermore, we
give an algorithm to find the optimal antithickening in O(m2) time. For the sake of
both completeness and ease of proof, we prove stronger results in the more general
setting of trigraphs.
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1 Claw-free and quasi-line graphs and trigraphs

The structural characterization of claw-free graphs [7] and quasi-line graphs [5] has led to
a recent explosion of results of the same general type: Take some statement A that we
know to hold for line graphs and circular interval graphs. Do we know that A holds for
quasi-line graphs? What about claw-free graphs? And if A guarantees the existence of a
certain combinatorial object (e.g. a d3

2
ω(G)e-colouring of a quasi-line graph G [4]), how

efficiently can we find such an object?
For quasi-line graphs, the structure theorem essentially tells us that all quasi-line graphs

can be built in the following way:

i) Take a circular interval graph or a composition of linear interval strips, which is
constructed by “replacing” every edge of a multigraph with a linear interval graph
(in the same way that we would replace every edge with a vertex when constructing
a line graph).

ii) Take a matching such that removing a submatching does not change the fact that
the graph is quasi-line, and expand the endpoints of each edge of the matching into
a homogeneous pair of cliques.

For claw-free graphs the situation is more complicated, but at its heart very similar (at
least when α ≥ 4).

The standard (and seemingly almost universal) proof method for quasi-line graphs can
be roughly described as follows. First, prove that a minimum counterexample contains
no nonlinear homogeneous pair of cliques. Second, note that since the statement holds
for circular interval graphs, the structure theorem for quasi-line graphs [5] tells us that a
minimum counterexample must be a composition of linear interval strips. Third, find a
linear interval strip decomposition of a supposed minimum counterexample and, using line
graphs as a base case, apply induction on the size of the graph. Again, for claw-free graphs
the approach is more complicated but fundamentally the same.

In the past few years, this approach has yielded results that include, among others,

1. Any quasi-line graph with chromatic number at least k contains Kk as a minor (Had-
wiger’s conjecture holds for quasi-line graphs) [2].

2. We can find a maximum-weight independent set in a quasi-line graph in O(n3) time
[11].

3. The facet-defining inequalities of the stable set polytope of a quasi-line graph fall into
several well-understood categories [6, 9].

4. The problem Minimum Dominating Set is fixed-parameter tractable for quasi-line
graphs [13].

5. Any quasi-line graph with chromatic number at least k contains a vertex v for which
d1

2
(d(v) + 2 +ω(G[N(v)])e ≥ k (the local strengthening of Reed’s conjecture holds for

quasi-line graphs) [3, 14].

6. Any quasi-line graph can be coloured in polynomial time using at most χf + 3
√
χf

colours [15].
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Statements 2, and 4, as well as weakenings of the other statements, are known to hold for
claw-free graphs [2, 12, 14, 15].

Any algorithmic application of this approach requires the ability to do two things effi-
ciently: find and reduce nonlinear homogeneous pairs of cliques, and find a linear interval
strip decomposition of any composition of linear interval strips. In this paper we concern
ourselves with the first issue. The fact that we can do this in polynomial time was first
noted independently by King and Reed [16] and Oriolo, Pietropaoli, and Stauffer [18]. In
this paper we improve upon these results by giving a faster algorithm, in the more general
setting of trigraphs, and proving that there is a unique optimal reduction. As it turns
out, we need to consider trigraphs in order to sensibly define and prove the uniqueness
of optimal antithickenings. Faenza, Oriolo, and Snels [10] independently proved a similar
result in the setting of graphs using a multi-step reduction, without considering optimality
or uniqueness. One consequence of our one-step reduction is that the running time of the
algorithmic results in Corollaries 21 and 22 of [10] can easily be improved by a factor of m.

We now state the main result of the paper, while deferring formal definitions until the
end of this section. We also state a corollary that some readers may find more digestible
and useful. As usual, m and n denote the number of edges and vertices in a graph (or
trigraph, in which case m is the number of adjacent unordered vertex pairs) respectively.

Theorem 1. Let G be a quasi-line trigraph that is not cobipartite, or a claw-free trigraph
with α(G) ≥ 3. Then G has a unique optimal antithickening, and we can find it in O(m2)
time.

Corollary 2. Let G be a quasi-line graph that is not cobipartite, or a claw-free trigraph
with α(G) ≥ 3. Then in O(m2) time we can find a set of disjoint homogeneous pairs of
cliques {(Ai, Bi)}ki=1 with the following property: If we construct a graph G′ from G by
contracting each (Ai, Bi) down to an edge aibi and removing any subset of these new edges,
then G′ is a circular interval graph or a composition of linear interval strips.

Cobipartite graphs are the degenerate subclass of quasi-line graphs in the same sense
that graphs with α ≤ 2 are the degenerate subclass of claw-free graphs. The fundamental
reason for this is the fact that these degenerate graph classes are closed under the join
operation.

To close this section, we give definitions of trigraphs, quasi-line and claw-free trigraphs,
and homogeneous pairs of strong cliques. In the next section, we define three useful types of
homogeneous pairs of cliques, and analyze how they can intersect one another in a claw-free
trigraph. In Section 3 we define thickenings, antithickenings, and optimal antithickenings,
then prove that a non-degenerate claw-free trigraph has a unique optimal antithickening,
and that we can find it efficiently.

1.1 Trigraphs and homogeneous pairs of strong cliques

Trigraphs are more general objects than graphs, and essentially differ from graphs by incor-
porating the possibility of two vertices being “semiadjacent”. They were first introduced in
the first author’s Ph.D. thesis [1], and proved to be very useful in describing the structure
of quasi-line and claw-free graphs [5, 7]. Here we define trigraphs and generalize a variety
of definitions from graphs to trigraphs; most of these generalizations are very natural.
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A trigraph G consists of a vertex set V (G) and a function θG : V (G)2 → {1, 0,−1} that
defines the adjacency, with the properties

• for any v ∈ (G), θG(v, v) = 0,

• for any u, v ∈ V (G), θG(u, v) = θG(v, u), and

• for any distinct u, v, w ∈ V (G), if θG(u, v) = 0 then θG(u,w) 6= 0.

Given vertices u, v ∈ V (G), we say that u and v are strongly adjacent if θG(u, v) = 1, adja-
cent if θG(u, v) ∈ {1, 0}, semiadjacent if θG(u, v) = 0, antiadjacent if θG(u, v) ∈ {0,−1}, and
strongly antiadjacent if θG(u, v) = −1. The third property of θG tells us that semiadjacent
pairs of distinct vertices (i.e. semiedges) form a matching.

The complement of G, denoted G, is the trigraph on vertex set V (G) in which for any
u, v ∈ V (G), θG(u, v) = −θG(u, v).

Given disjoint vertex sets A and B, we say that A and B are complete (resp. strongly
complete) if for every u ∈ A and v ∈ B, u and v are adjacent (resp. strongly adjacent). We
say that A and B are anticomplete (resp. strongly anticomplete) if for every u ∈ A and v ∈
B, u and v are antiadjacent (resp. strongly antiadjacent). If a vertex v is strongly complete
to V (G) \ {v}, we say v is universal. The neighbourhood (resp. strong neighbourhood) of
a vertex v is the set of vertices in V (G) \ {v} that are adjacent (resp. strongly adjacent)
to v. The antineighbourhood (resp. strong antineighbourhood) of v is the set of vertices in
V (G)\{v} that are antiadjacent (resp. strongly antiadjacent) to v. We use N(v) to denote
the neighbourhood of v.

A clique (resp. strong clique) is a set of pairwise adjacent (resp. strongly adjacent)
vertices. A stable set (resp. strong stable set) is a set of pairwise antiadjacent (resp. strongly
antiadjacent) vertices. The stability number of a trigraph G, denoted α(G), is the size of a
maximum stable set.

Given distinct vertices v1, . . . , v4 in a trigraph G, we say that v1v2v3v4 is a square (or a
C4) if the pairs v1v3 and v2v4 are antiadjacent, and the other four pairs are adjacent. We
say that there is a claw at a vertex v if the neighbourhood of v contains a stable set of size
3, and if G contains no claw it is claw-free. We say that G is cobipartite if its vertices can
be covered by two strong cliques, and if the neighbourhood of every vertex is cobipartite
then G is quasi-line.

For the remainder of the paper, we define a non-degenerate trigraph as a trigraph that is
quasi-line and non-cobipartite, or claw-free with α ≥ 3; otherwise we say that the trigraph
is degenerate.

A trigraph G is connected if for any two distinct vertices v and v′ there is a sequence
v = v0, v1, . . . , vk = v′ such that for 0 ≤ i < k, vi is adjacent to vi+1. In this paper we will
restrict our attention to connected trigraphs.

A set A of vertices in a trigraph G is a homogeneous set if the following hold:

1. |V | > |A| ≥ 2.

2. Every vertex outside A is either strongly complete or strongly anticomplete to A.

If the set A is a strong clique, we say it is a homogeneous strong clique.
Suppose A and B are disjoint nonempty strong cliques in a trigraph G. Then we say

that (A,B) is a homogeneous pair of strong cliques (HPOSC) if the following hold:
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1. A and B are not both singletons.

2. Every vertex outside A ∪ B is either strongly complete or strongly anticomplete to
A, and is either strongly complete or strongly anticomplete to B.

As we will discuss in Section 3, the thickening operation expands semiedges in a trigraph
into homogeneous pairs of strong cliques.

2 Two types of homogeneous pairs of strong cliques

In this section we discuss two useful classes of HPOSC. We define one now and the other
later in the section. Let (A,B) be a HPOSC in a trigraph G. We say that (A,B) is deletion-
minimal if G|(A∪B) contains a square, and no vertex in A (resp. B) is strongly complete
or strongly anticomplete to B (resp. A). This is the trigraph version of what is sometimes
called a proper homogeneous pair of cliques [11]. Our results on antithickenings of claw-free
trigraphs rely on the fact that certain types of deletion-minimal HPOSCs intersect in a nice
orderly way. Before we get to proving this, we need a technical lemma. Given a vertex set
X in a trigraph, we use XC to denote V (G) \X.

Lemma 3. Suppose a connected claw-free trigraph G contains a homogeneous set X that
is not a strong clique. Then X is strongly complete to XC, and α(G) = 2. Furthermore if
G is quasi-line then G|X is cobipartite.

This lemma implies that no connected non-degenerate trigraph contains a homogeneous
set that is not a strong clique.

Proof. We claim that X is complete to XC . To see this, suppose the contrary. Then since
G is connected, there are adjacent vertices u and v such that u is strongly complete to X
and v is strongly anticomplete to X. Since X is not a strong clique, G contains a claw
at v, a contradiction. Thus X is strongly complete to XC . Since XC is nonempty by the
definition of a homogeneous set, α(G|X) = 2, and if G is quasi-line then G|X is cobipartite.

If there is a universal vertex, then clearly α(G) ≤ 2 and if G is quasi-line, then G|X (and
indeed G) is cobipartite, so the lemma holds. So assume there is no universal vertex in G.
It follows that XC must also be a homogeneous set which is not a strong clique, otherwise
G would contain a universal vertex in XC . Thus applying the symmetric argument tells us
that α(G|XC) = 2 and if G is quasi-line, then G|XC is cobipartite. Since X is complete to
XC , the result follows.

Let (A1, B1) and (A2, B2) be HPOSCs in a trigraph. We say that they have skew
intersection if a part of one pair intersects both parts of the other pair, for example if
A1 ∩ A2 and A1 ∩B2 are both nonempty.

Proposition 4. Suppose G is a trigraph containing two deletion-minimal homogeneous
pairs of strong cliques (A1, B1) and (A2, B2) with skew intersection. Then A1∪B1∪A2∪B2

can be covered by two strong cliques and is either a homogeneous set or the entire vertex
set.
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(a) (b) (c)

(d) (e) (f)

Figure 1: Some examples of homogeneous pairs of strong cliques. Wiggly edges denote semiadjacency.
Only (c) and (e) are square-connected, and only (b), (c), and (e) are deletion-minimal.

Proof. Assume without loss of generality that A2 intersects A1 and B1. Since (A1, B1) is
deletion-minimal and A2 is a strong clique, there is a vertex b1 ∈ B1\A2 that is antiadjacent
to a vertex in A1 ∩ A2. If b1 /∈ B2 then the fact that b1 is neither strongly complete nor
strongly anticomplete to A2 contradicts the fact that (A2, B2) is a HPOSC, so b1 ∈ B2.
Likewise there is a vertex a1 ∈ A1 \ A2 that is antiadjacent to a vertex in B1 ∩ A2, and
a1 ∈ B2. So B2 must intersect both A1 and B1.

Suppose there is a vertex v ∈ (A2 ∪ B2) \ (A1 ∪ B1). Then v is strongly complete
to A1 ∪ B1. It follows that A1 ∪ B1 ∪ A2 ∪ B2 can be covered by two strong cliques:
A1 ∪ (A2 \ (A1 ∪B1)) and B1 ∪ (B2 \ (A1 ∪B1)).

It remains for us to prove that A1 ∪ B1 ∪ A2 ∪ B2 is a homogeneous set or the entire
vertex set, so assume there is a vertex v /∈ A1 ∪ B1 ∪ A2 ∪ B2 and assume it is strongly
complete to A1. It must therefore also be strongly complete to A2 ∪B2, and therefore also
strongly complete to B1. If v is not strongly complete to A1 it is strongly anticomplete to
A1, and it follows that v is strongly anticomplete to A2, B2, and B1. Thus A1∪B1∪A2∪B2

is a homogeneous set or the entire vertex set.

Corollary 5. Suppose G is a connected claw-free trigraph containing two deletion-minimal
homogeneous pairs of strong cliques (A1, B1) and (A2, B2) with skew intersection. Then G
is degenerate.

Proof. This follows immediately from Lemma 3 and Proposition 4.

Proposition 6. Suppose G is a trigraph containing two deletion-minimal homogeneous
pairs of strong cliques (A1, B1) and (A2, B2) without skew intersection, such that A1 inter-
sects A2. Then B1 intersects B2.

Proof. Suppose to the contrary that B1 ∩B2 = ∅. First assume that A1 = A2; this implies
that no vertex in B1 can be strongly complete or strongly anticomplete to A1 = A2, a
contradiction. So assume without loss of generality that A2 \ A1 6= ∅.
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Let v be a vertex in A1 ∩ A2. Since v is in A1 and (A1, B1) is not deletion-minimal,
there exist vertices v1 and v2 in B1 such that v is adjacent to v1 and antiadjacent to v2. It
follows that v1 is strongly complete to A2 and that v2 is strongly anticomplete to A2. Since
A2 is not a subset of A1, there is a vertex u ∈ A2 \A1, and it is strongly adjacent to v1 and
strongly antiadjacent to v2. This contradicts the fact that (A1, B1) is a homogeneous pair
of strong cliques.

Now we know that deletion-minimal HPOSCs behave well in terms of intersection. To
get a better handle on inclusion-minimal deletion-minimal HPOSCs (A,B) (meaning that
if A′ ⊆ A and B′ ⊆ B and (A′, B′) is a deletion-minimal HPOSC, then (A′, B′) = (A,B)),
we introduce a new type of HPOSC. We say that a homogeneous pair of strong cliques
(A,B) in a trigraph G is square-connected if for any partition of A (resp. B) into nonempty
sets A′ and A′′ (resp. B′ and B′′), there is a square in A ∪ B intersecting both A′ and A′′

(resp. B′ and B′′). As we will soon see, the smallest HPOSC containing a given square is
always square-connected. The proof of the following is an easy exercise:

Proposition 7. Every square-connected homogeneous pair of strong cliques (A,B) is deletion-
minimal.

Thus we can apply the results we have proven for deletion-minimal HPOSCs to our anal-
ysis of square-connected HPOSCs. Further, the union of two intersecting square-connected
HPOSCs is another square-connected HPOSC:

Proposition 8. Suppose G is a trigraph containing two square-connected homogeneous
pairs of strong cliques (A1, B1) and (A2, B2) without skew intersection and such that A1 ∩
A2 6= ∅ and B1 ∩B2 6= ∅. Then (A1 ∪A2, B1 ∪B2) is a square-connected homogeneous pair
of strong cliques.

Proof. Clearly both A = A1 ∪ A2 and B = B1 ∪ B2 must be strong cliques. Take some
v /∈ A1 ∪ B1 ∪ A2 ∪ B2; it is easy to see that v is either strongly complete or strongly
anticomplete to A, and either strongly complete or strongly anticomplete to B. Thus
(A,B) is a homogeneous pair of strong cliques.

Suppose (A,B) is not square-connected; assume without loss of generality that we can
partition A into nonempty A′ and A′′ such that A∪B contains no square intersecting both
A′ and A′′. Since A1 and A2 have nonempty intersection and A′ and A′′ partition A, at
least one of A1 and A2 intersects both A′ and A′′; assume A1 does. This means that A1∪B1

does not contain a square intersecting both A′ ∩ A1 and A′′ ∩ A1, contradicting the fact
that (A1, B1) is square-connected.

We use the following straightforward algorithm of King and Reed [16] (generalized in
the obvious way to trigraphs) to construct a square-connected homogeneous pair of cliques
(A,B) in a trigraph G, starting with strongly adjacent vertices a0 and a1 contained in a
square in G. Note that the other two vertices of this square must then be in B.

1. Set A = {a0, a1}, set B to be two vertices b0, b1 such that a0a1b1b0 is a square. If no
such vertices exist then quit.

2. If A and B are not strong cliques, there is no homogeneous pair of strong cliques with
{a0, a1} ⊆ A, so quit.
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3. If there is a vertex v /∈ A∪B that is neither strongly complete nor strongly anticom-
plete to A, put v in B and go to Step 2.

4. If there is a vertex v /∈ A∪B that is neither strongly complete nor strongly anticom-
plete to B, put v in A and go to Step 2.

We call this the SCHPOSC algorithm, for square-connected homogeneous pair of strong
cliques. It is easy to see that the output is unique, i.e. it does not depend on any ordering
of the vertices. We claim that it runs in O(m) time for a given a0 and a1, and always
returns the desired square-connected homogeneous pair of strong cliques if one exists.

First we note that if the algorithm adds a vertex v to (A,B) at some point, then v must
be in every homogeneous pair of strong cliques (A,B) such that a0, a1 ∈ A. Thus it is clear
that the algorithm finds the unique smallest homogeneous pair of strong cliques with a0, a1

in A. It suffices to prove that the output is square-connected and computed efficiently.

Proposition 9. Given a0 and a1 contained in some square in a trigraph G, the SCHPOSC
algorithm always produces a square-connected homogeneous pair of strong cliques (A,B)
with A containing a0 and a1, if one exists.

Proof. Let (Ak, Bk) denote the partial pair constructed by the algorithm such that |Ak ∪
Bk| = k. It suffices to prove that (Ak, Bk) is square-connected, which we will do by
induction. This is true by assumption for k = 4, so let k > 4 and assume without loss of
generality that there is a vertex v ∈ Ak \ Ak−1.

Suppose (Ak, Bk) is not square-connected. It follows by the induction hypothesis (i.e.
that (Ak−1, Bk−1) is square-connected) that there is no square in G|(Ak∪Bk) that contains
v. Let X and Y partition Bk such that X is complete to v, Y is anticomplete to v, and both
X and Y are nonempty. That is, X will contain the strong neighbours of v in Bk, Y will
contain the strong antineighbours of v in Bk, and if there is a vertex u ∈ Bk semiadjacent
to v, we can put it in either X or Y to ensure that both are nonempty, which is possible
because |Bk| ≥ 2.

Since (Ak−1, Bk−1) = (Ak−1, Bk) is square-connected, there is a square S in (Ak−1, Bk)
intersecting both X and Y . This square contains a vertex v′ ∈ Ak−1 that is adjacent
to the vertex in S ∩ X and antiadjacent to the vertex in S ∩ Y . Replacing this vertex
with v gives us a square in (Ak, Bk) containing v, thus it follows that (Ak, Bk) is indeed
square-connected. The proposition follows.

Proposition 10. Given a strongly adjacent pair of vertices a0, a1 in a trigraph G, the
SCHPOSC algorithm runs in O(m) time.

Proof. We only run Step 1 once, and for every pair of strongly adjacent vertices b0, b1 we
can check if {a0, a1, b1, b0} contains a square. This takes constant time per strongly adjacent
pair, so we can perform Step 1 in O(m) time. Having performed Step 1, and assuming we
go on to Step 2, we partition the vertices outside A ∪B into six sets.

Let Ã (resp. B̃) be the vertices neither strongly complete nor strongly anticomplete to
B (resp. A). The vertices in Ã and B̃ must go into A and B respectively, and if Ã and
B̃ are not disjoint then we must quit, since every vertex v must be strongly complete to
either A or B, or strongly anticomplete to both. Computing these sets takes O(m) time,
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since for each vertex v we simply count the number of vertices in A and B to which v is
strongly adjacent.

Let NA, NB, NAB and N∅ be the sets of vertices that are, respectively: strongly complete
to A and strongly anticomplete to B, strongly complete to B and strongly anticomplete to
A, strongly complete to A ∪ B, and strongly anticomplete to A ∪ B. Again, finding these
sets takes O(m) time, and as long as Ã and B̃ are disjoint, we have partitioned the vertices
into eight sets, including A and B.

We must now advance through Steps 2, 3, and 4, updating our eight sets every time we
move a vertex into A or B. Suppose we move a vertex v from Ã into A. Since we know Ã
and B̃ are disjoint, we already know that v is strongly complete to A. When we do this, Ã
loses v and no vertex moves into Ã.

Every vertex in NB that is adjacent to v must move into B̃, and if a vertex u in N∅ is
adjacent to v then we must quit, since u is strongly anticomplete to B and neither strongly
complete nor strongly anticomplete to A. We can clearly perform this part of the update
in time proportional to the number of vertices adjacent to v. The next part is slightly more
subtle: Every vertex in NAB that is antiadjacent to v must move to B̃, and if a vertex in
NA is antiadjacent to v, then we must quit. We can perform this step in O(|NAB|+ |NA|)
time, but we move every vertex that is antiadjacent to v from NAB into B̃, or quit due
to a vertex in NA being antiadjacent to v, at most once per vertex throughout the entire
process. Thus the time we waste during this step, i.e. the time spent inspecting vertices
that we do not move, is at most proportional to the number of vertices adjacent to v. Since
the case of moving a vertex from B̃ into B is symmetric, it follows that the entire update
process, summed over every movement of a vertex into A ∪B, takes O(m) time.

We conclude the section with an unsurprising but useful technical lemma.

Lemma 11. If (A,B) is a deletion-minimal homogeneous pair of strong cliques in a trigraph
G, then there is a square-connected homogeneous pair of strong cliques (A′, B′) in G such
that A′ ⊆ A and B′ ⊆ B.

Proof. We know that (A,B) contains a square; say it is a0a1b1b0 such that a0, a1 ∈ A and
b0, b1 ∈ B. We run the SCHPOSC algorithm on a0a1; call its putative output (A′, B′).
The fact that (A,B) is a homogeneous pair of strong cliques tells us that no vertex outside
A ∪ B will be added to A′ or B′ during the algorithm’s run. It follows that the algorithm
will indeed output a homogeneous pair of strong cliques (A′, B′), and we know that it will
be square-connected.

3 Thickenings and optimal antithickenings

Having considered the intersection structure of square-connected and deletion-minimal
HPOSCs, we now consider how we might best reduce or eliminate them. In this sec-
tion we answer this question by proving that every claw-free trigraph (and therefore every
claw-free graph) has a unique optimal antithickening, which we can find in O(m2) time
by simultaneously contracting a collection of disjoint inclusion-maximal square-connected
HPOSCs.
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We begin by defining thickenings of trigraphs. We say that a trigraph G is a thickening
of another trigraph G′ if we can construct G from G′ in the following way:

1. V (G) is a collection of nonempty disjoint strong cliques {I(v) | v ∈ V (G′)}.
2. If two vertices u, v ∈ V (G′) are strongly adjacent, then I(v) is strongly complete to
I(u) in G.

3. If two vertices u, v ∈ V (G′) are strongly antiadjacent, then I(v) is strongly anticom-
plete to I(u) in G.

4. If two vertices u, v ∈ V (G′) are semiadjacent, then I(v) is neither strongly complete
nor strongly anticomplete to I(u) in G.

In this case we say that the function I : V (G′)→ 2V (G) is a thickening from G′ to G, where
2V (G) denotes the power set of V (G). For every two vertices u, v ∈ V (G′) such that no
semiedge has exactly one of u, v as an endpoint, either |I(u)| = |I(v)| = 1 or (I(u), I(v)) is
a homogeneous pair of strong cliques in G. If G is a thickening of G′ then we say that G′ is
an antithickening of G. Thickenings generalize structural operations used by Chvátal and
Sbihi [8] and Maffray and Reed [17] in the characterization of Berge quasi-line graphs1; we
refer the reader to Chapter 5 of [14] for the whole story.

Observation 1. The relation of being a thickening is transitive: if G is a thickening of G′

and G′ is a thickening of G′′, then G is a thickening of G′′.

Thickenings tell us how homogeneous pairs of strong cliques arise in G: some trivial
pairs will arise from pairs of vertices in V (G′) not incident to semiedges (i.e. the HPOSC
will consist of two strong cliques that are either strongly complete or strongly anticomplete
to one another), and some more interesting pairs will arise from semiedges in G′. Actually,
given a trigraph G, we want to find an antithickening G′ of G such that all interesting
HPOSCs in G arise from semiedges of G′ via thickening.

3.1 Optimal antithickenings

The aim of antithickenings in the context of the structure theorem for quasi-line graphs
and trigraphs, particularly its algorithmic applications, is to get rid of all nonlinear homo-
geneous pairs of strong cliques (i.e. (A,B) such that G|(A ∪ B) contains a square). So we
seek antithickenings that serve this purpose while preserving the structure of the original
graph or trigraph as much as possible.

This guiding principle makes the desired criteria of an optimal antithickening clear.
First, we insist that the antithickening G′ does not contain a nonlinear homogeneous pair
of strong cliques. Our other criterion simply guarantees that the antithickening expresses
the structure of G as accurately as possible, meaning that we cannot further refine our
reduction of square-connected homogeneous pairs of strong cliques without violating the
first criterion.

We say that a trigraph G is laminar if it contains no square-connected homogeneous
pair of strong cliques. Lemma 11 tells us that G is laminar precisely if it contains no

1Every Berge claw-free graph is quasi-line.
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deletion-minimal homogeneous pair of strong cliques. Given a trigraph G, we say that an
antithickening G′ of G is an optimal antithickening if:

1. G′ is laminar, and subject to that,

2. |V (G′)| is maximum.

Our aim in this section is to prove:

Theorem 12. Every connected non-degenerate trigraph has a unique optimal antithicken-
ing, which we can find in O(m2) time.

We will prove that if G′ is an optimal antithickening of G, then for every semiedge
ab of G′, either I(a) and I(b) are singletons (and consequently their vertices must be
semiadjacent), or (I(a), I(b)) is a square-connected homogeneous pair of cliques. In fact,
we will grow these pairs by using the SCHPOSC algorithm and combining pairs that
intersect. To see that we must assume the trigraph is non-degenerate, observe that a cycle
of four strongly adjacent vertices (i.e. C4 as a trigraph) has two optimal antithickenings.
Similarly, a copy of C4 strongly complete to a copy of C5 is claw-free, non-cobipartite, and
has two optimal antithickenings. It is no coincidence that these antithickenings arise from
two HPOSCs with skew-intersection.

Our first lemma tells us that a square-connected homogeneous pair of cliques is always
reduced to a semiedge in an optimal antithickening:

Lemma 13. Let G be a connected non-degenerate trigraph, and let (A,B) be a square-
connected homogeneous pair of cliques in G. Suppose G′ is an optimal antithickening of G.
Then there exists a semiedge ab of G′ such that A ⊆ I(a) and B ⊆ I(b).

Proof. Let A′ = {a1, . . . , ak} be the set of vertices of G′ for which A intersects I(ai) and let
B′ = {b1, . . . , b`} be the set of vertices of G′ for which B intersects I(bi). We may assume
for a contradiction that k ≥ 2.

First we must prove that A′∩B′ = ∅, so suppose a1 = b1, let v1
A be a vertex in A∩I(a1),

and let v1
B be a vertex in B ∩ I(b1) = B ∩ I(a1). Since (A,B) is deletion-minimal, v1

A is not
strongly complete to B and v1

B is not strongly complete to A. It follows that neither A′ nor
B′ is a strong clique, and moreover there must be some i > 1 for which a1ai is a semiedge.
Likewise there must be some j > 1 for which b1bj is a semiedge. Since the semiedges of G′

form a matching, a2 = b2. Furthermore there must be a vertex v2
A in A∩I(a2) and a vertex

v2
B in B ∩ I(b2) = B ∩ I(a2) such that v1

Av
2
Av

2
Bv

1
B is a square. Moreover, (I(a1), I(a2)) is

a deletion-minimal homogeneous pair of strong cliques in G, and it has skew-intersection
with (A,B). It follows from Corollary 5 that G is degenerate, a contradiction. Therefore
A′ and B′ are disjoint.

We now claim that A′ and B′ are strong cliques. Since for distinct i, j, I(ai) and
I(aj) cannot be strongly anticomplete, it is clear that A′ is a clique; B′ is a clique for
the same reason. So suppose a1a2 is a semiedge. Since (A,B) is deletion-minimal, a1 is
neither strongly complete nor strongly anticomplete to B′. And since semiedges form a
matching, there are no semiedges between {a1, a2} and B′. Thus no vertex in I(a1)∪ I(a2)
is strongly complete or strongly anticomplete to B. Therefore I(a1) ⊆ A and I(a2) ⊆ A, a
contradiction since A is a strong clique. So A′ is a strong clique and likewise so is B′.
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We further claim that (A′, B′) is actually a homogeneous pair of strong cliques. First
suppose a vertex v in V (G) \ (A′ ∪ B′) is semiadjacent to a vertex of A′ ∪ B′, say a1.
Then since (A,B) is deletion-minimal, there exist i, j such that a1 is strongly adjacent to
bi and strongly antiadjacent to bj, which implies that I(a1) ⊆ A, a contradiction since I(v)
is neither complete nor anticomplete to I(a1). Therefore no semiedge in G′ has exactly
one endpoint in A′ ∪ B′. It follows easily that (A′, B′) is a homogeneous pair of strong
cliques. We now need only prove that it contains a square, since this would contradict the
assumption that G′ is an optimal antithickening of G and therefore laminar.

The first task is to prove that ` ≥ 2, so assume that ` = 1. Since (A,B) is deletion-
minimal, it follows that b1 must be semiadjacent to a vertex in A′, so we may assume
that a1b1 is a semiedge. But since the semiedges of G′ form a matching, I(a2) is strongly
complete or strongly anticomplete to B, a contradiction. Therefore ` ≥ 2.

We claim that there exist i, i′, j, and j′ such that some square in G intersects I(ai),
I(ai′), I(bj), and I(bj′). To see this, first note that since (A,B) is square-connected, there
is a square in A ∪ B intersecting both A ∩ I(a1) and A \ I(a1); assume without loss of
generality that it intersects I(a1) and I(a2). Therefore there exist j and j′ such that a1

is adjacent to bj and antiadjacent to bj′ , and a2 is adjacent to bj′ and antiadjacent to bj.
To see that j 6= j′, note that if j = j′ then bj is semiadjacent to both ai and ai′ , which
is impossible. The claim follows, so A′ ∪ B′ contains a square, and therefore contains a
square-connected pair of cliques, contradicting the fact that G′ must be laminar.

Corollary 14. Let G be a connected non-degenerate trigraph containing two square-connected
homogeneous pairs of strong cliques (A1, B1) and (A2, B2) without skew intersection. If
A1 ∩ A2 6= ∅ and B1 ∩ B2 6= ∅ and G′ is an optimal antithickening of G, then there exists
a semiedge ab of G′ such that A1 ∪ A2 ⊆ I(a) and B1 ∪B2 ⊆ I(b).

Proof. This follows immediately from Lemma 13 and Proposition 8.

We now want to show that every set that reduces to a semiedge ab in an optimal an-
tithickening is either a semiedge or a SCHPOSC. Our approach is to take (I(a), I(b)), prove
that it is deletion-minimal and therefore contains a square, build a minimal SCHPOSC
(A,B) containing this square, and finally prove that all of (I(a), I(b)) must be a SCHPOSC.
Proving that (I(a), I(b)) is deletion-minimal is tedious enough that we wish to separate it
from the rest of the proof.

Lemma 15. Let G be a connected non-degenerate trigraph and let G′ be an optimal an-
tithickening of G. Then for any semiedge ab of G′, (I(a), I(b)) is a deletion-minimal
homogeneous pair of strong cliques or a semiedge.

Proof. Clearly if I(a) and I(b) are both singletons then the vertices are semiadjacent, so
assume that |I(a)| + |I(b)| ≥ 3. Thus (I(a), I(b)) is a homogeneous pair of strong cliques;
to reach a contradiction we assume it is not deletion-minimal.

First suppose that I(a) contains a vertex u that is strongly complete to I(b). We will
show that we can remove u from I(a) and contradict the optimality of G′.

Let G′′ be the trigraph constructed from G′ by adding a vertex a′ and making it strongly
adjacent to a, b, and every vertex that is strongly adjacent to a in G′, and strongly antiad-
jacent to everything else (see Figure 2(a)) (note that a is not semiadjacent to any vertex
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G′

G′′

(a) (b) (c)

G

G

Figure 2: Three ways of refining an antithickening.

other than b). It is easy to see that G′′ is an antithickening of G with I(a′) = {u}. It has
more vertices than G′, so to contradict the optimality of G′ it suffices to show that G′′ is
laminar.

To show this, it suffices to prove that G′′ does not contain a deletion-minimal homoge-
neous pair of strong cliques (A′′, B′′), so suppose one exists. Clearly a′ is contained in A′′

or B′′, otherwise (A′′, B′′) would be a deletion-minimal homogeneous pair of strong cliques
in G′. So assume a′ ∈ A′′. Since (A′′, B′′) is deletion-minimal and a′ is not the endpoint
of a semiedge, a′ is strongly adjacent to some vertex in B′′ and is strongly antiadjacent to
another vertex in B′′. It follows that a is also in A′′, and therefore b must be in B′′. It
follows easily from the definition of G′′ that (A′′ \ {a′}, B′′) is a deletion-minimal homo-
geneous pair of strong cliques in G′ = G′′ − a′, contradicting the assumption that it is an
optimal antithickening of G. The case in which u is anticomplete to I(b) follows in the
same way; we omit the details.

We must now consider the case in which (I(a), I(b)) is not deletion-minimal, no vertex in
I(a) is strongly complete or strongly anticomplete to I(b), and no vertex in I(b) is strongly
complete or strongly anticomplete to I(a). Clearly neither I(a) nor I(b) is a singleton.
By the definition of a deletion-minimal homogeneous pair of strong cliques, G|(I(a)∪ I(b))
does not contain a square. We claim that there must exist (without loss of generality) some
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a1 ∈ I(a) and b1 ∈ I(b) such that a1b1 is a semiedge, a1 is strongly complete to I(b) \ {b1},
and b1 is strongly anticomplete to I(a) \ {a1}.

To see this, assume without loss of generality that there exist strongly adjacent a1 ∈ A
and b2 ∈ B; choose a1 ∈ I(a) maximizing the number of vertices in I(b) strongly adjacent
to a1, and choose b1 ∈ I(b) antiadjacent to a1. Suppose b1 is strongly antiadjacent to
I(a) \ {a1}. Then a1 and b1 are semiadjacent, and if the claim is not true then there exists
b3 ∈ I(b) strongly antiadjacent to a1; there must exist a2 ∈ I(a) adjacent to b3, giving us
a square and a contradiction. So there must exist a2 ∈ I(a) \ {a1} adjacent to b2. By our
choice of a1, there must be some b3 strongly adjacent to a1 but antiadjacent to b2, since b1
cannot be semiadjacent to both a1 and a2. Again this gives us a square and a contradiction,
proving the claim.

Construct G′′ by adding vertices a′ and b′ to G′ such that a′b′ is a semiedge, a′ is strongly
adjacent to a and precisely those vertices in V (G′) \ {a} that are adjacent to a, and b′ is
strongly adjacent to b and strongly antiadjacent to precisely those vertices in V (G′) \ {b}
that are antiadjacent to b (see Figure 2(b)). Clearly G′′ is an antithickening of G, so suppose
it contains a square-connected homogeneous pair of strong cliques (A′′, B′′). Since G′ is
laminar, this pair must contain one and therefore both of a′ and b′. And since G′′ − a− b
is isomorphic to G′, the pair must contain one and therefore both of a and b. We can
therefore assume {a, a′} ⊆ A′′ and {b, b′} ⊆ B′′.

It remains to contradict the fact that G′ is laminar by proving that (A′′\{a′}, B′′\{b′}) is
a deletion-minimal homogeneous pair of strong cliques; first we must prove that it contains
a square. Since (A′′, B′′) is square-connected, there is a square in (A′′, B′′) containing a.
Observe that this square contains at most one of b and b′, so if it does not contain b′ then we
are done; assume it contains b′ but not b. Then removing b′ from this square and replacing
it with b gives us another square, so indeed (A′′ \ {a′}, B′′ \ {b′}) contains a square. Now
suppose without loss of generality that some vertex v in A′′ \ {a′} is strongly complete or
strongly anticomplete to B′′\{b′}. Clearly v 6= a, but this means that v is strongly complete
or strongly anticomplete to B′′, contradicting the fact that (A′′, B′′) is deletion-minimal.
Thus it indeed follows that G′ is not laminar, a contradiction.

We need a few more routine results before describing our antithickening algorithm.

Lemma 16. Let (A,B) be a homogeneous pair of strong cliques in a trigraph G, and let
(A1, B1) be a square-connected homogeneous pair of strong cliques in G such that A1 ⊂ A
and B1 ⊆ B. If there is no square intersecting both A1 ∪B1 and (A ∪B) \ (A1 ∪B1), then
every vertex of A\A1 is strongly complete or strongly anticomplete to B1, and every vertex
of B \B1 is either strongly complete or strongly anticomplete to A1.

Proof. Assume that no square in (A,B) intersects both A1 ∪ B1 and (A ∪ B) \ (A1 ∪ B1).
Now suppose some v in A \A1 is adjacent to a vertex of B1 and strongly antiadjacent to a
vertex of B1. Then let B′1 denote the set of vertices in B1 adjacent to v, and let B′′1 denote
B1 \B′′1 , and note that both sets are nonempty. Since (A1, B1) is square-connected, there is
a square in A1∪B1 intersecting both B′1 and B′′1 , and it follows easily that there is a square
in (A,B) intersecting both A1 and A \A1. The same argument applies if v is antiadjacent
to a vertex of B1 and strongly adjacent to a vertex of B1, so indeed v is either strongly
complete or strongly anticomplete to B1.
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The symmetric argument tells us that every vertex of B \B1 is either strongly complete
or strongly anticomplete to A1.

Lemma 17. Let (A,B) be a homogeneous pair of strong cliques in a trigraph G, and let
(A1, B1) and (A2, B2) be disjoint square-connected homogeneous pairs of strong cliques in
G such that A1 ∪ A2 ⊆ A and B1 ∪ B2 ⊆ B. Suppose there is no square intersecting both
A1 ∪B1 and A2 ∪B2. Then either

• A2 is strongly complete to B1 and B2 is strongly anticomplete to A1, or

• A2 is strongly anticomplete to B1 and B2 is strongly anticomplete to A1.

Proof. It follows easily from Lemma 16 that every vertex in A2 is either strongly complete or
strongly anticomplete to B1. Suppose there exist a, a′ ∈ A2 such that a is strongly complete
to B1 and a′ is strongly anticomplete to B1. Now let b, b′ ∈ B2 be vertices such that aa′b′b is
a square. Then observe that for any b′′ ∈ B1, aa

′b′b′′ is a square, a contradiction. Thus A2 is
either strongly complete or strongly anticomplete to B1. By the symmetric argument, B2 is
either strongly complete or strongly anticomplete to A1. Assume without loss of generality
that A2 is strongly complete to B1; it remains to show that B2 is strongly anticomplete to
A1, so suppose to the contrary that B2 is strongly complete to A1. Thus there cannot exist
an antiadjacent pair of vertices in each of (A1, B1) and (A2, B2), which of course contradicts
the fact that both pairs are square-connected.

Corollary 18. Let G be a connected non-degenerate trigraph and let G′ be an optimal
antithickening of G. Then for any semiedge ab of G′, (I(a), I(b)) is a square-connected
homogeneous pair of strong cliques or a semiedge.

Proof. Suppose that (I(a), I(b)) is not square-connected. Lemma 15 tells us that (I(a), I(b))
is deletion-minimal. Let (A1, B1), (A2, B2), . . . , (Ak, Bk) be a set of pairwise disjoint square-
connected homogeneous pairs of strong cliques such that A1∪. . .∪Ak ⊆ A andB1∪. . .∪Bk ⊆
B such that every square in A ∪ B lies completely inside some Ai ∪ Bi. The fact that
(A1, B1), . . . , (Ak, Bk) exist follows from the SCHPOSC algorithm and Proposition 8. Since
(A,B) is not square-connected, A1∪B1 6= A∪B. Let the vertices of A\(∪iAi) be a′1, . . . , a

′
`1

and let the vertices of B \ (∪iBi) be b′1, . . . , b
′
`2

.
Informally speaking, we will construct an antithickening G′′ of G by using the same

antithickening as between G and G′ except on A and B. On A and B we will proceed by
simply contracting each (Ai, Bi) down to a semiedge. We then prove that G′′ is laminar.
But first we must give a more formal description of G′′.

Let N(a) and N(a) denote the strong neighbourhood and strong antineighbourhood
of a in G′, respectively. Let N(b) and N(b) denote the strong neighbourhood and strong
antineighbourhood of b in G′, respectively. We construct the trigraph G′′ from G′ − a− b
as follows.

• For i = 1, . . . , k, we add semiadjacent ai and bi, with ai strongly adjacent to N(a) and
strongly antiadjacent to N(a), and with bi strongly adjacent to N(b) and strongly
antiadjacent to N(b).

• For i = 1, . . . , `1, we add a vertex a′i strongly adjacent to N(a) and strongly antiad-
jacent to N(a).
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• For i = 1, . . . , `2, we add a vertex b′i strongly adjacent to N(b) and strongly antiad-
jacent to N(b).

• A′ = {a1, . . . , ak, a
′
1, . . . , a

′
`1
} is a strong clique, and so is B′ = {b1, . . . , bk, b′1, . . . , b′`2}.

• ai and bj are strongly adjacent if Ai is strongly complete to Bj, and strongly anti-
complete otherwise.

• ai and b′j are strongly adjacent if b′j is strongly complete to Ai, and strongly anticom-
plete otherwise.

• bj and a′i are strongly adjacent if a′i is strongly complete to Bj, and strongly anticom-
plete otherwise.

• a′i and b′j are strongly adjacent if a′i and b′j are strongly adjacent in G, semiadjacent if
they are semiadjacent in G, and strongly antiadjacent if they are strongly antiadjacent
in G.

It is straightforward to confirm that G′ is an antithickening of G′′, and that G′′ is an
antithickening of G. Clearly G′′ has more vertices than G′, so it suffices for us to prove
that G′′ is laminar.

Suppose there is a square-connected homogeneous pair of strong cliques (A′′, B′′) in G′′.
It is straightforward to confirm that (A′′, B′′) must lie inside A′ ∪ B′. Observe that both
G′ and G′′ must be non-degenerate, so we can assume A′′ ⊆ A′ and B′′ ⊆ B′. It suffices,
then, to prove that there is no square in A′ ∪ B′. So suppose one exists, say S = uvxy in
cycle order with u, v ∈ A′ and x, y ∈ B′.

First suppose S contains a1 and b1; assume u = a1 and y = b1. Then it is easy to see
that whether or not v and x appear in sets Ai and/or Bj, there is a square S ′ in G that
is partially but not completely contained in A1 ∪ B1, contradicting our choice of (A1, B1).
The same conclusion applies if u = a1 and x = b1. Therefore since at most one vertex of S
appears in any pair (Ai, Bi), and there is no square in (A\ (∪iAi))∪ (B \ (∪iBi)), it follows
that there is a square in (A,B) partially but not completely contained in Ai ∪Bi for some
i, a contradiction.

3.2 Uniqueness

Before we give an efficient algorithm for finding the optimal antithickening of a quasi-line
trigraph, we must first prove uniqueness.

Theorem 19. Any connected non-degenerate trigraph G has a unique optimal antithick-
ening.

Proof. We proceed by induction on k = |V (G)|. The theorem is clearly true for trigraphs on
at most three vertices. So assume the theorem holds for trigraph on fewer than k vertices.

If G is laminar then clearly G is its own (unique) optimal antithickening and we are
done. Therefore by Lemma 11 there is a square-connected homogeneous pair of cliques
(A,B) in G. Let G̃ be the antithickening of G reached by contracting A into a vertex ã
and contracting B into a vertex b̃; note that ãb̃ is a semiedge in G̃.
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Inductively, G̃ has a unique optimal antithickening; call it G̃′ and note that G̃′ is also
an antithickening of G. Let G′ be any optimal antithickening of G; it suffices to show
that G′ is an antithickening of G̃. Lemma 13 tells us that there are semiadjacent vertices
a, b in G′ such that in G, A ⊆ I(a) and B ⊆ I(b). Therefore we can define a thickening

I ′ : V (G′)→ 2V (G̃) from G′ to G̃ as follows. For v ∈ V (G′) not in {a, b}, set I ′(v) be equal
to I(v), i.e. the same as in the thickening from G′ to G. Now set

I ′(a) = (I(a) \ A) ∪ {ã}
I ′(b) = (I(b) \B) ∪ {b̃}.

It suffices to check that I ′ is a valid thickening. This is straightforward and we leave the
details to the reader.

3.3 An algorithm

We are now prepared to prove Theorem 12, which we restate.

Theorem. Every connected non-degenerate trigraph has a unique optimal antithickening,
which we can find in O(m2) time.

Proof. Let G be a connected non-degenerate trigraph. Our algorithm is as follows.

1. For each pair uv of strongly adjacent vertices contained in a square in G, do the
following:

(a) Run the SCHPOSC algorithm to find a square-connected homogeneous pair of
strong cliques (Auv, Buv) such that {u, v} ⊆ Auv, if one exists.

(b) If Auv intersects some previously constructed Au′v′ , then set Au′v′ := Au′v′ ∪Auv

and set Bu′v′ := Bu′v′∪Buv, and forget the sets Auv and Buv. Take the analogous
action if Auv intersects Bu′v′ or if Buv intersects Au′v′ or Bu′v′ .

2. We now have a set of pairwise disjoint square-connected homogeneous pairs of cliques
{(Auivi

, Buivi
)}ki=1. To construct the antithickening G′, we contract each Auivi

and
Buivi

into semiadjacent vertices ai and bi.

We must now prove correctness and running time. Bounding the running time is simple.
We already know that running the SCHPOSC algorithm for uv takes O(m) time. We can
easily detect intersection between Auv and Au′v′ because at any given point, each vertex of
G is in at most one set Au′v′ . So we can perform Step 1 in O(m2) time. Since k < |V (G)|,
we can easily run Step 2 in O(nm) time. Thus the overall running time is O(m2).

We now prove that the output trigraph G′ is the optimal antithickening G′′. Let I be
the thickening from G′ to G, and let I ′ be the thickening from G′′ to G. From Proposition 8
we know that in Step 2(b), if Auv intersects Au′v′ then (Au′v′ ∪Auv, Bu′v′ ∪Buv) is a square-
connected homogeneous pair of strong cliques. Therefore each contracted pair (Auivi

, Buivi
)

is a square-connected homogeneous pair of strong cliques. In particular, Lemma 13 tells us
that if there exist vertices u and v in V (G) and a in V (G′) such that {u, v} ⊆ I(a), then
there exists a′ in V (G′′) such that {u, v} ∈ I ′(a′).
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It remains to show the converse, so suppose there exist vertices u and v in V (G) and a′

in V (G′′), such that {u, v} ∈ I ′(a′). Since G′ is optimal, a′ must be semiadjacent to some
vertex b′, otherwise u and v would not be together in I ′(a′). By Corollary 18, (I(a′), I(b′))
is a square-connected homogeneous pair of strong cliques in G, so it follows from Lemma
13 that there is some a ∈ V (G′) such that {u, v} ⊆ I(a). Therefore two vertices of G have
the same preimage in G′ if and only if they have the same preimage in G′′; thus G′ must
be isomorphic to G′′, and G′ must be an optimal antithickening of G.

4 Conclusion

While we do not rule out the possibility that the optimal antithickening can be found in
o(m2) time, a faster algorithm would require a different approach: Consider the graph
consisting of two disjoint cliques of size k, connected by a perfect matching. While the
optimal antithickening consists of a single semiedge, the graph has Θ(k2) = Θ(m) minimal
square-connected homogeneous pairs of cliques, each containing four vertices. Therefore a
direct approach using the SCHPOSC algorithm is condemned to take at least Θ(m2) time.

In a forthcoming paper, the second author will give an O(nm)-time algorithm for con-
structing an optimal strip decomposition of a composition of linear interval strips. This
algorithm is most useful when applied to laminar trigraphs, so the speed of our antithick-
ening algorithm represents a bottleneck in the decomposition. For these reasons, a faster
antithickening algorithm would be both surprising and useful.
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