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Abstract

A graph is balanced if it is bipartite and every induced cycle has length divisible by four. In his
book [6], Gérard Cornuéjols proposed a number of open questions, offering $5000 for the solution of
any of them. Here we solve three of them, about balanced graphs.



1 Introduction

A graph is said to be balanced if it is bipartite, and every induced cycle has length divisible by four.
In his excellent book [6], Gérard Cornuéjols proposed eighteen conjectures, and offered $5000 for
a proof or counterexample for any of them. Two, concerned with perfect graphs, were settled by
the solution of the strong perfect graph conjecture [2]. Now we are happy to report the solution
of three more, concerned with balanced graphs; conjectures 9.23, 9.28 and 9.29 of [6]. We give a
counterexample to the first two, and a proof of the third.

2 A counterexample to conjectures 9.23 and 9.28 of [6]

Conjecture 9.23 on page 98 of [6] asserts:

2.1 Conjecture (Conforti, Cornuéjols and Rao [4]) If G is a balanced graph that is not totally
unimodular, then G is either a Wpq or has a biclique cutset or a 2-join.

We need to explain these terms. A graph is totally unimodular if it admits a bipartition (A,B) such
that every square submatrix of the matrix (mab : a ∈ A, b ∈ B) has determinant ±1 or 0, where
mab = 1 if a, b are adjacent and 0 otherwise. The graphs Wpq are a particular class of balanced graphs
that we do not need to define here (they are essentially a special case of what we call crossmatchings
below). A biclique cutset is a pair of disjoint nonempty sets A,B ⊆ V (G), such that every vertex
in A is adjacent to every vertex in B, and G \ (A ∪ B) is disconnected. A graph G has a 2-join if
its vertex set can be partitioned into V1, V2 in such a way that, for each i = 1, 2, there exist disjoint
nonempty subsets Ai, Bi ⊆ Vi, such that

• every vertex of A1 is adjacent to every vertex of A2,

• every vertex of B1 is adjacent to every vertex of B2,

• there are no other adjacencies between V1 and V2,

• for i = 1, 2 Vi contains at least one path from Ai to Bi, and

• for i = 1, 2, if |Ai| = |Bi| = 1 then the graph induced by Vi is not a chordless path between Ai

and Bi.

(Remark: the definition of a 2-join in [6] contains a minor error, and the fifth condition above has
been amended to fix this error.)

Two disjoint subsets A,B of the vertex set V (G) are said to be matched in G if A,B are stable
sets in G and each member of A has a unique neighbour in B and vice versa. Here is a class of
balanced graphs. Let p, q ≥ 1 be integers, and let C be a cycle with vertices

a1, . . . , a4p−3, b1, . . . , b4q−3, c1, . . . , c4p−3, d1, . . . , d4q−3, a1

in order. Take p + q new vertices x1, . . . , xp, y1, . . . , yq, and add edges as follows:

• xi, yj are adjacent for all i, j with 1 ≤ i ≤ p and 1 ≤ j ≤ q
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• for 1 ≤ i ≤ p, xi and c4i−3 are adjacent

• for 1 ≤ j ≤ q, yj and d4j−3 are adjacent

• {a1, a5, a9, . . . , a4p−3} and {x1, . . . , xp} are matched

• {b1, b5, b9, . . . , b4q−3} and {y1, . . . , yq} are matched

and there are no other edges. Let us call such a graph a crossmatching. It is easy to check that every
crossmatching is balanced.

In particular, let p = 3, q = 2, and take a crossmatching such that the pairs

a1x1, a9x2, a5x3, b1y1, b5y2

are edges. This is balanced, and does not satisfy 2.1 (we leave it to the reader to check this). The
same graph is also a counterexample to conjecture 9.28 of [6] (we do not state this in full, because it
is just a strengthening of 2.1, and needs several further definitions).

3 Conjecture 9.29 of [6]

The goal of the remainder of this paper is to prove conjecture 9.29 on page 100 of [6], which asserts
the following:

3.1 Conjecture (Conforti, Cornuéjols, Kapoor and Vušković [3]) Every balanceable bipartite graph
that is not regular has a double star cutset.

We need first to define these terms. A graph is eulerian if every vertex has even degree (we do
not require it to be connected). If G is a graph and w : E(G) → {−1, 1} is a map, and H is a
subgraph of G, we denote

∑
e∈E(H) w(e) by w(H). A bipartite graph G is balanceable if there is a

map w : E(G) → {−1, 1} such that w(C) is a multiple of four for every induced cycle C of G. A
bipartite graph G is regular if there is a map w : E(G) → {−1, 1} such that w(H) is a multiple of
four for every induced eulerian subgraph H of G. (This definition of “regular” is more convenient
for us than the definition used in [6]; they are equivalent, because of Camion’s theorem [1].) Any
such map w is called a t.u. signing of G.

A cutset in G is a subset X ⊆ V (G) such that G \ X has at least two components. (This is not
quite the definition from [6], but the difference is not significant.) A star cutset in G is a cutset X
such that some u ∈ X is adjacent to all other members of X. Then u is called a centre of the star
cutset. A double star cutset in G is a cutset X such for some edge uv with u, v ∈ X, every member
of X is adjacent to one of u, v; and then uv is called a centre of the double star cutset.

A remark: the definition of “double star cutset” above is the standard definition used in many
of Cornuéjols’ papers, such as [3]. However, in [6] the definition is different; he requires in addition
that the subgraph induced on the cutset is a tree. This is presumably a mistake in [6], because with
this definition it is easy to give counterexamples to 3.1; for instance, take the graph with ten vertices

a1, a2, a3, b1, b2, b3, c1, c2, d1, d2,

and adjacency as follows: aibi is an edge for i = 1, 2, 3; {b1, b2, b3} is complete to {c1, c2}; {c1, c2} is
complete to {d1, d2}; and {d1, d2} is complete to {a1, a2, a3}. Then this graph is a counterexample
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to 3.1 using the definition of “double star cutset” from [6]. Henceforth then, we use the standard
definition.

If v ∈ V (G) we denote the union of {v} and the set of neighbours of v by N [v]; and if uv is an
edge of G then N [uv] denotes N [u] ∪ N [v]. If v,w ∈ V (G) are distinct, we say that v dominates w
if every vertex adjacent to w is also adjacent to v (and hence v,w are nonadjacent). We observe:

3.2 Let G be a bipartite graph with |V (G)| ≥ 5 and E(G) 6= ∅ and with no double star cutset. Then

• G is connected

• G has no star cutset

• no vertex of G dominates another

• for every edge uv, the subgraph induced on V (G) \ N [uv] is nonnull and connected, and every
vertex in N [uv] \ {u, v} has a neighbour in V (G) \ N [uv].

Proof. Suppose that G is not connected, and let uv be an edge, chosen from the component C of
G that has most vertices. Then either G has at least three components, or |V (C)| ≥ 3, and in either
case {u, v} is a double star cutset, a contradiction. Thus G is connected.

Suppose that X is a star cutset with centre u. If there exists v ∈ X \{u}, then X is also a double
star cutset with centre uv, a contradiction; so X = {u}. Let A1 be a component of G \ X, and let
A2 = V (G) \ (A1 ∪ X); thus A2 6= ∅. Since G is connected, u has neighbours vi ∈ Ai for i = 1, 2.
Since X ∪ {vi} is not a double star cutset, it follows that Ai = {vi} for i = 1, 2, and so |V (G)| = 3,
a contradiction. Thus G has no star cutset.

Now suppose that v dominates w. Let X be the union of {v} and the set of all neighbours of w.
Since X is not a star cutset with centre v, it follows that X ∪ {w} = V (G). Let u be adjacent to w.
Since {u, v,w} is not a star cutset with centre u, we deduce that |V (G)| ≤ 4, a contradiction. Thus
no vertex dominates another.

Finally, let uv be an edge. Suppose first that N [uv] = V (G). Then u dominates every neighbour
of v different from u, so by what we just proved, v has degree one, and similarly u has degree one,
a contradiction. Thus N [uv] 6= V (G). Since N [uv] is not a double star cutset, it follows that the
subgraph induced on V (G)\N [uv] is connected. Now let w ∈ N [uv] with w 6= u, v; say w is adjacent
to u. Since v does not dominate w, it follows that w has a neighbour in V (G)\N [uv]. This completes
the proof of 3.2.

4 Operations preserving regularity

In this section we discuss some lemmas stating that if we piece two regular graphs together in
prescribed ways, then the graph we produce is also regular.

If X ⊆ V (G), we denote the subgraph induced on X by G|X. Let G be a connected bipartite
graph that admits a 2-join, and let Vi, Ai, Bi (i = 1, 2) be as in the definition of a 2-join. Let G1 be
the graph obtained from G|V1 by adding a path p1-p2- · · · -pk of new vertices, where p1 is adjacent
to every vertex in A1, pk is adjacent to every vertex in B1, and there are no other edges between V1

and {p1, . . . , pk}, and k ≥ 3, and k is chosen so that G1 is bipartite. Define G2 similarly, adding a
path to G|V2. We call G1, G2 a pair of blocks of the 2-join. We need first:
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4.1 Let G be a connected bipartite graph that admits a 2-join, and let Vi, Ai, Bi (i = 1, 2) be as
before, and let G1, G2 be a pair of blocks of the 2-join. If G1, G2 are both regular then so is G.

This result is well-known, and related to the fact that 3-sums in matroid theory preserve matroid
regularity. Another closely related result is that if G1, G2 are totally unimodular then so is G, and
that is proved in lemma 2.3 of [4]. The proof given there can easily be adapted to prove 4.1, and we
omit the details.

Let G be a bipartite graph. A partition (V1, V2) of V (G) is a 6-join if |V1|, |V2| ≥ 4 and there
exist disjoint nonempty subsets A1, A3, A5 ⊆ V1 and A2, A4, A6 ⊆ V2, satisfying:

• for i = 1, . . . , 6 Ai is complete to Ai+1, where A7 means A1

• there are no other edges between V1 and V2.

In this case, let G1 be obtained from G|V1 by adding three new vertices b2, b4, b6, where for i = 2, 4, 6,
bi is adjacent to every vertex of Ai−1 ∪ Ai+1 (reading subscripts modulo 6), and there are no other
new edges. Similarly, define G2 by adding four vertices b1, b3, b5 to G|V2, where for i = 1, 3, 5, bi is
adjacent to every vertex of Ai−1 ∪ Ai+1, and there are no other new edges. We call G1, G2 a pair of
blocks of the 6-join. We need a result analogous to 4.1 for 6-joins, but first a lemma:

4.2 Let a1, . . . , a6 be integers such that a1, a3, a5 are all even or all odd, and a2, a4, a6 are all even
or all odd. Then

a1a2 − a2a3 + a3a4 − a4a5 + a5a6 − a6a1

is a multiple of four.

Proof. Changing the value of a1 by two does not change the value of the expression modulo four,
since a1 multiplies a2 − a6, which is even. Thus we may assume that a1 ∈ {0, 1}, and similarly
a2, . . . , a6 ∈ {0, 1}. Since a1, a3, a5 are all even or all odd, they are all equal, and so are a2, a4, a6;
and hence the expression is zero.

The analogue of 4.1 is:

4.3 Let (V1, V2) be a 6-join in a connected bipartite graph G, and let G1, G2 be a pair of blocks of
this 6-join. If G1, G2 are both regular then so is G.

Proof. Let A1, . . . , A6 be as in the definition of a 6-join, and let b1, . . . , b6 be the new vertices of
G1, G2 as above. (Throughout this proof we read subscripts modulo 6.) Let ai ∈ Ai for i = 1, 3, 5.
Let w1 be a t.u. signing of G1. If Y ⊆ V (G1) and we replace w1(e) by −w1(e) for every edge e of
G1 with exactly one end in Y , we obtain another t.u. signing of G1; and we may therefore choose w1

such that:

• for j = 2, 4, 6, w1(e) = 1 for every edge e incident with bj and a vertex of Aj−1, and

• for j = 2, 4, w1(e) = −1 for the edge e = bjaj+1.

Since the subgraph of G1 induced on {a1, b2, a3, b4, a5, b6} is eulerian and w1 is a t.u. signing, it follows
that also w1(e) = −1 for the edge e = b6a1. Also, for each choice of a′1 ∈ A1, since the subgraph
induced on {a′1, b2, a3, b4, a5, b6} is eulerian, it follows that w1(e) = −1 for the edge e = b6a

′

1. Similarly
for j = 2, 4 and for each a′j+1 ∈ Aj+1, it follows that w1(e) = −1 for the edge e = bja

′

j+1. Thus in
summary we have:
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• for j = 2, 4, 6, w1(e) = 1 for every edge e incident with bj and a vertex of Aj−1, and

• for j = 2, 4, 6, w1(e) = −1 for every edge e incident with bj and a vertex of Aj+1.

Similarly we may choose a t.u. signing w2 of G2 such that:

• for j = 1, 3, 5, w2(e) = 1 for every edge e incident with bj and a vertex of Aj+1, and

• for j = 1, 3, 5, w2(e) = −1 for every edge e incident with bj and a vertex of Aj−1.

For each edge e of G, either e ∈ E(G|Vi) for some i ∈ {1, 2}, or e = uv where u ∈ Ai and v ∈ Ai+1

for some i ∈ {1, . . . , 6}. In the first case let w(e) = wi(e), and in the second case let w(e) = 1 if i is
odd and −1 if i is even. We claim that w is a t.u. signing of G. For let X ⊆ V (G) such that G|X is
eulerian.

Let xi = |X ∩Ai| for 1 ≤ i ≤ 6. We say that for 1 ≤ i ≤ 6, xi is exceptional if xi + xi+2, xi + xi−2

are both odd (and therefore xi+2 + xi−2 is even). Thus at most one of x1, x3, x5 is exceptional, and
at most one of x2, x4, x6; and if there is one of each, say xi and xj , we claim that j 6= i + 1, i− 1. To
see the last assertion, suppose that x1, x2 are exceptional, say. Thus x1 + x3, x2 + x4 are odd, and
x4 + x6 is even; and so

(x1 + x3)(x2 + x4) + (x1 + x5)(x4 + x6)

is odd. But this equals
x1x2 + x2x3 + x3x4 + x4x5 + x5x6 + x6x1

modulo 2, and so the total number of edges between V1 ∩ X and V2 ∩ X is odd, contradicting that
G|X is eulerian. This proves our assertion. Consequently, from the symmetry we may assume that
x1, x5, x2, x4 are not exceptional, that is, x1 + x5 and x2 + x4 are both even.

Let X1 ⊆ V (G1) be defined as follows. Let X1 ∩ V1 = X ∩ V1, let b2, b4 /∈ X1, and let b6 ∈ X1 if
and only if x6 is exceptional. Similarly, let X2 ⊆ V (G2) where X2 ∩ V2 = X ∩ V2, b1, b5 /∈ X2, and
b3 ∈ X2 if and only if x3 is exceptional.

(1) G1|X1 is eulerian.

For let v ∈ X1; we must check that its degree d1 say in G1|X1 is even. If v = b6 then its de-
gree is x1 + x5, which is even, so we may assume that v ∈ X; let its degree in G|X be d. Thus d is
even. If v ∈ V1 \ (A1 ∪A3 ∪A5) then d1 = d and therefore is even; if v ∈ A3 then d1 = d− (x2 + x4),
and therefore is even; if v ∈ A1 then d1 = d − (x2 + x6) if b6 /∈ X1 (that is, if x2 + x6 is even), and
d1 = d− (x2 +x6)+1 if b6 ∈ X1 (that is, if x2 +x6 is odd), and in either case d1 is even; and similarly
d1 is even if v ∈ A5. This proves (1).

Define X2 ⊆ V (G2) similarly. Then w1(G1|X1) and w2(G2|X2) are multiples of four, so let us
examine w(G|X) − w1(G1|X1) − w2(G2|X2). First,

w(G|X) = w(G|(X ∩ V1)) + w(G|(X ∩ V2)) +
∑

i=1,3,5

xi(xi+1 − xi−1).

Let y6 = 1 if b6 ∈ X1, and y6 = 0 otherwise, and define y3 similarly; then

w1(G1|X1) = w(G|(X ∩ V1)) + y6(x5 − x1)

5



and
w2(G2|X2) = w(G|(X ∩ V2)) + y3(x4 − x2).

Thus w(G|X) − w1(G1|X1) − w2(G2|X2) = R, where by definition

R = x1x2 − x2(x3 − y3) + (x3 − y3)x4 − x4x5 + x5(x6 − y6) − (x6 − y6)x1.

But since x1, x5 are not exceptional, the definition of y3 ensures that x1, x3 − y3, x5 are all odd or all
even; and similarly x2, x4, x6 − y6 are all odd or all even. By 4.2, it follows that R is a multiple of
four. Consequently w(G|X) is a multiple of four, and so w is a t.u. signing of G. This proves 4.3.

Third, we need the following. Let us say distinct vertices of G are twins if they have the same
neighbour sets (and consequently are nonadjacent to each other).

4.4 Let u, v be twins in G, and suppose that G \ {v} is regular. Then G is regular.

Proof. Let w be a t.u. signing of G \ {v}, and extend the domain of w to E(G) by defining
w(vx) = w(ux) for each edge vx of G. We claim that w is a t.u. signing of G. For let X ⊆ V (G)
such that G|X is eulerian. If v /∈ X then w(G|X) is a multiple of four since w is a t.u. signing of
G \ {v}, and if u /∈ X the same conclusion follows from the symmetry between u, v. Thus we may
assume that u, v ∈ X. Let X ′ = X \ {u, v}; then G|X ′ is eulerian, and so w(G|X ′) is a multiple of
four. But w(G|X) = w(G|X ′) + 2z, where z is the sum of w(ux) over all edges ux with x ∈ X ′; and
since G|X is eulerian, it follows that z is even. Hence w(G|X) is a multiple of four, and so w is a
t.u. signing of G, and therefore G is regular. This proves 4.4.

5 Some 6-join lemmas

A 6-join (V1, V2) in a bipartite graph G is said to be skeletal if |V2| = 7, and V2 can be numbered as
{a2, a4, a6, c2, c4, c6, c8} such that

• c8 has degree three in G, with neighbours c2, c4, c6

• for i = 2, 4, 6, ci has degree two in G, with neighbours ai, c8

• there are disjoint nonempty subsets A1, A3, A5 ⊆ V1 such that for i = 2, 4, 6, ai is complete to
Ai−1 ∪ Ai+1 (where A7 means A1) and there are no other edges between V1 and V2.

An induced subgraph of G that is a cycle is called a hole in G, and a hole of length k is a k-hole.
If G is a balanceable bipartite graph, an induced subgraph H is said to be an irregularity in G if H
is not regular, and every induced subgraph of G with fewer vertices than H is regular. We need:

5.1 Let G be balanceable, and let (V1, V2) be a skeletal 6-join. Let V2 = {a2, a4, a6, c2, c4, c6, c8} as
in the definition of “skeletal”. Let H be an irregularity in G; then c2, c4, c6, c8 /∈ V (H).

Proof. Let A1, . . . , A6 be as in the definition of 6-join, where Ai = {ai} for i = 2, 4, 6. Let
w : E(G) → {−1, 1} such that w(C) is a multiple of four for every induced cycle C of G. As usual
we may assume that w(aiai+1) = 1 for i = 1, 3, 5 and all ai ∈ Ai, and w(aiai−1) = −1 for i = 1, 3, 5
and all ai ∈ Ai, where A0 means A6. Now w induces a t.u. signing of J for every regular induced
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subgraph J of G. Since H is an irregularity in G, it follows that H is eulerian; and since w induces
a t.u. signing of every proper induced subgraph of H and not of H itself, we deduce that w(H)
is not a multiple of four. Suppose that one of c2, c4, c6, c8 ∈ V (H). Hence we may assume that
a2, c2, c8, c4, a4 ∈ V (H) and c6 /∈ V (H). For i = 1, 3, 5, let xi = |V (H) ∩ Ai|.

Let Y = {a2, c2, c8, c4, a4}; then w(G|Y ) is a multiple of four, since w(C) is a multiple of four
where C is the hole c8-c2-a2-a3-a4-c4-c8 for some a3 ∈ A3. Suppose first that a6 ∈ V (H), and let
X = V (H)∩ V1. Then G|X is eulerian, and therefore regular from the minimality of |V (H)|, and so
w(G|X) is a multiple of four. But w(H) = w(G|X) + w(G|Y ), and so w(H) is a multiple of four, a
contradiction. Thus a6 /∈ V (H). Let X = (V (H) ∩ V1) ∪ {a6}. Then again G|X is eulerian, and has
fewer vertices than H, and so w(G|X) is a multiple of four. But

w(H) = w(G|X) + w(G|Y ) − 2x5 + 2x1,

and x5 −x1 is even since a6 has even degree in G|X. It follows again that w(H) is a multiple of four,
a contradiction. This proves 5.1.

A 6-join (V1, V2) in a bipartite graph G is said to be internal if |V1|, |V2| ≥ 8. We need several
results saying that balanceable graphs containing certain induced subgraphs admit either double star
cutsets or internal 6-joins.

If X,Y ⊆ V (G), we say that X is anticomplete to Y if X ∩ Y = ∅ and there is no edge xy with
x ∈ X and y ∈ Y . The proof of theorem 6.3 of [3] also proves the following:

5.2 Let G be balanceable, and let a1-b2-a3-b1-a2-b3-a1 be a 6-hole C in G. Suppose that there are
subsets A,B ⊆ V (G) with the following properties:

• A,B, V (C) are pairwise disjoint, and G|A,G|B are connected;

• a1, a2, a3 have neighbours in A, and b1, b2, b3 do not;

• b1, b2, b3 have neighbours in B, and a1, a2, a3 do not; and

• A is anticomplete to B.

Then either G admits a double star cutset, or G admits a 6-join (V1, V2) with A ∪ {a1, a2, a3} ⊆ V1

and B ∪ {b1, b2, b3} ⊆ V2.

6 Big dominoes

A triple (ab,C1, C2) is a domino in G if C1, C2 are holes in G, and ab is an edge, and V (C1)∩V (C2) =
{a, b}, and V (C1)\{a, b} is anticomplete to V (C1)\{a, b}. An odd theta is a graph consisting of two
nonadjacent vertices u, v and three odd length paths between u, v, such that the interiors of these
three paths are pairwise disjoint and pairwise anticomplete. An odd wheel is a graph consisting of a
cycle C and another vertex v /∈ V (C), such that v has an odd number, at least three, of neighbours
in V (C). We need the following easy and well-known lemma (we omit the proof).

6.1 If G is a balanceable bipartite graph, then no induced subgraph of G is an odd theta or an odd
wheel.
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Let us say two vertices u, v in the same component of a bipartite graph G have the same biparity
if every path between them has even length, and otherwise they have opposite biparity (and therefore
every path between them has odd length). We begin with a lemma.

6.2 Let (a0b0, C1, C2) be a domino in a balanceable graph G, such that C1, C2 both have length at
least six. For i = 1, 2, let Pi = Ci \ {a0, b0}; then Pi is a chordless path of length at least three with
ends ai, bi say, where ai is adjacent to b0 and bi to a0. Suppose that G does not admit a double star
cutset, and does not admit a 6-join (V1, V2) such that V (Ci) \ {a0, b0} ⊆ Vi for i = 1, 2, and V1, V2

each contain exactly one of a0, b0. Let q1- · · · -qn be a chordless path such that

• for 1 ≤ i ≤ n, qi has a neighbour in the interior of P1 if and only if i = 1, and qi has a
neighbour in the interior of P2 if and only if i = n, and

• q1, . . . , qn are all nonadjacent to both a0, b0.

Then either

(a) a1 is adjacent to one of q2, . . . , qn, and a2 is adjacent to one of q1, . . . , qn−1, and b1 is nonad-
jacent to q2, . . . , qn, and b2 is nonadjacent to q1, . . . , qn−1, or

(b) b1 is adjacent to one of q2, . . . , qn, and b2 is adjacent to one of q1, . . . , qn−1, and a1 is nonad-
jacent to q2, . . . , qn, and a2 is nonadjacent to q1, . . . , qn−1.

Moreover, if (a) holds then either

• q1 is adjacent to both a1, a2, and a2 is nonadjacent to q2, . . . , qn−1, or

• qn is adjacent to both a1, a2, and a1 is nonadjacent to q2, . . . , qn−1.

An analogous statement holds if (b) is true.

Proof. Let us say a1 or b1 is active if it is adjacent to one of q2, . . . , qn, and a2 or b2 is active if it
is adjacent to one of q1, . . . , qn−1.

(1) At least one of a1, b1, a2, b2 is active, and so n ≥ 2.

For suppose not. We may assume that q1, a0 have opposite biparity. If q1 has more than one
neighbour in P1, there are three paths between q1, a0 forming an odd theta, namely two with interior
in V (C1) and the third with interior in {q2, . . . , qn} ∪ (V (P2) \ {a2}), a contradiction. Thus q1 has a
unique neighbour, p1 say, in P1. Since q1 has a neighbour in the interior of P1 it follows that p1 6= a1;
and there are three paths between p1, b0 forming an odd theta, namely two with interior in V (C1)
and the third with interior in {q2, . . . , qn} ∪ (V (P2) \ {b2}), a contradiction. This proves (1).

(2) Not both a1, b1 are active.

For if they are, there are three paths between a1, b1 forming an odd theta, namely P1, a1-b0-a0-b1

and a path with interior in {q2, . . . , qn}, a contradiction.
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(3) Not both b1, b2 have neighbours in {q2, . . . , qn−1}.

For if they do, let R be a chordless path between b1, b2 with interior in {q2, . . . , qn−1}. Then a1, a2

are both anticomplete to V (R), by (2), and so

b1-P1-a1-b0-a2-P2-b2-R-b1

is a hole and a0 has three neighbours in it, a contradiction. This proves (3).

In view of (1) and (2) we may assume that b1 is active and a1 is not. Let j ∈ {2, . . . , n} be
maximum such that qj, b1 are adjacent.

(4) One of a2, b2 is adjacent to one of q1, . . . , qj−1.

For suppose not. Let R be a chordless path between b0 and qj with interior in (V (P1) \ {b1}) ∪
{q1, . . . , qj−1}. Let S, T be chordless paths between qj, b0 with interior in {qj+1, . . . , qn} ∪ (V (P2) \
{b2}) and in {qj+1, . . . , qn, a0}∪ (V (P2) \ {a2}) respectively. Then b0-R-qj-S-b0 and b0-R-qj-T -b0 are
holes, and b1 has one more neighbour in the second hole than in the first; and so by 6.1, b1 has
exactly one neighbour in R, namely qj. But then there are three paths between qj and b0 that form
an odd theta, namely qj-R-b0, qj-S-b0 and qj-b1-a0-b0, a contradiction. This proves (4).

(5) a2 is not active.

For suppose that a2 is active. Then b2 is not, by (2); and so by (4), a2 is adjacent to one of q1, . . . , qj−1.
Let i ∈ {1, . . . , j − 1} be minimum such that a2, qi are adjacent. If j > i + 1, there are three paths
between b1, a2 forming an odd theta, namely one with interior in V (P1)∪{q1, . . . , qi}, one with inte-
rior in {qj , . . . , qn}∪V (P2), and b1-a0-b0-a2. Thus j = i+ 1; but then the 6-hole a0-b1-qj-qi-a2-b0-a0,
and the two subsets (V (P2) \ {a2}) ∪ {qj+1, . . . , qn} and (V (P1) \ {b1}) ∪ {q1, . . . , qi−1} satisfy the
hypotheses of 5.2, and consequently there is either a double star cutset or a 6-join that violates the
hypothesis of the theorem. This proves (5).

From (4) and (5), it follows that b2 is adjacent to one of q1, . . . , qj−1, and so there is symmetry
between b1 and b2. By (3) one of b1, b2 is nonadjacent to q2, . . . , qn−1, so by exchanging C1, C2 if
necessary, we may assume that b2 is nonadjacent to q2, . . . , qn−1. Consequently b2 is adjacent to q1.
(Note that possibly b2 is adjacent to qn, and possibly j = n.)

(6) b1 is adjacent to q1.

For suppose not. If q1 has at least two neighbours in P1, there are three paths between q1 and
b1 forming an odd theta, namely two with interior in V (C1) and one with interior in {q2, . . . , qj},
a contradiction. If q1 has a unique neighbour p1 in P1, then p1, a0 are nonadjacent and there are
three paths between p1, a0 forming an odd theta, namely two paths of C1 and a path with interior
in {q1, . . . , qj}, again a contradiction. This proves (6), and completes the proof of 6.2.

The lemma is used for the following.
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6.3 Let (a0b0, C1, C2) be a domino in a balanceable graph G, such that C1, C2 both have length
at least six. Then either G admits a double star cutset, or G admits a 6-join (V1, V2) such that
V (Ci) \ {a0, b0} ⊆ Vi for i = 1, 2, and V1, V2 each contain exactly one of a0, b0.

Proof.

For i = 1, 2, let Pi = Ci \ {a0, b0}; then Pi is a chordless path of length at least three with ends
ai, bi say, where ai is adjacent to b0 and bi to a0. We assume that G does not admit a double star
cutset and does not admit a 6-join satisfying the theorem. Hence there is a chordless path q1- · · · -qn

as in 6.2, and again from 6.2 we may assume that q1 is adjacent to b1, b2, and b1 is adjacent to one
of q2, . . . , qn, and b2 is nonadjacent to q2, . . . , qn−1, and a1 is nonadjacent to q2, . . . , qn, and a2 is
nonadjacent to q1, . . . , qn−1.

Since b1 is adjacent to q1 and to one of q2, . . . , qn, it follows that n ≥ 3. Let p2 be the neighbour
of b2 in P2. Since G does not admit a double star cutset, there is a chordless path R between q2

and some vertex r such that r has a neighbour in V (C1) ∪ V (C2) \ {a0, b1, b2, p2}, and a0, b2 are
both nonadjacent to every vertex of R. By choosing R minimal, it follows that r is the only vertex
of R with a neighbour in V (C1) ∪ V (C2) \ {a0, b1, b2, p2}. (However, b1, p2 may have neighbours in
V (R) \ {r}.)

(1) r is adjacent to b0.

For suppose not. Let S1 be the statement that r has a neighbour in V (P1) \ {b1}, and S2 the
statement that some vertex of R has a neighbour in V (P2) \ {b2} (in other words, either r has a
neighbour in V (P2) \ {b2} or some vertex of R is adjacent to p2). Thus at least one of S1,S2 holds.
We claim that if S1 holds then r has a neighbour in V (P1) \ {a1, b1}. For suppose that a1 is the
unique neighbour of r in V (P1) \ {b1}. Then there are three paths between b1, a1 that form an odd
theta, namely b1-a0-b0-a1, a path with interior in {q2, . . . , qn} ∪ V (R), and P1, a contradiction.

We claim also that if S2 holds then some vertex of R has a neighbour in V (P2) \ {a2, b2}. For
suppose that a2 is the unique neighbour of r in V (P2) \ {b2}, and there are no other edges between
V (R) and V (P2) \ {b2}. Then there are three paths between b2, a2 that form an odd theta, namely
b2-a0-b0-a2, a path with interior in {q1} ∪ V (R), and P2, a contradiction.

Now suppose that both S1 and S2 hold. Then there is a subpath T of R that satisfies the initial
hypotheses for the path q1- · · · -qn. Moreover, no vertex of T is adjacent to both b1, b2, and no vertex
of V (T ) \ {r} is adjacent to a1 or to a2, contrary to 6.2. This proves that not both S1,S2 hold.

Next suppose that S1 holds, and hence S2 is false. Then V (R)∪ {q2, . . . , qn} includes the vertex
set of a minimal path T between r and some vertex t that has a neighbour in V (P2) \ {a2, b2}. But
a0, b0 have no neighbours in this path, and a2, b2 have no neighbours in this path different from t
(since b2 is nonadjacent to q2, . . . , qn−1), contrary to 6.2.

Next suppose that S2 holds, and so S1 is false. Since r has a neighbour in

V (C1) ∪ V (C2) \ {a0, b1, b2, p2},

it follows that r has a neighbour in V (P2) \ {b2}. Let T be a chordless path between q1 and some
vertex t that has a neighbour in V (P2) \ {a2, b2}, with V (T ) ⊆ V (R) ∪ {q1}, and choose T minimal.
Then no vertex of T is adjacent to a0 or to b0, and a2, b2 both have no neighbours in V (T ) \ {t},
contrary to 6.2. This proves (1).
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Let T be a chordless path between q1 and r with interior in V (R). If r has no neighbour in
V (P1), then there are three paths between q1, b0 forming an odd theta, namely q1-T -r-b0, a path
with interior in V (P1), and q1-b2-a0-b0, a contradiction. Thus r has a neighbour in V (P1). If r, b1

are nonadjacent, then there are three paths joining r, b1 forming an odd theta, namely r-b0-a0-b1, a
path with interior in V (P1) \ {a1}, and a path with interior in V (R) ∪ {q2, . . . , qn}, a contradiction.
Thus r, b1 are adjacent. Let b1 have k neighbours in T ; thus k ≥ 2. Since we can complete T to a
hole via a subpath of P1 that contains no neighbour of b1, it follows that k is even. But we can also
complete T to a hole via r-b0-a0-b2-q1, and in this hole b1 has k +1 neighbours, contrary to 6.1. This
completes the proof of 6.3.

This has the following useful corollary. Let us say a domino (ab,C1, C2) is big if for i = 1, 2, Ci

has length at least six, and if Ci has length six then both the vertices of Ci \ {a, b} that are adjacent
to a or b have degree at least three in G.

6.4 Every balanceable graph that contains a big domino admits either a double star cutset or an
internal 6-join.

Proof. Let (a1a2, C1, C2) be a big domino in a balanceable graph G. We may assume that G does
not admit a double star cutset. By 6.3, G admits a 6-join (V1, V2) such that V (Ci)\{a1, a2} ⊆ Vi for
i = 1, 2, and V1, V2 each contain exactly one of a1, a2. Let A1, . . . , A6 be as in the definition of 6-join.
We may assume that a1 ∈ A1 and a2 ∈ A2, and we suppose for a contradiction that |V1| ≤ 7. Let
a6 be the neighbour of a1 in C2 different from a2, and let a3 be the neighbour of a2 in C1 different
from a1. Thus a6 ∈ A2 ∪ A6, since a6 ∈ V2 and a6 is adjacent to a1, and similarly a3 ∈ A1 ∪ A3.
Since a3, a6 are nonadjacent, it follows that a3 ∈ A3 and a6 ∈ A6. Since a6 has no neighbour in
V (C1) except a1, it follows that V (C1) ∩ (A1 ∪ A5) = {a1}. Also, V (C1) ∩ A3 = {a3} since a1, a3

are the only neighbours of a2 in V (C1). Consequently all vertices of C1 except three belong to A0,
where A0 = V1 \ (A1 ∪ A3 ∪ A5). Since A1, A3, A5 are nonempty, it follows that |V1| ≥ |V (C1)|. But
|V1| ≤ 7, and |V (C1)| is even, and so C1 is a 6-hole. Let the vertices of C1 be a1-a2-a3-c4-c5-c6-a1 in
order. Since G is bipartite, c5 has no neighbour in A1 ∪ A3 ∪ A5.

(1) If a5 ∈ A5, then a5 is adjacent to both or neither of c4, c6.

For suppose that a5 is adjacent to c6 and not to c4 say. Let a4 ∈ A4. Then the paths c6-a1-a2-a3,
c6-a5-a4-a3 and c6-c5-c4-a3 form an odd theta, contrary to 6.1. This proves (1).

Suppose first that |A0| = 3, and so A0 = {c4, c5, c6}. Since we may assume that A1 ∪ A3 ∪ {a2}
is not a double star cutset, one of c4, c5, c6 (and therefore both c4, c6, by (1), and not c5, since c5, a5

would have the same biparity) has a neighbour a5 ∈ A5. But then a5 dominates c5, contrary to 3.2.
Thus |A0| > 3. Consequently |A0| = 4, and |Ai| = 1 for i = 1, 3, 5. Let A5 = {a5}. Suppose that

c4, c6 are adjacent to a5. Since a5 does not dominate c5 by 3.2, some neighbour x of c5 is nonadjacent
to c5 and in particular is different from c4, c6. Hence x ∈ A0. For the same reason, some neighbour
of x is nonadjacent to c4, and so x, a1 are adjacent; and similarly x, a3 are adjacent. But then G|V1

is an odd wheel with centre c5, contrary to 6.1.
Thus not both c4, c6 are adjacent to a5, and hence by (1), c4, c6 are both nonadjacent to a5. But

c6 has degree at least three in G, since (a1a2, C1, C2) is a big domino; let x 6= a1, c5 be adjacent to
c6. Thus x ∈ A0. But none of c4, c5, c6, x are adjacent to a5 (because c5, x are nonadjacent to a5

11



since they have the same biparity), and therefore {a1, a2, a3} is a star cutset, contrary to 3.2. Thus
|V1| ≥ 8, and similarly |V2| ≥ 8. This proves 6.4.

7 Small dominoes

A domino (ab,C1, C2) is small if C1, C2 are both 4-holes. Our next goal is an analogue of 6.4 for
small dominoes, but we first need two more lemmas. The first is theorem 6.2 of [3]. (The graph R10

consists of a ten-vertex cycle with edges between the five opposite pairs of vertices of the cycle.)

7.1 Let G be balanceable, with an induced subgraph isomorphic to R10. Then either G is isomorphic
to R10, or G admits a double star cutset.

Let (a0b0, C1, C2) be a small domino in a bipartite graph G. A left ear for (a0b0, C1, C2) is a
hole H1 such that (a1b1, C1,H1) is a domino (where V (C1) = {a0, b0, a1, b1}) and V (C2) \ {a0, b0} is
anticomplete to H1. A right ear for (a0b0, C1, C2) is a left ear for (a0b0, C2, C1).

7.2 Let G be balanceable, and let (a0b0, C1, C2) be a small domino with a left ear and a right ear.
Then either G is isomorphic to R10, or G admits a double star cutset or an internal 6-join.

Proof. We may assume that G admits no double star cutset. For i = 1, 2, let Ci have vertices
a0-bi-ai-b0-a0 in order. Let H1 be a left ear with vertices a1-p1-p2- · · · -pm-b1-a1 in order, and let
H2 be a right ear with vertices a2-q1-q2- · · · -qn-b2-a2 in order. Thus {p1, . . . , pm} is anticomplete to
V (C2), and {q1, . . . , qn} is anticomplete to V (C1). However, the sets {p1, . . . , pm} and {q1, . . . , qn}
may not be anticomplete to each other, and may even not be disjoint. If either {p1, . . . , pm} and
{q1, . . . , qn} are not disjoint, or are disjoint but not anticomplete to each other, let k(H1,H2) = 0.
If {p1, . . . , pm} and {q1, . . . , qn} are disjoint and anticomplete, define k(H1,H2) to be the minimum
k such that there is a path r1- · · · -rk with r1 adjacent to one of p1, . . . , pm, and rk adjacent to one of
q1, . . . , qn, and a0, b0 nonadjacent to r1, . . . , rk (such a path exists since G does not admit a double
star cutset). We proceed by induction on k(H1,H2).

(1) If k(H1,H2) = 0 then the theorem holds.

For suppose first that one of p1, . . . , pm−1 either equals or is adjacent to one of q1, . . . , qn−1. Then
there is a chordless path R between a1 and a2 with interior in {p1, . . . , pm−1, q1, . . . , qn−1}, and
therefore b1, b2 have no neighbours in the interior of R. But then b0 has three neighbours in the hole
a1-R-a2-b2-a0-b1-a1, so G contains an odd wheel, contrary to 6.1. Thus {p1, . . . , pm−1} is disjoint
from and anticomplete to {q1, . . . , qn−1}. Since pm /∈ {q1, . . . , qn} since pm is adjacent to b1, and
similarly qn /∈ {p1, . . . , pm}, it follows that {p1, . . . , pm} is disjoint from {q1, . . . , qn}. Moreover, for
1 ≤ i ≤ m and 1 ≤ j ≤ n, if pi, qj are adjacent then either i = m or j = n. Similarly either i = 1
or j = 1. Thus the only pairs piqj that might be adjacent are p1qn and pmq1. Since k(H1,H2) = 0
it follows that at least one of these is an edge, so from the symmetry we may assume that p1, qn are
adjacent. If pmq1 is not an edge then

p1- · · · -pm-b1-a0-b0-a2-q1- · · · -qn-p1
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is a hole, containing three neighbours of a1, contrary to 6.1. Thus pmq1 is an edge. Since the three
paths p1- · · · -pm, p1-a1-b1-pm and p1-qn- · · · -q1-pm do not form an odd theta, it follows that m = 2
and similarly n = 2; but then G contains an induced subgraph isomorphic to R10 and the theorem
holds by 7.1. This proves (1).

Henceforth then we assume that {p1, . . . , pm} and {q1, . . . , qn} are disjoint and anticomplete, so
k(H1,H2) > 0. Choose a path r1- · · · -rk such that r1 is adjacent to one of p1, . . . , pm, and rk is adja-
cent to one of q1, . . . , qn, and a0, b0 are nonadjacent to r1, . . . , rk, with k = k(H1,H2); then this path
is chordless. Hence {r1, . . . , rk−1} is anticomplete to {q1, . . . , qn}, and {r2, . . . , rk} is anticomplete to
{p1, . . . , pm}. However, there may be edges between {a1, b1, a2, b2} and {r1, . . . , rk}.

(2) We may assume that either {a1, b2} is anticomplete to {r1, . . . , rk}, or {a2, b1} is anticomplete
to {r1, . . . , rk}.

For suppose not. If some ri is adjacent to two of a1, b1, a2, b2, then G|{a0, b0, a1, b1, a2, b2, ri} is
an odd wheel, a contradiction. Thus each ri is adjacent to at most one of a1, b1, a2, b2. Choose a
chordless path c2- · · · -ct−1 with t minimum such that some c1 ∈ {a1, b2} is adjacent to c2 and some
ct ∈ {a2, b1} is adjacent to ct−1, and c2, . . . , ct−1 ∈ {r1, . . . , rk}. Thus t ≥ 4. From the minimality
of t, none of c3, . . . , ct−2 is adjacent to any of a1, b1, a2, b2. From the symmetry we may assume that
c1 = a1. If ct = a2 then b0 has three neighbours in the hole c1- · · · -ct-b2-a0-b1-c1, a contradiction.
If ct = b1, let H3 be the hole c1-c2- · · · -ct-c1; then k(H2,H3) < k and the result follows from the
inductive hypothesis. This proves (2).

Thus we may assume that {a2, b1} is anticomplete to {r1, . . . , rk}.

(3) Either a1 is adjacent to one of r2, . . . , rk, or b2 is adjacent to one of r1, . . . , rk−1, and in particular
k > 1.

For suppose not. If there is a chordless path P ′ between a1 and r1 with interior in {p1, . . . , pm−1}
and a chordless path Q′ between a2 and rk with interior in {q1, . . . , qn−1}, then

a0-b1-a1-P
′-r1- · · · -rk-Q

′-a2-b2-a0

is a hole containing three neighbours of b0, contrary to 6.1. So we may assume that there is no such
path P ′ say, and therefore pm is the only neighbour of r1 in {a1, p1, . . . , pm}. Let Q′ be a chordless
path between rk and b2 with interior in {q1, . . . , qn}; then

a0-b0-a1-p1- · · · -pm-r1- · · · -rk-Q
′-b2-a0

is a hole containing three neighbours of b1, contrary to 6.1. This proves (3).

From (3) we may assume that a1 is adjacent to some rj with j > 1. Choose j ≤ k maximum
with this property.

(4) b2 is adjacent to at least one of r1, . . . , rj−1.
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For suppose not. Let Q′, Q′′ be chordless paths from rj to b2 and a2 respectively with interiors
in

{rj+1, . . . , rk, q1, . . . , qn},

and choose h with 1 ≤ h ≤ m maximum such that r1, ph are adjacent. Then

a0-b1-pm- · · · -ph-r1- · · · -rj

is a chordless path, and it can be completed to a hole via rj-Q
′-b2-a0 and via rj-Q

′′-a2-b0-a0. The
numbers of neighbours of a1 in these two holes differ by one, and yet b1, rj are neighbours of a1 that
belong to both holes, and so G contains an odd wheel, contrary to 6.1. This proves (4).

Choose i with 1 ≤ i < j minimum such that b2, ri are adjacent.

(5) j = i + 1.

For suppose not; then i ≤ j−2, and there are three paths between a1 and b2 that form an odd theta,
namely a path with interior in {p1, . . . , pm, r1, . . . , ri}, a path with interior in {rj , . . . , rk, q1, . . . , qn},
and the path a1-b0-a0-b2, contrary to 6.1. This proves (5).

Now a0-b2-ri-rj-a1-b0-a0 is a 6-hole. Let

A = {b1, p1, . . . , pm, r1, . . . , ri−1}

B = {a2, q1, . . . , qn, rj+1, . . . , rk}.

Then G|A,G|B are connected, and the hypotheses of 5.2 are satisfied, and since G admits no double
star cutset, it follows that G admits a 6-join (V1, V2) with A∪{a0, a1, ri} ⊆ V1 and B∪{b0, b2, rj} ⊆ V2.
Suppose that |V1| ≤ 7. Then

|{b1, p1, . . . , pm, r1, . . . , ri−1, ri, a0, a1}| ≤ 7,

and so m ≤ 3; and since m is even it follows that m = 2. Also, i ≤ 2. Now a1, ri have the same
biparity (since a1, ri+1 are adjacent). If r1 is adjacent to p2, then it follows that i = 2 (since a1, ri

have the same biparity), and so V1 = {p1, p2, a1, b1, r1, r2, a0}. But then a1, p2 are the only neighbours
of p1, and so {a1, p2, b1} is a star cutset, contrary to 3.2. Hence r1 is adjacent to p1. Since a1, ri have
the same biparity it follows that i = 1, and so a1, r2 are adjacent. Since a1 does not dominate p2

by 3.2, it follows that p2 has a neighbour x nonadjacent to a1, and in particular x 6= p1, b1; and so
V1 = {p1, p2, a1, b1, r1, x, a0}. Since x has a neighbour nonadjacent to p1 by 3.2, it follows that x, a0

are adjacent. But then x-p2-p1-a1-b0-a0-x is a 6-hole and b1 has three neighbours in it, contrary to
6.1. This completes the proof of 7.2.

7.3 Every balanceable graph not isomorphic to R10 that contains a small domino admits either a
double star cutset or an internal 6-join.

Proof. Let G be a balanceable graph not isomorphic to R10, and let (a0b0, C1, C2) be a small domino
in G. By 7.2 we may assume that G does not contain a right ear for this domino. For i = 1, 2 let Ci

have vertices a0-bi-ai-b0-a0 in order. By 3.2 there is a hole H such that (a2b2, C2,H) is a domino;

14



let H have vertices a2-p1- · · · -pm-b2-a2 in order. Since H is not a right ear, one of a1, b1 is adjacent
to one of p1, . . . , pm. From the symmetry we may assume that b1 is adjacent to one of p1, . . . , pm;
choose h, j with 1 ≤ h, j ≤ m minimum and maximum respectively such that b1 is adjacent to ph, pj .
If a1 is nonadjacent to all of pj+1, . . . , pm, then (since a1, pj have the same biparity and are therefore
nonadjacent)

b1-pj- · · · -pm-b2-a2-b0-a1-b1

is a hole containing three neighbours of a0, contrary to 6.1. So a1 is adjacent to one of pj+1, . . . , pm,
and in particular j < m. If h = j then the three paths ph-b1-a0-b2, ph-ph−1- · · · -p1-a2-b2 and
ph-ph+1- · · · -pm-b2 form an odd theta, contrary to 6.1, so h < j. Choose i, k with 1 ≤ i, k ≤ m
minimum and maximum respectively such that a1 is adjacent to pi, pk. Thus k > j, and from the
symmetry it follows that h < i < k. If i ≥ j, then the numbers of neighbours of b1 in the two holes
H and

a2-p1- · · · -pi-a1-b0-a2

differ by one, and b1 has at least three neighbours in the second hole (since h < j), contrary to 6.1.
Thus i < j.

Let us choose the hole H described above such that b1 has as few neighbours in it as possible.
Choose h′ with h < h′ ≤ m minimum such that b1, ph′ are adjacent. We may assume that there
is a chordless path ph+1-r1- · · · -rn-b0 such that r1, . . . , rn are nonadjacent to a0, b1, for otherwise G
admits a double star cutset. From the choice of H it follows that every vertex of H that belongs to
{r1, . . . , rn−1} or has a neighbour in {r1, . . . , rn−1} belongs to {ph, ph+1, . . . , ph′}.

(1) rn is adjacent to one of p1, . . . , ph−1.

For suppose not. Let P be a chordless path between ph and b0 with interior in {ph+1, r1, . . . , rn};
then the three paths P , ph-b1-a0-b0 and ph-ph−1- · · · -p1-a2-b0 form an odd theta (note that rn is
nonadjacent to a2, ph since they have the same biparity), a contradiction. This proves (1).

(2) Every neighbour of rn in H belongs to {b2, p1, . . . , ph−1, ph+1}.

For b1-a0-b0-rn is a chordless path, and by (1) there is a chordless path between b1 and rn with interior
in {p1, . . . , ph}, so if there is a chordless path between b1 and rn with interior in {ph+2, ph+3, . . . , pm}
then these three paths would form an odd prism. This proves (2).

Let P be a chordless path between ph′ and b2 with interior in {a2, p1, p2, . . . , ph′−1, r1, . . . , rn} \
{ph}. It can be completed to a hole via ph′-ph′+1- · · · -pm-b2. The number of neighbours of b1 in this
hole is exactly one fewer than the number of neighbours of b1 in H, and so by 6.1, b1 has exactly
two neighbours in H, that is, h′ = j. But then P and the paths pj-b1-a0-b2 and pj-pj+1- · · · -pm-b2

form an odd theta, contrary to 6.1. This completes the proof.

8 A proof of conjecture 9.29 of [6]

A bipartite graph G is strongly balanceable if it is balanceable and no induced subgraph is a cycle
with exactly one chord. For the proof of 3.1 we also need theorem 6.1 of [3], the following:
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8.1 Every connected balanceable bipartite graph that is not strongly balanceable either equals R10 or
admits a 2-join, a 6-join, or a double star cutset.

Proof of 3.1. We prove 3.1 by induction on |V (G)|. Suppose then that G is a nonregular bal-
anceable graph (and consequently |V (G)| ≥ 6), and every nonregular balanceable graph with fewer
vertices than G admits a double star cutset. Suppose for a contradiction that G does not admit a
double star cutset. By 3.2, G is connected.

(1) G does not admit a 2-join.

For suppose it does, and let Vi, Ai, Bi (i = 1, 2) be as in the definition of 2-join. Suppose first
that there exist x ∈ A1 and y ∈ B1, adjacent. Every path between V1 \ {x, y} and V2 \ (A2 ∪ B2)
contains a member of N [xy] in its interior, and since V1 \ {x, y} 6= ∅ and G does not admit a double
star cutset, it follows that V2 = A2 ∪ B2. Hence there is an edge between A2, B2, and so similarly
V1 = A1∪B1. Not both |A1|, |B1| = 1 from the definition of a 2-join, and if say v,w ∈ A1 are distinct
then by 3.2, since neither of v,w dominates the other, it follows that |B1| > 1. Moreover, the same
argument proves that there exist a1, a

′

1 ∈ A1 and b1, b
′

1 ∈ B1 such that a1b1 and a′1b
′

1 are edges, and
a1, b

′

1 are nonadjacent, and a′1, b1 are nonadjacent. Similarly there exist a2, a
′

2 ∈ A2 and b2, b
′

2 ∈ B2

such that the only edges between {a2, a
′

2} and {b2, b
′

2} are a2b2 and a′2b
′

2. But then the subgraph
induced on {a2, a1, b1, b

′

2, b
′

1, a
′

1} is a cycle, and b2 has exactly three neighbours in it, contrary to 6.1.
Hence there are no edges between A1 and B1, and similarly no edges between A2 and B2.

Let P2 be a chordless path of G|V2 between A2 and B2 with no internal vertex in A2∪B2. Suppose
that G|(V1 ∪ V (P2)) is not regular. Let P2 have vertices p1- · · · -pk say, where p1 ∈ A2 and pk ∈ B2.
Every vertex in A1 has a neighbour in V1 \A1 (from the definition of a 2-join if |A1| = 1, and by 3.2
if |A1| > 1); and every component of G|(V1 \A1) contains a vertex of B1, by 3.2 applied to G and the
edge p1p2. It follows that G|((V1 \A1) ∪ {pk}) is connected, and every vertex in A1 has a neighbour
in (V1 \A1) ∪ {pk}; and an analogous statement holds with A1, B1 exchanged and p1, pk exchanged.

We claim that if k = 3 then |V2| ≥ 6. For if |A2| = |B2| = 1 then V (P ) is a double star cutset
(since P2 6= G|V2 from the definition of a 2-join), so from the symmetry we may assume that |B2| > 1.
Choose b2 ∈ B2 with b2 6= p3. From 3.2, there is a chordless path between b2 and A1 containing no
neighbour of either of p2, p3 (except possibly b2). In particular, this path is disjoint from B1, and
therefore contains a vertex of V2 \ (A2 ∪ B2) different from p2, and a vertex of A2 different from p1.
Consequently |V2| ≥ 6, as claimed.

Let G1 = G|(V1 ∪ V (P2)). If k > 3 let G′ = G1 and let P ′

2 = P2. If k = 3 let G′ denote the
graph obtained from G1 by subdividing twice some edge of P2 (that is, replacing some edge of P2

by a three-edge path), and let P ′

2 be the path obtained from P2 by this double subdivision. Then in
either case no edge of P ′

2 is the centre of a double star cutset of G′. Yet G′ is balanceable and not
regular, and since |V (G′)| < |V (G)|, the inductive hypothesis implies that there is an edge uv of G′

that is the centre of a double star cutset of G′. It follows that at least one of u, v ∈ V1, and uv is an
edge of G1, and therefore uv is the centre of a double star cutset of G1.

There is a subset X ⊆ N [uv] ∩ V (G1) with u, v ∈ X such that G1 \ X is disconnected. Since
X ∪ (N [uv] \ V (G1)) is not a double star cutset of G, there is a chordless path Q of G with ends
x, y belonging to different components of G1 \ X, and such that no internal vertex of Q belongs to
V (G1) ∪ N [uv]. Since Q∗ ⊆ V2, there is a chordless path P of G1 between x, y with P ∗ ⊆ V (P2);
and therefore N [uv] ∩ P ∗ 6= ∅. Since at least one of u, v ∈ V1, it follows that {u, v} ∩ (A1 ∪ B1) 6= ∅,
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say u ∈ A1. Then A2 ∩ Q∗ = ∅, and since x, y both have neighbours in Q∗ ⊆ V2 \ A2, it follows that
x, y ∈ V2 ∪ B1. So P ∗ ∩ A2 = ∅, and therefore N [uv] ∩ V2 6⊆ A2. Hence v ∈ A2, and so v = p1, the
end of P2 in A2. Thus x, y /∈ A2, and so N [uv] ∩ P ∗ = ∅, a contradiction.

This proves that G1 = G|(V1 ∪ V (P2)) is regular. Similarly, let P1 be a chordless path of G|V1

between A1 and B1 with no internal vertex in A1 ∪ B1; then G2 = G|(V2 ∪ V (P1)) is regular. But
then by 4.1, G is regular, a contradiction. This proves (1).

(2) If (V1, V2) is a 6-join in G, then one of (V1, V2), (V2, V1) is skeletal.

For let A1, . . . , A6 be as in the definition of a 6-join, and choose ai ∈ Ai for 1 ≤ i ≤ 6. By 4.3,
not both blocks of the 6-join are regular; so we may assume that G1 is not regular, where G1 is the
block obtained by adding three vertices b2, b4, b6 to G|V1, with adjacency as before. For convenience
we assume (as we may) that bi = ai for i = 2, 4, 6. Since G1 is therefore an induced subgraph of G,
it follows that G1 is balanceable. Define A7 = V1 \ (A1 ∪ A3 ∪ A5). Let H be obtained from G1 by
adding four vertices c2, c4, c6, c8 to G1 and the edges cic8 and ciai for i = 2, 4, 6. We shall show that
G,H are isomorphic. Certainly H is balanceable (to see this, take a map w : E(G1) → {−1, 1} such
that w(C) is a multiple of four for every induced cycle C of G1; by reversing the signs of w(e) on
some edge-cutsets if necessary we may assume as usual that w(a′iai+1) = 1 and w(a′iai−1) = −1 for
i = 1, 3, 5 and each a′i ∈ Ai, where a0 means a6; then extend the domain of w to E(H) by defining
w(e) = 1 for every edge e ∈ E(H) \ E(G1); and it is easy to check that w(C) is a multiple of four
for every induced cycle C of H.)

We recall that G admits no double star cutset. Suppose that H admits a double star cutset
X, with centre uv say. Up to symmetry there are five possibilities for uv, namely c2c8, c2a2, a1a2,
a7a1 for some a7 ∈ A7, and a7a

′

7 for some a7, a
′

7 ∈ A7. If uv = c2c8, then A1 ∪ A3 ∪ A5 ∪ {a4, a6}
is a subset of the vertex set of one component of H \ X, and so H and hence G is disconnected,
a contradiction. If uv = c2a2, then the members of A5 ∪ {a4, c4, a6, c6} all belong to the same
component of H \ X, as does every vertex of A1 ∪ A3 not in X, and so there is a component C
of H \ X with V (C) ⊆ A7. Hence C is a component of G \ N [a2], and therefore G admits a star
cutset, contrary to 3.2. If uv = a1a2, then the members of A5 ∪{a4, c4, c6, c8} all belong to the same
component of H \ X, as does every member of A3 \ X, and so there is a second component C say
with V (C) ⊆ A7 ∪ A1. But then (X \ {c2}) ∪ A2 ∪ A6 is a double star cutset of G, a contradiction.
If uv = a7a1 for some a7 ∈ A7, then a4, c2, c4, c6, c8 all belong to the same component of H \ X,
as does every member of (A3 ∪ A5 ∪ {a2, a6}) \ X. Hence there is a component C of H \ X with
V (C) ⊆ A7 ∪ A1, and so (X ∩ V1) ∪ (A2 ∪ A6) is a double star cutset of G, a contradiction. Finally,
if u, v ∈ A7, then a2, a4, a6, c2, c4, c6, c8 all belong to the same component of H \ X, as does every
member of (A1 ∪A3∪A5)\X, and so there is a component C of H \X with V (C) ⊆ A7; but then X
is a double star cutset of G, a contradiction. It follows that H does not admit a double star cutset.

From the inductive hypothesis, we deduce that |V (H)| ≥ |V (G)|, and so |V2| ≤ 7. Let A8 =
V2 \ (A2 ∪ A4 ∪ A6). If A8 = ∅, then since |V2| ≥ 4 it follows that two members of V2 are twins,
contradicting 3.2. Thus A8 6= ∅. Suppose that some vertex in A8 has neighbours in two of A2, A4, A6,
say a8 ∈ A8 is adjacent to a2 ∈ A2 and to a4 ∈ A4. Since N [a3a2] \ {a8} is not a double star cutset,
there is a chordless path P between a8 and A6 such that V (P )\{a8} is anticomplete to a2. Choose P
minimal; then all its vertices belong to A8 except for its final vertex a6 say in A6. Since the subgraph
induced on {a8, a1, . . . , a6} is not an odd wheel by 6.1, it follows that a8, a6 are nonadjacent, and
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since a8, a6 have opposite biparity it follows that P has odd length, and length at least three. Since
|V2| ≤ 7 and so |A8| ≤ 4, it follows that P has length three; let its vertices be a8-p1-p2-a6 in order.
Now the paths a8-P -a6, a8-a2-a1-a6 and a8-a4-a5-a6 do not form an odd theta, by 6.1, and so a4 is
adjacent to p2. But then every neighbour of p1 is adjacent to a4, contrary to 3.2. This proves that
no vertex of A8 has neighbours in two of A2, A4, A6.

Let C be a component of G|A8. Since G does not admit a double star cutset, at least one member
of Ai has a neighbour in C for i = 2, 4, 6, and so we may assume that for i = 2, 4, 6, ai is adjacent
to ci ∈ C. Hence c2, c4, c6 are all distinct, since no vertex of A8 has neighbours in two of A2, A4, A6.
Moreover, since C is connected, there is a vertex c8 ∈ C such that a2, c8 have the same biparity.
Hence A8 = {c2, c4, c6, c8}, and Ai = {ai} for i = 2, 4, 6; and since C is connected, it follows that c8

is adjacent to each of c2, c4, c6. But then (V1, V2) is skeletal. This proves (2).

From (2) and 6.4 and 7.3, it follows that G contains no big domino or small domino.

(3) Let (V1, V2) be a 6-join, and let A1, . . . , A6 be defined as usual. If v ∈ V1 has a neighbour in
A1 and a neighbour in A3, then v is complete to A1 ∪ A3.

For let v be adjacent to a1 ∈ A1 and a3 ∈ A3, and suppose it is nonadjacent to some a′1 ∈ A1

say. Choose a2 ∈ A2 and a6 ∈ A6; then

(a1a2, a1-a2-a
′

1-a6-a1, a1-a2-a3-v-a1)

is a small domino, a contradiction. This proves (3).

(4) Let (v1v2, C,D) be a domino, where |V (C)| ≥ 8 and |V (D)| ≥ 6. For i = 1, 2, let ci, di be
the neighbours of vi in C \ {v1, v2},D \ {v1, v2} respectively, and let d1 have degree at least three in
G. Then every vertex of G adjacent to both c2 and v1 is adjacent to every neighbour of v2 except
possibly d2, and d2 belongs to no irregularity in G.

For by 6.3, G admits a 6-join (V1, V2) such that V (C) \ {v1, v2} ⊆ V1 and V (D) \ {v1, v2} ⊆ V2,
and V1, V2 each contain exactly one of v1, v2. Let {i, j} = {1, 2}, where vj ∈ V1 and vi ∈ V2. Since
C has length at least eight, it follows that (V2, V1) is not skeletal, and so by (2) (V1, V2) is skeletal.
Hence di has degree two, and by 5.1 di does not belong to any irregularity in G. Since d1 has degree
at least three, it follows that i = 2 and j = 1. Let the sets A1, . . . , A6 be defined as usual, where
c2 ∈ A1, v2 ∈ A2, v1 ∈ A3 and d1 ∈ A4. Then N [v2] = A1 ∪ A3 ∪ {v2, d2}, and v2 is the only vertex
in V2 adjacent to both c2, v1, and by (3) every vertex in V1 adjacent to both c2, v1 is complete to
A1 ∪ A3. This proves (4).

Since R10 is regular, it follows from 8.1 that either G is strongly balanceable, or G admits a
2-join, or G admits a 6-join. The first is impossible since it is a theorem of [5] that every strongly
balanceable graph is regular. So by (1) and (2), it follows that G admits a skeletal 6-join (V1, V2).
Let A1, . . . , A6 be as in the definition of a 6-join, and for 1 ≤ i ≤ 6 choose ai ∈ Ai. Thus Ai = {ai}
for i = 2, 4, 6. Since G is not regular, it follows that there is an irregularity H, and from 5.1
V (H) ∩ V2 ⊆ {a2, a4, a6}. Choose H such that |V (H) ∩ {a2, a4, a6}| is as small as possible.
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(5) If a2 ∈ V (H) then there is no vertex v ∈ V1 with a neighbour in A1 and a neighbour in A3.

For suppose that a2 ∈ V (H) and such a vertex v exists. By (3) v is complete to A1∪A3. Since G does
not admit a double star cutset, there is a chordless path v-p1- · · · -pk of G such that p1, . . . , pk−1 ∈ V1

and {p1, . . . , pk} is anticomplete to {a1, a2}, and pk ∈ A1 ∪A3 ∪A5 (and therefore pk ∈ A5, since pk

is nonadjacent to a2). By 6.1, v does not have three neighbours in the hole induced on {a1, . . . , a6},
and so k > 1. Since the paths v-p1- · · · -pk, v-a3-a4-pk and v-a1-a6-pk do not form an odd theta by
6.1, it follows that a3 is adjacent to one of p1, . . . , pk. Choose i with 1 ≤ i ≤ k minimum such that
a3, pi are adjacent. Since v, pi have the same biparity, it follows that i < k, and i is even. If i = 2
then

(va3, v-a1-a2-a3-v, v-p1-p2-a3-v)

is a small domino, a contradiction; so i ≥ 4. Since (V1, V2) is skeletal, there is a chordless path Q of
length four between a6 and a4 with interior in V2 \ {a2, a4, a6}. Let C be the hole v-a1-a6-Q-a4-a3-v,
and let D be the hole v-p1- · · · -pi-a3-v. Then (va3, C,D) is a domino, and C has length eight, and
D has length at least six. Let v1 = a3 and v2 = v, and for i = 1, 2, let ci, di be the neighbours of vi

in C \ {v1, v2},D \ {v1, v2} respectively; then d1 = pi, and therefore d1 has degree at least three in
G. By (4) every vertex of G adjacent to both c2 and v1 is adjacent to every neighbour of v2 except
possibly d2, and d2 belongs to no irregularity in G. Since c2 = a1, and d2 = p1, and a2 is adjacent
to both a1, a3, it follows that a2 is adjacent to every neighbour of v2 except p1. But the neighbour
set of a2 is A1 ∪ A3 ∪ {u2} for some u2 ∈ V2 \ {a2, a4, a6}, where no irregularity contains u2 by 5.1;
and since we have already seen that v is complete to A1 ∪ A3, it follows that the neighbour set of
v is A1 ∪ A3 ∪ {p1}. If v ∈ V (H) then since p1, u2 /∈ V (H) it follows that v, a2 are twins in H,
which is impossible. Thus v /∈ V (H). Since p1, u2 /∈ V (H), it follows that the subgraph induced
on (V (H) \ {a2}) ∪ {v} is isomorphic to H, and therefore is also an irregularity, contrary to the
minimality of |V (H) ∩ {a2, a4, a6}|. This proves (5).

Let I be the set of all i ∈ {2, 4, 6} such that no vertex in V1 has a neighbour in Ai−1 and a
neighbour in Ai+1, where A7 means A1. Let J be the subgraph of G induced on V1 ∪ {ai : i ∈ I}.

(6) J does not admit a double star cutset.

For suppose there is a double star cutset X in J , with centre uv say, and let C1, C2 be distinct
components of J \ X. Let X ′ = X ∪ (N [uv] \ V (J)). Since X ′ is not a double star cutset of G,
it follows that C1, C2 are both subgraphs of the same component C of G \ X ′. In particular, for
j = 1, 2, some vertex pj of Cj has a neighbour qj ∈ V (C) \ V (Cj) that is nonadjacent to both u, v.
Thus qj /∈ V (J), and hence pj ∈ A1 ∪ A3 ∪ A5 ∪ {ai : i ∈ I}. For i = 2, 4, 6, if i ∈ I let a′i = ai,
and if i /∈ I let a′i be some vertex in V1 that is complete to Ai−1 ∪ Ai+1 (this exists, by (3) and the
definition of I). We observe that for i = 2, 4, 6, a′i is anticomplete to Ai+3; for this is clear if a′i = ai,
and if a′i 6= ai then it follows since otherwise a′i would have three neighbours in a 6-hole contained
in A1 ∪ · · · ∪ A6. Let R be the subgraph of G induced on A1 ∪ A3 ∪ A5 ∪ {a′2, a

′

4, a
′

6}). Then R is a
subgraph of J , and is connected, and both p1, p2 ∈ V (R).

Suppose first that u = a2 say, and therefore 2 ∈ I. From the symmetry we may assume that
v ∈ A1. Hence X ∩ (A5 ∪ {a′4}) = ∅, and so we may assume that A5 ∪ {a′4} ⊆ V (C1). Thus
p2 /∈ A3 ∪ A5 ∪ {a′2, a

′

4, a
′

6}, and so p2 ∈ A1. But then q2 = a6, and so q2 is adjacent to v, a
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contradiction. Thus u 6= a2, and similarly u, v 6= a2, a4, a6.
Next suppose that u ∈ A1. Thus v has a neighbour in A1, and so is anticomplete to one of

A3, A5, say A5 without loss of generality. Hence X ∩ (A5 ∪ {a′4}) = ∅, and so we may assume that
A5 ∪ {a′4} ⊆ V (C1). Consequently p2 ∈ A1 ∪ {a′2}. If p2 = a′2, then a′2 = a2 and so 2 ∈ I, and so v
has no neighbour in A3; but then A3 ∩ X = ∅, and so A3 ⊆ V (C1), a contradiction. Thus p2 ∈ A1,
and so q2 is adjacent to u, a contradiction. Thus u /∈ A1, and similarly u, v /∈ A1 ∪ A3 ∪ A5.

Next suppose that a′2, a
′

4 belong to the same component of J \ X, say a′2, a
′

4 ∈ V (C1). Then
V (C2) ∩ (A1 ∪ A3 ∪ A5) = ∅, and so p2 = a′6 = a6 and 6 ∈ I. But then A1 ∪ A5 ⊆ X, and so one of
u, v is complete to A1 ∪ A5, contradicting that 6 ∈ I.

Next suppose that a′2, a
′

4 ∈ X. Thus we may assume that u is adjacent to a′2, a
′

4. Since u /∈
A1 ∪ A3 ∪ A5, it follows that a′2, a

′

4 /∈ V2. But then

(a′2a3, a
′

2-u-a′4-a3-a
′

2, a
′

2-a1-a2-a3-a
′

2)

is a small domino in G, a contradiction. Thus at most one of a′2, a
′

4, a
′

6 belongs to X, and so we may
assume that a′2, a

′

4 /∈ X.
Since a′2, a

′

4 are not both in the same component of J \ X, we may therefore assume that a′2 ∈
V (C1) and a′4 ∈ V (C2). Consequently A3 ⊆ X, and so we may assume that u is complete to A3.
Suppose that v is adjacent to a′6, and therefore a′6 6= a6. If u, a1 are adjacent then

(ua1, u-a3-a2-a1-u, u-v-a′6-a1-u)

is a small domino, a contradiction. Thus u is nonadjacent to a1 and similarly to a5. But then
the subgraph induced on {u, v, a1, a2, a3, a4, a5, a

′

6} is an odd theta, contrary to 6.1. Thus v, a′6 are
nonadjacent, and so a′6 /∈ X. Since u is complete to A3, it follows that u is anticomplete to one
of A1, A5, say A1 without loss of generality. It follows that A1 ∩ X = ∅ (since v has the same
biparity as the members of A1) and so A1 ⊆ V (C1); and since a′6 /∈ X, we deduce that a′6 ∈ V (C1).
Consequently A5 ⊆ X, and so u is complete to A5. It follows that 4 /∈ I, and therefore p2 6= a′4; but
p2 ∈ V (R) ∩ V (C2) ⊆ {a′4}, a contradiction. This proves (6).

Now |V (J)| < |V (G)|, since |I| ≤ 3 and |V2| ≥ 4. From (5), V (H) ⊆ V (J) and so J is not
regular. But from (6), J has no double star cutset, contrary to the inductive hypothesis. Thus our
assumption that G has no double star cutset is false. This completes the proof of 3.1.
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