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Abstract

The bull is the graph consisting of a triangle and two disjoint pen-
dant edges. A graph is called bull-free if no induced subgraph of it is
a bull. This is the first paper in a series of three. The goal of the
series is to explicitly describe the structure of all bull-free graphs. In
this paper we study the structure of bull-free graphs that contain as
induced subgraphs three-edge-paths P and Q, and vertices c 6∈ V (P )
and a 6∈ V (Q), such that c is adjacent to every vertex of V (P ) and a
has no neighbor in V (Q). One of the theorems in this paper, namely
1.2, is used in [11] in order to prove that every bull-free graph on n

vertices contains either a clique or a stable set of size n
1
4 , thus settling

the Erdös-Hajnal conjecture [15] for the bull.

1 Introduction

All graphs in this paper are finite and simple. The bull is the graph with
vertex set {x1, x2, x3, y, z} and edge set

{x1x2, x2x3, x1x3, x1y, x2z}.

Let G be a graph. We say that G is bull-free if no induced subgraph of G is
isomorphic to the bull. The complement of G is the graph G, on the same
vertex set as G, and such that two vertices are adjacent in G if and only if
they are non-adjacent in G. A clique in G is a set of vertices, all pairwise
adjacent. A stable set in G is a clique in G. A clique of size three is called
a triangle and a stable set of size three is a triad. We observe that the bull
is a self-complementary graph; however, as far as we can tell, this fact does
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not seem to have any significance in the theorems in this series of papers
(apart from allowing us to use the obvious symmetry between a bull-free
graph and its complement).

Bull-free graphs received quite a bit of attention in the past, mostly
in connection with perfect graphs (a graph is called perfect if for all its
induced subgraphs the chromatic number equals the size of the maximum
clique). In [14], Chvátal and Sbihi studied the structure of bull-free graphs
with no induced odd cycles of length at least five or their complements, and
proved that Berge’s Strong Perfect Graph Conjecture [2] holds for bull-free
graphs. Later Reed and Sbihi [24] gave a polynomial time algorithm for
recognizing perfect bull-free graphs. Both these results were obtained many
years before the proof of the Strong Perfect Graph Conjecture [10] and the
recognition algorithm for perfect graphs [9]. Today, one of the main open
questions in the theory of perfect graphs is that of finding a polynomial
time combinatorial coloring algorithm. Bull-free perfect graphs is one the
classes of perfect graphs for which there has been progress on this question
[16, 17, 19]. For additional classes, we refer the reader to the survey [21],
where in particular the coloring of planar perfect graphs [18] and claw-free
perfect graphs [20] are discussed.

This is a the first paper in a series of three. In this series we expand the
scope of our attention beyond perfect bull-free graphs, and study the struc-
ture of general bull-free graphs. The main result of the series is an explicit
description of the structure of all bull-free graphs. In general, describing
the structure of a graph with a certain induced subgraph excluded is an
interesting, but apparently very difficult question. In [12] Seymour and the
author were able to describe the structure of all graphs that do not contain
a claw (K1,3) as an induced subgraph (without going into too much detail,
[12] gives more or less an explicit construction for all claw-free graphs), but
for most graphs the question is wide open. However, the result of the present
series, as well as the theorem in [12] and some others suggest that excluding
a certain graph as induced subgraph may have a global structural impact
(unfortunately, at this point we do not even have a conjecture about the
precise nature of the structural impact). Another reason for our interest in
studying the structure of graphs with certain induced subgraphs excluded
is the following conjecture of Erdös and Hajnal [15]:

1.1 For every graph H, there exists δ(H) > 0, such that if G is a graph
and no induced subgraph of G is isomorphic to H, then G contains either a
clique or a stable set of size |V (G)|δ(H).

This conjecture is also concerned with the global effect that excluding
an induced subgraph has on a graph: a graph with an excluded induced
subgraph is conjectured to be very different from a random graph, where
the expected size of a largest clique and a largest stable set is logarithmic
in the number of vertices [1].
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Let G be a graph. For a subset A of V (G) and a vertex b ∈ V (G) \ A,
we say that b is complete to A if b is adjacent to every vertex of A, and
that b is anticomplete to A if b is not adjacent to any vertex of A. For two
disjoint subsets A and B of V (G), A is complete to B if every vertex of A is
complete to B, and A is anticomplete to B every vertex of A is anticomplete
to B. For a subset X of V (G), we denote by G|X the subgraph induced by
G on X, and by G \X the subgraph induced by G on V (G) \X.

In this paper we study bull-free graphs that contain as induced subgraphs
three-edge-paths P and Q, and vertices c 6∈ V (P ) and a 6∈ V (Q), such that
c is complete to V (P ), and a is anticomplete to V (Q). We prove that every
such graph either belongs to a certain basic class, or admits a decomposition.
This information is used in later papers of the series.

A hole in a graph is an induced cycle of length at least four. A homoge-
neous set in a graph G is a proper subset X of V (G) such that every vertex
of V (G) \X is either complete or anticomplete to X. We say that a graph
G admits a homogeneous set decomposition if there is a homogeneous set X
in G with 1 < |X| < |V (G)|. In an earlier version of this paper we proved
the following result that allowed the author, jointly with Safra, to prove 1.1
for the case when H is a bull:

1.2 Let G be a bull-free graph and assume that G contains a hole X of
length at least five, and vertices c, a ∈ V (G) \ V (X) such that c is complete
to V (X) and a is anticomplete to V (X). Then G admits a homogeneous set
decomposition.

Since 1.2 is not used in the final version of present series of papers, we moved
its proof to [11]. We remark that Lemma 2 of [24] is somewhat similar to
1.2 (in [24], X is assumed to have length at least seven, but the existence
of a is not required). 1.2 implies Lemma 2 of [24] in a few sentences; but at
the moment we do not see an easy converse implication.

Incidentally, 1.1 is known to be true for the case when H is a claw. The
main theorem of [13] is the following:

1.3 Let G be a connected claw-free graph with a triad. Then χ(G) ≤ 2ω(G).

1.3 together with Ramsey theorem [23], imply that every claw-free graph
G has either a clique or a stable set of size |V (G)|

1
3 . This implication

is somewhat non-trivial; however, getting a stable set or a clique of size
|V (G)|

1
4 is easy. Unfortunately, since all triangle-free graphs are bull-free,

there is no hope of a theorem similar to 1.3 being true for bull-free graphs. In
other words, the class of triangle-free (and therefore bull-free) graphs is not
χ-bounded [4]. In fact, it is well known that testing if a triangle-free graph
is 3-colorable is NP -complete [22], and therefore for bull-free graphs, the
minimum coloring problem (and also the minimum clique covering problem,
since the class of bull-free graphs is self-complementary) is NP -complete.
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Even though the goal of this series of papers is to describe the structure
of bull-free graphs, it is in fact more convenient to consider more general
objects, that we call bull-free trigraphs. The idea is that, while a graph
has two kinds of vertex pairs: adjacent and non-adjacent ones, a trigraph
has three kinds: adjacent, non-adjacent, and semi-adjacent. A good way
to think of semi-adjacent vertex pairs is as of being vertex pairs whose
adjacent is “undecided”. “Deciding” the adjacency of the undecided pairs
results in a graph. In a bull-free trigraph, however the adjacency of the
undecided pairs is decided, the resulting graph is bull-free (all this will be
made more precise in Section 2). Let us now explain how we use trigraphs.
Our structure theorem has the following flavor. We describe a few classes
of bull-free graphs, and then say that certain vertex pairs in these graphs
can be “expanded” (meaning, they can be replaced by “homogeneous pairs”
of certain kinds, for details, see [6, 8]). In order for this construction to be
explicit, we need to provide a description of all pairs (G,F), where G is a
bull-free graph, and F is the set of vertex pairs of G that can be expanded.
Instead of doing that, we describe all bull-free trigraphs, and say that the
vertex pairs that can be expanded are precisely the semi-adjacent pairs of
the trigraph.

This paper is organized as follows. Trigraphs are defined in Section 2. In
the same section we define “bull-free trigraphs”, and prove two easy lemmas
about their properties. Section 3 contains further definitions needed to state
the main theorem of this paper, as well as the main theorem itself (3.2.) The
proof of 3.2 occupies Sections 4–5. The proof consists of a few steps. At
each step we assume that a bull-free graph (in fact, trigraph) G contains a
certain graph F as an induced subgraph, and then, analyzing how the rest
of G attaches to F , we prove that one of the outcomes of 3.2 holds. More
precisely, the steps are: 4.1, 5.2, 5.7, 5.8, and, finally, 3.2.

2 Trigraphs

In order to prove our main result, we consider objects, slightly more gen-
eral than bull-free graphs, that we call “bull-free trigraphs”. A trigraph
G consists of a finite set V (G), called the vertex set of G, and a map
θ : V (G)2 → {−1, 0, 1}, called the adjacency function, satisfying:

• for all v ∈ V (G), θG(v, v) = 0

• for all distinct u, v ∈ V (G), θG(u, v) = θG(v, u)

• for all distinct u, v, w ∈ V (G), at most one of θG(u, v), θG(u,w) = 0.

A version of trigraphs was first introduced in [3, 5], where the last condi-
tion of the present definition was omitted. However, it seems that in order
to study families of graphs, the more restricted definition that we use here
is both sufficient and much nicer to work with, see [3, 12]. Two distinct
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vertices of G are said to be strongly adjacent if θ(u, v) = 1, strongly antiad-
jacent if θ(u, v) = −1, and semi-adjacent if θ(u, v) = 0. We say that u and
v are adjacent if they are either strongly adjacent, or semi-adjacent; and
antiadjacent of they are either strongly antiadjacent, or semi-adjacent. If u
and v are adjacent (antiadjacent), we also say that u is adjacent (antiadja-
cent) to v, or that u is a neighbor (antineighbor) of v. Similarly, if u and v
are strongly adjacent (strongly antiadjacent), then u is a strong neighbor (
strong antineighbor) of v. Let η(G) be the set of all strongly adjacent pairs
of G, ν(G) the set of all strongly antiadjacent pairs of G, and σ(G) the
set of all pairs {u, v} of vertices of G, such that u and v are distinct and
semi-adjacent. Thus, a trigraph G is a graph if σ(G) empty.

Let G be a trigraph. The complement G of G is a trigraph with the same
vertex set as G, and adjacency function θ = −θ. For v ∈ V (G) let N(v)
denote the set of all vertices in V (G) \ {v} that are adjacent to v, and let
S(v) denote the set of all vertices in V (G) \ {v} that are strongly adjacent
to v. Let A ⊂ V (G) and b ∈ V (G) \ A. We say that b is strongly complete
to A if b is strongly adjacent to every vertex of A, b is strongly anticomplete
to A if b is strongly antiadjacent to every vertex of A, b is complete to
A if b is adjacent to every vertex of A, and b is anticomplete to A if b is
antiadjacent to every vertex of A. For two disjoint subsets A,B of V (G),
B is strongly complete (strongly anticomplete, complete, anticomplete) to A
if every vertex of B is strongly complete (strongly anticomplete, complete,
anticomplete, respectively) to every vertex of A. We say that b is mixed on
A if b is not strongly complete and not strongly anticomplete to A. A clique
in G is a set of vertices all pairwise adjacent, and a strong clique is a set of
vertices all pairwise strongly adjacent. A stable set is a set of vertices all
pairwise antiadjacent, and a strongly stable set is a set of vertices all pairwise
strongly antiadjacent. A (strong) clique of size three is a (strong) triangle
and a (strong) stable set of size three is a (strong) triad. For X ⊂ V (G)
the trigraph induced by G on X (denoted by G|X) has vertex set X, and
adjacency function that is the restriction of θ to X2. Isomorphism between
trigraphs is defined in the natural way, and for two trigraphs G and H we
say that H is an induced subtrigraph of G (or G contains H as an induced
subtrigraph) if H is isomorphic to G|X for some X ⊆ V (G). We denote by
G \X the trigraph G|(V (G) \X).

A bull is a trigraph with vertex set {x1, x2, x3, v1, v2} such that {x1, x2, x3}
is a triangle, v1 is adjacent to x1 and antiadjacent to x2, x3, v2, and v2 is
adjacent to x2 and antiadjacent to x1, x3. For a trigraph G, a subset X of
V (G) is said to be a bull if G|X is a bull. We say that a trigraph is bull-free
if no induced subtrigraph of it is a bull, or, equivalently, no subset of its
vertex set is a bull.

Let G be a trigraph. An induced subtrigraph P of G with vertices
{p1, . . . , pk} is a path in G if either k = 1, or for i, j ∈ {1, . . . , k}, pi is
adjacent to pj if |i− j| = 1 and pi is antiadjacent to pj if |i− j| > 1. Under
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these circumstances we say that P is a path from p1 to pk, its interior is
the set P ∗ = V (P ) \ {p1, pk}, and the length of P is k − 1. We also say
that P is a (k − 1)-edge-path. Sometimes, we denote P by p1- . . . -pk. An
induced subtrigraph H of G with vertices h1, . . . , hk is a hole if k ≥ 4, and
for i, j ∈ {1, . . . , k}, hi is adjacent to hj if |i − j| = 1 or |i − j| = k − 1;
and hi is antiadjacent to hj if 1 < |i − j| < k − 1. The length of a hole is
the number of vertices in it. Sometimes we denote H by h1- . . . -hk-h1. An
antipath (antihole) in G is an induced subtrigraph of G whose complement
is a path (hole) in G.

Let G be a trigraph, and let X ⊆ V (G). Let Gc be the graph with
vertex set X, and such that two vertices of X are adjacent in Gc if and only
if they are adjacent in G, and let Ga be be the graph with vertex set X,
and such that two vertices of X are adjacent in Ga if and only if they are
strongly adjacent in G. We say that X (and G|X) is connected if the graph
Gc is connected, and that X (and G|X) is anticonnected if Ga is connected.
A connected component of X is a maximal connected subset of X, and an
anticonnected component of X is a maximal anticonnected subset of X. For
a trigraph G, if X is a component of V (G), then G|X is a component of G.

We finish this section by two easy observations.

2.1 If G be a bull-free trigraph, then so is G.

Proof. 2.1 follows from the fact that the complement of a bull is also a
bull.

2.2 Let G be a trigraph, let X ⊆ V (G) and v ∈ V (G) \ X. Assume that
|X| > 1 and v is mixed on X. Then there exist vertices x1, x2 ∈ X such
that v is adjacent to x1 and antiadjacent to x2. Moreover, if X is connected,
then x1 and x2 can be chosen adjacent.

Proof. If v has a strong neighbor in X, let X1 be the set of strong neighbors
of v is X; and if v is anticomplete to X, let X1 be the set of vertices of X
that are semi-adjacent to v. Since v is mixed on X, it follows that X1 is
non-empty. Let X2 = X \ X1. Since v is mixed on X, |X| > 1, and v is
semi-adjacent to at most one vertex of V (G) \ {v}, it follows that, in both
cases, X2 6= ∅. Now every choice of x1 ∈ X1 and x2 ∈ X2 satisfies the
first assertion of the theorem. If X is connected, it follows that there exist
x1 ∈ X1 and x2 ∈ X2 that are adjacent, and therefore the second assertion
of the theorem holds. This proves 2.2.

3 The main theorem

Let G be a trigraph and let S ⊆ V (G). A center for S is a vertex of
V (G) \ S that is complete to S, and an anticenter for S is a vertex of
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V (G) \ S that is anticomplete to S. A vertex of G is a center (anticenter)
for an induced subgraph H of G if it is a center (anticenter) for V (H). In this
section we state our main result, which is that every bull-free trigraph, that
contains both a three-edge-path with a center and a three-edge-path with an
anticenter, either belongs to a certain basic class, or admits a decomposition.
We start by describing our basic trigraphs.

The class T0. Let G be the trigraph with vertex set

{a1, a2, b1, b2, c1, c2, d1, d2}

and adjacency as follows: {b1, b2, c1, c2} is a strong clique; a1 is strongly
adjacent to b1, b2 and semi-adjacent to c1; a2 is strongly adjacent to c1, c2
and semi-adjacent to b1; d1 is strongly adjacent to a1, a2; d2 is either strongly
adjacent or semi-adjacent to d1; and all the remaining pairs are strongly
antiadjacent. Let X be a subset of {b1, b2, c1, c2} such that |X| ≤ 1. Then
G \X ∈ T0.

We observe the following:

3.1 Every trigraph in T0 is bull-free.

Proof. We use the notation from the definition of T0. Let G ∈ T0. We
may assume that X = ∅. Suppose there is a bull B in G. Let B =
{v1, v2, v3, v4, v5}, where the pairs v1v2, v2v3, v2v4, v3v4, v4v5 are adjacent,
and all the remaining pairs are antiadjacent. Since G \ {d2} has no triad, it
follows that d2 ∈ B. Since every vertex in B has a neighbor in B, it follows
that d1 ∈ B. Since d2 is in no triangle in G, we deduce that d2 ∈ {v1, v5},
and from the symmetry we may assume that d2 = v1. Then d1 = v2, con-
trary to the fact that d1 is in no triangle in G. This proves 3.1.

Next let us define some decompositions. A proper subset X of V (G) is a
homogeneous set in G if every vertex of V (G)\X is either strongly complete
or strongly anticomplete to X. We say that G admits a homogeneous set
decomposition, if there is a homogeneous set X in G with 1 < |X| < |V (G)|.

For two disjoint subsets A and B of V (G), the pair (A,B) is a homoge-
neous pair in G, if A is a homogeneous set in G\B and B is a homogeneous
set in G \ A. The concept of a homogeneous pair is a seminal idea of [14];
it has since become one of the most useful tools in the study of induced
subgraphs.

We say that the pair (A,B) is tame if

• |V (G)| − 2 > |A|+ |B| > 2, and

• A is not strongly complete and not strongly anticomplete to B.

A trigraph G admits a homogeneous pair decomposition if there is a tame
homogeneous pair in G.

In this paper we need a special kind of a homogeneous pair. Let (A,B)
be a homogeneous pair in G. Let C be the set of vertices of V (G) \ (A∪B)
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that are strongly complete to A and strongly anticomplete to B, D the set
of vertices of V (G) \ (A ∪ B) that are strongly complete to B and strongly
anticomplete to A, E the set of vertices of V (G) \ (A∪B) that are strongly
complete to A ∪ B, and F the set of vertices of V (G) \ (A ∪ B) that are
strongly anticomplete to A ∪ B. We say that (A,B) is a homogeneous pair
of type zero in G if

• D = ∅, and

• some member of C is antiadjacent to some member of E, and

• A is a strongly stable set, and

• |C ∪ E ∪ F | > 2, and

• |B| = 2, say B = {b1, b2}, and b1 is strongly adjacent to b2, and

• let {i, j} = {1, 2}. Let Ai be the set of vertices of A that are adjacent
to bi. Then A1 ∩ A2 = ∅, A1 ∪ A2 = A, 1 ≤ |Ai| ≤ 2, and if |Ai| = 2,
then one of the vertices of Ai is semi-adjacent to bi, and

• if |A1| = |A2| = 1, then F is non-empty.

Please note that every homogeneous pair of type zero is tame in both G
and G, and therefore if there is a homogeneous pair of type zero in either G
or G, then G admits a homogeneous pair decomposition. The main result of
this paper is the following (please note that this is different from Lemma 2
of [17]):

3.2 Let G be a bull-free trigraph. Let P and Q be paths of length three,
and assume that there is a center for P and an anticenter for Q in G. Then
either

• G admits a homogeneous set decomposition, or

• G admits a homogeneous pair decomposition, or

• G or G belongs to T0.

For future use, we also need to consider a more restricted class of bull-
free trigraphs. We say that a trigraph G is elementary if there does not exist
a path P of length three in G, such that some vertex c of V (G) \ V (P ) is a
center for P , and some vertex a of V (G) \ V (P ) is an anticenter for P . We
prove the following decomposition theorem for bull-free trigraphs that are
not elementary:

3.3 Let G be a bull-free trigraph that is not elementary. Then either

• one of G,G belongs to T0, or
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• one of G,G contains a homogeneous pair of type zero,or

• G admits a homogeneous set decomposition.

Elementary bull-free graphs with no hole of length five have been studied
in [17] (in particular, Lemma 2 in that paper). Unfortunately, dealing with
holes of length five turns out to be the most difficult part of the present
paper, and so we could not use the results of [17].

4 Stars and leaves

Let G be a trigraph, and let h1-h2-h3-h4-h5-h1 be a hole in G, say H. For
i ∈ {1, . . . , 5} let Li be the set of all vertices in V (G) \ V (H) that are
adjacent to hi and anticomplete to V (H) \ {hi}, let Si be the set of all
vertices in V (G) \V (H) that are complete to V (G) \ {hi}, and antiadjacent
to hi, and let Ci be the set of vertices that are complete to {hi−1, hi+1}, and
anticomplete to {hi−2, hi+2} (here addition and subtraction are mod 5). We
call a vertex of Li a leaf at hi, a vertex of Si a star at hi, and a vertex of Ci a
clone at hi. For i, j ∈ {1, . . . , 5} we say that x ∈ Li ∪Si and y ∈ Lj ∪Sj are
in the same position (with respect to H) if i = j and in different positions
(with respect to H) if i 6= j. We observe that since every vertex of G is
semi-adjacent to at most one other vertex of G, (

⋃5
i=1 Li) ∩ (

⋃5
i=1 Sj) = ∅.

The goal of this section is to prove the following:

4.1 Let G be a bull-free trigraph, and let H be a hole of length five in G.
If there exist both a leaf and a star with respect to H in G, then either

• G admits a homogeneous set decomposition, or

• there is a homogeneous pair of type zero either in G or in G, or

• G or G belongs to T0.

We break the proof into two parts, 4.2 and 4.3 below.

4.2 Let G be a bull-free trigraph and let H be a hole of length five in G.
Then there do not exist a leaf and a star in different positions with respect
to H.

Proof. Suppose for a contradiction that there exist a star s and a leaf l,
in different positions with respect to H. Since in G, H is a hole of length
five and s and l are a leaf and a star, respectively, in different positions
with respect to H, by 2.1, passing to the complement if necessary, we may
assume that s is non-adjacent to l. Let h1- . . . -h5-h1 be the vertices of H.
We may assume that s ∈ S1, and, from the symmetry, l ∈ L2∪L3. But now,
if l ∈ L2, then {l, h2, h3, s, h5} is a bull; and if l ∈ L3, then {h1, h2, s, h3, l}
is a bull, in both cases a contradiction. This proves 4.2.
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4.3 Let G be a bull-free trigraph, let H be a hole of length five in G, and
let l be a leaf and s be a star, in the same position with respect to H. Then
either

• G admits a homogeneous set decomposition, or

• there is a homogeneous pair of type zero either in G or in G, or

• G or G belongs to T0.

Proof. Let the vertices of H be h1- . . . -h5-h1. We may assume that l ∈ L1

and s ∈ S1. We may assume that G does not admit a homogeneous set
decomposition.

(1) l is strongly anticomplete to {h2, h5} and s is strongly complete to
{h3, h4}.

By 2.1, it is enough to prove that l is strongly anticomplete to {h2, h5}.
Suppose not. From the symmetry we may assume that l is adjacent to h2.
But then {h5, h1, l, h2, h3} is a bull, a contradiction. This proves (1).

For i ∈ {1, . . . , 5}, let Ci be the set of vertices of V (G) \ V (H) that are
clones at hi.

(2) Let x ∈ C2. Then x 6∈ S1, x is strongly complete to S1, and x is
strongly anticomplete to L1 \ {x}.

Since x is antiadjacent to h4, (1) implies that x 6∈ S1. Since {h5, h1, u, x, h3}
is not a bull for any u ∈ L1 \ {x}, it follows that x is strongly anticomplete
to L1 \ {x}.

Assume first that x is adjacent to h2. In this case, again by (1), x 6∈ L1.
Suppose that x is antiadjacent to some s1 ∈ S1. Now, if s1 is antiadja-
cent to l, then {l, h1, x, h2, s1} is a bull, and if s1 is adjacent to l, then
{l, s1, h4, h3, x} is a bull, in both cases a contradiction.

So we may assume that x is strongly antiadjacent to h2. Now, since
{x, h3, h2, v, h5} is not a bull for any v ∈ S1, it follows that x is strongly
complete to S1, and This proves (2).

(3) If C2 6= ∅, then every vertex of V (G) \ (C2 ∪ {h2, h3}) is either strongly
complete or strongly anticomplete to C2 ∪ {h2}.

Let c2, c′2 ∈ C2 ∪ {h2}, and suppose that some x ∈ V (G) \ (C2 ∪ {h2, h3}) is
adjacent to c′2 and antiadjacent to c2. Let C be the hole G|((V (H)\{h2})∪
{c2}), and C ′ the hole G|((V (H) \ {h2}) ∪ {c′2}) . By (2), c2, c′2 6∈ S1, S1

is strongly complete to C2, and therefore every vertex of S1 is a star at h1

with respect to both C and C ′. Assume that x ∈ S1. Then c2 = h2, and
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x is semi-adjacent to c2. By (2) applied to the hole C ′, we deduce that l is
not a leaf for C ′, and therefore, from (1), l = c′2 and c′2 is semi-adjacent to
h3. But now {h2, h3, l, x, h5} is a bull, a contradiction. Therefore x 6∈ S1.
By 4.2, there is no leaf for C or C ′ in any position different from h1.

Assume first that c2 is adjacent to c′2. Since {h5, h1, c2, c
′
2, h3} and

{h1, c
′
2, c2, h3, h4} are not bulls, it follows that c2 is strongly complete to

{h1, h3}. Similarly, c′2 is strongly complete to {h1, h3}, and hence x 6∈
{h1, h3}. In particular, this implies that c2, c′2 6∈ L1, and so, from (1),
every vertex of L1 is a leaf at h1 for both C and C ′. By (2) applied to C and
C ′, it follows that L1 is strongly anticomplete to {c2, c′2}, and so x 6∈ L1.

Since every vertex of L1 is a leaf at h1 for both C and C ′, by 4.2, there
is no star for C or C ′ in any other position. In particular, c′2 is not a
star at h4 or h5 with respect to C, and so c′2 is strongly anticomplete to
{h4, h5}. Similarly, c′2 is strongly anticomplete to {h4, h5}. This proves that
x 6∈ V (H).

Suppose x is antiadjacent to h1. Since {x, c′2, c2, h1, h5} is not a bull, it
follows that x is strongly adjacent to h5. We claim that x is strongly adjacent
to h4. If x is antiadjacent to h3, the claim follows since {x, c′2, c2, h3, h4}
is not a bull; and if x is strongly adjacent to h3, the claim follows since
{h1, c

′
2, x, h3, h4} is not a bull. But now, since {h3, h4, x, h5, h1} is not a

bull, x is strongly adjacent to h3, and therefore, with respect to C ′, x is
a star at h1, and c2 is a clone at c′2, but x is antiadjacent to c2, contrary
to (2). This proves that x is strongly adjacent to h1.

Next assume that x is antiadjacent to h3. Since {h5, h1, x, c
′
2, h3} is not

a bull, it follows that x is strongly adjacent to h5. Since {c2, h1, x, h5, h4}
is not a bull, we deduce that x is strongly adjacent to h4. But now x is a
star at h3 with respect to C ′, a contradiction. This proves that x is strongly
adjacent to h3. Now, if x is adjacent to both h4 and h5, then x is a star at
c2 with respect to C, if x is adjacent to h4 and strongly antiadjacent to h5,
then x is a star at h5 with respect to C ′, if x is adjacent to h5 and strongly
antiadjacent to h4, then x is a star at h4 with respect to C ′, and if x is
strongly antiadjacent to both h4 and h5, then x ∈ C2 ∪ {h2}, in all cases a
contradiction. This proves that c2 is strongly antiadjacent to c′2.

Since {c′2, h1, c2, h5, h4} and {c′2, h3, c2, h4, h5} are not bulls, it follows
that c2 is strongly anticomplete to {h4, h5}, and similarly, c′2 is strongly
anticomplete to {h4, h5}. Since there is no leaf at h3 with respect to C
or C ′, it follows that h1 is strongly complete to {c2, c′2}. This proves that
x 6∈ V (H).

Suppose x is adjacent to h1. Since {c2, h1, c
′
2, x, h4} is not a bull, x is

strongly antiadjacent to h4. Assume that x is antiadjacent to h3. Since
{h3, c

′
2, x, h1, h5} is not a bull, it follows that x is strongly adjacent to h5.

But now {c2, h1, x, h5, h4} is a bull, a contradiction. So x is strongly adja-
cent to h3. Since {c2, h3, c

′
2, x, h5} is not a bull, we deduce that x is strongly

antiadjacent to h5. But now x ∈ C2, a contradiction. This proves that x
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is strongly antiadjacent to h1. A similar argument shows that x is strongly
antiadjacent to h3. Now, if x is complete to {h4, h5}, then {h3, h4, x, h5, h1}
is a bull, if x is anticomplete to {h4, h5} then x is a leaf at c′2 with respect to
C ′, and if x is adjacent to one of h4, h5 and antiadjacent to the other, then
x is a leaf at one of h4, h5 with respect to C, in all cases a contradiction.
This proves (3).

(4) C2 ∪ {h2} is a strongly stable set, |C2| ≤ 1, and if |C2| = 1, then h3

is semi-adjacent to a member of C2 ∪ {h2}.

Suppose C2 ∪ {h2} is not a strongly stable set, and let X be a compo-
nent of C2 ∪ {h2} with |X| > 1. Since X is not a homogeneous set in G, it
follows that some vertex v ∈ V (G) \X is mixed on X. By (3), v = h3. By
2.2, there exist x, x′ ∈ X such that h3 is adjacent to x and antiadjacent to x′,
and x is adjacent to x′. But now {h3, x, x

′, h1, h5} is a bull, a contradiction.
This proves that C2 ∪ {h2} is a strongly stable set.

Let C ′ be the set of vertices of C2 ∪ {h2} that are strongly adjacent to
h3. By (3), and since C2 ∪ {h2} is strongly stable, it follows that C ′ is a
homogeneous set in G, and so |C ′| ≤ 1. Since every vertex of C2 ∪ {h2} is
adjacent to h3, and since h3 is semi-adjacent to at most one vertex of G,
it follows that |(C2 ∪ {h2}) \ C ′| ≤ 1, and therefore |C2| ≤ 1. Moreover,
if |C2| = 1, then, since |C ′| ≤ 1, it follows that (C2 ∪ {h2}) \ C ′ 6= ∅, and
therefore h3 is semi-adjacent to a member of C2 ∪ {h2}. This proves (4).

(5) Either C2 = ∅, or C3 = ∅.

Suppose C2 6= ∅. By (4), it follows that h3 is semi-adjacent to a mem-
ber of C2 ∪ {h2}, say c2. If C3 6= ∅, then c2 is mixed on C3 ∪ {h3}, contrary
to (2) applied in G. Therefore C3 = ∅. This proves (5).

(6) Either C2 ∪ C5 = ∅, or C3 ∪ C4 = ∅.

Suppose C2 ∪ C5 6= ∅. We may assume that C2 6= ∅. Then, by (5), C3 = ∅.
If C4 6= ∅, then, applying (5) in G, we deduce that C2 = ∅, a contradiction.
So C4 = ∅, and (6) follows.

In view of (6), passing to G if necessary, we may assume that C3 = C4 = ∅.

(7) (C2 ∪ C5 ∪ {h2, h5}, {h3, h4}) is a homogeneous pair in G.

Since {l, h1, h5, h4, h3} is not a bull, it follows that h1 is strongly antiadja-
cent to h4, and from the symmetry h1 is strongly antiadjacent to h3. By 2.1
this implies that h1 is strongly complete to {h2, h5}. Now, by (3), it follows
that h1 is strongly complete to C2 ∪ C5 ∪ {h2, h5}.
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Suppose (7) is false. Then there exists x ∈ V (G)\(C2∪C5∪{h2, h3, h4, h5}
that is mixed on either {h3, h4}, or C2 ∪C5 ∪ {h2, h5}. Suppose first that x
is mixed on {h3, h4}. From the symmetry we may assume that x is adjacent
to h4 and antiadjacent to h3. Since if x ∈ L1, then x ∈ C5, we deduce, using
(1), that x 6∈ L1 ∪ S1 ∪ V (H).

Suppose x is adjacent to h5. Since {h3, h4, x, h5, h1} is not a bull, we
deduce that x is strongly adjacent to h1. Since by (4) and symmetry C5 ∪
{h5} is a strongly stable set, it follows that x 6∈ C5, and therefore x is
strongly adjacent to h2. But then x ∈ S3, contrary to 4.2. This proves that
x is strongly antiadjacent to h5. By 4.2, x is strongly adjacent to at least
one of h1, h2, and since C3 = ∅ and x 6∈ C5, it follows that x is strongly
complete to {h1, h2}. But now {h5, h1, x, h2, h3} is a bull, a contradiction.
This proves that x is not mixed on {h3, h4}, and therefore x is mixed on
C2 ∪ C5 ∪ {h2, h5}.

By (3) and since h 6∈ {h3, h4}, we may assume that x is strongly com-
plete to C2 ∪ {h2}, and strongly anticomplete to C5 ∪ {h5}. Suppose first
that x is strongly anticomplete to {h3, h4}. Then, by 4.2, x is strongly ad-
jacent to h1. But now {h5, h1, x, h2, h3} is a bull, a contradiction. Since x
is not mixed on {h3, h4}, it follows that x is strongly complete to {h3, h4}.
Since C3 = ∅, it follows that x is strongly adjacent to h1. But now x ∈ S5,
contrary to 4.2. This proves (7).

Now let A1 = C2 ∪ {h2}, A2 = C5 ∪ {h5}, b1 = h3, b2 = h4, A = A1 ∪ A2,
and B = {b1, b2}. Let C be the set of vertices of V (G) \ (A ∪ B) that are
strongly complete to A and strongly anticomplete to B, D the set of vertices
of V (G)\(A∪B) that are strongly complete to B and strongly anticomplete
to A, E the set of vertices of V (G) \ (A ∪B) that are strongly complete to
A∪B, and F the set of vertices of V (G)\ (A∪B) that are strongly anticom-
plete to A ∪ B. Since {h2, h3, d, h4, h5} is a bull for every d ∈ D, it follows
that D = ∅. Since A is a strongly stable set, it follows that S1∩ (A∪B) = ∅,
and so s ∈ E. Since h1 ∈ C, it follows that some vertex of C is antiadjacent
to some vertex of E. If |C ∪E ∪F | > 2, then G admits a homogeneous pair
decomposition of type zero. So we may assume that |C| = |E| = 1. Thus
C = {h1}, and E = {s}, but now G ∈ T0. This proves 4.3.

Now 4.1 follows from 4.2 and 4.3.

5 Paths of length three

In this section we prove 3.2 which we restate:

5.1 Let G be a bull-free trigraph. Let P and Q be paths of length three,
and assume that there is a center for P and an anticenter for Q in G. Then
either

• G admits a homogeneous set decomposition, or
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• G admits a homogeneous pair decomposition, or

• G or G belongs to T0.

We remind the reader that a trigraph G is elementary if there does not
exist a path P of length three in G, such that some vertex c of G is a center
for P , and some vertex a is an anticenter for P . First we prove 3.3, which
we restate:

5.2 Let G be a bull-free trigraph that is not elementary. Then either

• one of G,G belongs to T0, or

• one of G,G contains a homogeneous pair of type zero,or

• G admits a homogeneous set decomposition.

Proof. By 4.1 we may assume that there is no hole of length five in G or
G with both a leaf and a star. Let p1-p2-p3-p4 be a path in G, say P , and
let c be a center and a an anticenter for P (such P, c, and a exist since G is
not elementary).

(1) If a is adjacent to c, then c is a strong center for P .

Since {a, c, p3, p2, p1} is not a bull, it follows that c is strongly adjacent to p1,
and from the symmetry c is strongly adjacent to p4; and since {a, c, p1, p2, p3}
is not a bull, it follows that c is strongly adjacent to p3, and from the sym-
metry, to p2. This proves (1).

(2) Let x ∈ V (G) \ V (P ). Then either

1. there exist u, v, w ∈ V (P ) such that u-v-w is a path, x is adjacent to
u and v and antiadjacent to w, or

2. there exist u, v, w ∈ V (P ) such that u-v-w is an antipath, x is adjacent
to u and antiadjacent to v and w, or

3. x is strongly adjacent to p1 and p4, and strongly antiadjacent to p2

and p3, or

4. x is a strong center or a strong anticenter for V (P ).

Suppose x fails to satisfy (2.1)—(2.4). Then x is not a strong center and
not a strong anticenter for V (P ). Suppose x is antiadjacent to p1. Then
x is strongly antiadjacent to at least one of p2, p3 for otherwise (2.1) holds
with u = p3, v = p2 and w = p1. Suppose x is adjacent to p3, and therefore
strongly antiadjacent to p2. Then x is strongly adjacent to p4, for otherwise
(2.2) holds with u = p3, v = p1 and w = p4. But now (2.1) holds with
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u = p4, v = p3 and w = p2. This proves that x is strongly antiadjacent to
p3. If x is adjacent to p4 then (2.2) holds with u = p4, v = p1 and w = p3,
therefore x is strongly antiadjacent to p4. Now, switching the roles of p1 and
p4, we deduce that x is strongly antiadjacent to p1 and p2. But then x is a
strong anticenter for V (P ), a contradiction. This proves that x is strongly
adjacent to p1, and, by the symmetry, to p4. Now p is adjacent to at least
one of p2, p3 for otherwise (2.3) holds, and antiadjacent to at least one of
p2, p3, for otherwise x is a strong center for P . From the symmetry we may
assume that x is adjacent to p2 and antiadjacent to p3. But now (2.1) holds
with u = p1, v = p2 and w = p3. This proves (2).

(3) Let x ∈ V (G) \ (V (P ) ∪ {a}), and assume that x is not a strong center
and not a strong anticenter for V (P ). Assume also that c is adjacent to a.
Then x 6= c and x is strongly adjacent to c.

By (1), c is a strong center for P , and therefore x 6= c. Assume for a
contradiction that x is antiadjacent to c. By (2), one of (2.1)—(2.3) holds
for x. Suppose first that (2.1) holds, and let u, v, w be as in (2.1). Since
{x, v, w, c, a} is not a bull, it follows that x is strongly adjacent to a. But
now {a, x, u, v, w} is a bull, a contradiction. Next assume that (2.2) holds
and let u, v, w be as in (2.2). Now {x, u, w, c, v} is a bull, a contradiction.
This proves that (2.4) holds, and so p1-p2-p3-p4-x-p1 is a hole of length five
in G, say H, and c is a star for H. Consequently, a is not a leaf for H,
and so a is strongly antiadjacent to x. But now {x, p1, p2, c, a} is a bull, a
contradiction. This proves (3).

Let C be the set of all strong centers for V (P ), A the set of all strong
anticenters for V (P ), and let M = V (G)\ (A∪C∪V (P )). Since if G admits
a homogeneous set decomposition then so does G, p2-p4-p1-p3 is a path in G
with center a and anticenter c, and by 2.1, we may assume by (1), passing
to the complement if necessary, that C 6= ∅.

(4) If A is empty then the theorem holds.

If a has an antineighbor in C, then, by (1) applied in G it follows that
a ∈ A, a contradiction. So a is strongly complete to C, and therefore, by (3)
applied to every vertex of C, we deduce that C is strongly complete to
M \ {a}. But now V (P )∪M is a homogeneous set of size at least five in G,
and C ⊆ V (G) \ (V (P ) ∪M). So G admits a homogeneous set decomposi-
tion. This proves (4).

In view of (4) we may assume that A is non-empty. This restores the sym-
metry between G and G. We observe that either every vertex in C has a
neighbor in A, or every vertex in A has an antineighbor in C. From this,

15



passing to the complement if necessary, we may assume that every vertex of
C has a neighbor in A.

(5) C is strongly complete to M .

Let c′ ∈ C and m ∈ M , and let a′ be a neighbor of c′ in A. Now (3)
applied with c = c′, a = a′ and x = m implies that c is strongly adjacent to
m. Since c and m were chosen arbitrarily, (5) follows.

Let A′ be the set of vertices a′ in A such that for some m ∈ M , there
exists a path from a′ to m with interior in A.

(6) A′ is strongly complete to C.

Let k be an integer, let a1, . . . , ak ∈ A′ and m ∈ M and let m-a1- . . . -ak
be a path. We prove by induction on k that ak is strongly complete to C.
By (5) C is strongly complete to M . Suppose first that k = 1. By (1) and
since m ∈M , one of the following three cases holds:

Case 1. There exist u, v, w ∈ V (P ) such that u-v-w is a path, m is ad-
jacent to u and v and antiadjacent to w. In this case, since {a1,m, u, c, w}
is not a bull for any c ∈ C, it follows that a1 is strongly complete to C.

Case 2. There exist u, v, w ∈ V (P ) such that u-v-w is an antipath, m is
adjacent to u and antiadjacent to v and w. In this case, since {a1,m, u, c, v}
is not a a bull for any c ∈ C, it follows that a1 is strongly complete to C.

Case 3. m is strongly adjacent to p1, p4 and strongly antiadjacent to p2, p3.
In this case, since {a1,m, p1, c, p3} is not a a bull for any c ∈ C, it follows
that a1 is strongly complete to C.

So we may assume that k > 1, and {a1, . . . , ak−1} is strongly complete
to C. Let a0 = m. Then ak−2 is defined, there exists p ∈ V (P ), anti-
adjacent to ak−2, and V (P ) is anticomplete to {ak−1, ak}. But now, since
{p, c, ak−2, ak−1, ak} is not a bull for any c ∈ C, it follows that C is strongly
complete to ak. This proves (6).

By the definition of A′, every vertex of A \ A′ is strongly anticomplete to
V (P )∪M ∪A′, and by (5) and (6), C is strongly complete to V (P )∪M ∪A′.
Since C 6= ∅, we deduce that V (P )∪M∪A′ 6= V (G). But now V (P )∪M∪A′
is a homogeneous set of size at least four in G, and therefore G admits a
homogeneous set decomposition. This proves 5.2.

We can now strengthen 4.1:
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5.3 Let G be an elementary bull-free trigraph and let H be a hole of length
five in G. If there is a leaf l for H, and some vertex c of V (G) \ V (H)
has at least three neighbors in V (H), then G admits a homogeneous set
decomposition.

Proof. Suppose G does not admit a homogeneous set decomposition.

(1) Let H ′ be a hole of length five in G with a leaf l′. Then no vertex
of V (G) \ V (H ′) has four neighbors in V (H ′).

Suppose some vertex c′ of V (G)\V (H ′) has at least four neighbors in V (H ′).
Let the vertices of H ′ be h1-h2-h3-h4-h5-h1. Since every vertex of G is semi-
adjacent to at most one other vertex of G, l′ 6= c′. Let i ∈ {1, . . . , 5} be such
that l′ is a leaf at hi. Since G is elementary, it follows that c′ has a strong
antineighbor in V (H ′) \ {hi}. But now we get a contradiction to 4.2. This
proves (1).

Let the vertices of H be h1-h2-h3-h4-h5-h1. Since every vertex of G is semi-
adjacent to at most one other vertex of G, l 6= c. Let i ∈ {1, . . . , 5} be such
that l is a leaf at hi. By (1), c has exactly three neighbors in V (H), and
therefore for some j ∈ {1, . . . , 5}, c is adjacent to hj and to hj+1 (where
h6 = h1). Since {hj−1, hj , c, hj+1, hj+2} is not a bull, it follows that c is
strongly adjacent to at least one of hj−1, hj+2 (here we add subscripts mod
5). So we may assume that c is adjacent to h5, h1, h2 and strongly antiad-
jacent to h3 and h4. Let X be the set of all vertices of G that are complete
to {h2, h5} and strongly anticomplete to {h3, h4}. Then h1, c ∈ X. Let C
be the component of X such that h1, c ∈ C (such a component exists since
c is adjacent to h1.)

(2) l is strongly complete or strongly anticomplete to C.

Suppose not. Since |C| > 1 and C is connected, by 2.2, we can choose
distinct vertices c1, c2 ∈ C, such that l is adjacent to c1 and antiadjacent to
c2, and c1 is adjacent to c2. Since l is a leaf for H, we may assume from
the symmetry that l is antiadjacent to h2, h3. But now {l, c1, c2, h2, h3} is a
bull, a contradiction. This proves (2).

Since 1 < |C| < |V (G)|, it follows that C is not a homogeneous set in
G, and so there exists a vertex x ∈ V (G) \ C that is mixed on C. Then
x 6= h3, h4. Since |C| > 1 and C is connected, by 2.2, we can choose distinct
vertices c1, c2 ∈ C, such that x is adjacent to c1 and antiadjacent to c2, and
c1 is adjacent to c2.

Since {h2, c1, c2, h5, h4} is not a bull, it follows that x 6= h2, and, from
the symmetry, x 6= h5. Let H ′ be the hole c1-h2-h3-h4-h5-c1. It follows
from (2) that l is a leaf for H ′, and therefore, by (1), x does not have four
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neighbors in V (H ′).
Suppose that x is antiadjacent to h5. Since {x, c1, c2, h5, h4} is not a bull,

it follows that x is strongly adjacent to h4. If x is antiadjacent to h2, then,
since {x, c1, c2, h2, h3} is not a bull, it follows that x is strongly adjacent to
h3, and so {h2, h3, x, h4, h5} is a bull, a contradiction. This proves that x
is strongly adjacent to h2. Since {h5, c1, x, h2, h3} is not a bull, we deduce
that x is strongly adjacent to h3. But now x has four neighbors in V (H ′),
a contradiction. This proves that x is strongly adjacent to h5, and from the
symmetry to h2. Since x does not have four neighbors in V (H ′), it follows
that x is strongly anticomplete to {h3, h4}. Consequently x ∈ C, which is a
contradiction. This proves 5.3.

Let us now prove two easy but useful lemmas:

5.4 Let G be an elementary bull-free trigraph, let P be a path of length
three with vertices p1-p2-p3-p4, let c be a strong center for V (P ), and let
q ∈ V (G) \ (V (P ) ∪ {c}) be antiadjacent to c. Then one of the following
holds:

1. q is strongly adjacent to p1, p2 and antiadjacent to p3, p4, or q is
strongly adjacent to p3, p4 and antiadjacent to p1, p2, or

2. q is strongly adjacent to p1, p2, p3 and antiadjacent to p4, or q is
strongly adjacent to p2, p3, p4 and antiadjacent to p1, or

3. q is strongly adjacent to p1, p4 and antiadjacent to p2, p3, or

4. q is strongly adjacent to p1, p2, p4 and antiadjacent to p3, or q is
strongly adjacent to p1, p3, p4 and antiadjacent to p2, or

5. q is a strong center for P .

In particular, q has at least two strong neighbors in V (P ).

Proof. Since G is elementary, it follows that q is not an anticenter for
P , and therefore q has at least one strong neighbor in V (P ). From the
symmetry, we may assume that q is strongly adjacent to one of p1, p2. Now,
since G|({p1, p2, p4, q, c}) is not a bull, it follows that q is strongly adjacent
to at least two of the vertices p1, p2, p4. Assume first that q has exactly two
strong neighbors in V (P ). If q is strongly adjacent to p1, p2, then (5.4.1)
holds, if q is strongly adjacent to p1, p4, then (5.4.3) holds, and if q is strongly
adjacent to p2, p4, then {q, p4, p3, c, p1} is a bull. This proves that q does
not have exactly two strong neighbors in V (P ).

If q has four strong neighbors in V (P ), then (5.4.5) holds, and so we
may assume that q has exactly three strong neighbors in V (P ). It follows
that q is strongly adjacent to at least one of p3, p4, and so the symmetry of
the path has been restored. From the symmetry we may assume that p1 is a
strong neighbor of q. Now the set of strong neighbors of q in V (P ) is either
{p1, p2, p3} and (5.4.2) holds, or {p1, p2, p4} and (5.4.4) holds, or {p1, p3, p4}
and again (5.4.4) holds, This proves 5.4.
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5.5 Let G be an elementary bull-free trigraph, let P be a path of length
three with vertices p1-p2-p3-p4, let c be a strong center for V (P ). Let q ∈
V (G) \ (V (P ) ∪ {c}), and suppose that there does not exist i ∈ {1, . . . , 4},
such that G|((V (P )\{pi})∪{q}) is a path of length three. Then q is a strong
center for P .

Suppose that q is not a strong center for P . Since G is elementary, it follows
that q is not an anticenter for P , and therefore q has a strong neighbor
in V (P ). Assume that q is strongly adjacent to p2. If q is antiadjacent
to p4, then, since {p1, p2, q, p3, p4} is not a bull in G, it follows that one of
G|((V (P )\{p1})∪{q}) and G|((V (P )\{p2})∪{q}) is a path of length three,
a contradiction. So q is strongly adjacent to p4. Since G|((V (P )\{p3})∪{q})
is not a a path of length three, it follows that q is strongly adjacent to p1.
Since q is not a strong center for P , we deduce that q is antiadjacent to p3.
But now G|((V (P ) \ {p2}) ∪ {q}) is a path of length three, a contradiction.
This proves that q is antiadjacent to p2, and from the symmetry to p3. Since
q has a strong neighbor in V (P ), we may assume from the symmetry that
q is strongly adjacent to p1. But now G|((V (P ) \ {p4}) ∪ {q}) is a path of
length three, a contradiction. This proves 5.5.

The following is another result about paths of length three with centers
and anticenters, that is a step to proving 5.1.

5.6 Let G be a bull-free trigraph, and let P and Q be paths of length three
in G. If some vertex of G is a center for P and an anticenter for Q then G
is not elementary.

Proof. Let P be the path p1-p2-p3-p4 and Q the path q1-q2-q3-q4. Suppose
some vertex c ∈ V (G) \ (V (P ) ∪ V (Q)) is a center for P and an anticenter
for Q, and G is elementary.

(1) Every vertex of V (Q) \ V (P ) has at least two strong neighbors in V (P ).

Let q ∈ V (Q) \ V (P ). Then q is antiadjacent to c, and (1) follows from 5.4.

By 2.1, applying (1) in G, we deduce that every vertex of V (P ) \ V (Q)
has at least two strong antineighbors in V (Q).

(2) |V (P ) ∩ V (Q)| = 1.

Since every vertex is semi-adjacent to at most one other vertex of G, and c is
complete to V (P ) and anticomplete to V (Q), it follows that |V (P )∩V (Q)| ≤
1. Suppose V (P ) ∩ V (Q) = ∅. Let A = {{p, q} : p ∈ V (P ) and q ∈
V (Q)}. By (1) and the remark following (1), since |A| = 16, it follows that
|A ∩ η(G)| = 8, |A ∩ ν(G)| = 8 and A ∩ σ(G) = ∅. Thus every vertex of P

19



has two strong neighbors and two strong antineighbors in V (Q), and every
vertex of Q has two strong neighbors and two strong antineighbors in V (P ).

For q ∈ V (Q) let P (q) denote the set of strong neighbors of q in V (P ).
Since {p1, p2, q, p3, p4} is not a bull for any q ∈ V (Q), it follows that P (q) 6=
{p2, p3} for all q ∈ V (Q). Since {q, p1, p2, c, p4} is not a bull for any q ∈
V (Q), it follows that P (q) 6= {p1, p3}, and from the symmetry, P (q) 6=
{p2, p4}, for all q ∈ V (Q).

So for every q ∈ V (Q), either P (q) = {p1, p2}, or P (q) = {p1, p4}, or
P (q) = {p3, p4}. If for some q ∈ V (Q), P (q) = {p1, p4}, then, since ev-
ery vertex of V (P ) has two strong antineighbors in V (Q), it follows that
at least one vertex of V (Q) is strongly anticomplete to {p1, p4}, a con-
tradiction. Consequently, for every q ∈ V (Q), either P (q) = {p1, p2}, or
P (q) = {p3, p4}.

Let Q1 = {q ∈ V (Q) : P (q) = {p1, p2}} and Q2 = {q ∈ V (Q) : P (q) =
{p3, p4}}. Since every vertex of V (P ) has two strong antineighbors in V (Q),
it follows that |Q1| = |Q2| = 2. But now, since for q1 ∈ Q1 and and q2 ∈ Q2,
{q1, p2, c, p3, q2} is not a bull, we deduce that Q1 is strongly complete to Q2,
contrary to the fact that Q is a path. This proves (1).

Let V (P ) ∩ V (Q) = {p}. Then c is semi-adjacent to p. From the sym-
metry we may assume that p ∈ {p1, p2} ∩ {q1, q2}.

(2) p 6∈ {p1} ∩ {q1} and p 6∈ {p2} ∩ {q2}.

Passing to the complement by 2.1, it is enough to prove that p 6∈ {p1}∩{q1}.
Suppose p = p1 = q1. If q2 is adjacent to p2, then, since {q3, q2, p, p2, c} is
not a bull, we deduce that q3 is strongly adjacent to p2, and, consequently,
p2 has at most one strong antineighbor in V (Q), a contradiction. So q2 is
strongly antiadjacent to p2. Since {q2, p, p2, c, p4} is not a bull, it follows
that q2 is strongly adjacent to p4. By (1), q3 has two strong neighbors in
V (P ). If q3 is antiadjacent to p4, then q3 is strongly complete to {p2, p3},
and {p, p2, q3, p3, p4} is a bull, a contradiction. So q3 is strongly adjacent
to p4. Since {p, q2, p4, q3, q4} is not a bull, it follows that p4 is strongly ad-
jacent to q4. But now p4 has at most one strong antineighbor if V (Q), a
contradiction. This proves (2).

(3) p 6∈ {p1} ∩ {q2}.

Let {x, y} = {q1, q3}. Since {x, p, p2, c, p4} and {y, p, p2, c, p4} are not bulls,
it follows that each of x, y is strongly adjacent to at least one of p2, p4. Since
p2 has at least two strong antineighbors in V (Q), we may assume from the
symmetry that x is strongly antiadjacent to p2 and, therefore, x is strongly
adjacent to p4. Since {x, p, y, p2, c} is not a bull, it follows that y is strongly
antiadjacent to p2, and, therefore, y is strongly adjacent to p4. By (1), q4
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has two strong neighbors in V (P ), and since {p, p2, q4, p3, p4} is not a bull,
it follows that q4 is strongly adjacent to p4. But now p4 has at most one
strong antineighbor in V (Q), a contradiction. This proves (3).

(4) p 6∈ {p2} ∩ {q1}.

If q2 is adjacent to p1, then, since {q3, q2, p, p1, c} is not a bull, it follows
that p1 is strongly adjacent to q3, and so p1 has at most one strong an-
tineighbor in V (Q), a contradiction. So q2 is strongly antiadjacent to p1.
Since {q2, p, p1, c, p4} is not a bull, it follows that q2 is strongly adjacent to
p4. Since p4 has two strong antineighbors in V (Q), it follows that p4 has a
strong antineighbor x in {q3, q4}. By (1), x is strongly adjacent to p1. But
now, {x, p1, p, c, p4} is a bull, a contradiction. This proves (4).

Now 5.6 follows from (2), (3) and (4).

A tray is a trigraph with vertex set

{a1, a2, b1, b2, c1, c2, d1, d2},

and such that the following pairs of vertices are adjacent:

a1a2, a1b1, a1b2, a1c1, a1c2, a2b2, a2c1, a2c2, b1b2, b1d1, b1d2, b2d1, b2d2, c2d2

and all the remaining pairs are antiadjacent. Let A and B be disjoint subsets
of V (G). We say that the pair (A,B) is triangle connected if for every
partition (A1, A2) of A with both A1 and A2 non-empty, there exist vertices
a1 ∈ A1, a2 ∈ A2 and b ∈ B, such that a1, a2, b is a triangle, and not
both a1 and a2 are strongly complete to B; and the same with A and B
exchanged. In particular, if T is a tray, then the pair ({a1, a2}, {b1, b2}) is
triangle connected. We use the notion of being triangle connected to prove
the following:

5.7 Let G be an elementary bull-free trigraph, and assume that some in-
duced subtrigraph of G is a tray. Then G admits either a homogeneous set
decomposition, or a homogeneous pair decomposition.

Proof. Let X = {a1, a2, b1, b2, c1, c2, d1, d2} be a subset of V (G) such that
G|X is a tray, such that the following pairs of vertices are adjacent:

a1a2, a1b1, a1b2, a1c1, a1c2, a2b2, a2c1, a2c2, b1b2, b1d1, b1d2, b2d1, b2d2, c2d2

and all the remaining pairs are antiadjacent. Suppose G does not admit a
homogeneous set decomposition or a homogeneous pair decomposition. Let
A,B be two subsets of V (G) such that

1. a1, a2 ∈ A and b1, b2 ∈ B,
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2. the pair (A,B) is triangle connected

3. A is complete to {c1, c2} and anticomplete to {d1, d2},

4. B is complete to {d1, d2} and anticomplete to {c1, c2},

5. A ∪B is maximal subject to (1)-(4).

(1) A is strongly complete to {c1, c2} and strongly anticomplete to {d1, d2};
and B is strongly complete to {d1, d2} and strongly anticomplete to {c1, c2}.

Suppose c ∈ {c1, c2} has an antineighbor a′ ∈ A. Let d ∈ {d1, d2} be
an antineighbor of c. Let A′ = {a′} and A′′ = A \ A′. Since (A,B) is tri-
angle connected, there exist a′′ ∈ A′′ and b ∈ B, such that {a′, a′′, b} is a
triangle. But then {c, a′′, a′, b, d} is a bull, a contradiction. This proves that
A is strongly complete to {c1, c2}, and from the symmetry, B is strongly
complete to {d1, d2}.

Next suppose that d ∈ {d1, d2} has a neighbor a ∈ A. Let d′ =
{d1, d2} \ {d}. Since (A,B) is triangle connected, a has a neighbor b ∈ B.
But now {c1, a, d, b, d′} is a bull, a contradiction. This proves that A is
strongly anticomplete to {d1, d2}, and from the symmetry, B is strongly an-
ticomplete to {c1, c2}. This proves (1).

(2) Let x ∈ V (G) \ (A ∪ B ∪ {c1, c2, d1, d2}). If x has a neighbor in A,
then x is not complete to {c1, c2, d2}; and if x has a neighbor in B, then x
is not complete to {c2, d1, d2}.

From the symmetry it is enough to prove the first assertion of (2). Sup-
pose x has a neighbor a ∈ A. We observe that c1-a-c2-d2 is a path of length
three and d1 is an anticenter for it. Now, since G is elementary, it follows
that that x is not a center for {c1, a, c2, d2}, and therefore x is not complete
to {c1, c2, d2}. This proves (2).

(3) Let a ∈ A, b ∈ B and x ∈ V (G) \ (A ∪ B) be a triangle. Then ei-
ther

• x is complete to {c1, c2} and anticomplete to {d1, d2}, or

• x is complete to {d1, d2} and anticomplete to {c1, c2}.

Suppose x is antiadjacent to c1. Since {c1, a, x, b, d1} is not a bull and
{c1, a, x, b, d2} is not a bull, it follows that x is strongly adjacent to d1 and
d2, and therefore, by (2) x is strongly antiadjacent to c2, and the second
outcome of (3) holds.

So we may assume that x is strongly adjacent to c1, and from the symme-
try to d1. From (2) and the symmetry we may assume that x is antiadjacent
to d2. But now {d2, b, d1, x, c1} is a bull, a contradiction. This proves (3).
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Since if (A,B) is a homogeneous pair in G, then it is a tame homogeneous
pair, and since G does not admits a homogeneous pair decomposition, we
may assume from the symmetry that there exists a vertex x ∈ V (G)\(A∪B),
such that x has a neighbor and an antineighbor in A. Since (A,B) is triangle
connected, there exist vertices a, a′ ∈ A and b ∈ B, such that {a, a′, b} is a
triangle, x is adjacent to a and antiadjacent to a′, and {a, a′} is not strongly
complete to B.

(4) x is strongly complete to {d1, d2} and strongly anticomplete to {c1, c2, b}.

Suppose x is adjacent to b. Then one of the two outcomes of (3) holds.
Assume first that x is complete to {d1, d2}, and anticomplete to {c1, c2}.
We claim that the pair (A,B ∪ {x}) is triangle connected. Since (A,B) is
triangle connected, all we need to check is that the condition is satisfied for
the partition (B, {x}) of B∪{x}. But {b, x, a} is a triangle, and x has an an-
tineighbor a′ in A, and the claim follows. Consequently, the pair (A,B∪{x})
contradicts the choice of (A,B). This proves that the other outcome of (3)
holds for x, and x is complete to {c1, c2}, and anticomplete to {d1, d2}. Sup-
pose that {a, x} is not strongly complete to B. In this case, since {a, x, b}
is a triangle, it follows that the pair (A∪{x}, B) is triangle connected, con-
trary to the choice of (A,B). Consequently, {a, x} is strongly complete to
B, and therefore a′ has an antineighbor b′ ∈ B. But now {a′, a, x, b′, d1} is
a bull, a contradiction. This proves that x is antiadjacent to b.

Now, since {x, a, a′, b, d} where d ∈ {d1, d2} is not a bull, it follows that
x is strongly complete to {d1, d2}. By (2), x has a strong antineighbor
c ∈ {c1, c2}. If x also has a neighbor c′ ∈ C, then {c, a, c′, x, d1} is a bull, a
contradiction. So x is strongly anticomplete to {c1, c2}. This proves (4).

Let A1 be the set of neighbors of x in A, and A2 = A \ A1, and let B1, B2

be defined similarly.

(5) B1 = ∅.

Suppose B1 6= ∅. By (4) B2 6= ∅, and so the symmetry between A and B
has been restored. But now (4) applied with the roles of A and B reversed
implies that x is strongly complete to {c1, c2} and strongly anticomplete to
{d1, d2}, a contradiction. This proves (5).

To complete the proof let B′ be the set of strong neighbors of a′ in B.
Since {x, a, c1, a′, b′} is not a bull for any b′ ∈ B′, it follows from (5) that
a is strongly complete to B′. Consequently, since {a, a′} is not strongly
complete to B, it follows that B′ 6= B. Since (A,B) is triangle connected,
|B| > 1, and a′ has a neighbor and an antineighbor in B, it follows that
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there exist vertices u, v ∈ B, such that u is adjacent to v, and a′ is adjacent
to u and antiadjacent to v. But now (5) implies that {a′, u, v, d1, x} is a
bull, a contradiction. This proves 5.7.

5.7 allows us to prove the following, which is the last step before proving
5.1:

5.8 Let G be an elementary bull-free trigraph and let P and Q be paths of
length three in G, such that there exist a center c for P , and an anticenter a
for Q. If c ∈ V (Q), or a ∈ V (P ), then either G admits a homogeneous set
decomposition or a homogeneous pair decomposition, or G contains a tray.

Proof. Suppose no induced subtrigraph of G is a tray, and G does not
admit a homogeneous set decomposition or a homogeneous pair decomposi-
tion. Passing to the complement by 2.1, it is enough to show that c 6∈ V (Q).
Assume for a contradiction that c ∈ V (Q). We may assume that P and Q
are chosen with V (P ) ∪ V (Q) minimal, subject to the condition that V (Q)
contains a center for P . Let the vertices of P be p1-p2-p3-p4, and the vertices
of Q be q1-q2-q3-q4. From the symmetry we may assume that c ∈ {q1, q2}.

(1) {q4, a} ∩ V (P ) = ∅.

Suppose not. Let {q4, a} = {x, y}. Since c ∈ {q1, q2}, it follows that ev-
ery vertex of {x, y}∩V (P ) is semi-adjacent to c. Since c is semi-adjacent to
at most one vertex of V (G), we may assume that x ∈ V (P ), y 6∈ V (P ) and
x is semi-adjacent to c. From the symmetry we may assume that x = pi and
i ∈ {1, 2}. By 5.4 and since x is antiadjacent to y, and y is antiadjacent to c,
it follows that y is strongly adjacent to pi+2. Since {x, pi+1, c, pi+2, y} is not
a bull, it follows that y is strongly adjacent to pi+1. Let d = {q1, q2} \ {c}.
Since d is antiadjacent to both x and y, and pi+1 is adjacent to both x and
y, it follows that d 6= pi+1. Since {d, c, x, pi+1, y} is not a bull, it follows that
d is strongly adjacent to pi+1. Now pi+1 is strongly complete to {q1, q2}, and
therefore pi+1 6∈ V (Q). But pi+1 is adjacent to a and has three neighbors in
V (Q), contrary to 5.4 applied in G. This proves (1).

(2) If c = q1, then at least one of q2, q3 is in V (P ).

Suppose c = q1 and {q2, q3}∩V (P ) = ∅. By the minimality of V (P )∪V (Q)
and since c is adjacent to q2, it follows from 5.5 that q2 is a strong center for
P , and in particular, q2 is strongly complete to {p1, p4}. By (1), a 6∈ V (P ).
By 5.4, since a is antiadjacent to c = q1, we may assume that a is adjacent
to p1. Now, since {a, p1, q1, q2, q3} is not a bull, p1 is strongly adjacent to
q3. But p1 is adjacent to a and has three neighbors in V (Q), contrary to 5.4
applied in G. This proves (2).

(3) If c = q1, then q3 6∈ V (P ).
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Suppose c = q1 and q3 ∈ V (P ). From the symmetry, we may assume
that q3 = pi with i ∈ {1, 2}. By (1), {a, q4} ∩ V (P ) = ∅. By 5.4 and since
a is antiadjacent to q3 and c, it follows that a is strongly adjacent to pi+2.
Since {q3, pi+1, q1, pi+2, a} is not a bull, it follows that a is strongly adjacent
to pi+1. So pi+1 6∈ V (Q). Now pi+1 is complete to {a, q1, q3}, and therefore
by 5.4 applied in G, it follows that pi+1 is strongly antiadjacent to q4. But
now {q4, q3, q1, pi+1, a} is a bull, a contradiction. This proves (3).

(4) c 6= q1.

Suppose c = q1. Then by (1),(2) and (3) q2 ∈ V (P ), and q3, q4, a 6∈ V (P ).
From the symmetry, we may assume that q2 ∈ {p1, p2}.

Assume first that q2 = p1. By 5.4, {q4, a} is strongly complete to {p3, p4}.
By 5.4 applied in G, it follows that p4 is strongly anticomplete to {q2, q3}.
But now q1-q2-q3-q4-p4-q1 is a hole of length 5, say H; a is a leaf for H and
p3 is adjacent to q1, q4, p4, contrary to 5.3. This proves that q2 6= p1, and
therefore q2 = p2.

Let {q4, a} = {x, y}. By 5.4, since {x, y} is anticomplete to q2, it fol-
lows that {x, y} is strongly complete to p4. Suppose x is antiadjacent to
p3. Then by 5.4, x is strongly adjacent to p1. Since {x, p4, y, p3, q2} is not
a bull, it follows that y is strongly antiadjacent to p3, and 5.4 implies that
y is strongly adjacent to p1. But now, in G|(V (P ) ∪ {x}) is a hole, say H,
q1 is a leaf for H in G, and y has at least three neighbors in V (H) in G,
contrary to 5.3 applied in G. This proves that x, and from the symmetry
y, is strongly adjacent to p3. But now p3 is strongly adjacent to a and has
three neighbors in V (Q) (namely q1, q2, q4), contrary to 5.4 applied in G.
This proves (4).

Now it follows from (4) that c = q2.

(5) {q1, q3} ∩ V (P ) 6= ∅.

Suppose {q1, q3} ∩ V (P ) = ∅. By 5.5, it follows from the minimality of
V (P ) ∩ V (Q), the fact that q2 is complete to {q1, q3}, and (4), that both q1
and q3 are centers for P . Therefore, {q1, q3} is strongly complete to {p1, p4}.
By 5.4 and since q4 is antiadjacent to q2, it follows that q4 is adjacent to at
least one of p1, p4, and from the symmetry we may assume to p1. But now
p1 is a center for Q, contrary to the fact that G is elementary, since a is an
anticenter for Q. This proves (5).

Let {q1, q3} = {x, y}.

(6) {q1, q3} ⊆ V (P ).
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Suppose not. By (5), we may assume that x ∈ V (P ) and y 6∈ V (P ). From
the symmetry we may assume that x ∈ {p1, p2}. Suppose first that x = p1.
If y is adjacent to both p2 and p4, then x-p2-y-p4 is a path of length three,
and q2 is a center for it, contrary to the minimality of V (P ) ∪ V (Q). So y
has at least one strong antineighbor in {p2, p4}.

Assume that y is adjacent to p3. Since, by the minimality of V (P ) ∪
V (Q) it follows that x-p2-p3-y is not a path, we deduce that y is strongly
adjacent to p2, and therefore y is strongly antiadjacent to p4. But now
{p1, p2, y, p3, p4} is a bull, a contradiction. This proves that y is strongly
antiadjacent to p3.

Since a is antiadjacent to x, it follows from 5.4 that a is strongly adjacent
to p3 and p4. Suppose a is antiadjacent to p2. Since {a, p3, p2, q2, y} is not a
bull, it follows that y is strongly adjacent to p2, and therefore y is strongly
antiadjacent to p4. Since both x-p2-p3-p4 and y-p2-p3-p4 are paths, q2 is a
center for each of them, and q4 is antiadjacent to q2 and to one of x, y, it
follows from 5.4 that q4 is strongly adjacent to p3 and p4. Since p3 and p4 are
adjacent to a, it follow from 5.4 applied in G that x is strongly antiadjacent
to p3 and p4. Now there is symmetry between x and y, and so we may
assume that q4 is adjacent to y and antiadjacent to x. Since {x, p2, q4, p3, a}
is not a bull, it follows that q4 is strongly antiadjacent to p2. But now
G|(V (P ) ∪ V (Q) ∪ {a}) is a tray, a contradiction. This proves that a is
strongly adjacent to p2.

Since p2 is complete to {a, x, q2}, it follows from 5.4 applied in G that p2

is strongly antiadjacent to both y and q4. Since G is elementary, it follows
that y is not an anticenter for V (P ), and therefore y is strongly adjacent
to p4. Since q4 is antiadjacent to q2 and p2, 5.4 implies that q4 is strongly
adjacent to p4. Since a is antiadjacent to q2 and x, 5.4 implies that a is
strongly adjacent to p4. But now p4 is adjacent to q2, y, q4 and a, contrary
to 5.4 applied in G. This proves that x 6= p1.

Consequently, x = p2. Suppose y is antiadjacent to p1. It follows from
the minimality of V (P ) ∪ V (Q) that y is strongly antiadjacent to p3. Since
G is elementary, we deduce that y is not an anticenter for P , and so y is
strongly adjacent to p4. But now x-p3-p4-y is a path, and q is a center for it,
contrary to the minimality of V (P ) ∪ V (Q). This proves that y is strongly
adjacent to p1. Again by the minimality of V (P )∪ V (Q), we deduce that y
is adjacent to p3. Since p1 has at least three neighbors V (Q) and p1 6∈ V (Q),
5.4 applied in G, implies that p1 is strongly antiadjacent to a. Since a is
antiadjacent to both p1 and q2, 5.4 implies that a is strongly adjacent to
p3. However, p3 has three neighbors in V (Q), contrary to 5.4 applied in G.
This proves (6).

(7) x 6= p1.
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Suppose x = p1. By 5.4 and since a is antiadjacent to both x and q2,
it follows that a is strongly adjacent to both p3 and p4. This, together
with (6), implies that y = p2, and so p1 is antiadjacent to p2. But now
{p1, q2, p2, p3, a} is a bull, a contradiction. This proves (7).

Now it follows from (6), (7) and the symmetry that {x, y} ∩ {p1, p4} = ∅,
and therefore {x, y} = {p2, p3}. This implies that p2 is antiadjacent to p3.
By 5.4 and since a is antiadjacent to q2, p2, p3, it follows that a is strongly
adjacent to p1 and p4. But now {a, p1, p2, q2, p3} is a bull, a contradiction.
This completes the proof of 5.8.

We can now prove 5.1.
Proof of 5.1. Let the vertices of P be p1-p2-p3-p4, let c be a center for

P and a an anticenter for Q. By 5.2, we may assume that G is elementary,
and by 5.7 we may assume that there is no tray in G. By 5.6, it follows that
a 6= c. By 2.1, passing to G if necessary, we may assume that c is adjacent
to a. Therefore, 5.8 implies that there does not exist i ∈ {1, 2, 3, 4} such
that G|((V (P ) \ {pi}) ∪ {a}) is a path of length three. Consequently, 5.5
implies that a is a strong center for P , contrary to 5.6, since a is also an
anticenter for Q. This proves 5.1.

6 Conclusion

This is the first paper in a series of three. One of its main results is 3.3,
that describes the structure of all non-elementary bull-free trigraphs. The
remainder of the series consists of [7, 8], that are summarized in [6]. In [7],
we prove that every elementary bull-free trigraph either belongs to one of a
few basic classes, or admits a certain decomposition. In [8] we combine 3.3
and the results of [7] and give an explicit description of the structure of all
bull-free trigraphs. Both [7] and [8] use 3.2.
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