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Abstract

The bull is a graph consisting of a triangle and two pendant edges.
A graph is called bull-free if no induced subgraph of it is a bull. This
is the last in a series of three papers. In this paper we use the results
of [1, 2] and give an explicit description of the structure of all bull-free
graphs.

1 Introduction

All graphs in this paper are finite and simple. The bull is a graph with
vertex set {x1, x2, x3, y, z} and edge set

{x1x2, x2x3, x1x3, x1y, x2z}.

Let G be a graph. We say that G is bull-free if no induced subgraph of G is
isomorphic to the bull. The complement of G is the graph G, on the same
vertex set as G, and such that two vertices are adjacent in G if and only if
they are non-adjacent in G. A clique in G is a set of vertices, all pairwise
adjacent. A stable set in G is a clique in the complement of G. A clique of
size three is called a triangle and a stable set of size three is a triad. For a
subset A of V (G) and a vertex b ∈ V (G) \ A, we say that b is complete to
A if b is adjacent to every vertex of A, and that b is anticomplete to A if
b is not adjacent to any vertex of A. For two disjoint subsets A and B of
V (G), A is complete to B if every vertex of A is complete to B, and A is
anticomplete to B every vertex of A is anticomplete to B. For a subset X of
V (G), we denote by G|X the subgraph induced by G on X, and by G \X
the subgraph induced by G on V (G) \X.
∗Most of this research was conducted during the period the author served as a Clay
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An obvious example of a bull free graph is a graph with no triangle,
or a graph with no triad; but there are others. Let us call a graph G an
ordered split graph if there exists an integer n such that the vertex set of
G is the union of a clique {k1, . . . , kn} and a stable set {s1, . . . , sn}, and si

is adjacent to kj if and only if i + j ≤ n + 1. It is easy to see that every
ordered split graph is bull-free. A large ordered split graph contains a large
clique and a large stable set, and therefore the three classes (triangle-free,
triad-free and ordered split graphs) are significantly different. Another way
to make a bull-free graph that has both a large clique and a large stable
set is by using the operation of substitution (this is a well known operation,
but, for completeness, we define it in Section 4). It turns out, however,
that we can give and explicit description of the structure of all bull-free
graphs that are not obtained from smaller bull-free graphs by substitution.
To do so, we first define “bull-free trigraphs”, which are objects generalizing
bull-free graphs: while in a graph every two vertices are either adjacent
or nonadjacent, in a trigraph every pair of vertices is either adjacent, or
antiadjacent or semi-adjacent (this is done in Section 2). In Section 3, we
describe three special classes of bull-free trigraphs, T0, T1, T2 (in fact, two
of the classes were defined in [1] and [2]), and state a theorem that says
that, up to taking complements, every bull-free trigraph either belongs to
one of these three classes, or admits a decomposition. In Section 4, we
turn the decomposition theorem of Section 3 into a “composition theorem”,
which is our main result, 4.2. Roughly, 4.2 says that every bull-free trigraph
that is not obtained from smaller bull-free trigraphs by substitution is an
“expansion” of a trigraph in T0 ∪ T1 ∪ T2 (we postpone the definition of an
“expansion” to Section 4). The organization of the rest of this paper is
described at the end of Section 4.

2 Trigraphs

In order to prove our main result, we consider objects, slightly more gen-
eral than bull-free graphs, that we call “bull-free trigraphs”. A trigraph
G consists of a finite set V (G), called the vertex set of G, and an a map
θ : V (G)2 → {−1, 0, 1}, called the adjacency function, satisfying:

• for all v ∈ V (G), θG(v, v) = 0

• for all distinct u, v ∈ V (G), θG(u, v) = θG(v, u)

• for all distinct u, v, w ∈ V (G), at most one of θG(u, v), θG(u,w) = 0.

Two distinct vertices of G are said to be strongly adjacent if θ(u, v) = 1,
strongly antiadjacent if θ(u, v) = −1, and semi-adjacent if θ(u, v) = 0. We
say that u and v are adjacent if they are either strongly adjacent, or semi-
adjacent; and antiadjacent of they are either strongly antiadjacent, or semi-
adjacent. If u and v are adjacent, we also say that u is adjacent to v, or
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that u is a neighbor of v. If u and v are antiadjacent, we also say that u
is antiadjacent to v, or that u is an anti-neighbor of v. Similarly, if u and
v are strongly adjacent (strongly antiadjacent), then u is a strong neighbor
(strong anti-neighbor) of v. Let η(G) be the set of all strongly adjacent
pairs of G, ν(G) the set of all strongly antiadjacent pairs of G, and σ(G)
the set of all pairs {u, v} of vertices of G, such that u and v are distinct and
semi-adjacent. Thus, a trigraph G is a graph if σ(G) empty.

Let G be a trigraph. The complement G of G is a trigraph with the
same vertex set as G, and adjacency function θ = −θ. Let A ⊂ V (G)
and b ∈ V (G) \ A. For v ∈ V (G) let N(v) denote the set of all vertices in
V (G)\{v} that are adjacent to v, and let S(v) denote the set of all vertices in
V (G)\{v} that are strongly adjacent to v. We say that b is strongly complete
to A if b is strongly adjacent to every vertex of A, b is strongly anticomplete
to A if b is strongly antiadjacent to every vertex of A, b is complete to
A if b is adjacent to every vertex of A and b is anticomplete to A if b is
antiadjacent to every vertex of A. For two disjoint subsets A,B of V (G),
B is strongly complete (strongly anticomplete, complete, anticomplete) to A
if every vertex of B is strongly complete (strongly anticomplete, complete,
anticomplete, respectively) to every vertex of A. We say that b is mixed on
A if b is not strongly complete and not strongly anticomplete to A. A clique
in G is a set of vertices all pairwise adjacent, and a strong clique is a set of
vertices all pairwise strongly adjacent. A stable set is a set of vertices all
pairwise antiadjacent, and a strongly stable set is a set of vertices all pairwise
strongly antiadjacent. A (strong) clique of size three is a (strong) triangle
and a (strong) stable set of size three is a (strong) triad. For X ⊂ V (G)
the trigraph induced by G on X (denoted by G|X) has vertex set X, and
adjacency function that is the restriction of θ to X2. Isomorphism between
trigraphs is defined in the natural way, and for two trigraphs G and H we
say that H is an induced subtrigraph of G (or G contains H as an induced
subtrigraph) if H is isomorphic to G|X for some X ⊆ V (G). We denote by
G \X the trigraph G|(V (G) \X).

A bull is a trigraph with vertex set {x1, x2, x3, v1, v2} such that {x1, x2, x3}
is a triangle, v1 is adjacent to x1 and antiadjacent to x2, x3, v2, and v2 is
adjacent to x2 and antiadjacent to x1, x3. For a trigraph G, a subset X of
V (G) is said to be a bull if G|X is a bull. We say that a trigraph is bull-free
if no induced subtrigraph of it is a bull, or, equivalently, no subset of its
vertex set is a bull.

Let G be a trigraph. An induced subtrigraph P of G with vertices
{p1, . . . , pk} is a path in G if either k = 1, or for i, j ∈ {1, . . . , k}, pi is
adjacent to pj if |i− j| = 1 and pi is antiadjacent to pj if |i− j| > 1. Under
these circumstances we say that P is a path from p1 to pk, its interior is the
set P ∗ = V (P ) \ {p1, pk}, and the length of P is k− 1. We also denote P by
p1- . . . -pk, and say that P is a (k− 1)-edge path. An induced subtrigraph H
of G with vertices h1, . . . , hk is a hole if k ≥ 4, and for i, j ∈ {1, . . . , k}, hi
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is adjacent to hj if |i− j| = 1 or |i− j| = k− 1; and hi is antiadjacent to hj

if 1 < |i − j| < k − 1. The length of a hole is the number of vertices in it.
Sometimes we denote H by h1- . . . -hk-h1. An antipath (antihole) is a path
(hole) in G.

Let G be a trigraph, and let X ⊆ V (G). Let Gc be the graph with
vertex set X, and such that two vertices of X are adjacent in Gc if and only
if they are adjacent in G, and let Ga be be the graph with vertex set X,
and such that two vertices of X are adjacent in Ga if and only if they are
strongly adjacent in G. We say that X (and G|X) is connected if the graph
Gc is connected, and that X (and G|X) is anticonnected if Ga is connected.
A connected component of X is a maximal connected subset of X, and an
anticonnected component of X is a maximal anticonnected subset of X. For
a trigraph G, if X is a component of V (G), then G|X is a component of G.

We finish this section by two easy observations (these appeared in [1, 2],
but we repeat them for completeness, and omit the proofs).

2.1 If G be a bull-free trigraph, then so is G.

2.2 Let G be a trigraph, let X ⊆ V (G) and v ∈ V (G) \ X. Assume that
|X| > 1 and v is mixed on X. Then there exist vertices x1, x2 ∈ X such that
v is adjacent to x1 and antiadjacent to x2. Moreover, if X is connected, x1

and x2 can be chosen adjacent.

3 The decomposition theorem for trigraphs

In this section we state a decomposition theorem for bull-free trigraphs. We
start by describing a special type of trigraphs.

1-thin trigraphs. Let G be a trigraph. Let a, b ∈ V (G) be distinct
vertices, and let A = {a1, . . . , an} and B = {b1, . . . , bm} be disjoint subsets
of V (G) such that A∪B = V (G)\{a, b}. Let us now describe the adjacency
in G.

• a is strongly complete to A and strongly anticomplete to B.

• b is strongly complete to B and strongly anticomplete to A.

• a is semi-adjacent to b.

• If i, j ∈ {1, . . . , n}, and i < j, and ai is adjacent to aj , then ai is
strongly complete to {ai+1, . . . , aj−1}, and aj is strongly complete to
{a1, . . . , ai−1}.

• If i, j ∈ {1, . . . ,m}, and i < j, and bi is adjacent to bj , then bi is
strongly complete to {bi+1, . . . , bj−1}, and bj is strongly complete to
{b1, . . . , bi−1}.
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• If p ∈ {1, . . . , n} and q ∈ {1, . . . ,m}, and ap is adjacent to bq, then ap

is strongly complete to {bq+1, . . . , bm}, and bq is strongly complete to
{ap+1, . . . , an}.

Under these circumstances we say that G is 1-thin. We call the pair (a, b)
the base of G.

3.1 Every 1-thin trigraph is bull-free.

Proof. Let G be a 1-thin trigraph, and let a, b, A,B be as in the definition
of a 1-thin trigraph. Let |A| = n and |B| = m. Suppose there is a bull C in
G. Let C = {c1, c2, c3, c4, c5}, where the pairs c1c2, c2c3, c2c4, c3c4, c4c5 are
adjacent, and all the remaining pairs are antiadjacent.

(1) There do not exist a, a′ ∈ A and b, b′ ∈ B such that the pairs ab, a′b′

are adjacent, and the pairs ab′, a′b are antiadjacent.

Suppose such a, a′, b, b′ exist. We may assume a = ai, a′ = aj , and i < j.
But then, since b is adjacent to ai, it follows that b is strongly adjacent to
aj , a contradiction. This proves (1).

(2) Let i, j, k ∈ {1, . . . , n} such that ai is adjacent to aj, and ak is anti-
complete to {ai, aj}. Then k > i and k > j.

We may assume that i > j. If k < j, then ai is strongly adjacent to
ak, and if j < k < i, then aj is strongly adjacent to ak, in both cases a
contradiction. This proves (2).

(3) Let i, j, k ∈ {1, . . . , n} such that ai is adjacent to aj and to ak, and
aj is antiadjacent to ak. Then i < j and i < k.

From the symmetry we may assume that j < k. If i > k, then, since ai

is adjacent to aj , it follows that aj is strongly adjacent to ak, a contradic-
tion. If j < i < k, then, since ak is adjacent to ai, it follows, again, that aj

is strongly adjacent to ak. This proves (3).

(4) a 6∈ C.

Suppose a ∈ C. Assume first that a = c3. Since b is strongly antiad-
jacent to every other neighbor of a and strongly adjacent to every other
anti-neighbor of a, it follows that b 6∈ C. Since c2, c4 are both adjacent to
c3, it follows that c2, c4 ∈ A; and since c1, c5 are both antiadjacent to c3,
it follows that c1, c5 ∈ B. But the pairs c2c1, c4c5 are adjacent, and the
pairs c2c5, c4c1 are antiadjacent, contrary to (1). This proves that a 6= c3.
Next suppose that a = c2. Since b is strongly antiadjacent to every other
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neighbor of a, it follows that b 6∈ {c3, c4}. Thus c3, c4 ∈ A, and since c5 is
antiadjacent to c2, it follows that c5 ∈ B. Since c1 is antiadjacent to c5, it
follows that c1 ∈ A. Let ai = c4, aj = c3, ak = c1. By (2), k > i. But now
c1 is strongly adjacent to c5, a contradiction. This proves that a 6= c2, and,
from the symmetry, a 6= c4. Now, using symmetry, we may assume that
a = c1. Then c3, c4, c5 ∈ B ∪ {b}. It follows from the symmetry between
a and b that b 6= c3, c4; consequently c3, c4 ∈ B. This implies that b 6= c5,
and so c5 ∈ B. Since c2 is antiadjacent to c5, it follows that b 6= c2, and so
c2 ∈ A. Let bi = c3, bj = c4 and bk = c5. By (3), j < i and j < k. But
now, since c2 is adjacent to c4, it follows that c2 is strongly adjacent to c5,
a contradiction. This proves (4).

(5) Not both c2 and c4 are in A.

Suppose that that both c2, c4 ∈ A. Let i, j ∈ {1, . . . n} such that ai = c2
and aj = c4. We may assume that i < j. Since c1 is adjacent to c2 and
antiadjacent to c4, it follows that c1 ∈ A. Let ak = c1. Then, by (3), i < k
and i < j. It follows that if c3 ∈ B, then c3 is strongly adjacent to c1, and
therefore c3 6∈ B. By (4) and the symmetry, c3 6= a, b, and so c3 ∈ A. Since
c1 is strongly anticomplete to {c3, c4}, (2) implies that that k > j. Since
c5 is adjacent to c4 and antiadjacent to c1, it follows that c1 6∈ B, and so,
by (4) and the symmetry, we deduce that c5 ∈ A. Let c5 = as. Since c5
is anticomplete to {c1, c2}, it follows from (2) that s > k. But now, since
c5 is adjacent to c4, and since i < j < k < s, it follows from (3) that c5 is
strongly adjacent to c2, a contradiction. This proves (5).

By (4), (5) and the symmetry, we may assume that c2, c3 ∈ A, and c4 ∈ B.
Let ai = c2, aj = c3 and bk = c4. Suppose that c1 ∈ A, say c1 = as. By (3),
it follows that i < s. But then, since c4 is adjacent to c2, it follows that
c4 is strongly adjacent to c1, a contradiction. This proves that c1 ∈ B, say
c1 = bs. Since c1 is adjacent to c2 and antiadjacent to c3, it follows that
j < i. Since c3 is adjacent to c4 and antiadjacent to c1, it follows that k > s.
Now, since c1 is anticomplete to {c4, c5}, (2) implies that c5 6∈ B. By (4)
and the symmetry, it follows that c5 ∈ A, say c5 = at. By (3), t > i. But c1
is adjacent to c2, and antiadjacent to c5, a contradiction. This proves 3.1.

2-thin trigraphs. Let G be a trigraph. Let xAK , xAM , xBK , xBM be
pairwise distinct vertices of G, and let A,B,K,M be pairwise disjoint sub-
sets of V (G), such that K,M are strong cliques, A,B are strongly stable
sets and

A ∪B ∪K ∪M ∪ {xAK , xAM , xBK , xBM} = V (G).

Let t, s ≥ 0 be integers and let K = {k1, . . . , kt} and M = {m1, . . . ,ms} (so
if t = 0 then K = ∅, and if s = 0 then M = ∅). Let A be the disjoint union
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of sets Ai,j , and B the disjoint union of sets Bi,j , where i ∈ {0, . . . , t} and
j ∈ {0, . . . , s}.

Assume that :

• A is strongly complete to B

• K is strongly anticomplete to M

• A is strongly complete to {xAK , xAM} and strongly anticomplete to
{xBK , xBM}

• B is strongly complete to {xBK , xBM} and strongly anticomplete to
{xAK , xAM}

• K is strongly complete to {xAK , xBK} and strongly anticomplete to
{xAM , xBM}

• M is strongly complete to {xAM , xBM} and strongly anticomplete to
{xAK , xBK}

• xAK is semi-adjacent to xBM

• xAM is semi-adjacent to xBK

• the pairs xAKxBK and xAMxBM are strongly adjacent, and the pairs
xAKxAM and xBKxBM are strongly antiadjacent.

Let i ∈ {0, . . . , t} and j ∈ {0, . . . , s}. Then

• if i′ ∈ {0, . . . , t} and j′ ∈ {0, . . . , s} such that i > i′ and j > j′, then
at least one of the sets Ai,j , Ai′,j′ is empty, and at least one of the sets
Bi,j , Bi′,j′ is empty.

• Ai,j is strongly complete to {k1, . . . , ki−1} ∪ {ms−j+2, . . . ,ms},
Ai,j is complete to {ki,ms−j+1},
Ai,j is strongly anticomplete to {ki+1, . . . , kt} ∪ {m1, . . . ,ms−j},

• Bi,j is strongly complete to {kt−i+2, . . . , kt} ∪ {m1, . . . ,mj−1},
Bi,j is complete to {kt−i+1,mj},
Bi,j is strongly anticomplete to {k1, . . . , kt−i} ∪ {mj+1, . . . ,ms}.

Then G is 2-thin with base (xAK , xBM , xBK , xAM ). We call (A,B,K,M)
the partition of G with respect to the base (xAK , xBM , xBK , xAM ).

3.2 Every 2-thin trigraph is bull-free.

Proof. Let G be 2-thin. We observe that G is 1-thin with base (xAK , xBM ),
and the result follows from 3.1. This proves 3.2.
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We will need the following three classes of trigraphs in order to state our
main theorem. The class T0 was defined in [1], and the class T1 was defined
in [2].

The class T2. Let G be a bull-free trigraph and let (A,B) be a homoge-
neous pair in G. Let C be the set of vertices of G that are strongly complete
to A and strongly anticomplete to B, and let D be the set of vertices of G
that are strongly complete to B and strongly anticomplete to A. We say
that (A,B) is doubly dominating if V (G) = A∪B ∪C ∪D, and both C and
D are non-empty. For a semi-adjacent pair a0b0, we say that a0b0 is doubly
dominating if the pair ({a0}, {b0}) is doubly dominating.

Let G1, G2 be bull-free trigraphs, and for i = 1, 2 let (ai, bi) be a doubly
dominating semi-adjacent pair in Gi, let Ai be the set of vertices of Gi that
are strongly complete to ai, and let Bi be the set of vertices of Gi that are
strongly complete to bi. We say that G is obtained from G1 and G2 by
composing along (a1, b1, a2, b2) if V (G) = A1 ∪ A2 ∪ B1 ∪ B2, for i = 1, 2
G|(Ai ∪ Bi) = Gi|(Ai ∪ Bi), A1 is strongly complete to A2 and strongly
anticomplete to B2, and B1 is strongly complete to B2 and strongly anti-
complete to A2. We observe that if (x, y) 6= (ai, bi) is a doubly dominating
semi-adjacent pair in Gi, then (x, y) is a doubly dominating semi-adjacent
pair in G; and these are all the doubly dominating semi-adjacent pairs in G.

Let H be either the the complete graph on two vertices, or the complete
graph on three vertices, or the graph on three vertices with no edges. We
say that a trigraph G is an H-pattern if the vertex set of G consist of two
distinct copies av, bv of every vertex v of H, and such that

• for every v ∈ V (H), av is semi-adjacent to bv, and

• if u, v ∈ V (H) are adjacent, then au is strongly adjacent to av and
strongly antiadjacent to bv, and bu is strongly adjacent to bv and
strongly antiadjacent to av, and

• if u, v ∈ V (H) are non-adjacent, then au is strongly adjacent to bv
and strongly antiadjacent to av, and bu is strongly adjacent to av and
strongly antiadjacent to bv.

Thus for every v ∈ V (H), (av, bv) is a doubly dominating semi-adjacent
pair in G, and there are no other semi-adjacent pairs in G. We say that G
is a triangle pattern if H is the complete graph on three vertices, an edge
pattern if H is the complete graph on two vertices, and a triad pattern if H
is the graph on three vertices with no edges. We remark that edge patterns
are 2-thin graphs, however, it is convenient to have a special name for them.

Let k ≥ 1 be an integer, and let G′1, . . . , G
′
k be trigraphs, such that for

i ∈ {1, . . . , k}, G′k is either a triangle pattern, or a triad pattern, or a 2-thin
trigraph (possibly an edge pattern). For i ∈ {2, . . . , k}, let (ci, di) be a dou-
bly dominating semi-adjacent pair in G′i. For j ∈ {1, . . . , k − 1}, let (xj , yj)
be a doubly dominating semi-adjacent pair in G′q for some q ∈ {1, . . . , j},
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and such that the pairs {c2, d2}, . . . {ck, dk}, {x1, y1}, . . . , {xk−1, yk−1} are all
distinct (and therefore pairwise disjoint).

Let G1 = G′1. Then (x1, y1) is a doubly dominating semi-adjacent pair in
G1. For i ∈ {1, . . . , k − 1}, let Gi+1 be the trigraph obtained by composing
Gi and G′i+1 along (xi, yi, ci+1, di+1). Let G = Gk. We call such a trigraph
G a skeleton. Every skeleton is in T2.

We observe that a semi-adjacent pair {u, v} is doubly dominating in G
if and only if (u, v) is a doubly dominating semi-adjacent pair in some G′i
with i ∈ {1, . . . , k}, and {u, v} is not one of

{c2, d2}, . . . , {ck, dk}, {x1, y1}, . . . , {xk−1, yk−1}.

Let G′0 be a skeleton, and for i ∈ {1, . . . , n} let (ai, bi) be a doubly dom-
inating semi-adjacent pair in G′0, such that the pairs {a1, b1}, . . . , {an, bn}
are all distinct (and therefore pairwise disjoint). For i = {1, . . . , n}, let G′i
be a trigraph such that

• V (G′i) = Ai ∪Bi ∪ {a′i, b′i}, and

• the sets Ai, Bi, {a′i, b′i} are all non-empty and pairwise disjoint, and

• a′i is strongly complete to Ai and strongly anticomplete to Bi, and

• b′i is strongly complete to Bi and strongly anticomplete to Ai, and

• a′i is semi-adjacent to b′i, and either

– both Ai, Bi are strong cliques, and there do not exist a ∈ Ai

and b ∈ Bi, such that a is strongly anticomplete to Bi \ {b}, b is
strongly anticomplete to Ai \ {a}, and a is semi-adjacent to b, or

– both Ai, Bi are strongly stable sets, and there do not exist a ∈ Ai

and b ∈ Bi, such that a is strongly complete to Bi \ {b}, b is
strongly complete to Ai \ {a}, and a is semi-adjacent to b, or

– one of G′i, G
′
i is a 1-thin trigraph with base (a′i, b

′
i), and G′i is not

a 2-thin trigraph.

Let G0 = G′0, and for i ∈ {1, . . . , n}, let Gi be obtained by composing
Gi−1 and G′i along (ai, bi, a

′
i, b
′
i). Let G = Gn. Then G ∈ T2.

The following two results were proved in [1] and [2] respectively:

3.3 Every trigraph in T0 is bull-free.

3.4 Every trigraph in T1 is bull-free.

Here we prove that:

3.5 Every trigraph in T2 is bull-free.
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Proof. We start with the following observations:

(1) Let H1, H2 be bull-free trigraphs with V (H1) ∩ V (H2) = ∅, and for
i = 1, 2 let (ai, bi) be a doubly dominating semi-adjacent pair in Hi. Let
H be the trigraph obtained by composing H1 and H2 along (a1, b1, a2, b2).
Then H is bull-free.

For i = 1, 2 let Ai be the set of neighbors of ai in V (Hi)\{ai, bi}, and let Bi

be the set of neighbors of bi in V (Hi)\{ai, bi}. Then A1∩B1 = A2∩B2 = ∅
and V (Hi) = Ai ∪ Bi ∪ {ai, bi}. Suppose there is a bull B in G. Let
B = {v1, v2, v3, v4, v5}, where the pairs v1v2, v2v3, v2v4, v3v4, v4v5 are adja-
cent, and all the remaining pairs are antiadjacent. From the symmetry, we
may assume that {v2, v3, v4}∩A1 6= ∅. Then either {v2, v3, v4} ⊆ A1∪B1, or
{v2, v3, v4} ⊆ A1 ∪A2. Suppose first that {v2, v3, v4} ⊆ A1 ∪B1. Since each
of v2, v3, v4 has at most one neighbor in {v1, v5}, it follows that |B∩A2| ≤ 1,
and |B ∩ B2| ≤ 1, and so (B \ (A2 ∪ B2)) ∪ {a1, b1} contains a bull. But
(B \ (A2 ∪B2))∪{a1, b1} ⊆ V (H1), contrary to the fact that H1 is bull-free.
This proves that {v2, v3, v4} ⊆ A1 ∪ A2. We may assume from the symme-
try that |{v2, v3, v4} ∩ A1| > 1. This implies that A2 ∩ B ⊆ {v2, v3, v4},
and therefore |A2 ∩ B| ≤ 1. In turn, this implies that |B ∩ B2| ≤ 1,
and so (B \ (A2 ∪ B2)) ∪ {a1, b1} contains a bull, contrary to the fact that
(B \ (A2 ∪B2)) ∪ {a1, b1} ⊆ V (H1) and H1 is bull-free. This proves (1).

(2) Let H be a trigraph with V (H) = A ∪B ∪ {a, b} such that a is strongly
complete to A and strongly anticomplete to B, b is strongly complete to B
and strongly anticomplete to A, and a is semi-adjacent to b; and either both
A and B are strong cliques, or both A and B are strongly stable sets. Then
H is bull-free.

Since either there is no triangle in H, or there is no triad in H, (2) fol-
lows.

Now we observe that if G ∈ T2, then G is obtained by repeatedly composing
pairs of trigraphs with a dominating semi-adjacent pair. By 3.1, 3.2, (2),
and since triangle patterns and triad patterns are bull-free, it follows that
all trigraphs used to build G are bull-free, and thus, by (1), G is bull-free.
This proves 3.5.

We observe the following:

3.6 G ∈ T2 for every trigraph G ∈ T2.

The proof of 3.6 is easy and we omit it. Next let us describe some
decompositions. Let G be a trigraph. We say that G admits a 1-join, if
V (G) is the disjoint union of four non-empty sets A,B,C,D such that
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• B is strongly complete to C, A is strongly anticomplete to C ∪D, and
B is strongly anticomplete to D;

• |A ∪B| > 2 and |C ∪D| > 2, and

• A is not strongly complete and not strongly anticomplete to B, and

• C is not strongly complete and not strongly anticomplete to D.

A proper subset Xof V (G) is a homogeneous set in G if every vertex of
V (G)\X is either strongly complete or strongly anticomplete to X. We say
that G admits a homogeneous set decomposition, if there is a homogeneous
set in G of size at least two.

For two disjoint subsets A and B of V (G), the pair (A,B) is a homoge-
neous pair in G, if A is a homogeneous set in G\B and B is a homogeneous
set in G \A. We say that the pair (A,B) is tame if

• |V (G)| − 2 > |A|+ |B| > 2, and

• A is not strongly complete and not strongly anticomplete to B

A trigraph G admits a homogeneous pair decomposition if there is a tame
homogeneous pair in G.

We need three special kinds of homogeneous pairs. Let (A,B) be a
homogeneous pair in G. Let C be the set of vertices of V (G) \ (A ∪ B)
that are strongly complete to A and strongly anticomplete to B, D the set
of vertices of V (G) \ (A ∪ B) that are strongly complete to B and strongly
anticomplete to A, E the set of vertices of V (G) \ (A∪B) that are strongly
complete to A ∪ B, and F the set of vertices of V (G) \ (A ∪ B) that are
strongly anticomplete to A ∪ B. We say that (A,B) is a homogeneous pair
of type zero in G (this was defined in [1], but we repeat the definition here)
if

• D = ∅, and

• some member of C is antiadjacent to some member of E, and

• A is a strongly stable set, and

• |C ∪ E ∪ F | > 2, and

• |B| = 2, say B = {b1, b2}, and b1 is strongly adjacent to b2, and

• let {i, j} = {1, 2}. Let Ai be the set of vertices of A that are adjacent
to bi. Then A1 ∩ A2 = ∅, A1 ∪ A2 = A, 1 ≤ |Ai| ≤ 2, and if |Ai| = 2,
then one of the vertices of Ai is semi-adjacent to bi, and

• if |A1| = |A2| = 1, then F is non-empty.

We say that (A,B) is a homogeneous pair of type one in G if
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• at least one member of C is adjacent to at least one member of F , and

• at least one member of D is adjacent to at least one member of F , and

• E = ∅, and

• |A| + |B| > 2, and A is not strongly complete and not strongly anti-
complete to B, and

• both A and B are strongly stable sets.

A trigraph T is a forest of there are no holes and no triangles in T . Thus,
for every two vertices of T , there is at most one path between them. A forest
T is a tree if T is connected. A rooted forest is a (k+ 1)-tuple (T, r1, . . . , rk),
where T is a forest with components T1, . . . , Tk, and ri ∈ V (Ti) for i ∈
{1, . . . , k}. Let u, v ∈ V (F ) be distinct. We say that u is a child of v, if
for some i ∈ {1, . . . , k}, both u, v ∈ V (Ti), and u is adjacent to v, and if P
is the unique path of Ti from ri to u, then v ∈ V (P ). We say that u is a
descendant of v if for some i ∈ {1, . . . , k}, both u, v ∈ V (Ti), and if P is the
unique path of Ti from ri to u, then v ∈ V (P ).

Let (T, r1, . . . , rk) be a rooted forest. We say that the trigraph T ′ is the
closure of (T, r1, . . . , rk), if V (T ′) = V (T ), σ(T ) = σ(T ′), and u is adjacent
to v in T ′ if and only if one of u, v is a descendant of the other.

Finally, we say that (A,B) is a homogeneous pair of type two in G if

• at least one member of C is adjacent to at least one member of F , and

• D 6= ∅, and

• D strongly anticomplete to F , and

• E = ∅, and

• |A| + |B| > 2, and A is not strongly complete and not strongly anti-
complete to B, and

• A is strongly stable, and

• there exists a rooted forest (T, r1, . . . , rk) such that G|B is the closure
of (T, r1, . . . , rk), and

• if b, b′ ∈ B are semi-adjacent, then, possibly with the roles of b and b′

exchanged, b is a leaf of T and a child of b′, and

• if a ∈ A is adjacent to b ∈ B, then a is strongly adjacent to every
descendant of b in T , and

• let u, v ∈ B and assume that u is a child of v. Let i ∈ {1, . . . , k} and let
Ti be the component of T such that u, v ∈ V (Ti). Let P be the unique
path of Ti from v to ri, and let X be the component of Ti\(V (P )\{v})
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containing v (and therefore u). Let Y be the set of vertices of X that
are semi-adjacent to v. Let a ∈ A be adjacent to u and antiadjacent
to v. Then a is strongly complete Y and to B \ (V (X) ∪ V (P )), and
a is strongly anticomplete to V (P ) \ {v}.

Please note that every homogeneous pair of type zero, one, or two is
tame in both G and G, and therefore if there is a homogeneous pair of
type zero, one or two in either G or G, then G admits a homogeneous pair
decomposition.

Let G be a trigraph and let S ⊆ V (G). A center for S is a vertex
of V (G) \ S that is complete to S, and an anticenter for S is a vertex of
V (G) \ S that is anticomplete to S. A vertex of G is a center (anticenter)
for an induced subgraph H of G if it is a center (anticenter) for V (H).

We say that a trigraph G is elementary if there does not exist a path P
of length three in G, such that some vertex c of G is a center for P , and
some vertex a of G is an anticenter for P .

The following two theorems are the main results of [1] and [2], respec-
tively:

3.7 Let G be a bull-free trigraph that is not elementary. Then either

• one of G,G belongs to T0, or

• one of G,G contains a homogeneous pair of type zero,or

• G admits a homogeneous set decomposition.

3.8 Let G be an elementary bull-free trigraph. Then either

• one of G,G belongs to T1, or

• G admits a homogeneous set decomposition, or

• G admits a homogeneous pair decomposition.

Our first goal in this paper is to strengthen 3.8 to obtain the following:

3.9 Let G be an elementary bull-free trigraph. Then either

• one of G,G belongs to T1 ∪ T2, or

• one of G,G contains a homogeneous pair of type one or two, or

• G admits a homogeneous set decomposition.

Then we use 3.7 and 3.9 to prove our main theorem, which we state in the
next section.
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4 The main theorem

Let G be a bull-free trigraph, and let a, b ∈ V (G) be semi-adjacent. Let C
be the set of vertices of V (G) \ {a, b} that are strongly adjacent to a and
strongly antiadjacent to b, D the set of vertices of V (G) \ {a, b} that are
strongly adjacent to b and strongly antiadjacent to a, E the set of vertices of
V (G) \ {a, b} that are strongly complete to {a, b}, and F the set of vertices
of V (G) \ {a, b} that are strongly anticomplete to {a, b}. Then V (G) =
{a, b}∪C ∪D∪E ∪F . We say that ab is a semi-adjacent pair of type zero if

• D = ∅, and

• some member of C is antiadjacent to some member of E, and

• |C ∪ E ∪ F | > 2.

We say that ab is a semi-adjacent pair of type one if

• at least one member of C is adjacent to at least one member of F , and

• at least one member of D is adjacent to at least one member of F , and

• E = ∅.

Finally, we say that ab is a semi-adjacent pair of type two if

• at least one member of C is adjacent to at least one member of F , and

• D 6= ∅, and

• D strongly anticomplete to F , and

• E = ∅.

We say that ab is of complement type zero, one or two if ab is of type zero,
one or two in G, respectively. We remark that the type of a semi-adjacent
pair is well defined with one exception—a pair ab may be of both type zero,
and complement type zero. Also, not every semi-adjacent pair in a bull-free
trigraph needs to be of one of the types above, but it turns out that these
are the only types of homogeneous pairs that are needed to describe the
structure of bull-free trigraphs.

We say that H is an elementary expansion of G if for every vertex v of G
there exists a non-empty subset Xv of V (H), all pairwise disjoint and with
union V (H), such that

• for u, v ∈ V (G), if u is strongly adjacent to v, then Xu is strongly
complete to Xv, and if u is strongly antiadjacent to v, then Xu is
strongly anticomplete to Xv,

• if v ∈ V (G) does not belong to any semi-adjacent pair of type 1 or 2
or of complement type 1 or 2, then |Xv| = 1
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• if u is semi-adjacent to v, and neither of uv, vu is a semi-adjacent pair
of type 1 or 2 or of complement type 1 or 2, then the unique vertex of
Xu is semi-adjacent to the unique vertex of Xv

• if uv is a semi-adjacent pair of type 1 or 2 in G, then either |Xv| =
|Xu| = 1 and the unique vertex of Xu is semi-adjacent to the unique
vertex of Xv, or (Xu, Xv) is a homogeneous pair of type 1 or 2, respec-
tively, in H

• if uv is a semi-adjacent pair of complement type 1 or 2 in G, then
either |Xv| = |Xu| = 1 and the unique vertex of Xu is semi-adjacent
to the unique vertex of Xv, or (Xu, Xv) is a homogeneous pair of type
1 or 2, respectively, in H.

We say that H is a non-elementary expansion of G if for every vertex v
of G there exists a non-empty subset Xv of V (H), all pairwise disjoint and
with union V (H), such that

• for u, v ∈ V (G), if u is strongly adjacent to v, then Xu is strongly
complete to Xv, and if u is strongly antiadjacent to v, then Xu is
strongly anticomplete to Xv,

• if v ∈ V (G) does not belong to any semi-adjacent pair of type 0 or of
complement type 0, then |Xv| = 1

• if u is semi-adjacent to v, and neither of uv, vu is a semi-adjacent pair
of type 0 or of complement type 0, then the unique vertex of Xu is
semi-adjacent to the unique vertex of Xv

• if uv is a semi-adjacent pair that is both of type 0 and of complement
type zero, then either |Xv| = |Xu| = 1 and the unique vertex of Xu is
semi-adjacent to the unique vertex ofXv, or (Xu, Xv) is a homogeneous
pair of type 0 either in H or in H

• if uv is a semi-adjacent pair of type 0 in G and not in G, then either
|Xv| = |Xu| = 1 and the unique vertex of Xu is semi-adjacent to the
unique vertex of Xv, or (Xu, Xv) is a homogeneous pair of type 0 in
H

• if uv is a semi-adjacent pair of type 0 in G and not in G, then either
|Xv| = |Xu| = 1 and the unique vertex of Xu is semi-adjacent to the
unique vertex of Xv, or (Xu, Xv) is a homogeneous pair of type 0 in
H.

We leave it to the reader to verify that an elementary expansion of an
elementary bull-free trigraph is another elementary bull-free trigraph, and
that a non-elementary expansion of a bull-free trigraph is another bull-free
trigraph.
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Before we can state our main theorem, we need to define an operation.
Let G1, G2 be bull-free trigraphs with disjoint vertex sets. We say that G is
obtained from G1, G2 by substitution if

• there exist a vertex v ∈ V (G1) such that no vertex of V (G1) \ {v} is
semi-adjacent to v, and

• V (G) = (V (G1) ∪ V (G2)) \ {v}, and

• G|(V (G1) \ {v}) = G1 \ {v}, and

• G|V (G2) = G2, and

• for x ∈ V (G1) and y ∈ V (G2), x is strongly adjacent to y if x is
strongly adjacent to v, and x is strongly antiadjacent to y otherwise.

It is easy to check that a trigraph obtained from two bull-free trigraphs by
substitution is another bull-free trigraph.

We can now describe the structure of all bull-free trigraphs (and therefore
of all bull-free graphs). First let us state a theorem that describes the
structure of elementary bull-free trigraphs that are not obtained from smaller
bull-free trigraphs by substitutions.

4.1 Let G be an elementary bull-free trigraph that is not obtained from
smaller bull-free trigraphs by substitution. Then one of G, G is an elemen-
tary expansion of a member of T1 ∪ T2; and every elementary expansion of
a trigraph H such that either H or H is member of T1 ∪ T2 is elementary.

Finally, we describe the structure of all bull-free trigraphs.

4.2 Let G be a bull-free trigraph. Then either

• G is obtained by substitution from smaller bull-free trigraphs, or

• G is a non-elementary expansion of an elementary bull-free trigraph,
or

• one of G,G belongs to T0, or

• one of G, G is an elementary expansion of a member of T1 ∪ T2,

and every trigraph obtained this way is bull-free.

In the remainder of this section we prove 4.1 and 4.2 assuming 3.7 and
3.9, and using a few lemmas from Section 7.

Proof of 4.1 assuming 3.9. The proof that an elementary expansion
of a trigraph in T1 ∪ T2 is elementary consists of routine case checking, and
we leave it to the reader. Let G be an elementary bull-free trigraph that is
not obtained from smaller bull-free trigraphs by substitution. The proof is
by induction on |V (G)|. By 3.9 either
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• one of G,G belongs to T1 ∪ T2, or

• one of G,G contains a homogeneous pair of type one or two, or

• G admits a homogeneous set decomposition.

We may assume that neither of G,G belongs to T1 ∪ T2, for then 4.1 holds.
If G admits a homogeneous set decomposition, then G is obtained from
smaller bull-free trigraphs by substitution, a contradiction. Consequently,
there exists a homogeneous pair (A,B) in G, such that (A,B) is of type 1
or 2 in one of G,G. Since the conclusion of 4.1 is invariant under taking
complements, we may assume that (A,B) is a homogeneous pair of type 1
or 2 in G. Let C be the set of vertices of V (G) \ (A ∪ B) that are strongly
complete to A and strongly anticomplete to B, D the set of vertices of
V (G)\(A∪B) that are strongly complete to B and strongly anticomplete to
A, E the set of vertices of V (G)\(A∪B) that are strongly complete to A∪B,
and F the set of vertices of V (G) \ (A ∪ B) that are strongly anticomplete
to A ∪ B. Let G′ be the trigraph obtained from G|(C ∪ D ∪ E ∪ F ) by
adding two new vertices a and b, such that a is strongly complete to C ∪E
and strongly anticomplete to D ∪ F , b is strongly complete to D ∪ E and
strongly anticomplete to C ∪ F , and a is semi-adjacent to b. We observe
that for i = 1, 2, if (A,B) is a homogeneous pair of type i in G, then ab is a
semi-adjacent pair of type i in G′. Since |V (G′)| < |V (G)|, it follows from
the inductive hypothesis, that either G′ is obtained by substitution from
smaller bull-free trigraphs, or one of G′, G′ is an elementary expansion of a
member of T1 ∪ T2. It is easy to check that if G′ is obtained by substitution
from smaller elementary trigraphs then so is G, and so we may assume
that one of G′, G′ is an elementary expansion of a member of T1 ∪ T2. We
observe that if G′ is an elementary expansion of a trigraph K, then G′ is
an elementary expansion of K. Thus there exists a trigraph K such that
one of K,K belongs to T1 ∪ T2, and for every vertex v of K there exists a
non-empty subset Xv of V (G′), all pairwise disjoint and with union V (G′),
such that

• for u, v ∈ V (K), if u is strongly adjacent to v, then Xu is strongly
complete to Xv, and if u is strongly antiadjacent to v, then Xu is
strongly anticomplete to Xv,

• if v ∈ V (K) does not belong to any semi-adjacent pair of type 1 or 2
or of complement type 1 or 2, then |Xv| = 1

• if u is semi-adjacent to v, and neither of uv, vu is a semi-adjacent pair
of type 1 or 2 or of complement type 1 or 2, then the unique vertex of
Xu is semi-adjacent to the unique vertex of Xv

• if uv is a semi-adjacent pair of type 1 or 2 in K, then either |Xv| =
|Xu| = 1 and the unique vertex of Xu is semi-adjacent to the unique
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vertex of Xv, or (Xu, Xv) is a homogeneous pair of type 1 or 2, respec-
tively, in G′

• if uv is a semi-adjacent pair of complement type 1 or 2 in K, then
either |Xv| = |Xu| = 1 and the unique vertex of Xu is semi-adjacent
to the unique vertex of Xv, or (Xu, Xv) is a homogeneous pair of type
1 or 2, respectively, in G′.

Suppose first that a, b ∈ Xv for some v ∈ V (K). Then, since |Xv| > 2, there
exist u ∈ V (K) such that uv is a semi-adjacent pair of type 1 or 2, or of
complement type 1 or 2, and, consequently, some vertex V (K) \ {u, v} is
strongly adjacent to v. But then some vertex of V (G′) is strongly adjacent
to both a and b, contrary to the fact that ab is a semi-adjacent pair of type
1 or 2 in G′. Thus there exist distinct u, v ∈ V (K) such that a ∈ Xu and
b ∈ Xv. Since a is semi-adjacent to b, it follows that u is semi-adjacent to v
in K.

We claim that uv is a semi-adjacent pair of type 1 or 2 in K. Since ab
is of type 1 or 2 in G′, it follows that no vertex of G′ is adjacent to both
a and b, and, consequently, no vertex of K is adjacent to both u and v,
which implies that uv is not of complement type 1 or 2. Since uv is the
only semi-adjacent pair of K involving u or v, if |Xu| > 1 or |Xv| > 1, then
it follows from the definition of an elementary expansion that uv is of type
1 or 2 in K, and the claim holds. So we may assume that Xu = {a} and
Xv = {b}. But now uv has the same type in K as ab is in G′, and therefore
uv is of type 1 or 2 in K. This proves the claim.

Now, if uv is of type one in K, then 7.3 implies that ((Xu\{a})∪A, (Xv \
{b})∪B) is a homogeneous pair of type one in G; and if uv is of type two in
K, then 7.4 implies that ((Xu \ {a}) ∪A, (Xv \ {b}) ∪B) is a homogeneous
pair of type two in G. In both cases, replacing Xu by (Xu \ {a}) ∪ A and
Xv by (Xv \ {b}) ∪B, we observe that G is an elementary expansion of K.
This proves 4.1.

Proof of 4.2 assuming 3.7. By 3.3, 3.4 and 3.5, it follows that every
trigraph in T0 ∪T1 ∪T2 is bull-free. We leave the rest of the proof the “only
if” part of 4.2 to the reader.

For the “if” part, let G be a bull-free trigraph. The proof is by induction
on |V (G)|. We may assume that G is not obtained from smaller trigraphs by
substitutions. If G is elementary, then, by 4.1, one of G,G is an elementary
expansion of a member of T1 ∪T2, and 4.2 holds. So we may assume that G
is not elementary. So, by 3.7 either

• one of G,G belongs to T0, or

• one of G,G contains a homogeneous pair of type zero, or

• G admits a homogeneous set decomposition.
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We may assume that neither of G,G belongs to T0, for then 4.2 holds.
If G admits a homogeneous set decomposition, then G is obtained from
smaller bull-free trigraphs by substitution, a contradiction. Consequently,
there exists a homogeneous pair (A,B) in G, such that (A,B) is of type
zero in one of G,G. Since the conclusion of 4.2 is invariant under taking
complements, we may assume that (A,B) is a homogeneous pair of type zero
in G. Let C be the set of vertices of V (G)\(A∪B) that are strongly complete
to A and strongly anticomplete to B, D the set of vertices of V (G)\ (A∪B)
that are strongly complete to B and strongly anticomplete to A, E the set
of vertices of V (G)\ (A∪B) that are strongly complete to A∪B, and F the
set of vertices of V (G) \ (A ∪ B) that are strongly anticomplete to A ∪ B.
Since (A,B) is of type zero in G, it follows that D = ∅, and some vertex
of C is antiadjacent to some vertex of E. Let G′ be the trigraph obtained
from G|(C ∪ D ∪ E ∪ F ) by adding two new vertices a and b such that
a is strongly complete to C ∪ E and strongly anticomplete to D ∪ F , b is
strongly complete to D ∪ E and strongly anticomplete to C ∪ F , and a is
semi-adjacent to b. Then ab is a semi-adjacent pair of type zero in G′. Since
|V (G′)| < |V (G)|, by the inductive hypothesis, one of the outcomes of 4.2
holds for G′. Therefore, either

• G′ is obtained by substitution from smaller bull-free trigraphs, or

• one of G′, G′ is an elementary expansion of a member of T1 ∪ T2, or

• one of G′, G′ belongs to T0, or

• G′ is a non-elementary expansion of an elementary bull-free trigraph.

If G′ is obtained by substitution from smaller bull-free trigraphs, then
so is G, so we may assume not. If one of G′, G′ is an elementary expansion
of a member of T1 ∪ T2, then G′ is an elementary trigraph, and so setting
Xv = {v}, for v ∈ V (G′) \ {a, b}, and setting Xa = A and Xb = B, we
observe that G is a non-elementary expansion of G′. So we may assume
that neither of G′, G′ is an elementary expansion of a member of T1 ∪ T2.
We observe that if H is a trigraph such that either H or H belongs to T0,
then for every semi-adjacent pair xy of H, there is a vertex of V (H) \ {x, y}
that is strongly adjacent to x and strongly antiadjacent to y, and a vertex
of V (H) \ {x, y} that is strongly adjacent to y and strongly antiadjacent to
x, and hence there is no semi-adjacent pair of type zero in H. Consequently
neither of G′, G′ belongs to T0. This implies that G′ is a non-elementary
expansion of an elementary bull-free trigraph. This means that there is an
elementary trigraph K such that for every vertex v of K there exists a non-
empty subset Xv of V (G′), all pairwise disjoint and with union V (G′), such
that

• for u, v ∈ V (K), if u is strongly adjacent to v, then Xu is strongly
complete to Xv, and if u is strongly antiadjacent to v, then Xu is
strongly anticomplete to Xv,

19



• if v ∈ V (K) does not belong to any semi-adjacent pair of type 0 or of
complement type 0, then |Xv| = 1

• if u is semi-adjacent to v, and neither of uv, vu is a semi-adjacent pair
of type 0 or of complement type 0, then the unique vertex of Xu is
semi-adjacent to the unique vertex of Xv

• if uv is a semi-adjacent pair that is both of type 0 and of complement
type zero, then either |Xv| = |Xu| = 1 and the unique vertex of Xu is
semi-adjacent to the unique vertex ofXv, or (Xu, Xv) is a homogeneous
pair of type 0 either in G′ or in G′

• if uv is a semi-adjacent pair of type 0 in K and not in K, then either
|Xv| = |Xu| = 1 and the unique vertex of Xu is semi-adjacent to the
unique vertex of Xv, or (Xu, Xv) is a homogeneous pair of type 0 in
G′

• if uv is a semi-adjacent pair of type 0 in K and not in K, then either
|Xv| = |Xu| = 1 and the unique vertex of Xu is semi-adjacent to the
unique vertex of Xv, or (Xu, Xv) is a homogeneous pair of type 0 in
G′.

Since for every v ∈ V (K), Xv is either a strongly stable set or a strong
clique, it follows that there exist distinct u, v ∈ V (K) such that a ∈ Xu

and b ∈ Xv. Suppose that either |Xu| > 1 or |Xv| > 1. Then (Xu, Xv) is a
homogeneous pair of type zero in either G′ or G′, and so (from the definition
of a homogeneous pair of type zero) some vertex of G′ is strongly adjacent
to b and strongly antiadjacent to a, contrary to the fact that D = ∅. This
proves that |Xu| = |Xv| = 1, and so Xu = {a} and Xv = {b}. Since ab is
a semi-adjacent pair of type zero in G′, it follows that that uv is a semi-
adjacent pair of type zero in K. But now, replacing Xu by A and Xv by
B, we observe that G is a non-elementary expansion of K. This proves 4.2.

The remainder of this paper is organized as follows. In the next section
we list some theorems and definitions from [1] and [2] that are useful to
us here. Section 6 is devoted to studying bull-free trigraphs with doubly
dominating homogeneous pairs. We describe all such trigraphs (up to tame
homogeneous pairs that are not doubly dominating) completely in 6.1. In
Section 7 we classify tame homogeneous pairs in an elementary bull-free tri-
graphs, proving that (up to taking complements) every elementary bull-free
trigraph either belongs to T1 ∪ T2, or admits a homogeneous set decompo-
sition, or a 1-join, or a homogeneous pair of type one, two or three (7.1).
Section 8 shows that homogeneous pairs of type three are in fact unneces-
sary (8.1). Finally, in Section 9 we prove that (up to taking complements),
if an elementary bull-free trigraphs admits a 1-join, then it belongs to T1,
thus proving 3.9.
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5 Theorems and definitions from [1] and [2].

In this section we list theorems and definitions from [1] and [2] that we need
in the remainder of this paper.

Let H be a graph and let v ∈ V (H). The degree of v in H, de-
noted by deg(v) is the number of edges of H incident with v. If H is the
empty graph, let maxdeg(H) = 0; and otherwise we define maxdeg(H) =
maxv∈V (H) deg(v). We call a bull-free trigraph that does not admit a homo-
geneous set decomposition, or a homogeneous pair decomposition, and does
not contain a path of length three with a center, unfriendly.

Let k ≥ 3 be an integer. A k-prism in G is a trigraph whose vertex set
is the disjoint union of two cliques A = {a1, . . . , ak} and B = {b1, . . . , bk};
and such that for every i, j ∈ {1, . . . , k}, ai is adjacent to bj if i = j, and ai

is antiadjacent to bj if i 6= j. A prism is a 3-prism.
The following results are proved in [2] (these are theorems 4.2, 5.3, 5.4

and 5.5 of [2], respectively).

5.1 Let G be an unfriendly trigraph. Assume that for some integer n ≥ 3,
G contains an induced subtrigraph that is an n-prism. Then G is a prism.

5.2 Let G be an unfriendly trigraphs, let a1-a2-a3-a4-a1 be a hole in G, and
let c be a center and a an anticenter for {a1, a2, a3, a4}. Then c is strongly
antiadjacent to a.

5.3 Let H be a trigraph such that no induced subtrigraph of H is a path of
length three. Then either

1. H is not connected, or

2. H is not anticonnected, or

3. there exist two vertices v1, v2 ∈ V (H) such that v1 is semi-adjacent to
v2, and V (H) \ {v1, v2} is strongly complete to v1 and strongly anti-
complete to v2.

5.4 Let G be an unfriendly trigraph, and let u, v ∈ V (G) be adjacent. Let
A, B be subsets of V (G) such that

• u is strongly complete to A and strongly anticomplete to B,

• v is strongly complete to B and strongly anticomplete to A,

• No vertex of V (G) \ (A ∪B) is mixed on A, and

• if x, y ∈ B are adjacent, then no vertex of V (G) \ (A∪B) is mixed on
{x, y}.

Then A = K ∪ S, where K is a strong clique and S is a strongly stable set.
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We also need the main result (3.2) of [1], the following:

5.5 Let G be a bull-free trigraph. Let P and Q be paths of length three,
and assume that there is a center for P and an anticenter for Q in G. Then
either

• G admits a homogeneous set decomposition, or

• G admits a homogeneous pair decomposition, or

• G or G belongs to T0.

6 Doubly dominating homogeneous pairs

Let G be a bull-free trigraph, and let (A,B) be a homogeneous pair in G.
We remind the reader that (A,B) is doubly dominating if every vertex of
V (G) \ (A ∪ B) is either strongly complete to A and strongly anticomplete
to B, or strongly complete to B and strongly anticomplete to A, and there
is at least one vertex of each kind. For a semi-adjacent pair a0b0, we say
that a0b0 is doubly dominating if the pair ({a0}, {b0}) is doubly dominating.
In this section we study elementary bull-free trigraphs that admit a doubly
dominating homogeneous pair. Our goal is to prove the following:

6.1 Let G be an elementary bull-free trigraph. Assume that there is a doubly
dominating tame homogeneous pair in G, and that every tame homogeneous
pair in G is doubly dominating. Then either G admits a homogeneous set
decomposition, or G ∈ T2.

We start with three lemmas.

6.2 Let G be a bull-free trigraph, let a0, b0 ∈ V (G) be two distinct vertices
such that a0 is semi-adjacent to b0, V (G) \ {a0, b0} = A ∪ B, where a0 is
strongly complete to A and strongly anticomplete to B, and b0 is strongly
complete to B and strongly anticomplete to A. Then

• there do not exist a1, a2, a3 ∈ A and b ∈ B, such that a1 is adjacent
to a2, a3 is anticomplete to {a1, a2}, b is adjacent to a1, and b is
anticomplete to {a2, a3}.

• there do not exist a1, a2, a3 ∈ A and b ∈ B, such that a1 is antiadjacent
to a2, a3 is complete to {a1, a2}, b is antiadjacent to a1, and b is
complete to {a2, a3}

Proof. Since the second assertion of 6.2 follows from the first one applied
in G, it is enough to prove the first assertion. Let a1, a2, a3 ∈ A and b ∈ B,
such that a1 is adjacent to a2, a3 is anticomplete to {a1, a2}, b is adjacent
to a1, and b is anticomplete to {a2, a3}. Then {b, a1, a2, a0, a3} is a bull, a
contradiction. This proves 6.2.
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Let k > 0 be an integer. A k-edge matching in a trigraph G is a subset X
of V (G), such that X = {a1, . . . , ak, a

′
1, . . . , a

′
k}, each of the sets {a1, . . . , ak}

and {a′1, . . . , a′k} is a stable set, and for i, j ∈ {1, . . . k}, if i = j then ai is
adjacent to a′j , and if i 6= j, then ai is antiadjacent to a′j .

6.3 Let G be an unfriendly bull-free trigraph, let a0, b0 ∈ V (G) be two
distinct vertices such that a0 is semi-adjacent to b0, V (G)\{a0, b0} = A∪B,
where a0 is strongly complete to A and strongly anticomplete to B, and b0
is strongly complete to B and strongly anticomplete to A. Then there is no
two edge matching in G|A or in G|A.

Proof. Suppose there exist a1, a
′
1, a2, a

′
2 ∈ A such that the pairs a1a

′
1, a2a

′
2

are adjacent, and the pairs a1a2, a1a
′
2, a
′
1a2, a

′
1a
′
2 are antiadjacent. By 5.4,

A = K ∪S, where K is a strong clique, and S is a strongly stable set. Since
a1 is antiadjacent to a2, it follows that not both a1, a2 belong to K, and
so we may assume that a1 ∈ S. Since a′1 is adjacent to a1, it follows that
a′1 ∈ K. But now, since a′1 is anticomplete to {a2, a

′
2}, it follows that both

a2, a
′
2 are in S, contrary to the fact that S is a strongly stable set. This

proves that there is no two edge matching in G|A.
Next suppose that there is a two edge matching in G|A. Then there

exist a1, a2, a3, a4 ∈ A, such that a1-a2-a3-a4-a1 is a hole, say H, in G. But
a0 is a center for H, and b0 is an anticenter for H, and a0 is adjacent to b0,
contrary to 5.2. This proves that there is no two edge matching in G|A and
completes the proof of 6.3.

6.4 Let G be a bull-free trigraph, and let (A,B) be a homogeneous pair in
G such that some vertex d ∈ V (G) \ (A ∪ B) is strongly complete to B and
strongly anticomplete to A. Assume also that either

• some vertex c ∈ V (G) \ (A ∪ B) is strongly complete to A ∪ {d}, and
strongly anticomplete to B, and G has no prism, or

• A is a stable set.

Let B′ ⊆ B be a clique. Let |B′| = m. Then the vertices of B′ can be ordered
b1, . . . , bm, so that if a ∈ A is adjacent to bi, then a is strongly complete to
{bi+1, . . . , bm}.

Proof. The proof is by induction of |B′|. Choose b ∈ B′ with N(b) ∩ A
maximal, and subject to that S(b)∩A maximal. Inductively, the vertices of
B′ \ {b} can be ordered b1, . . . , bm−1, so that if a ∈ A is adjacent to bi, then
a is strongly complete to {bi+1, . . . , bm−1}. Let bm = b. We need to show
that if a ∈ A is adjacent to bi with i ∈ {1, . . . ,m − 1}, then a is strongly
adjacent to bm. Suppose not. Let i ∈ {1, . . . ,m−1}, and assume that a ∈ A
is adjacent to bi and antiadjacent to bm. Since {a, bi, d, bm, a′} is not a bull
for any vertex a′ ∈ (N(b) ∩ A) \ {a}, and, if A is not a stable set, then
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G|{a, a′, c, bi, bm, d} is not a prism and for any vertex a′ ∈ (N(b)∩A) \ {a},
it follows that every vertex of (N(b)∩A)\{a} is strongly adjacent to bi. By
the maximality of N(b)∩A, it follows that b is adjacent, and therefore semi-
adjacent, to a. Since a is semi-adjacent to at most one vertex of V (G), it
follows that bi is strongly adjacent to a. But this contradicts the maximality
of S(b) ∩A. Thus a is strongly adjacent to bm. This proves 6.4

First we need to understand unfriendly trigraphs that have a doubly
dominating semi-adjacent pair. We start with the following:

6.5 Let G be an unfriendly bull-free trigraph, let a0, b0 ∈ V (G) be two
distinct vertices such that a0 is semi-adjacent to b0, V (G)\{a0, b0} = A∪B,
where a0 is strongly complete to A and strongly anticomplete to B, and b0
is strongly complete to B and strongly anticomplete to A. Then either G is
a prism, or the vertices of A can be numbered {a1, . . . , an} and the vertices
of B can be numbered {b1, . . . , bm} such that the following conditions are
satisfied:

1. for i, j ∈ {1, . . . , n}, with i < j, if ai is adjacent to aj, then aj

is strongly complete to {a1, . . . , ai−1}, and ai is strongly complete to
{ai+1, . . . , aj−1}

2. for i, j ∈ {1, . . . ,m}, with i < j, if bi is adjacent to bj, then bj
is strongly complete to {b1, . . . , bi−1}, and bi is strongly complete to
{bi+1, . . . , bj−1}

3. for i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}, if ai is adjacent to bj, and
bj has a neighbor in {bj+1, . . . , bm}, then ai is strongly complete to
{bj+1, . . . , bm},

4. for i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}, if ai is adjacent to bj, and
ai has a neighbor in {ai+1, . . . , an}, then bj is strongly complete to
{ai+1, . . . , an}.

Proof. By 5.1, we may assume that there is no prism in G. Let K,S,X
be pairwise disjoint subsets of A such that K ∪ X ∪ S = A. We say that
(K,S,X) is a calm partition of A if the vertices of K can be numbered
{k1, . . . , kk} and the vertices of S can be numbered {s1, . . . , ss} such that
the following conditions are satisfied:

1. K is a strong clique

2. S is a strongly stable set

3. K is strongly complete to X

4. S is strongly anticomplete to X
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5. for i ∈ {1, . . . , k} and j ∈ {1, . . . , s}, if ki is adjacent to sj , then sj

is strongly complete to {k1, . . . , ki−1} and ki is strongly complete to
{s1, . . . , sj−1}

6. for i ∈ {1, . . . , k}, if b ∈ B is adjacent to ki, then b is strongly complete
to {ki+1, . . . , kk} ∪X ∪ S

7. if b ∈ B has a neighbor in X, then b is strongly complete to S.

We call the orders {k1, . . . , kk} and {s1, . . . , ss} the orders associated with
the partition.

A calm partition of B is defined similarly. Let (K,S,X) be a calm par-
tition of A chosen with X minimal, and let (L, T, Y ) be a calm partition of
B chosen with Y minimal. Let |K| = k, |S| = s, |L| = l and |T | = t, and
let {k1, . . . , kk}, {s1, . . . , ss}, {l1, . . . , ll} and {t1, . . . , tt} be the associated
orders of K,S,L and T , respectively. We observe that if X = Y = ∅, then
ordering the vertices of A as {k1, . . . , kk, s1, . . . , ss} and the vertices of B as
{l1, . . . , ll, t1, . . . , tt}, we obtain a numbering that satisfies the conditions of
6.5. Thus we may assume that X 6= ∅.

(1) There do not exist u, v ∈ X such that u is semi-adjacent to v, u is
strongly complete to X \ {u, v} and v is strongly anticomplete to X \ {u, v}.

Suppose such u, v exists. If X 6= {u, v}, then the difference between u
and v is clear. However, if X = {u, v}, then there is symmetry between u
and v. Since G is unfriendly, it follows that if X = {u, v} then some vertex
b1 ∈ B is mixed on {u, v}. In this case we will assume that b1 can be cho-
sen adjacent to v and antiadjacent to u. Let K ′ = K ∪ {u}, S′ = S ∪ {v}
and X ′ = X \ {u, v}. We claim that (K ′, S′, X ′) is a calm partition of A.
Order the vertices of K ′ as k1, . . . , kk, u and of S′ as v, s1, . . . , ss. Since K
is strongly complete to X, and S is strongly anticomplete to X, it follows
that K ′ is a strong clique, and S′ is a strong stable set. Since u is strongly
complete to X \{u, v}, it follows that K ′ is strongly complete to X ′. Since v
is strongly anticomplete to X \ {u, v}, it follows that S′ is strongly anticom-
plete to X ′. Since (K,S,X) is a calm partition of A, and since u is strongly
anticomplete to S, and v is strongly complete to K, it follows that the fifth
condition in the definition of a clam partition is satisfied. Since (K,S,X)
is a calm partition of A, in order to check that the sixth condition of the
definition of a calm partition is satisfied by (K ′, S′, X ′), it is enough to show
that if b ∈ B is adjacent to u, then b is strongly complete to S ∪ (X \ {u}).
Since (K,S,X) is a calm partition, it follows that b is strongly complete to
S. Since u is complete to X ∪ {v}, 6.2.2 implies that b is either strongly
complete or strongly anticomplete to X ∪ {v}. So we may assume that b is
strongly anticomplete to X ∪ {v}. If X ′ 6= ∅, we get a contraction to 6.2.1,
since b is antiadjacent to v, and v is anticomplete to X ′∪{u}. Thus we may
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assume that X ′ = ∅, and so there exists b1 ∈ B adjacent to v and antiadja-
cent to u. Then b1 6= b. Since {u, b, b0, b1, v} is not a bull, it follows that b is
antiadjacent to b1. But now {b, u, a0, v, b1} is a bull, a contradiction. This
proves that (K ′, S′, X ′) satisfies the sixth condition of the definition of a
calm partition. Finally, to check the seventh condition, since (K,S,X) is a
calm partition, it is enough to show that if b ∈ B has a neighbor in X ′, then
b is strongly complete to S′. Since (K,S,X) is a calm partition, b is strongly
complete to S. Suppose b is antiadjacent to v. By the sixth condition, it
follows that b is strongly antiadjacent to u. Let x ∈ X ′ be adjacent to b.
Now setting a1 = x, a2 = u, a3 = v we obtain a contradiction to 6.2.1. This
proves that b is strongly complete to S′, and therefore (K ′, S′, X ′) is a calm
partition of A, contrary to the minimality of X. This proves (1).

(2) X is anticonnected.

Suppose not. Let Y1, . . . , Yp be the anticomponents of X. By 6.3, we may
assume that |Y2| = . . . = |Yp| = 1. If |Y1| > 1, let X ′ = Y1 and X2 = X \X ′.
If |Y1| = 1, let X ′ = ∅, and X2 = X. Thus, in both cases, X2 is a strong
clique. By 6.4, we can number the vertices of X2 as {x1, . . . , xq}, so that
for i ∈ {1, . . . , q}, if b is adjacent to xi, then b is strongly complete to
{xi+1, . . . , xq}.

Let K ′ = K∪X2. We claim that (K ′, S,X ′) is a calm partition of A. For
i ∈ {k+ 1, . . . , k+ q}, let ki = xi−k. Order the vertices of K ′ as k1, . . . , kk+q

and the vertices of S as s1, . . . , ss. Since X2 is a strong clique, and X2 is
strongly complete to K ∪X ′, it follows that (K ′, S,X ′) satisfies conditions
(1)-(4) of the definition of a calm partition.

To check the fifth condition, let i ∈ {1, . . . , k + q} and j ∈ {1, . . . , s}
and assume that ki is adjacent to sj . We claim that sj is strongly complete
to {k1, . . . ki−1}, and ki is strongly complete to {s1, . . . , sj−1}. Since S is
strongly anticomplete to X, it follows that i ≤ k. But now the claim follows
from the fact that (K,S,X) is a calm partition. Thus (K ′, S,X ′) satisfies
the fifth condition of the definition of a calm partition.

To check the sixth condition, let b ∈ B and i ∈ {1, . . . , k + 1}, and
assume that b is adjacent to ki. We need to show that b is strongly com-
plete to {ki+1, . . . , kk+q} ∪X ′ ∪ S. If i < k, then, since (K,S,X) is a calm
partition, it follows that b is strongly complete to {ki+1, . . . , kk} ∪X ∪ S =
{ki+1, . . . , kk+q} ∪ X ′ ∪ S, thus we may assume that i > k. Then b is
strongly complete to {ki+1, . . . kk+q}, and, since (K,S,X) is a calm parti-
tion and ki ∈ X, it follows that b is strongly complete to S. Thus it remains
to show that b is strongly complete to X ′. Suppose not. Since b is adjacent
to ki, and ki is complete to X ′, and X ′ is anticonnected, 6.2.2 implies that
b is strongly anticomplete to X ′ and X ′ 6= ∅. Thus |X ′| > 1, and so it
follows that X ′ is not a homogeneous set in G. Consequently, some vertex
v ∈ V (G) \ X ′ is mixed on X ′. Since K ∪ X2 is strongly complete to X ′,
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and S is strongly anticomplete to X ′, it follows that v ∈ B. By 6.2.2, v
is strongly anticomplete to K ∪ X2. Let x′ ∈ X ′ be adjacent to v. Then
since {b, ki, a0, x

′, v} is not a bull, it follows that v is strongly adjacent to b.
But now G|{ki, x

′, a0, b, v, b0} is a prism, a contradiction. This proves that
b is strongly complete to X ′, and so (K ′, S,X ′) satisfies the sixth condition
of the definition of a calm partition. Since X ′ ⊆ X, the seventh condition
of the definition of a calm partition is satisfied. Thus (K ′, S,X ′) is a calm
partition of A, contrary to the minimality of X. This proves (2).

Since G is unfriendly, there is no three edge path in X, and so (1),(2) and
5.3 imply that X is not connected. Let Z1, . . . , Zp be the components of X.
By 6.3, we may assume that |Z2| = . . . = |Zp| = 1. If |Z1| > 1, let X ′ = Z1

and X2 = X \X ′. If |Z1| = 1, let X ′ = ∅, and X2 = X. Thus, in both cases,
X2 is a strongly stable set. Let S′ = S ∪X2.

From the symmetry, it follows that if Y 6= ∅, then Y is not connected.
Let Y ′ = Y2 = ∅ if Y = ∅, and define Y ′, Y2 similarly to X ′, X2 if Y 6= ∅.
Let T ′ = T ∪ Y2.

(3) X ′ 6= ∅ and some vertex of B is strongly complete to X ′ and has an
antineighbor in X2.

Suppose that either X ′ = ∅, or no vertex of B is strongly complete to X ′

and has an antineighbor in X2. We claim that (K,S′, X ′) is a calm partition
of A. Let q = |X2|. Order the vertices of X2 arbitrarily as s′1, . . . , s

′
q. For

i ∈ {q + 1, . . . , q + s}, let s′i = si−q. Then s′1, . . . , s
′
s+q is an ordering of the

vertices of S′. Order the vertices of K as k1, . . . , kk.
Since X2 is a strongly stable set, and X2 is strongly anticomplete to

S∪X ′, it follows that (K,S′, X ′) satisfies conditions (1)-(4) of the definition
of a calm partition.

To check the fifth condition, let i ∈ {1, . . . , k} and j ∈ {1, . . . , q + s}
and assume that ki is adjacent to s′j . We claim that s′j is strongly complete
to {k1, . . . , ki−1}, and ki is strongly complete to {s′1, . . . , s′j−1}. If j > q,
the claim follows from the fact that K is strongly complete to X2, and
that (K,S,X) is a calm partition, so we may assume that j < q. But now
the claim follows from the fact that K is strongly complete to X2. Thus
(K,S′, X ′) satisfies the fifth condition of the definition of a calm partition.

The sixth condition of the definition of a calm partition is satisfied since
X ′ ∪ S′ = X ∪ S.

To check the seventh condition, let b ∈ B be adjacent to x′ ∈ X ′ (and so
X ′ 6= ∅). We need to prove that b is strongly complete to S′. Since (K,S,X)
is a calm partition of A, it follows that b is strongly complete to S. Suppose b
has an antineighbor x ∈ X2. Now, since X ′ 6= ∅, it follows that |X ′| > 1 and
X ′ is connected. But then 2.2 and 6.2.1 imply that b is strongly complete to
X ′, which is a contradiction, since b has an antineighbor in X2. This proves
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that the seventh condition of the definition of a calm partition is satisfied,
and so (K,S′, X ′) is a calm partition, contrary to the minimality of X. This
proves (3).

In view of (3), let b ∈ B be a vertex strongly complete to X ′ and with
an antineighbor x2 ∈ X2. Also from (3), X ′ 6= ∅, and therefore |X ′| > 1.
Since X ′ is not a homogeneous set in G, and K is strongly complete to X ′,
and S′ is strongly anticomplete to X ′, it follows that some vertex of B is
mixed on X ′. Let B′ be the set of vertices of B that are mixed on X ′.

(4) B′ is strongly anticomplete to K and strongly complete to S ∪X2.

By 6.2.1 and 2.2, since X ′ is connected, it follows that B′ is strongly com-
plete to X2 ∪ S. Since every vertex of B′ has an antineighbor in X ′ and is
strongly adjacent to x2, and since K is strongly complete to X, 6.2.2 implies
that K is strongly anticomplete to B′. This proves (4).

(5) Let c ∈ B be complete to X ′. Then B′ is strongly anticomplete to c.
In particular, B′ is strongly anticomplete to b.

Suppose b′ ∈ B′ is adjacent to c. By 2.2, there exist x, x′ ∈ X ′ such that x is
adjacent to x′, and b′ is adjacent to x and antiadjacent to x′. Now x′-x-b′-b0
is a path, and c is a center for it, contrary to the fact that G is unfriendly.
This proves (5).

(6) b 6∈ L.

Suppose b ∈ L. Choose b′ ∈ B′. Let x′ ∈ X ′ be antiadjacent to b′. By (5)
b′ is strongly antiadjacent to b, and therefore b′ ∈ T . But x′ is adjacent to
b and antiadjacent to b′, contrary the fact that (L, T, Y ) is a calm partition
of B. This proves (6).

(7) If b ∈ Y , then B′ ⊆ Y , and if b ∈ T , then B′ ⊆ T .

Suppose b ∈ Y . It follows from (5) that B′ ∩ L = ∅. Suppose B′ ∩ T 6= ∅,
and choose b′ ∈ B′ ∩ T . Let x′ ∈ X ′ be antiadjacent to b′. Then x′ is
adjacent to b and antiadjacent to b′, contrary to the fact that (L, T, Y ) is a
calm partition of B. This proves that B′ ⊆ Y .

Next suppose that b ∈ T . Suppose B′ ∩Y 6= ∅, an let b′ ∈ B′ ∩Y . Then,
by (4), x2 is adjacent to b′ and antiadjacent to b, contrary to the fact that
(L, T, Y ) is a calm partition of B. This proves (7).

(8) b 6∈ Y .
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Suppose b ∈ Y . By (7), B′ ⊆ Y . By (4), B′ is strongly anticomplete to
K and strongly complete to S ∪X2. Since Y2 is a strongly stable set, and
Y2 is strongly complete to L and strongly anticomplete to Y ′ ∪ T , and since
(X ′, B′) is not a tame homogeneous pair in G, it follows that B′ ∩ Y ′ 6= ∅.
Since Y ′ is strongly complete to L and strongly anticomplete to T ∪ Y2,
and since (X ′, B′) is not a tame homogeneous pair in G, it follows that
Y ′ \B′ 6= ∅. Since Y ′ is connected, some vertex y′ ∈ Y ′ \B′ has a neighbor
b′ ∈ Y ′ ∩ B′, and (5) implies y′ is strongly anticomplete to X ′. Let x ∈ X ′
be adjacent to b′. Let A′ be the set of vertices of A that are mixed on Y ′.
Then, since x is antiadjacent to y′, it follows that A′∩X ′ 6= ∅. Since Y ′ 6= ∅,
the symmetry between A and B has been restored. So, from the symmetry
and by (3), it follows that some vertex a ∈ A is strongly complete to Y ′ and
has an antineighbor y2 ∈ Y2. Since A′ ∩ X ′ 6= ∅, it follows from (7) that
A′ ∪ {a} ⊆ X. Moreover, since y′ is strongly anticomplete to X ′, it follows
that a ∈ X2. Also from the symmetry, some vertex x′ ∈ X ′ \ A′ is strongly
anticomplete to Y ′, and so b ∈ Y2.

Now K is strongly complete to X ′ ∪A′ and S ∪ (X2 \A′) is strongly an-
ticomplete to X ′∪A′. By (4), A′ is strongly anticomplete to L and strongly
complete to T ∪(Y2\B′). Since B′ ⊆ Y , and since A′∩X ′ 6= ∅, it follows that
X ′∪A′ is strongly anticomplete to L and strongly complete to T ∪ (Y2 \B′).
Consequently, no vertex of V (G) \ (Y ′ ∪X ′ ∪A′ ∪B′) is mixed on X ′ ∪A′.
Similarly, no vertex of V (G) \ (Y ′ ∪X ′ ∪A′ ∪B′) is mixed on Y ′ ∪B′. But
now, since a, b, a0, b0 6∈ A′ ∪B′ ∪X ′ ∪ Y ′, we deduce that (A′ ∪X ′, B′ ∪ Y ′)
is a tame homogeneous pair in G, a contradiction. This proves (8).

By (7) and (8), B′∪{b} ⊆ T . By (4), B′ is strongly complete to X2∪S and
strongly anticomplete to K. Since B′ is strongly anticomplete to Y ∪(T \B′),
and since (X ′, B′) is not a homogeneous pair, it follows that some vertex
l ∈ L is mixed on B′. Since x2 is antiadjacent to b, and since (L, T, Y ) is
a calm partition of B, it follows that x2 is strongly antiadjacent to l. Let
b1 ∈ B′ be adjacent to l, let b2 ∈ B′ be antiadjacent to l. Since x2 is adjacent
to b1 and antiadjacent to both l and b, 6.2.1 implies that l is adjacent to
b. Let x′ ∈ X ′ be antiadjacent to b2. Since (L, T, Y ) is a calm partition of
B, it follows that x′ is strongly antiadjacent to l. But now x′ is adjacent to
b and antiadjacent to l, and b2 is anticomplete to {b2, l}, contrary to 6.2.1.
This proves 6.5.

Let us now list a few properties of the class T2.

6.6 Let G be a bull-free trigraph, let a0, b0 ∈ V (G) be two distinct vertices
such that a0 is semi-adjacent to b0, and let V (G)\{a0, b0} = A∪B, where a0

is strongly complete to A and strongly anticomplete to B, and b0 is strongly
complete to B and strongly anticomplete to A. If both A and B are non-
empty strongly stable sets, then G ∈ T2.
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Proof. If there do not exist vertices a ∈ A and b ∈ B such that a is strongly
complete to B \{b}, b is strongly complete to A\{a}, and a is semi-adjacent
to b, then, using the skeleton G0 which is an edge pattern, we observe that
G ∈ T2.

So we may assume that such a, b exist. Let k be an integer such that
there exist vertices a1, . . . , ak in A, and b1, . . . , bk in B, such that ai is
strongly complete to B \ {bi}, bi is strongly complete to A \ {ai}, and ai

is semi-adjacent to bi. We may assume that there do not exist vertices
a ∈ A\{a1, . . . , ak} and b ∈ B \{b1, . . . , bk} such that a is strongly complete
to B \ {b}, b is strongly complete to A \ {a}, and a is semi-adjacent to b.
Assume first that

V (G) = {b0, a1, . . . , ak} ∪ {a0, b1, . . . , bk}.

Then G is either an edge pattern, or a triad pattern, or if k > 2, G is
obtained by composing k−1 triad patterns. In all cases G is a skeleton, and
so G ∈ T2.

So we may assume that V (G) 6= {b0, a1, . . . , ak} ∪ {a0, b1, . . . , bk}. Next
assume that A = {a1, . . . , ak}. Let G0 be the trigraph obtained from
G|{a0, a1, . . . , ak−1, b0, b1, . . . , bk−1} by adding two new vertices x and y,
such that x is strongly complete to {a0, b1, . . . , bk−1} and strongly anticom-
plete to {b0, a1, . . . , ak−1}, y is strongly complete to {b0, a1, . . . , ak−1} and
strongly anticomplete to {a0, b1, . . . , bk−1}, and x is semi-adjacent to y. Then
G0 is a skeleton (in fact, G0 is either an edge pattern, or, if k > 0, G0 is ob-
tained by composing k triad patterns). Let G′ be the trigraph obtained from
G \ {a0, a1, . . . , ak−1, b0, . . . , b1, . . . , bk−1} by adding two new vertices x′, y′

such that x′ is strongly complete to V (G′)∩A and strongly anticomplete to
V (G′) ∩B, y′ is strongly complete to V (G′) ∩B and strongly anticomplete
to V (G′)∩A, and x′ is semi-adjacent to y′. Then G′ is a 2-thin trigraph, and
since G is obtained by composing G0 and G′ along (x, y, x′, y′), it follows
that G is a skeleton, and in particular G ∈ T2.

Thus we may assume that A 6= {a1, . . . , ak} and B 6= {b1, . . . , bk}.
Let G0 be the trigraph obtained from G|{a0, a1, . . . , ak, b0, b1, . . . , bk} by
adding two new vertices x and y, such that x is strongly complete to
{a0, b1, . . . , bk} and strongly anticomplete to {b0, a1, . . . , ak}, y is strongly
complete to {b0, a1, . . . , ak} and strongly anticomplete to {a0, b1, . . . , bk},
and x is semi-adjacent to y. Then G0 is a skeleton (in fact, G0 is either an
edge pattern, or, if k > 1, G0 is obtained by composing k− 1 triad patterns
). Let G′ be the trigraph obtained from G \ {a0, a1, . . . , ak, b0, b1, . . . , bk} by
adding two new vertices x′, y′ such that x′ is strongly complete to V (G′)∩A
and strongly anticomplete to V (G′)∩B, y′ is strongly complete to V (G′)∩B
and strongly anticomplete to V (G′)∩A, and x′ is semi-adjacent to y′. Then
both V (G′) ∩ A and V (G′) ∩ B are non-empty, and since G is obtained
by composing G0 and G′ along (x, y, x′, y′), it follows that G ∈ T2. This
proves 6.6.
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6.7 Every 1-thin trigraph belongs to T2.

Proof. Suppose that G is 1-thin with base (a0, b0). Since very 2-thin graph
is a skeleton and therefore belongs to T2, we may assume that G is not 2-
thin. Now using the skeleton G0 which is an edge pattern, we observe that
G ∈ T2. This proves 6.7.

6.8 Let G1, G2 ∈ T2, for i = 1, 2 let (ai, bi) be a doubly dominating semi-
adjacent pair in Gi, and let G be obtained by composing G1 and G2 along
(a1, b1, a2, b2). Then G ∈ T2.

Proof. Since Gi ∈ T2, for i = 1, 2 there exist a skeleton Gi
0, a list of doubly

dominating semi-adjacent pairs (ai
1, b

i
1), . . . , (ai

ni , b
i
ni) in Gi

0, and a list of
trigraphs Gi

1
′
, . . . , Gi

ni

′, such that Gi is obtained from Gi
0, G

i
1
′
, . . . , Gi

ni

′ as in
the definition of T2. Moreover, for i ∈ 1, 2 there exist trigraphs F i

1, . . . , F
i
ki

each of which is a triangle pattern, a triad pattern or a 2-thin trigraph, and
lists of semi-adjacent pairs

(ci2, d
i
2), . . . , (ciki , d

i
ki)

and
(xi

1, y
i
1), . . . , (xi

ki−1, y
i
ki−1),

and Gi
0 is obtained as in the definition of a skeleton.

Since for i = 1, 2 the pair (ai, bi) is a doubly dominating semi-adjacent
pair in Gi, it follows that for some ji ∈ {1, . . . , ki}, ai, bi ∈ V (F i

ji) and
(ai, bi) is distinct from

(ci2, d
i
2), . . . , (ciki , d

i
ki),

(xi
1, y

i
1), . . . , (xi

ki−1, y
i
ki−1),

(ai
1, b

i
1), . . . , (ai

ni , b
i
ni).

It is not difficult to see that the composition operation is commutative
and associative, and so we may assume that j1 = k1 and j2 = 1. Set

Fp = F 1
p for p ∈ {1, . . . , k1},

Fki+q = F 2
q for q ∈ {1, . . . , k2},

(cp, dp) = (c1p, d
1
p) for p ∈ {2, . . . , k1},

(cj1+1, dj1+1) = (a2, b2),

(cj1+q, dj1+q) = (c2q , d
2
q) for q ∈ {2, . . . , k2},

(xp, yp) = (x1
p, y

1
p) for p ∈ {1, . . . , k1 − 1},

(xj1 , yj1) = (a1, b1),
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(xj1+q, yj1+q) = (x2
q , y

2
q ) for q ∈ {1, . . . , k2 − 1}.

Let s = k1 + k2. Let G0 the trigraph obtained from F1, . . . , Fs using the
semi-adjacent pairs

(c2, d2), . . . (cs, ds)

and
(x1, y1), . . . (xs−1, ys−1)

as in the definition of a skeleton. Then G0 is a skeleton.
For i = 1, 2, the pairs (ai

1, b
i
1), . . . , (ai

ni , b
i
ni) are doubly dominating semi-

adjacent pairs inG0. But nowG is obtained fromG0 andG1
1
′
, . . . , G1

n1

′
, G2

1
′
, . . . , G2

n2

′

as in the defending of T2, and therefore G ∈ T2. This proves 6.8.

Now we can describe unfriendly trigraphs with a doubly dominating
semi-adjacent pair completely.

6.9 Let G be an unfriendly bull-free trigraph, let a0, b0 ∈ V (G) be two
distinct vertices such that a0 is semi-adjacent to b0, and let V (G)\{a0, b0} =
A ∪ B, where a0 is strongly complete to A and strongly anticomplete to B,
and b0 is strongly complete to B and strongly anticomplete to A. Assume
that both A and B are non-empty. Then either G is a prism, or each of A,B
is strongly stable, or G is 1-thin with base (a0, b0), and in all cases G ∈ T2.

Proof. By 6.6, 6.7 and 3.6, it follows that if G is a prism, or each of A,B
is strongly stable, or G is 1-thin with base (a0, b0), then G ∈ T2.

Since if G is a prism, then G ∈ T2, by 5.1 we may assume that no induced
subtrigraph of G is a prism. We may also assume that not both A and B are
strongly stable sets. By 6.5, the vertices of A can be numbered a1, . . . , an

and the vertices of B can be numbered b1, . . . , bm such that the following
conditions are satisfied:

1. for i, j ∈ {1, . . . , n}, with i < j, if ai is adjacent to aj , then aj is
strongly complete to {a1, . . . , ai−1}, and ai is strongly complete to
{ai+1, . . . , aj−1}

2. for i, j ∈ {1, . . . ,m}, with i < j, if bi is adjacent to bj , then bj is
strongly complete to {b1, . . . , bi−1}, and bi is strongly complete to
{bi+1, . . . , bj−1}

3. for i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}, if ai is adjacent to bj , and
bj has a neighbor in {bj+1, . . . , bm}, then ai is strongly complete to
{bj+1, . . . , bm},

4. for i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}, if ai is adjacent to bj , and
ai has a neighbor in {ai+1, . . . , an}, then bj is strongly complete to
{ai+1, . . . , an}.
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Let us all call a pair of orderings of A,B satisfying the four conditions above
laminar; we say that the orderings are laminar orderings.

(1) If A is not a strongly stable set, then a1 is adjacent to a2.

Suppose not, and let ai, aj ∈ A be adjacent. We may assume that i < j.
Since (A,B) is a laminar pair, it follows that aj is adjacent to a1. But
now, again since (A,B) is a laminar pair, it follows that a1 is complete to
{a2, . . . , aj}, a contradiction. This proves (1).

(2) There do not exist a, a′ ∈ A and b, b′ ∈ B such that the pairs ab, a′b′

are adjacent, and the pairs ab′, a′b are antiadjacent.

Suppose such a, a′, b, b′ exist. Let A′ ⊆ A and B′ ⊆ B. We say that the
pair (A′, B′) is matching-connected if for every partition A1, A2 of A′ there
exist a1 ∈ A1, a2 ∈ A2 and b1, b2 ∈ B′ such that the pairs a1b1, a2b2 are
adjacent, and the pairs a1b2, a2b1 are antiadjacent; and the same with the
roles of A′, B′ switched.

Thus the pair ({a, a′}, {b, b′}) is matching connected. Choose A′ ⊆ A
and B′ ⊆ B such that a, a′ ∈ A′, b, b′ ∈ B, the pair (A′, B′) is matching
connected, and subject to that with A′ ∪B′ maximal.

We claim that no vertex of V (G) \ (A′ ∪ B′) is mixed on A′. Suppose
some v ∈ V (G) \ (A′ ∪ B′) is mixed on A′. Then v ∈ A ∪ B. If v is
complete to A′, let A1 be the set of strong neighbors of v in A′, and let
A2 = A′ \ A1. If v is not complete to A′, let A1 be the set of neighbors
of v in A1, and let A2 = A′ \ A1. Since (A′, B′) is matching-connected,
there exist i, j ∈ {1, . . . , n} and p, q ∈ {1, . . . ,m} such that ai ∈ A1, aj ∈ A2

and bp, bq ∈ B′ such that the pairs aibp, ajbq are adjacent, and the pairs
aibq, ajbp are antiadjacent. Thus v is adjacent to ai and antiadjacent to
aj . Since G|({ai, aj , a0, bp, bq, b0}) is not a prism, and {bp, ai, a0, aj , bq} and
{ai, bp, b0, bq, aj} are not bulls in G, it follows that ai is strongly antiadjacent
to aj , and bp is strongly antiadjacent to bq. Suppose first that v ∈ A \ A′,
By 6.2.1 applied to ai, aj , v and bp, it follows that v is strongly adjacent
to bp. Let t ∈ {1, . . . , n} be such that v = at. Since ai is adjacent to at

and aj is antiadjacent to both ai, at, it follows that j > i and j > t. Let
s = min(i, t). Then bp is adjacent to as and antiadjacent to aj , and as has
a neighbor in {as+1, . . . , an}, a contradiction. This proves that v 6∈ A, and
therefore v ∈ B. But now, since the pair (A′, B′) is matching connected,
the pairs aiv, ajbq are adjacent, and the pairs aibq, vaj are antiadjacent, it
follows that (A′, B′ ∪ {v}) is a matching connected pair, contrary to the
maximality of A′ ∪ B′. This proves that no vertex of V (G) \ (A′ ∪ B′) is
mixed on A′. From the symmetry, no vertex of V (G) \ (A′ ∪B′) is mixed on
B′. Since G is unfriendly, it follows that (A′, B′) is not tame homogeneous
pair in G, and therefore A = A′ and B = B′.
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From the symmetry, we may assume that A is not a strongly stable set.
By (1), a1 is adjacent to a2. Consider the partition {a1}, A \ {a1} of A.
Since (A,B) is matching connected, it follows that there exist a ∈ A \ {a1}
and b, b′ ∈ B such that the pairs a1b, ab

′ are adjacent, and the pairs a1b
′, ab

are antiadjacent. But since a1 is adjacent to a2 and b is adjacent to a1, it
follows that b is strongly complete to {a2, . . . , an}, a contradiction. This
proves (2).

(3) There do not exist x, y, z, w ∈ A such that the pairs xy, zw are adja-
cent, and the pairs yz, xw are antiadjacent.

Suppose that such x, y, z, w exist. By 6.3 and the symmetry, we may assume
that x is adjacent to z, and y is antiadjacent to w. But now y-x-z-w is a
path, and a0 is a center for it, contrary to the fact that G is unfriendly. This
proves (3).

For i ∈ {1, . . . , n}, let i0 be minimum such that ai0 is strongly anticomplete
to {ai0+1, . . . , an}. If for some j ∈ {i0 + 1, . . . , n} and k ∈ {j + 1, . . . , n},
aj is adjacent to ak, then ak is strongly adjacent to ai0 , a contradiction.
This proves that for every j ∈ {i0 + 1, . . . , n}, aj is strongly anticomplete
to {aj+1, . . . , an}. Let A′ = {ai0 , . . . , an}. Then A′ is a strongly stable set.
Let a ∈ A′ be such that N(a) ∩ B is maximal, subject to that S(a) ∩ B is
maximal, subject to that N(a)∩A is minimal, and subject to that S(a)∩A
minimal.

(4) There do not exist q < i0 ≤ r such that a is adjacent to aq, ar 6= a,
and ar is antiadjacent to aq.

Suppose that such q, r exist. We claim that ar is strongly complete to
N(a)∩B. Suppose b ∈ N(a)∩B is anti-adjacent to ar. Since q < i0 and aq

is adjacent to a, and a1, . . . , an is a laminar ordering of A, it follows that b
is strongly anti-adjacent to aq. But now, aq is adjacent to a, ar is strongly
anticomplete to {a, aq}, and b is adjacent to a, and anticomplete to {aq, ar},
contrary to 6.2.1. This proves that ar is strongly complete to N(a) ∩ B.
Now, since a is adjacent to aq, and ar is antiadjacent to aq, it follows from
the choice of a that some vertex of A is adjacent to ar and antiadjacent to
a, contrary to (3). This proves (4).

(5) We can order the vertices of A as a′1, . . . , a
′
n, such that a′i = ai for

i ∈ {1, . . . , i0 − 1} and so that

1. for i ∈ {1, . . . , n} if a′i is adjacent to b ∈ B, then b is strongly complete
to {a′i+1, . . . , a

′
n}, and

2. for i, j ∈ {1, . . . , n}, with i < j, if a′i is adjacent to a′j, then a′j
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is strongly complete to {a′1, . . . , a′i−1}, and a′i is strongly complete to
{a′i+1, . . . , a

′
j−1}.

The proof it by induction on |A|. Since an ∈ A′, it follows that A′ 6= ∅.
If |A′| = 1, then A′ = {an}, and (5) follows from the fact that a1, . . . , an is
a laminar ordering. So we may assume that A′ 6= {an}.

It follows from the inductive hypothesis that (5) holds for A\{a}. Let j0
be minimum such that aj0 is strongly anticomplete to {aj0+1, . . . , an} \ {a},
and let A′′ = {aj0 , . . . , an} \ {a}. Then A′′ is a strongly stable set.

We claim that j0 ≥ i0. Suppose not. Then, by the minimality of i0, it
follows that aj0 is adjacent to a. Since aj0 is anticomplete to {aj0+1, . . . , an}\
{a}, it follows that a = aj0+1. Since a ∈ A′, we deduce that a = ai0 . Since
A′ 6= {an}, it follows that that n ≥ i0 + 1. But now aj0 is adjacent to a and
antiadjacent to ai0 + 1, contrary to (4). This proves that j0 ≥ i0.

Now it follows from the definition of i0 that either j0 = i0, or j0 = i0 + 1
and a = ai0 ; and in both cases A′ = A′′∪{a}. Let a′1, . . . , a

′
n−1 be an ordering

of the vertices of A \ {a} satisfying (5). Then ai = a′i for i ∈ {1, . . . , i0− 1}.
Let a′n = a.

To prove that the first condition of (5) is satisfied, it is enough to show
that if b ∈ B has a neighbor in A \ {a}, then b is strongly adjacent to
a. Suppose that b ∈ B is adjacent to a′i for some i ∈ {1, . . . , n − 1} and
antiadjacent to a. Since a1, . . . , an is a laminar ordering of A, it follows that
a′i ∈ A′. Now it follows from the choice of a that there exists b′ ∈ B \ {b}
such that b′ is adjacent to a and antiadjacent to a′i, contrary to (2). Thus
the first condition of (5) is satisfied.

Next we show that the second condition of (5) is satisfied. It is enough to
show that if a is adjacent to a′i for some i ∈ {1, . . . , n−1}, then a is strongly
complete to {a′1, . . . , a′i−1}, and a′i is strongly complete to {a′i+1, . . . , a

′
n−1}.

Since A′ is a strongly stable set, it follows that i < i0, and therefore a′i = ai.
Consequently, the fact that (A,B) is a laminar pair implies that a is strongly
complete to {a1, . . . , ai−1} = {a′1, . . . , a′i−1}, and that ai is strongly complete
to {ai+1, . . . , ai0−1} = {a′i+1, . . . , a

′
i0−1}. Also, by (4), a′i is strongly com-

plete to A′ \ {a} = {a′i0 , . . . , an−1}. This proves that the second condition
of (5) is satisfied, and completes the proof of (5).

By (5) and the symmetry, we can order the vertices of B as b′1, . . . , b
′
m

so that

1. for j ∈ {1, . . . ,m}, if b′j is adjacent to a ∈ A, then a is strongly
complete to {b′j+1, . . . , b

′
m}, and

2. for i, j ∈ {1, . . . ,m}, with i < j, if b′i is adjacent to b′j , then b′j is
strongly complete to {b′1, . . . , b′i−1}, and b′i is strongly complete to
{b′i+1, . . . , b

′
j−1}.

Therefore G is 1-thin with base (a0, b0). This proves 6.9.
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Before we describe all trigraphs with a doubly dominating homogeneous
pair, we need two more preliminary results.

6.10 Let G be a 1-thin trigraph with base (a0, b0) and let x, y ∈ V (G) \
{a0, b0} be such that (x, y) is a doubly dominating semi-adjacent pair. Then
(possibly exchanging the roles of x and y)

• x ∈ A, y ∈ B, and

• G is 1-thin with base (x, y), and

• G is 2-thin with base (a0, b0, x, y).

Proof. Since G is 1-thin, V (G) = A∪B∪{a0, b0} and the vertices of A can
be numbered a1, . . . , an and the vertices of B can be numbered b1, . . . , bm
such that

• a0 is strongly complete to A and strongly anticomplete to B.

• b0 is strongly complete to B and strongly anticomplete to A.

• a0 is semi-adjacent to b0.

• If i, j ∈ {1, . . . , n}, and i < j, and ai is adjacent to aj , then ai is
strongly complete to {ai+1, . . . , aj−1}, and aj is strongly complete to
{a1, . . . , ai−1}.

• If i, j ∈ {1, . . . ,m}, and i < j, and bi is adjacent to bj , then bi is
strongly complete to {bi+1, . . . , bj−1}, and bj is strongly complete to
{b1, . . . , bi−1}.

• If p ∈ {1, . . . , n} and q ∈ {1, . . . ,m}, and ap is adjacent to bq, then ap

is strongly complete to {bq+1, . . . , bm}, and bq is strongly complete to
{ap+1, . . . , an}.

Since (x, y) is a doubly dominating semi-adjacent pair, it follows that
(using symmetry) x ∈ A and y ∈ B. This proves the first assertion of the
theorem.

Let i ∈ {1, . . . , n} and j ∈ {1, . . . ,m} such that ai = x and bj = y.
Since ai is not strongly adjacent to bj , it follows that {b1, . . . , bj} is strongly
anticomplete to {a1, . . . , ai−1}, and since (ai, bj) is strongly dominating, it
follows that ai is strongly complete to {a1, . . . , ai−1}. Similarly, {a1, . . . , ai}.
is strongly anticomplete to {b1, . . . , bj−1}, and bj is strongly complete to
{b1, . . . , bj−1}. Since ai is adjacent to bj , it follows that {bj , . . . , bm} is
strongly complete to {ai+1, . . . , an}, and since (ai, bj) is doubly dominating,
it follows that ai is strongly anticomplete to {ai+1, . . . , an}. Similarly, ai

is strongly complete to {bj+1, . . . , bm}, and bj is strongly anticomplete to
{bj+1, . . . , bm}.
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Let s = m − j + i and let t = n − i + j. Let sp = ai−p if p ∈ {1, . . . , i}
and let sp = bm−p+i+1 for p ∈ {i+ 1, . . . , s}. Let tp = bj−p for p ∈ {1, . . . , j}
and let tp = an−p+j+1 for p ∈ {j + 1, . . . , t}. Let S = {s1, . . . , ss} and T =
{t1, . . . , tt}. Then S ∪ T = V (G) \ {x, y}, S ∩ T = ∅, x is strongly complete
to S, and y is strongly complete to T . Thus the first three conditions of the
definition of a 1-thin trigraph are satisfied.

We observe that since ai is strongly complete to {a1, . . . , ai−1}, it follows
that {s1, . . . , si} is a strong clique, and since bj is strongly anticomplete to
{bj+1, . . . , bm}, it follows that {si+1, . . . , ss} is a strongly stable set. Sim-
ilarly, {t1, . . . , tj} is a strong clique, and {tj+1, . . . , tt} is a strongly stable
set.

Let us check that the last three conditions of the definition of a 1-thin
trigraph are satisfied. Let p, q ∈ {1, . . . , s}, such that p < q and sp is adjacent
to sq. We claim that sp is strongly complete to {sp+1, . . . , sq−1}, and sq is
strongly complete to {s1, . . . , sp−1}. Since {si+1, . . . , ss} is a strongly stable
set, it follows that p ≤ i. Since {s1, . . . , si} is a strong clique, we may assume
that q > i. Since si = a0, it follows that p < i. Thus sp = ai−p and sq =
bm−q+i+1. It follows that sq is strongly complete to {ai−p+1, . . . , an}, and
in particular, sq is strongly complete to {ai−p+1, . . . , ai−1} = {s1, . . . , sp−1};
and sp is strongly complete to {bm−q+i+2, . . . , bm} = {sq−1, . . . , si+1}. Since
{s1, . . . , si} is a strong clique, it follows that sp is strongly complete to
{si, . . . , sp−1}, and the claim holds.

Form the symmetry, if p, q ∈ {1, . . . , t}, and p < q, and tp is adjacent
to tq, then tp is strongly complete to {tp+1, . . . , tq−1}, and tq is strongly
complete to {t1, . . . , tp−1}.

To check the last condition, let p ∈ {1, . . . , s} and q ∈ {1, . . . , t}, such
that sp is adjacent to tq. We claim that sp is strongly complete to {tq+1, . . . , tt},
and tq is strongly complete to {sp+1, . . . , ss}. Suppose first that p < i.
Since {a1, . . . , ai} is strongly anticomplete to {b0, b1, . . . , bj−1}, it follows
that q > j. Thus sp = ai−p and tq = an−q+j+1. Then tq is strongly
complete to {a1, . . . , ai−p−1} = {sp+1, . . . , si−1}; and sp is strongly com-
plete to {ai−p+1, . . . , an−q+j}, and, in particular, sp is strongly complete
to {ai+1, . . . , an−q+j} = {tq+1, . . . , tt}. Since a0 is strongly complete to
A, and since {ai, . . . , an} is strongly complete to {bj+1, . . . , bm}, it fol-
lows that tq is strongly complete to {si, . . . , ss}, and the claim follows.
Thus we may assume that p ≥ i, and, from the symmetry, q ≥ j. But
{si, . . . , ss} = {a0, bj+1, . . . , bm} is strongly complete to {tj+1, . . . , tt} =
{ai+1, . . . , an}, and {tj , . . . , tt} = {b0, ai+1, . . . , an} is strongly complete to
{si+1, . . . , ss} = {bj+1, . . . , bm}, and again, the claim holds. Therefore G is
a 1-thin trigraph with base (x, y). This proves the second assertion of the
theorem.

Let K = {a1, . . . , ai−1}, X = {ai+1, . . . , an}, M = {b1, . . . , bj−1} and
Y = {bj+1, . . . , bm}. Now K is strongly anticomplete to M , and X is
strongly complete to Y , and since G is 1-thin with base (a0, b0) it follows
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that K and M are strong cliques, and X and Y are strongly stable sets.
Since G is 1-thin with base a0, b0, it follows that the remaining conditions of
the definition of a 2-thin trigraph are satisfied, and so G is 2-thin with base
(a0, b0, x, y), and (X,Y,K,M) is the canonical partition of G with respect
to (a0, b0, x, y). This proves the last assertion of the theorem and completes
the proof of 6.10.

6.11 Let G be a trigraph, and assume that V (G) = A ∪ B ∪ C ∪D where
A,B,C,D are all non-empty and pairwise disjoint, A is strongly complete
to C and strongly anticomplete to D, and B is strongly complete to D and
strongly anticomplete to C. Let G1 be the trigraph obtained from G|(A∪B) by
adding two new vertices c, d such that c is strongly complete to A and strongly
anticomplete to B, d is strongly complete to B and strongly anticomplete
to A, and c is semi-adjacent to d. Let G2 be the trigraph obtained from
G|(C∪D) by adding two new vertices a, b such that a is strongly complete to
C and strongly anticomplete to D, b is strongly complete to D and strongly
anticomplete to C, and a is semi-adjacent to b. Assume that G does not
admit a homogeneous set decomposition, and that every tame homogeneous
pair in G is doubly dominating. Then for i = 1, 2 Gi does not admit a
homogeneous set decomposition, and every tame homogeneous pair in Gi is
doubly dominating.

Proof. Suppose first that G1 admits a homogeneous set decomposition,
and let X be a homogeneous set in G1 with 1 < |X| < |V (G1)|. Let
Y = (X \ {c})∪C if c ∈ X, and let Y = X if c 6∈ X. Let Z = (Y \ {d})∪D
if d ∈ Y , and let Z = Y if d 6∈ Y . Then Z is a homogeneous set in G,
|Z| ≥ |X| > 1, and |V (G1)\X| ≤ |V (G)\Z|. Thus G admits a homogeneous
set decomposition, a contradiction. This proves that G1, and similarly G2,
does not admit a homogeneous set decomposition.

Next suppose that there is a tame homogeneous pair (P,Q) in G1 that
is not doubly dominating. We observe that cd is a doubly dominating semi-
adjacent pair in G1. Let S be the set of vertices of V (G1) \ (P ∪ Q) that
are strongly complete to P and strongly anticomplete to Q, T be the set of
vertices of V (G1) \ (P ∪ Q) that are strongly complete to Q and strongly
anticomplete to P , U be the set of vertices of V (G1) \ (P ∪ Q) that are
strongly complete to P ∪Q and V be the set of vertices of V (G1) \ (P ∪Q)
that are strongly anticomplete to P ∪Q. Since (P,Q) is a homogeneous pair
in G1, it follows that V (G1) = P ∪Q ∪ S ∪ T ∪ U ∪ V . Since (P,Q) is not
doubly dominating, it follows that U ∪ V 6= ∅.

Suppose first that c ∈ P . If d ∈ P , then, since every vertex of A ∪ B is
mixed on {c, d}, it follows that V (G1) ⊆ P ∪ Q, contrary to the fact that
(P,Q) is tame. Since d is semi-adjacent to c, it follows that d ∈ Q. But now
U is strongly complete to {c, d} and V is strongly anticomplete to {c, d},
contrary to the fact that the semi-adjacent pair cd is doubly dominating in
G1. This proves that c 6∈ P , and so, from the symmetry, {c, d}∩(P ∪Q) = ∅.
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Since c is strongly complete to A and strongly anticomplete to B, it follows
that either P ⊆ A or P ⊆ B. Similarly, either Q ⊆ A or Q ⊆ B. It
follows that (P,Q) is a tame homogeneous pair in G. If P ∪ Q ⊆ A, then
D is strongly anticomplete to P ∪ Q, contrary to the fact that every tame
homogeneous pair in G is doubly dominating. Thus, from the symmetry,
P ⊆ A and Q ⊆ B. It follows that there exists a vertex x ∈ (A∪B)∩(U∪V ).
But then x ∈ V (G), and, again (P,Q) is not doubly dominating in G, a
contradiction. So every tame homogeneous pair in G1, and similarly in G2

is doubly dominating. This proves 6.11.

We are now ready to prove the main theorem of this section.

Proof of 6.1 Suppose that 6.1 is false, and let G be a counterexample
to 6.1 with |V (G)| minimum. Then G does not admit a homogeneous set
decomposition. Let (A,B) be a tame homogeneous pair in G. Let C be the
set of vertices of G that are strongly complete to A and strongly anticom-
plete to B, and let D be the set of vertices of G that are strongly complete
to B and strongly anticomplete to A. Since (A,B) is a doubly dominat-
ing homogeneous pair in G, it follows that V (G) = A ∪ B ∪ C ∪ D. Since
(A,B) is a tame homogeneous pair in G, it follows that A 6= ∅ and B 6= ∅,
|A ∪ B| > 2, and |C ∪D| > 2. Since G does not admit a homogeneous set
decomposition, it follows that C 6= ∅ and D 6= ∅. Let G1 be the trigraph ob-
tained from G|(A∪B) by adding two new vertices c, d such that c is strongly
complete to A and strongly anticomplete to B, d is strongly complete to B
and strongly anticomplete to A, and c is semi-adjacent to d. Let G2 be the
trigraph obtained from G|(C ∪D) by adding two new vertices a, b such that
a is strongly complete to C and strongly anticomplete to D, b is strongly
complete to D and strongly anticomplete to C, and a is semi-adjacent to b.

Let i ∈ {1, 2}. Then |V (Gi)| < |V (G)|. By 6.11, Gi does not admit a
homogeneous set decomposition, and every tame homogeneous pair in Gi

is doubly dominating. We claim that Gi belongs to T2. If there is a tame
doubly dominating homogeneous pair in Gi, then the claim follows from the
minimality of G. So we may assume that there is no tame doubly dominating
homogeneous pair in Gi, and therefore Gi does not admit a homogeneous
pair decomposition, and there is a doubly dominating semi-adjacent pair in
Gi. If one of Gi, Gi is unfriendly, then the claim follows from 6.9 and 3.6,
so we may assume not. Now by 5.5, one of Gi, Gi belongs to T0, but ab is a
doubly dominating semi-adjacent pair in G2 and cd is a doubly dominating
semi-adjacent pair on G1, a contradiction. This proves the claim.

Since G is obtained from G1 and G2 by composing along (a, b, c, d), 6.8
implies that G ∈ T2. This proves 6.1.

39



7 Understanding other homogeneous pairs

In this section we study tame homogeneous pairs in elementary bull-free
trigraphs. We remind the reader that homogeneous pairs of types zero, one
and two are defined in Section 3. Let (A,B) be a tame homogeneous pair in
G. Let C be the set of vertices of V (G)\ (A∪B) that are strongly complete
to A and strongly anticomplete to B, D the set of vertices of V (G)\ (A∪B)
that are strongly complete to B and strongly anticomplete to A, E the set
of vertices of V (G)\ (A∪B) that are strongly complete to A∪B, and F the
set of vertices of V (G) \ (A ∪ B) that are strongly anticomplete to A ∪ B.
We say that (A,B) is a homogeneous pair of type three in G if

• A is a strongly stable set, and

• B is a strong clique, and

• C is not strongly anticomplete to F , and

• C is not strongly complete to E.

We observe that the pair (A,B) is a of type three in G if and only if (B,A)
is of type three in G.

Our goal is to prove the following:

7.1 Let G be an elementary bull-free trigraph. Assume that G does not
admit a homogeneous set decomposition. Let (A,B) be a tame homogeneous
pair in G that is not doubly dominating. Then one of G,G admits a 1-join,
or a homogeneous pair of type one, two or three.

First, given a tame homogeneous pair (A,B), we study the behavior of
G \ (A ∪B).

7.2 Let G be an elementary bull-free trigraph, and let (A,B) be a tame
homogeneous pair in G. Let C be the set of vertices of V (G) \ (A ∪ B)
that are strongly complete to A and strongly anticomplete to B, D the set
of vertices of V (G) \ (A ∪ B) that are strongly complete to B and strongly
anticomplete to A, E the set of vertices of V (G) \ (A ∪B) that are strongly
complete to A ∪ B, and F the set of vertices of V (G) \ (A ∪ B) that are
strongly anticomplete to A ∪B. Assume that E ∪ F 6= ∅. Then either

1. G admits a homogeneous set decomposition, or

2. one of G,G admits a 1-join, or

3. (possibly with the roles of C and D switched) each of the sets C,D, F
is non-empty, E = ∅, D is strongly anticomplete to F , and C is not
strongly anticomplete to F , or
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4. (possibly with the roles of C and D switched) each of the sets C,D,E is
non-empty, F = ∅, D is strongly complete to E, and C is not strongly
complete to E, or

5. both of the following two statements hold:

• D is not strongly complete to E, or C is not strongly anticomplete
to F , and

• C is not strongly complete to E, or D is not strongly anticomplete
to F .

Proof. First we observe that G satisfies the hypotheses of 7.2 if and only if
G does, and G satisfies the conclusions of 7.2 if and only if G does. Moreover,
passing to G exchanges the roles of C and D, and the roles of E and F ; we
may assume that neither of G,G admits 1-join, and that G (and therefore
G) does not admit a homogeneous set decomposition.

(1) If F 6= ∅, then F is not strongly anticomplete to C ∪D.

Suppose F 6= ∅, and F is strongly anticomplete to C ∪ D. Since G does
not admit a homogeneous set decomposition, it follows that E 6= ∅, and
there exist vertices e ∈ E and f ∈ F such that e is adjacent to f . Choose
a ∈ A and b ∈ B adjacent. Since {f, e, b, a, c} is not a bull for any c ∈ C, it
follows that e is strongly complete to C, and similarly e is strongly complete
to D. Let E0 be the set of vertices of E with a neighbor in F . Then E0 is
strongly complete to C ∪ D. Let E′ be the union of anticomponents X of
E such that X ∩ E0 6= ∅. We claim that E′ is strongly complete to C ∪D.
First we observe that if e1-e2-e3 is an antipath with e1 ∈ E0, e2 ∈ E \ E0

and e3 ∈ C ∪ D ∪ (E \ E0), then, choosing f1 ∈ F adjacent to e1, we get
that one of {f1, e1, e3, b, e2} and {f1, e1, e3, a, e2} is a bull, a contradiction.
So no such antipath e1-e2-e3 exists. This implies that every vertex of E′ \E0

has an antineighbor in E0, and, consequently, that E′ is strongly complete
to C ∪ D. But now, since E \ E′ is strongly complete to E′ and strongly
anticomplete to F , it follows that X = A∪B ∪C ∪D ∪ (E \E′) is a homo-
geneous set in G, and e, f ∈ V (G) \X, contrary to the fact that G does not
admit a homogeneous set decomposition. This proves (1).

Passing to the complement if necessary, we may assume that F 6= ∅. By (1),
we may assume that some vertex c ∈ C is adjacent to some vertex f ∈ F .
Now we may assume that C is strongly complete to E, and that D is strongly
anticomplete to F , for otherwise the fifth outcome of 7.2 holds.

(2) If E 6= ∅, then 7.2 holds.

Suppose E 6= ∅. Since C is strongly complete to E, (1) applied in G implies
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that there exists a vertex d ∈ D antiadjacent to a vertex e ∈ E. Passing
to G if necessary, we may assume that f is antiadjacent to e. But now,
choosing a ∈ A and b ∈ B antiadjacent, we observe that {f, c, a, e, b} is a
bull, a contradiction. This proves (2).

In view of (2) we may assume that E = ∅. Now, since G does not ad-
mit a 1-join, it follows that D 6= ∅, and the fourth outcome of 7.2 holds.
This proves 7.2.

Next we prove two useful lemmas about the structure of the sets A and
B of a homogeneous pair (A,B).

7.3 Let G be a bull-free trigraph, and let (A,B) be a homogeneous pair in
G. Let C be the set of vertices of V (G) \ (A∪B) that are strongly complete
to A and strongly anticomplete to B, D the set of vertices of V (G)\ (A∪B)
that are strongly complete to A and strongly anticomplete to B, E the set of
vertices of V (G) \ (A ∪ B) that are strongly complete to A ∪ B, and F the
set of vertices of V (G) \ (A ∪ B) that are strongly anticomplete to A ∪ B.
Assume that G does not admit a homogeneous set decomposition. Then:

1. If some vertex of C is adjacent to some vertex of F , then A is strongly
stable.

2. If some vertex of D is antiadjacent to some vertex of E, then A is a
strong clique.

Proof. Since the second assertion of 7.3 follows from the first by passing
to G, it is enough to prove the first assertion. Let c ∈ C be adjacent to
f ∈ F . Suppose A is not strongly stable, and let X be a component of A
with |X| > 1. Since G does not admit a homogeneous set decomposition,
it follows that some vertex v ∈ V (G) \X is mixed on X. Since (A,B) is a
homogeneous pair in G, and X is a component of A, it follows that v ∈ B.
By 2.2, there exist vertices x, y ∈ X such that x is adjacent to y, and v
is adjacent to x and antiadjacent to y. But now {v, x, y, c, f} is a bull, a
contradiction. This proves 7.3.

7.4 Let G be a bull-free trigraph, and let (A,B) be a homogeneous pair in
G. Let C be the set of vertices of V (G)\(A∪B) that are strongly complete to
A and strongly anticomplete to B, D the set of vertices of V (G)\(A∪B) that
are strongly complete to B and strongly anticomplete to A, and F the set of
vertices of V (G) \ (A∪B) that are strongly anticomplete to A∪B. Assume
that V (G) = A∪B ∪C ∪D ∪F , and that G does not admit a homogeneous
set decomposition. Suppose that each of the sets C,D, F is non-empty, D is
strongly anticomplete to F , and C is not strongly anticomplete to F . Then
(A,B) is a homogeneous pair of type two in G.
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Proof. The proof is by induction on |B|. Since C is not strongly anticom-
plete to F , 7.3 implies that A is strongly stable.

(1) There do not exist vertices a, a′ ∈ A and b, b′ ∈ B such that a is ad-
jacent to b and antiadjacent to b′, a′ is adjacent to b′ and antiadjacent to b,
and b is adjacent to b′.

If such a, a′, b, b′ exist, then {a, b, d, b′, a′} is a bull for every d ∈ D, a con-
tradiction. This proves (1).

In order to prove that (A,B) is a homogeneous pair of type two, it remains
to show that

1. there exists a rooted forest (T, r1, . . . , rk) such that G|B is the closure
of (T, r1, . . . , rk), and

2. if b, b′ ∈ B are semi-adjacent, then, possibly with the roles of b and b′

exchanged, b is a leaf of T and a child of b′, and

3. if a ∈ A is adjacent to b ∈ B, then a is strongly adjacent to every
descendant of b in T , and

4. let u, v ∈ B and assume that u is a child of v. Let i ∈ {1, . . . , k} and let
Ti be the component of T such that u, v ∈ V (Ti). Let P be the unique
path of Ti from v to ri, and let X be the component of Ti\(V (P )\{v})
containing v (and therefore u). Let Y be the set of vertices of X that
are semi-adjacent to v. Let a ∈ A be adjacent to u and antiadjacent
to v. Then a is strongly complete Y and to B \ (V (X) ∪ V (P )), and
a is strongly anticomplete to V (P ) \ {v}.

We will refer to the conditions above as (F1), . . . , (F4).

(2) If B is not anticonnected, then (A,B) is a homogeneous pair of type
two in G.

Suppose B is not anticonnected, and let B1, . . . , Bk be the anticomponents
of B. Suppose that there exist two distinct integers i, j ∈ {1, . . . , k} such
that |Bi| > 1 and |Bj | > 1. Since G does not admit a homogeneous set
decomposition, and since (A,B) is a homogeneous pair in G, and Bi, Bj are
anticomponents of B, it follows that there exist vertices ai, aj ∈ A such that
ai is mixed on Bi, and aj is mixed on Bj . By 6.2.2, it follows that ai is
strongly anticomplete to Bj , and aj to Bi. Thus ai and aj are distinct. Let
bi ∈ Bi be a neighbor of ai, and let bj ∈ Bj be a neighbor of aj . Then bi is
adjacent to bj , contrary to (1). This proves that |Bi| > 1 for at most one
value of i, and so we may assume that |B1| = . . . = |Bk−1| = 1.

Suppose |Bk| = 1. Then B is a strong clique, and so, by 6.4, the vertices
of B can be ordered b1, . . . , bk, so that if a ∈ A is adjacent to bi, then a
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is strongly complete to {bi+1, . . . , bk}. Let T be the path b1- . . . -bk. Then
(T, bi) is a rooted forest, and G|B is the closure of (T, b1), thus (F1) holds.
Since B is a strong clique, (F2) holds. By the choice of the order b1, . . . , bk,
(F3) holds, and, consequently, since F is a path, (F4) holds. Thus (A,B)
is a homogeneous pair of type two, and so we may assume that |Bk| > 1.

First we claim that if a ∈ A has neighbor bi ∈ B \Bk, then a is strongly
complete to Bk. Suppose a has an antineighbor in Bk. Since Bk is anticon-
nected, 2.2 applied in G and 6.2.2 imply that a is strongly anticomplete to
Bk. Since Bk is not a homogeneous set in G, and since (A,B) is a homo-
geneous pair and Bk is an anticomponent of B, it follows that there exists
a′ ∈ A mixed on Bk. By 6.2.2, a′ is strongly antiadjacent to bi. Let bk ∈ Bk

be adjacent to a′. Then bi is adjacent to bk, a is adjacent to bi and antiad-
jacent to bk, and a′ is adjacent to bk and antiadjacent to bi, contrary to (1).
This proves the claim.

Let A0 be the set of vertices of A that are mixed on Bk, A1 the set of
vertices of A that are strongly complete to Bk, and A2 the set of vertices
of A that are strongly anticomplete to Bk. Then, by the claim, A0 ∪ A2

is strongly anticomplete to B \ Bk. Let D′ = D ∪ A1 ∪ (B \ Bk) and let
F ′ = F ∪ A2. Then (A0, Bk) is a homogeneous pair in G, C is the set of
vertices of V (G) \ (A0 ∪Bk) that are strongly complete to A0 and strongly
anticomplete to Bk, D′ is the set of vertices of V (G) \ (A0 ∪ Bk) that are
strongly complete to Bk and strongly anticomplete to A0, F ′ is the set of
vertices of V (G) \ (A0 ∪ Bk) that are strongly anticomplete to A0 ∪ Bk,
V (G) = A0 ∪ Bk ∪ C ∪D′ ∪ F ′, each of the sets C,D′, F ′ is non-empty, D′

is strongly anticomplete to F ′, and C is not strongly anticomplete to F ′.
Now, since G does not admit a homogeneous set decomposition, it follows
from the inductive hypothesis that (A0, Bk) is a homogeneous pair of type
two in G. Consequently,

1. there exists a rooted forest (T0, r1, . . . , rp) such that G|Bk is the closure
of (T0, r1, . . . , rp), and

2. if b, b′ ∈ Bk are semi-adjacent, then, possibly with the roles of b and
b′ exchanged, b is a leaf of T0 and a child of b′, and

3. if a ∈ A0 is adjacent to b ∈ Bk, then a is strongly adjacent to every
descendant of b in T0, and

4. let u, v ∈ Bk and assume that u is a child of v. Let j ∈ {1, . . . , s}
and let Qj be the component of T0 such that u, v ∈ V (Qj). Let P be
the unique path of Qj from v to rj , and let X be the component of
Qj \ (V (P ) \ {v}) containing v (and therefore u). Let Y be the set
of vertices of X that are semi-adjacent to v. Let a ∈ A0 be adjacent
to u and antiadjacent to v. Then a is strongly complete Y and to
Bk \ (V (X) ∪ V (P )), and a is strongly anticomplete to V (P ) \ {v}.
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B \Bk is a strong clique complete to Bk. By 6.4, the vertices of B \Bk

can be ordered b1, . . . , bk−1 such that if a ∈ A is adjacent to bi for some
i ∈ {1, . . . , k − 1}, then a is strongly complete to {bi+1, . . . , bk−1}. Let
T be the tree with vertex set V (T ) = V (T0) ∪ {b1, . . . , bk−1}, such that
T |V (T0) = T0, for i ∈ {1, . . . , k − 2}, bi is strongly adjacent to bi+1, bk−1

is strongly adjacent to r1, . . . , rp, and all other vertex pairs are strongly
antiadjacent. Then G|B is the closure of (T, b1), and so (F1) holds. If
b, b′ ∈ B are semi-adjacent in G, then b, b′ ∈ Bk, and so, possibly with the
roles of b and b′ exchanged, b is a leaf of T0 and a child of b′, thus (F2)
holds. Next we check that (F3) holds. If a ∈ A is adjacent to b ∈ Bk,
then a ∈ A0 ∪ A1, and so a is strongly adjacent to all the descendants
of b in T0 and therefore in T . Suppose a ∈ A is adjacent to bi for some
i ∈ {1, . . . , k − 1}. Then a is strongly complete to Bk, and, from the choice
of the order b1, . . . , bk−1, to {bi+1, . . . , bk−1}. This proves that (F3) holds.

To check that (F4) holds, let u, v ∈ T such that u is a child of v, and
let a ∈ A be adjacent to u and antiadjacent to v. If u ∈ {b1, . . . , bk−1}, then
the assertion of (F4) follows from the assertion of (F3), so we may assume
that u ∈ Bk. Let Qj be the component of T0 such that u ∈ V (Qj). We may
assume without loss of generality that j = 1 and r1 ∈ V (Qj). Then either
v ∈ V (Q1), or v = bk−1 and u = r1. Suppose v = bk−1 and u = r1. Then
no vertex of B is semi-adjacent to v. Let P be the path bk−1- . . . -b1 of T .
Then P is the unique path of T from v to b1. By the choice of the order
b1, . . . , bk−1, it follows that a is strongly anticomplete to V (P ) \ {v}. Since
bk−1 is strongly complete to {r1, . . . , rp}, it follows that B \ (V (P ) \ {v}) is
the vertex set of the component of T \ (V (P ) \ {v}) containing v, and so the
assertion of (F4) holds.

Thus we may assume that u 6= r1, and v ∈ Qj . Then a ∈ A0. Let P ′ be
the unique path ofQj from v to r1, and let P be the path v-P ′-r1-bk−1- . . . -b1.
Then P is the unique path of T from v to b1. Since (F4) is satisfied for
(A0, Bk) and (T0, r1, . . . , rp), it follows that a is strongly anticomplete to
V (P ′) \ {v}. Since a is antiadjacent to v, and v is a descendant of each of
b1, . . . , bk−1, (F3) implies that a is strongly anticomplete to {b1, . . . , bk−1},
and so a is strongly anticomplete to V (P ) \ {v}. Let X be the component
of T \ (V (P ) \ {v}) containing v, and let Y be the set of vertices of X that
are semi-adjacent to v. Then X is also the component of T0 \ (V (P ′) \ {v})
containing v, and so a is strongly complete to Y and to Bk \(V (X)∪V (P ′)).
But B \ (V (X)∪V (P )) = Bk \ (V (X)∪V (P ′)), and so the assertion of (F4)
holds. Thus (A,B) is a homogeneous pair of type two in G. This proves (2).

(3) If there exist x, y ∈ B such that x is semi-adjacent to y, x is strongly
complete to B \ {x, y} and y is strongly anticomplete to B \ {x, y}, then
(A,B) is a homogeneous pair of type two in G.

Suppose such x, y exist. Let B0 = B \ {x, y}. Let A0 be the set of ver-
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tices of A that are mixed on B0. Let a ∈ A0, and let b1 ∈ B0 be a neighbor
of a, and b2 ∈ B0 an antineighbor of a. Then a is mixed on one of {x, b1},
{x, b2}, and so, by 6.2.1, a is strongly adjacent to y. Also, a is mixed on one
of {y, b1}, {y, b2}, and so by 6.2.2, a is strongly antiadjacent to x. Thus y
is strongly complete to A0, and x is strongly anticomplete to A0. Let A1 be
the set of vertices of A that are strongly complete to B0, and let A2 be the
set of vertices of A that are strongly anticomplete to B0.

Suppose first that B0 = ∅. Then there is symmetry between x and y,
and by (1), we may assume that every vertex of A that is adjacent to x is
strongly adjacent to y. Now setting T be the tree with vertex set {x, y}
such that x is semi-adjacent to y, we observe that (A,B) with the rooted
tree (T, x) satisfies (F1)—(F4). Thus we may assume that B0 6= ∅.

Suppose that some vertex a2 ∈ A2 is adjacent to x. Then, by 6.2.1, a2

is strongly adjacent to y, contrary to 6.2.2. Thus x is strongly anticomplete
to A2. By 6.2.2, if a ∈ A1 is adjacent to x, then a is strongly adjacent to y.

Next suppose that |B0| = 1. Let B0 = {b0}. Then |A0| ≤ 1, and if
A0 6= ∅, then the unique vertex of A0 is semi-adjacent to b0. Now, setting
T be the tree with vertex set {x, y, b0} where b0 is strongly adjacent to x
and strongly antiadjacent to y, and y is semi-adjacent to x, we observe that
(A,B) with the rooted tree (T, x) satisfies (F1)—(F4).

Thus we may assume that |B0| > 1, and so, since G does not admit a
homogeneous set decomposition, it follows that A0 6= ∅. Let C ′ = C ∪ {y},
D′ = D∪A1∪{x}, and F ′ = F ∪A2. Then (A0, B0) is a homogeneous pair in
G, C ′ is the set of vertices of V (G)\(A0∪B0) that are strongly complete to A0

and strongly anticomplete to B0, D′ is the set of vertices of V (G)\(A0∪B0)
that are strongly complete to B0 and strongly anticomplete to A0, F ′ is the
set of vertices of V (G)\ (A0∪B0) that are strongly anticomplete to A0∪B0,
V (G) = A0 ∪ B0 ∪ C ′ ∪ D′ ∪ F ′, each of the sets C ′, D′, F ′ is non-empty,
D′ is strongly anticomplete to F , and C ′ is not strongly anticomplete to F ′.
Since G does not admit a homogeneous set decomposition, it follows from
the inductive hypothesis that (A0, B0) is a homogeneous pair of type two in
G. Thus

1. there exists a rooted forest (T0, r1, . . . , rk) such that G|B0 is the closure
of (T0, r1, . . . , rk), and

2. if b, b′ ∈ B0 are semi-adjacent, then, possibly with the roles of b and b′

exchanged, b is a leaf of T0 and a child of b′, and

3. if a ∈ A0 is adjacent to b ∈ B0, then a is strongly adjacent to every
descendant of b in T0, and

4. let u, v ∈ B0 and assume that u is a child of v. Let j ∈ {1, . . . , s}
and let Qj be the component of T0 such that u, v ∈ V (Qj). Let P be
the unique path of Qj from v to ri, and let X be the component of
Qj \ (V (P ) \ {v}) containing v (and therefore u). Let Y be the set
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of vertices of X that are semi-adjacent to v. Let a ∈ A0 be adjacent
to u and antiadjacent to v. Then a is strongly complete Y and to
Bk \ (V (X) ∪ V (P )), and a is strongly anticomplete to V (P ) \ {v}.

Let T be the tree with vertex set B such that T |V (T0) = T0, x is strongly
adjacent to r1, . . . , rk, y is semi-adjacent to x, and all other vertex pairs are
strongly antiadjacent in T . Then (T, x) is a rooted forest. We claim that
(A,B) and (T, x) satisfy (F1)—(F4). Since G|B is the closure of (T, x),
it follows that (F1) is satisfied. If b, b′ ∈ B are semi-adjacent, then either
{b, b′} = {x, y}, or b, b′ ∈ B0; and in both cases, possibly with the roles of b
and b′ exchanged, b is a leaf of T and a child of b′, and so (F2) is satisfied.
Next we check that (F3) is satisfied. Suppose first that a ∈ A is adjacent to
x. Then a ∈ A1, and so a is strongly complete to B0∪{y}, which means that
a is strongly adjacent to all the descendants of x. Next suppose that a ∈ A
is adjacent to a vertex b ∈ B0. Then a ∈ A0 ∪ A1. Since all descendants of
b in T are descendants of b in T0, and since A1 is strongly complete to B0,
it follows that a is strongly adjacent to all descendants of b. But now, since
y has no descendants in T , it follows that (A,B) and (T, x) satisfy (F3).
Finally, to check (F4), let u, v ∈ B, such that u is a child of v in F , and
a is adjacent to u and antiadjacent to v. Suppose first that v ∈ B0. Then
u ∈ B0, and a ∈ A0. Let Qj be the component of T0 such that u, v ∈ V (Qj).
Let P ′ be the unique path of Qj from v to rj . Let P be the path v-P ′-rj-x.
Then P is the unique path of T from v to x. Now a is strongly anticomplete
to V (P ′) \ {v}, and a is strongly antiadjacent to x, and thus a is strongly
anticomplete to V (P ) \ {v}. Let X be the component of T \ (V (P ) \ {v})
containing v, and let Y be the set of vertices of X that are semi-adjacent
to v. Then X is also the component of T0 \ (V (P ′) \ {v}) containing v, and
so a is strongly complete to Y and B0 \ (V (X) ∪ V (P ′)). Since a ∈ A0, it
follows that a is strongly adjacent to y, and so a is strongly complete to
B \ (V (X) ∪ V (P )), and (F4) holds. So we may assume that v 6∈ B0. Since
y has no children in T , it follows that v = x, and (F4) holds. Thus (A,B)
is a homogeneous pair of type two in G. This proves (3).

Since D is strongly complete to B and C is strongly anticomplete to B,
and since G is elementary, it follows that there is no path of length three
in B. Thus, (2),(3) and 5.3 imply that B is not connected. Let B1, . . . , Bk

be the components of B. We may assume that there exists t ∈ {0, 1, . . . , k}
such that |Bi| = 1 for i > t, and |Bi| > 1 for i ≤ t (thus if B is a strongly
stable set, then t = 0). For i > t, let Bi = {bi}.

Let i ∈ {1, . . . , t}. Let Ai
0 be the set of vertices of A that are mixed

on Bi, Ai
1 the set of vertices of A that are strongly complete to Bi, and

Ai
2 the set of vertices of A that are strongly anticomplete to Bi. By 6.2.1,

Ai
0 is strongly complete to B \ Bi. Let Ci = C ∪ (B \ Bi), Di = D ∪ Ai

1

and Fi = F ∪ Ai
2. Then (Ai

0, Bi) is a homogeneous pair in G, Ci is the
set of vertices of V (G) \ (Ai

0 ∪ Bi) that are strongly complete to Ai
0 and
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strongly anticomplete to Bi, Di is the set of vertices of V (G) \ (Ai
0 ∪ Bi)

that are strongly complete to Bi and strongly anticomplete to Ai
0, Fi is the

set of vertices of V (G)\ (Ai
0∪Bi) that are strongly anticomplete to Ai

0∪Bi,
V (G) = Ai

0 ∪Bi ∪ Ci ∪Di ∪ Fi, each of the sets Ci, Di, Fi is non-empty, Di

is strongly anticomplete to Fi, and Ci is not strongly anticomplete to Fi.
Then, since G does not admit a homogeneous set decomposition, it follows
from the inductive hypothesis that (Ai

0, Bi) is a homogeneous pair of type
two in G. Thus

1. there exists a rooted forest (Ti, r
i
1, . . . , r

i
ki

) such that G|Bi is the closure
of (Ti, r

i
1, . . . , r

i
ki

), and

2. if b, b′ ∈ Bi are semi-adjacent, then, possibly with the roles of b and b′

exchanged, b is a leaf of Ti and a child of b′, and

3. if a ∈ Ai
0 is adjacent to b ∈ Bi, then a is strongly adjacent to every

descendant of b in Ti, and

4. let u, v ∈ Bi and assume that u is a child of v. Let j ∈ {1, . . . , s}
and let Qj be the component of Ti such that u, v ∈ V (Qj). Let P be
the unique path of Qj from v to rj , and let X be the component of
Qj \ (V (P ) \ {v}) containing v (and therefore u). Let Y be the set
of vertices of X that are semi-adjacent to v. Let a ∈ Ai

0 be adjacent
to u and antiadjacent to v. Then a is strongly complete Y and to
Bi \ (V (X) ∪ V (P )), and a is strongly anticomplete to V (P ) \ {v}.

SinceBi is connected, andG|Bi is the closure of (Ti, r
i
1, . . . , r

i
ki

), it follows
that Ti is connected, and has a unique root, say bi.

Let T be the forest with vertex set B, such that T |Bi = Fi for i ∈
{1, . . . , t}, all other vertex pairs of T are strongly antiadjacent. Then (T, b1 . . . , bk)
is a rooted forest. We claim that (A,B) and (T, b1, . . . , bk) satisfy (F1)—
F (4). Since G|Bi is the closure of (Ti, bi) for every i ∈ {1, . . . , t}, it follows
that G|B is the closure of (T, b1, . . . , bk), and so (F1) is satisfied. (F2) is
satisfied, since if b, b′ are semi-adjacent then both b and b′ belong to Bi

for some i ∈ {1, . . . , t}. Since for every i ∈ {1, . . . , k} and b ∈ Bi, all the
descendants of b in T belong Bi, and since if a ∈ A has a neighbor in Bi,
then a ∈ Ai

0 ∪ Ai
1, the fact that (F3) is satisfied for (Ai

0, Bi) and (Ti, bi)
implies that (A,B) and (T, b1, . . . , bk) satisfy (F3). Finally, to check (F4)
let u, v ∈ B such that u is a child of v, and suppose that a ∈ A is adja-
cent to u and antiadjacent to v. Then there exists i ∈ {1, . . . , t} such that
u, v ∈ Bi, a ∈ Ai

0 and Ti is the component of T containing v. Let P be the
unique path of Ti from v to bi. Then, P is the unique path of T from v to
bi, and since (Ai

0, Bi) and (Ti, bi) satisfy (F4), it follows that a is strongly
anticomplete to V (P ) \ {v}. Let X be the component of Ti \ (V (P ) \ {v})
containing v, and let Y be the set of vertices of X that are semi-adjacent to
v. Then X is the component of T \(V (P )\{v}) containing v. Since (Ai

0, Bi)
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and (Ti, bi) satisfy (F4), it follows that a is strongly complete to Y and to
Bi \ (V (C)∪ V (P )), and since a ∈ Ai

0, it follows that a is strongly complete
to B \ Bi. Thus (A,B) and (T, b1, . . . , bk) satisfy (F4), and so (A,B) is a
homogeneous pair of type two in G. This proves 7.4.

We can now prove 7.1
Proof of 7.1. Let C be the set of vertices of V (G) \ (A ∪ B) that

are strongly complete to A and strongly anticomplete to B, D the set of
vertices of V (G) \ (A ∪ B) that are strongly complete to B and strongly
anticomplete to A, E the set of vertices of V (G) \ (A∪B) that are strongly
complete to A ∪ B, and F the set of vertices of V (G) \ (A ∪ B) that are
strongly anticomplete to A∪B. We may assume that neither of G,G admits
a 1-join. SinceG does not admit a homogeneous set decomposition, it follows
that one of the last three outcomes of 7.2 holds. Passing to G if necessary,
we may assume that F 6= ∅ and C is not strongly anticomplete to F . Since
F 6= ∅, we deduce that either the third, or the fifth outcome of 7.2 holds. If
the third outcome of 7.2 holds, then by 7.4 G admits a homogeneous pair
of type two, so we may assume that the fifth outcome of 7.2 holds. Since C
is not strongly anticomplete to F , 7.2 implies that either C is not strongly
complete to E, or D is not strongly anticomplete to F .

Since C is not strongly anticomplete to F , 7.3 implies that A is a strongly
stable set. If C is not strongly complete to E, then, by 7.3 applied in G,
we deduce that B is a strong clique and (A,B) is a homogeneous pair of
type three in G. So we may assume that D is not strongly anticomplete
to F . But then, again by 7.3, B is a strongly stable set, and (A,B) is a
homogeneous pair of type one in G. This proves 7.1.

8 Dealing with homogeneous pairs of type three

Let us first summarize what we know about the structure of elementary
bull-free trigraphs so far:

8.1 Let G be an elementary bull-free trigraph. Then either

• one of G,G belongs to T1 ∪ T2, or

• G admits a homogeneous set decomposition, or

• one of G,G admits a 1-join, or

• one of G,G admits a homogeneous pair decomposition of type one, two
or three.

Proof. By 3.8, one of the following holds:

• one of G,G belongs to T1, or

• G admits a homogeneous set decomposition, or
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• G admits a homogeneous pair decomposition.

We may assume that G admits a homogeneous pair decomposition, for oth-
erwise one of the outcomes of 8.1 holds. Thus there is a tame homogeneous
pair in G. If every tame homogeneous pair in G is doubly dominating, then
by 6.1, either G admits a homogeneous set decomposition, or one of G,G
belongs to T2, and again 8.1 holds. Thus we may assume that there is a
tame homogeneous pair in G which is not doubly dominating. Now, by 7.1,
one of G,G admits a 1-join, or a homogeneous pair of type one, two or three.
This proves 8.1.

In this section we prove that one of the outcomes of 8.1, namely a ho-
mogeneous pair decomposition of type three, is unnecessary. We prove the
following:

8.2 Let G be an elementary bull-free trigraph. Then either

• one of G,G belongs to T1 ∪ T2, or

• G admits a homogeneous set decomposition, or

• one of G,G admits a 1-join, or

• one of G,G admits a homogeneous pair decomposition of type one or
two.

Proof. Suppose 8.2 is false, and let G be a counterexample to 8.2 with
|V (G)| minimum. It follows from 8.1 that one of G,G admits a homoge-
neous pair decomposition of type three, and therefore both G and G admit
a homogeneous pair decomposition of type three. Let (P,Q) be a tame ho-
mogeneous pair of type three in G (and so (Q,P ) is a homogeneous pair
of type three in G). Let C be the set of vertices of V (G) \ (P ∪ Q) that
are strongly complete to P and strongly anticomplete to Q, D the set of
vertices of V (G) \ (P ∪ Q) that are strongly complete to Q and strongly
anticomplete to P , E the set of vertices of V (G) \ (P ∪Q) that are strongly
complete to P ∪ Q, and F the set of vertices of V (G) \ (P ∪ Q) that are
strongly anticomplete to P ∪Q. Since (P,Q) is of type three, it follows that

• P is strongly stable, and

• Q is a strong clique, and

• C is not strongly anticomplete to F , and

• C is not strongly anticomplete to E.

Let G′ be the trigraph obtained from G\(P ∪Q) by adding two new vertices
a and b such that a is strongly complete to C ∪E and strongly anticomplete
to D∪F , b is strongly complete to D∪E and strongly anticomplete to C∪F ,
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and a is semi-adjacent to b. Then G′ is an elementary bull-free trigraph.
From the minimality of |V (G)|, it follows that one of the outcomes of 8.2
holds for G′. Since so far we have preserved the symmetry between G and
G, we may assume that either:

• G′ ∈ T1 ∪ T2, or

• G′ admits a homogeneous set decomposition, or

• G′ admits a 1-join, or

• G′ admits a homogeneous pair decomposition of type one or two.

For a X ⊆ V (G′), we define the lift of X to G, L(X), as follows:

L(X) =


X if a, b 6∈ X

(X \ a) ∪ P if a ∈ X and b 6∈ X
(X \ b) ∪Q if b ∈ X and a 6∈ X

(X \ {a, b}) ∪ P ∪Q if a, b ∈ X

Thus if X is a homogeneous set in G′ with 1 < |X| < |V (G′)|, then then
L(X) is homogeneous set in G, and 1 < |L(X)| < |V (G)|, and so G admits a
homogeneous set decomposition, a contradiction. This proves that G′ does
not admit a homogeneous set decomposition. Also, if (M,N) is a tame
homogeneous pair G′, then, since a is semi-adjacent to b in G′, it follows
that either {a, b} ⊆ M ∪ N , or {a, b} ∩ (M ∪ N) = ∅, and (L(M), L(N))
is a tame homogeneous pair in G. Moreover, if (M,N) is a homogeneous
pair of type one in G′, then, by 7.3, (L(M), L(N)) is a homogeneous pair of
type one in G, and if (M,N) is a homogeneous pair of type two in G′, then,
by 7.4, (L(M), L(N)) is a homogeneous pair of type two in G, in both cases
a contradiction to the fact that G is a counterexample to 8.2. Thus G′ does
not admit a homogeneous pair decomposition of type one or two.

Next suppose that G′ admits a 1-join. Then V (G′) is the disjoint union
of four non-empty sets M,N,R, S such that

• N is strongly complete to R, M is strongly anticomplete to R∪S, and
N is strongly anticomplete to S;

• |M ∪N | > 2 and |R ∪ S| > 2, and

• M is not strongly complete and not strongly anticomplete to N , and

• R is not strongly complete and not strongly anticomplete to S.

Since a is semi-adjacent to b in G′, we may assume that a, b ∈M ∪N . But
now V (G) = L(M) ∪ L(N) ∪R ∪ S and

• L(N) is strongly complete to R, L(M) is strongly anticomplete to
R ∪ S, and L(N) is strongly anticomplete to S;
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• |L(M) ∪ L(N)| > 2 and |R ∪ S| > 2, and

• L(M) is not strongly complete and not strongly anticomplete to L(N),
and

• R is not strongly complete and not strongly anticomplete to S.

Thus G admits a 1-join, a contradiction. This proves that G′ does not admit
a 1-join, and therefore G′ ∈ T1 ∪ T2.

(1) The vertices of P,Q can be ordered as p1, . . . , p|P | and q1, . . . , q|Q| such
that if pi is adjacent to qj, then pi is strongly complete to {qj+1, . . . , q|Q|},
and qj is strongly complete to {pi+1, . . . , p|P |}.

Since P is a strongly stable set and Q is a strong clique, (1) follows from 6.4
applied in G and in G. This proves (1).

SupposeG′ ∈ T1. Then either there is a loopless graphH withmaxdeg(H) ≤
2, such that G′ admits an H-structure, or G′ is a double melt. If G′ admits
an H-structure, we use the notation from the definition of an H-structure.
Let c0 ∈ C and e0 ∈ E be antiadjacent.

(2) G′ is not a double melt, and {a, b} ∩ (h(e) ∪ h(e, v)) = ∅ for every
e ∈ E(H) and v ∈ V (H).

Let {x, y} = {a, b} and suppose that either G′ is a double melt or x ∈
h(e)∪ h(e, v)∪ h(e, u) for some e ∈ E(H) with ends u, v. In the latter case,
since y is semi-adjacent to x, it follows that y ∈ h(e) ∪ h(e, v) ∪ h(e, u). If
G′ is a double melt, let A,B,K,M be as in the definition of a double melt.
If G′ admits an H-structure, recall that G′|(h(e) ∪ h(e, v) ∪ h(e, u)) is an
h(e)-melt, and let (K,M,A,B) be as in the definition of a melt, such that
K ⊆ h(e, v), M ⊆ h(e, u), and either h(e) = A or h(e) = B.

Since x is semi-adjacent to y, and K is strongly antiadjacent to M , we
may assume that x ∈ A. From the symmetry, and since x is semi-adjacent to
y and A is strongly stable, we may assume that y ∈ K∪M∪B. Assume first
that y ∈ B. Now there is symmetry between x and y, and we may assume
that if G′ admits an H-structure, then A = h(e). Since x is semi-adjacent
to y, it follows from the definition of a melt that one of x and y is strongly
anticomplete toK, and the other one is strongly anticomplete toM . We may
assume that x is strongly anticomplete to M , and y to K. Thus no vertex
of A ∪B ∪K ∪M is adjacent to both x and y. But e0 is strongly adjacent
to both x, y, and so V (G′) 6= A∪B ∪K ∪M and G′ admits an H-structure.
It follows that y ∈ h(e, u). But now e0 ∈ V (G) \ (h(e) ∪ h(e, v) ∪ h(e, u))
has both a neighbor in h(e) and a neighbor in h(e, u), a contradiction. This
proves that y 6∈ B, and therefore y ∈ K ∪M , and from the symmetry we
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may assume that y ∈ K. Thus if G′ admits an H-structure, then y ∈ h(e, v)
and x ∈ h(e) ∪ h(e, v).

If x = a and y = b, then using (1), if G′ is a double melt then so is
G, and if G′ admits an H-structure, then setting h′(z) = L(h(z)) for every
z ∈ V (H)∪E(H)∪(E(H)×V (H)), we observe that G|(L(h(e))∪L(h(e, v))∪
h(e, u)) is an L(h(e))-melt, and G admits and H-structure, contrary to the
fact that G 6∈ T1. This proves that x = b and y = a.

We claim that e0 ∈ A ∪B ∪K ∪M . This is clear if G′ is a double melt,
so we may assume that G′ admits an H-structure. If x ∈ h(e), then, since
no vertex of V (G) \ (h(e)∪h(e, v)∪h(e, u)) has both a neighbor in h(e) and
a neighbor in h(e, v), it follows that e0 ∈ A ∪ B ∪ K ∪M . Thus, we may
assume that x ∈ h(e, v), and so B = h(e). Since c0 is adjacent to a and
antiadjacent to b, it follows that c0 ∈ h(e) ∪ h(e, v), and the definition of a
melt implies that c0 6∈ h(e). Thus c0 ∈ h(e, v). Now, since e0 is adjacent to
a and antiadjacent to c0, it follows that e0 ∈ h(e) ∪ h(e, v) ⊆ A ∪ B ∪ K.
This proves that claim.

Since K is strongly anticomplete to M and A is a strongly stable set,
we deduce that e0 ∈ K ∪ B, and thus, if G′ admits an H-structure, then
e0 ∈ h(e)∪ h(e, v). Since c0 is adjacent to a, it follows that c0 ∈ A∪B ∪K.
Suppose e0 ∈ K. Then, since c0 is antiadjacent to e0, we deduce that
c0 ∈ A ∪ B. Since c0 is antiadjacent to b and adjacent to a, it follows from
the definition of a melt that c0 6∈ B. But then c0 ∈ A, and c0 is adjacent to
a and antiadjacent to e0, and b is adjacent to e0 and antiadjacent to a, again
contrary to the definition of a melt. Thus e0 ∈ B. Since c0 is antiadjacent
to b and adjacent to a, the definition of a melt implies that c0 6∈ B, and,
similarly, since c0 is antiadjacent to e0, it follows that c0 6∈ A. Thus c0 ∈ K.
But a is adjacent to both e0 and b, and c0 is antiadjacent to both e0 and b,
contrary to the definition of a melt. This proves (2).

By (2), G′ admits an H-structure.

(3) a 6∈ h(v) for any v ∈ V (H).

Suppose that a ∈ h(v) for some v ∈ V (H). Then we may assume that
b ∈ Av. Since e0 is strongly adjacent to both a and b, it follows that
e0 ∈ Bv ∪ h(v) ∪ (

⋃
e∈E(H) h(e, v)). Since c0 is adjacent to a, it follows

that c0 ∈ h(v) ∪ (
⋃

e∈E(H) h(e, v)) ∪ Av ∪ Bv. Suppose e0 ∈ Bv. Then,
by the definition of an H-structure and since G|(h(v) ∪ Sv ∪ Tv) is an
(h(v), Av, Bv, Cv, Dv)-clique connector, and since c0 is antiadjacent to both
e0 and b, it follows that c0 6∈ h(v) ∪ (

⋃
e∈E(H) h(e, v)). So c0 ∈ Av ∪ Bv,

and, since b, c0, e0 are all adjacent to a, it follows (from the fact that
G|(h(v) ∪ Sv ∪ Tv) is an (h(v), Av, Bv, Cv, Dv)-clique connector) that c0 is
strongly adjacent to one of b, e0, a contradiction. This proves that e0 6∈ Bv.
Next suppose that e0 ∈ h(v). Since e0 is antiadjacent to c0, it follows that
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c0 ∈ Av ∪Bv. Since c0 is strongly antiadjacent to b and strongly adjacent to
a, it follows that c0 6∈ Bv, and so c0 ∈ Av. But now both b, c0 are in Av, the
pairs c0a and be0 are adjacent, and the pairs c0e0 and ba are antiadjacent,
contrary to the fact that G|(h(v)∪Sv∪Tv) is an (h(v), Av, Bv, Cv, Dv)-clique
connector. This proves that e0 6∈ h(v). Thus e0 ∈ h(e, v)) for some edge
e ∈ E(H) incident with v. Since e0 is strongly adjacent to b, it follows that
h(e, v) is strongly complete to Av. Since c0 is antiadjacent to e0, it follows
that c0 ∈ Bv. But now, since G|(h(v)∪Sv ∪Tv) is an (h(v), Av, Bv, Cv, Dv)-
clique connector, it follows that c is strongly adjacent to b, a contradiction.
This proves (3).

(4) b 6∈ h(v) for any v ∈ V (H).

Suppose b ∈ h(v) for some v ∈ V (H). We may assume that a ∈ Av.
Now, setting h′(x) = L(h(x)) for every x ∈ V (H) ∪ E(H) ∪ (E(H) ×
V (H)) we observe (using (1)) that G|(L(h(v)∪L(Av)∪Bv ∪Cv ∪Dv) is an
(L(h(v)), L(Av), Bv, Cv, Dv)-clique connector, and G admits an H-structure,
contrary to the fact that G 6∈ T2. This proves (4).

Since {a, b, e0} is a triangle, it follows that one of a, b, e0 belongs to h(v) ∪
h(e, v) for some e ∈ E(H) and v ∈ V (H). By (2),(3) and (4), it follows that
e0 ∈ h(v) ∪ h(e, v).

Suppose first that e0 ∈ h(e, v) for some e ∈ E(H) and v ∈ V (H). Then
v is an end of e. We may assume that h(e, v) is strongly complete to Av and
strongly anticomplete toBv. Since e0 is strongly complete to {a, b}, it follows
from (2),(3) and (4) that both a and b belong to Av. But Av is a strongly
stable set, a contradiction. This proves that e0 ∈ h(v). Then, since a is
semi-adjacent to b, and they are both strongly adjacent to e0, it follows that
(possibly switching the roles of Av and Bv) a ∈ Av and b ∈ Bv. Since a is not
strongly adjacent to b, and since G′|(h(v)∪Sv ∪Tv) is a clique-connector, it
follows that h(v) = {e0}, Av = {a} andBv = {b}. Since a is semi-adjacent to
b and e0 is adjacent to both of a, b, it follows that v has degree zero inH. This
implies that C∪D∪F is strongly antiadjacent to e0 and E = {e0}. Suppose
first that D 6= ∅. By 7.3, P is a strong clique, and therefore |P | = 1. Since
(P,Q) is a tame homogeneous pair in G, we deduce that |Q| > 1. It follows
from 7.3 that D is strongly anticomplete to F . Since G does not admit a
homogeneous set decomposition, there exist p1 ∈ P and q1, q2 ∈ Q, such that
p1 is adjacent to q1 and antiadjacent to q2. But now p1-e0-q2-d is a path, q1
is a center for it, and every vertex of F is an anticenter for it, contrary to the
fact that G is elementary. This proves that D = ∅. Now setting h′(x) = h(x)
for every x ∈ (V (H) ∪ E(H) ∪ E(H) × V (H)) \ {v}, and h′(v) = Q ∪ {e0}
we observe that G|(h′(v) ∪ A ∪ {e0} ∪ C) is an (h′(v), A, {e0}, C, ∅)-clique
connector, and G admits an H-structure. Therefore G ∈ T1, a contradiction.
This proves that G′ 6∈ T1.
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Thus G′ ∈ T2. Consequently, there exists a skeleton G′0, such that either
G′ = G′0 or for i ∈ {1, . . . , k}, (ai, bi) is a doubly dominating semi-adjacent
pair in G′0, and G′i is a trigraph such that

• V (G′i) = Ai ∪Bi ∪ {a′i, b′i}, and

• the sets Ai, Bi, {a′i, b′i} are all non-empty and pairwise disjoint, and

• a′i is strongly complete to Ai and strongly anticomplete to Bi, and

• b′i is strongly complete to Bi and strongly anticomplete to Ai, and

• a′i is semi-adjacent to b′i, and either

– both Ai, Bi are strong cliques, and there do not exist a′ ∈ Ai and
b′ ∈ Bi, such that a′ is strongly anticomplete to Bi \ {b′}, b′ is
strongly anticomplete to Ai \ {a′}, and a′ is semi-adjacent to b′,
or

– both Ai, Bi are strongly stable sets, and there do not exist a′ ∈ Ai

and b′ ∈ Bi, such that a′ is strongly complete to Bi \ {b′}, b′ is
strongly complete to Ai \ {a′}, and a′ is semi-adjacent to b′, or

– one of G′i, G
′
i is a 1-thin trigraph with base (a′i, b

′
i), and G′i is not

a 2-thin trigraph

and G′ is obtained from G′0, G
′
1, . . . G

′
k as in the definition of the class T2.

Since (a, b) is a semi-adjacent pair of G, it follows that (a, b) is a semi-
adjacent pair of G′i for some i ∈ {0, . . . , k}.

Suppose first that i = 0 and (a, b) is a semi-adjacent pair in G′0. Then
for some integer t ≥ 1 there exist trigraphs F1, . . . , Ft, each of which is a
triad pattern, a triangle pattern or 2-thin, and G′0 is obtained from F1, . . . Ft

as in the definition of a skeleton. Since (a, b) is semi-adjacent pair in G′0,
it follows that (a, b) is a semi-adjacent pair in Fj for some j ∈ {1, . . . , t};
and since (a, b) is not doubly dominating, we deduce that Fj is a 2-thin
trigraph. Let A,B,K,M, xAK , xAM , xBK , xBM be as in the definition of a
2-thin trigraph. Let {x, y} = {a, b}. Since (a, b) is a semi-adjacent pair
of Fi, and (a, b) is not doubly dominating in G′, we may assume from the
symmetry that x ∈ A and y ∈ K.

Since G′0 is obtained from F1, . . . Ft by repeatedly composing along dou-
bly dominating semi-adjacent pairs, it follows that A∪B∪K ∪M ⊆ V (G′0),
and there exist non-empty pairwise-disjoint subsets XAK , XAM , XBK , XBM

of V (G′0) \ (A ∪B ∪K ∪M) such that

• A is strongly complete to XAK ∪ XAM and strongly anticomplete to
XBK ∪XBM

• B is strongly complete to XBK ∪XBM and strongly anticomplete to
XAK ∪XAM
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• K is strongly complete to XAK ∪XBK and strongly anticomplete to
XAM ∪XBM

• M is strongly complete to XAM ∪XBM and strongly anticomplete to
XAK ∪XBK

• XAK is strongly complete to XBK and strongly anticomplete to XAM

• XBM is strongly complete to XAM and strongly anticomplete to XBK .

We claim that x = a and y = b. Suppose not, then x = b and y = a.
Then XAK ⊆ E, XAM ⊆ D, and XBM ⊆ F . Thus D is not strongly
complete to E and not strongly anticomplete to F , and by 7.3, P is a strong
clique and Q is a strongly stable set. Since (P,Q) is a homogeneous pair of
type three, it follows that P is a strongly stable set and Q is a strong clique,
and so |P | = |Q| = 1, contrary to the fact that (P,Q) is tame. This proves
the claim that x = a and y = b.

Let F ′j be the trigraph obtained from G|(L(A)∪B∪L(K)∪M) by adding
four new vertices xAK , xAM , xBK , xBM such that

• L(A) is strongly complete to {xAK , xAM} and strongly anticomplete
to {xBK , xBM}

• B is strongly complete to {xBK , xBM} and strongly anticomplete to
{xAK , xAM}

• L(K) is strongly complete to {xAK , xBK} and strongly anticomplete
to {xAM , xBM}

• M is strongly complete to {xAM , xBM} and strongly anticomplete to
{xAK , xBK}

• xAK is semi-adjacent to xBM

• xAM is semi-adjacent to xBK

• the pairs xAKxBK and xAMxBM are strongly adjacent, and the pairs
xAKxAM and xBKxBM are strongly antiadjacent.

It is now easy to see, using (1), that F ′j is a 2-thin trigraph with base
(xAK , xBM , xBK , xAM ).

Let G0 be the skeleton obtained from F1, . . . , F
′
j , . . . , Ft using the same

pairs as G′0 for composition. Then G is obtained from G0, G
′
1, . . . G

′
k as in

the definition of the class T2, and so G ∈ T2, a contradiction. This proves
that i > 0, and so (a, b) is a semi-adjacent pair of G′i for some i ∈ {1, . . . , k}.

Since by 3.6, G′ ∈ T2 if and only if G′ ∈ T2, we may assume that either
both Ai, Bi are strongly stable sets, or G′i is a 1-thin trigraph with base
(a′i, b

′
i). If Ai, Bi are strongly stable sets, then, form the symmetry we may

assume that a ∈ Ai and b ∈ Bi; but no vertex of V (G′) has a neighbor in
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both Ai, Bi, contrary to the fact that E is strongly complete to {a, b} and
E 6= ∅. Thus G′i is 1-thin with base (a′i, b

′
i). Let |Ai| = n and |Bi| = m,

and let the vertices of Ai and Bi be numbered a′′1, . . . , a
′′
n and b′′1, . . . , b

′′
m,

respectively, as in the definition of a 1-thin trigraph. Let a′′0 = a′i an b′′0 = b′i.

(5) Either {a, b} ⊆ Ai, or {a, b} ⊆ Bi.

Suppose not. Then we may assume that a ∈ Ai and b ∈ Bi. Say a = a′′s
and b = b′′t for some s ∈ {1, . . . , n} and t ∈ {1, . . . ,m}. Since a is semi-
adjacent to b, the fact that G′i is 1-thin implies that a is strongly complete to
{b′′t+1, . . . , b

′′
m} and strongly anticomplete to {b′′1, . . . , b′′t−1}, and b is strongly

complete to {a′′s+1, . . . , a
′′
n}, and strongly anticomplete to {a′′1, . . . , a′′s−1}. Let

S be the set of vertices of G′i that are strongly adjacent to a and strongly
antiadjacent to b, T be the set of vertices of G′i that are strongly adjacent
to b and strongly antiadjacent to a, M be the set of vertices of G′i that
are strongly complete to {a, b}, and N be the set of vertices of G′i that are
strongly anticomplete to {a, b}. Since G′i is 1-thin, it follows that there exist
p ∈ {0, . . . , s− 1}, q ∈ {s, . . . , n}, x ∈ {0, . . . , t− 1} and y ∈ {t, . . . , n} such
that

S = {a′′0, . . . , a′′p} ∪ {b′′y+1, . . . , b
′′
m}

T = {b′′0, . . . , b′′x} ∪ {a′′q+1, . . . , a
′′
n}

M = {a′′s+1, . . . , a
′′
q} ∪ {b′′t+1, . . . , b

′′
y}

and
N = {a′′p+1, . . . , a

′′
s−1} ∪ {b′′x+1, . . . , b

′′
t−1}.

We observe that if t ≥ x+ 2, then 7.3 implies that |Q| = 1, and if q ≥ s+ 1,
then 7.3 implies that |P | = 1. Let p1, . . . , p|P | and q1, . . . , q|Q| be an ordering
of the vertices of P and Q, respectively, as in (1). Let G′′i be the trigraph
obtained from G|(L(Ai) ∪ L(Bi)) by adding vertices a′i and b′i such that
a′i is strongly complete to L(Ai) and strongly anticomplete to L(Bi), b′i is
strongly complete to L(Bi) and strongly anticomplete to L(Ai), and a′i is
semi-adjacent to b′i. It is easy to check that G′′i is a 1-thin trigraph with
base (a′i, b

′
i), ordering the vertices of L(Ai)

a′′1, . . . , a
′′
s−1, p1, . . . , p|P |, a

′′
s+1, . . . , a

′′
n

and the vertices of L(Bi)

b′′1, . . . , b
′′
t−1, q1, . . . , q|Q|, b

′′
t+1, . . . , b

′′
m.

Now, using G′′i instead of G′i, we observe that G ∈ T2, a contradiction. This
proves (5).

From (5), we may assume that both a and b are in Ai. Let {x, y} = {a, b}.
We may assume that x = a′′s and y = a′′t and s < t. Let S be the set of
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vertices of G′i that are strongly adjacent to x and strongly antiadjacent to
y, T be the set of vertices of G′i that are strongly adjacent to y and strongly
antiadjacent to x, M be the set of vertices of G′i that are strongly complete
to {x, y}, and N be the set of vertices of G′i that are strongly anticomplete to
{x, y}. Since G′i is a 1-thin trigraph, x is semi-adjacent to y and (Ai, Bi) is
a homogeneous pair in G′, it follows that either there exist p, q ∈ {1, . . . ,m}
with p < q such that

S = {a′′s+1, . . . , a
′′
t−1}

T = {b′′p, . . . , b′′q−1}

N = {a′′t+1, . . . , a
′′
n} ∪ {b′′0, . . . , b′′p−1}

M = {a′′0, . . . , a′′s−1} ∪ {b′′q , . . . , b′′m}

or x is strongly anticomplete to Bi and there exists p ∈ {1, . . . ,m} such that

S = {a′′s+1, . . . , a
′′
t−1}

T = {b′′p, . . . , b′′m}

N = {a′′t+1, . . . , a
′′
n} ∪ {b′′0, . . . , b′′p−1}

M = {a′′0, . . . , a′′s−1}

or both x and y are strongly anticomplete to Bi and

S = {a′′s+1, . . . , a
′′
t−1}

T = ∅

N = {a′′t+1, . . . , a
′′
n} ∪ {b′′0, . . . , b′′m}

M = {a′′0, . . . , a′′s−1}.

Since G′i is 1-thin, it follows that S is strongly anticomplete to N . Since
(Ai, Bi) is a homogeneous pair of G′i, it follows that every vertex of F \N is
strongly anticomplete to Ai, and C ∪D ⊆ Ai ∪ Bi. Since C is not strongly
anticomplete to F we deduce that x = b, y = a, S = D and T = C. Let
G′′i be the trigraph obtained from G|(L(Ai) ∪Bi) by adding vertices a′i and
b′i such that a′i is strongly complete to L(Ai) and strongly anticomplete to
Bi, b′i is strongly complete to Bi and strongly anticomplete to L(Ai), and a′i
is semi-adjacent to b′i. Now it is easy to check that G′′i is a 1-thin trigraph
with base (a′i, b

′
i), ordering the vertices of L(Ai)

a′′1, . . . , a
′′
s−1, q|Q|, . . . , q1, a

′′
s+1, . . . , a

′′
t−1, p|P |, . . . , p1, a

′′
t+1, . . . , a

′′
n

and keeping the order of the vertices of Bi unchanged. Now, using G′′i
instead of G′i, we observe that G ∈ T2, a contradiction. This completes the
proof of 8.2.
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9 The proof of 3.9

In this section we finish the proof of 3.9, which we restate.

9.1 Let G be an elementary bull-free trigraph. Then either

• one of G,G belongs to T1 ∪ T2, or

• one of G,G contains a homogeneous pair of type one or two, or

• G admits a homogeneous set decomposition.

Proof. Suppose 9.1 is false, and let G be a counterexample of 9.1 with
|V (G)| minimum. Then G is also a counterexample to 9.1, and |V (G)| =
|V (G)|. By 8.2, and since both G and G are counterexamples to 9.1, we
may assume that G admits a 1-join. Therefore, V (G) is the disjoint union
of fours non-empty sets A,B,C,D such that

• B is strongly complete to C, A is strongly anticomplete to C ∪D, and
B is strongly anticomplete to D;

• |A ∪B| > 2 and |C ∪D| > 2, and

• A is not strongly complete and not strongly anticomplete to B, and

• C is not strongly complete and not strongly anticomplete to D.

Let G1 be the trigraph obtained from G|(A ∪ B) by adding two new
vertices c and d, such that c is strongly complete to B and strongly an-
ticomplete to A, and d is semi-adjacent to c and strongly anticomplete to
A ∪ B. Let G2 be the trigraph obtained from G|(C ∪ D) by adding two
new vertices a and b, such that b is strongly complete to C and strongly
anticomplete to D, and a is semi-adjacent to b and strongly anticomplete to
C ∪D.

(1) G1 does not admit a homogeneous set decomposition.

Suppose (1) is false. Then there is a homogeneous set X ⊆ V (G1) with
1 < |X| < |V (G1)|. Suppose first that X ∩{c, d} 6= ∅. Then, since c is semi-
adjacent to d, it follows that {c, d} ⊆ X; and, since B is strongly complete
to c and strongly anticomplete to d, we deduce that B ⊆ X. Moreover,
since A is strongly anticomplete to d, it follows that A \X is strongly an-
ticomplete to X. But now (X \ {c, d}) ∪ C ∪D is a homogeneous set in G,
and G admits a homogeneous set decomposition, contrary to the fact that
G is a counterexample to 9.1. This proves that X ∩ {c, d} = ∅. Since c is
strongly complete to B and strongly anticomplete to A, it follows that either
X ⊆ A, or X ⊆ B. Now, since C is strongly complete to B and strongly
anticomplete to A, and since D is strongly anticomplete to A∪B, it follows
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that X is a homogeneous set in G, again contrary to the fact that G is a
counterexample to 9.1. This proves (1).

(2) Neither of G1, G1 admits a homogeneous pair of type one or two.

Suppose (2) is false, and let (X,Y ) be a homogeneous pair of type one
or two in G1 or G1. If X ∪ Y ⊆ A ∪ B, then (X,Y ) is a homogeneous pair
of the same type in G or G, contrary to the fact that G is a counterexample
to 9.1. So {c, d} ∩ (X ∪ Y ) 6= ∅. Since c is semi-adjacent to d, it follows
that {c, d} ⊆ X ∪ Y . We may assume that d ∈ X. Since (X,Y ) is a ho-
mogeneous pair of type one or two in G1 or G1, it follows that some vertex
v ∈ V (G1) \ (X ∪ Y ) is strongly complete to X. But no vertex of V (G1) is
strongly adjacent to d, a contradiction. This proves (2).

(3) Neither of G1, G1 belongs to T2.

We observe that for every trigraph H ∈ T2, every vertex of H has both
a strong neighbor and a strong antineighbor in H. This implies that if one
of G1, G1 belongs to T2, then every vertex of G1 has a strong neighbor in
G1. But d does not have a strong neighbor in G1, and (3) follows.

(4) G1 6∈ T1.

We observe that if H is a melt, then every vertex of H has a strong antineigh-
bor in H. Since in G1, d is complete to V (G1)\{d}, it follows that G1 is not
a double melt. Therefore, there exist a graph H with maxdeg(G) ≤ 2 such
that G1 admits an H-structure. We use the notation from the definition of
an H-structure. Since every vertex of a melt has a strong antineighbor in
the melt, and since for every edge e = uv of H, G1|(h(e)∪h(e, v)∪h(e, u)) is
an h(e)-melt, it follows that d 6∈ h(e)∪ h(e, v) for any e ∈ E(H), v ∈ V (H).
Suppose that d ∈ h(v) for some v ∈ V (H). Then, since d is complete to
V (G1) \ {d}, it follows that V (H) = {v}, and V (G1) \ h(v) can be par-
titioned into two sets Av, Bv such that G1 is an (h(v), Av, Bv, ∅, ∅)-clique
connector. Since h(v) is a strong clique, and since d is semi-adjacent to c,
it follows that c ∈ Av ∪ Bv, say c ∈ Av. Since |V (G1)| > 3, it follows that
Av is strongly complete to Bv. Let the vertices of h(v) be numbered as
k1, . . . kk, and let ki = d. Then Av is strongly complete to {k1, . . . , ki−1},
and Bv is strongly complete to {ki, . . . , kk}. Consequently, Av ∪{ki, . . . , kk}
is strongly complete to Bv ∪ {k1, . . . , ki−1}. Since by (1) G1 does not admit
a homogeneous set decomposition, it follows that |Av ∪ {ki, . . . , kk}| = 1
or Bv ∪ {k1, . . . , ki−1} = ∅, contrary to the fact that c, d ∈ {ki} ∪ Av, and
Bv 6= ∅. This proves that d 6∈ h(v) for any v ∈ V (H). Consequently, d ∈ L.
Since every vertex of L has a neighbor in h(v) for at most one v ∈ V (H),
it follows that |V (H)| ≤ 1. Since A ∪ {c, d} contains a triangle, it follows
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that V (G1) 6= L, and so |V (H)| = 1, say V (H) = {v}, and we may assume
that d ∈ Av. Since Av is a strongly stable set, it follows that Av = {d}, and
A ∪ B ∪ {c} can be partitioned into disjoint subsets Bv, Cv, h(v) such that
G1 is an (h(v), Av, Bv, Cv, ∅)-clique connector. If c ∈ Cv then d is strongly
complete to h(v)∪Bv, and Cv is strongly anticomplete to h(v)∪Bv, and so
h(v) ∪ Bv is a homogeneous set in G1, contrary to (1). Thus d is strongly
complete to Cv, and so Cv is a homogeneous set in G1. Now (1) implies that
|Cv| ≤ 1. If c ∈ Bv, then, since {c, d} is contained in a triangle, it follows
that c and d have a common neighbor in h(v). Since c is semi-adjacent to
d, this implies that |h(v)| = |Bv| = 1, and |V (G1)| = 4, contrary to the fact
that |A∪B| > 2. This proves that c ∈ h(v). Since d is strongly complete to
h(v) \ {c}, and semi-adjacent to c, it follows that c is strongly complete to
Bv. Now Cv is strongly anticomplete to Bv ∪ (h(v)\{c}) in G1, and {c, d} is
strongly complete to Bv∪ (h(v)\{c}) in G1. Since by (1) G1 does not admit
a homogeneous set decomposition, it follows that |Bv ∪ (h(v) \ {c})| = 1,
and |V (G1)| = 4, contrary to the fact that |A ∪B| > 2. This proves (4).

Now, since |V (G1)| < |V (G)|, it follows that one of the outcomes of 9.1
holds for G1, and therefore G1 ∈ T1. From the symmetry, we deduce that
G2 ∈ T1. Since every vertex in a double melt has a strong neighbor in
the melt, it follows that G1, G2 are not double melts. Therefore, there exist
graphs H1, H2 each with maximum degree at most two, such that for i = 1, 2
Gi admits an Hi-structure. Let Li ⊆ V (Gi) and

hi : V (Hi) ∪ E(Hi) ∪ (E(Hi)× V (Hi))→ 2V (Gi)\Li

be as in the definition of an Hi-structure. Since for every e ∈ E(Hi) with
e = {u, v}, Gi|(h(e)∪h(e, v)∪h(e, u)) is an h(e)-melt, and since every vertex
of a melt has a strong neighbor in the melt, it follows that d 6∈ h1(e)∪h1(e, v)
for any e ∈ E(H1), v ∈ V (H1). Similarly, a 6∈ h2(e) ∪ h2(e, v) for any
e ∈ E(H2), v ∈ V (H2). Since every vertex of hi(v) has a strong neighbor
in V (Gi) it follows that d 6∈ h1(v) for any v ∈ V (H1), and a 6∈ h2(v) for
any v ∈ V (H2). Consequently, d ∈ L1 and a ∈ L2. Since d has no strong
neighbors in V (G1) \ {d}, and d is semi-adjacent to c, it follows that c ∈ L1

and similarly b ∈ L2.
By 7.3, B is a strongly stable set. We claim thatB ⊆ L1∪(

⋃
e∈E(H1) h1(e)).

Suppose not, then some vertex b ∈ B belongs to h1(v) ∪ h1(e, v) for some
v ∈ V (H1) and e ∈ E(H1). But that means that every neighbor of b in
G1 is adjacent to some other neighbor of b in G1, contrary to the fact that
N(c) = B ∪{d}. This proves that B ⊆ L1 ∪ (

⋃
e∈E(H1) h1(e)), and similarly,

C ⊆ L2 ∪ (
⋃

e∈E(H2) h2(e)).
Let L = (L1 ∪ L2) \ {a, b, c, d}, let H to be the disjoint union of H1 and

H2. Now, defining

h : V (H) ∪ E(H) ∪ (E(H)× V (H))→ 2V (G)\L
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as h(x) = hi(x) for x ∈ V (Hi) ∪E(Hi) ∪ (E(Hi)× V (Hi)), we observe that
G admits an H-structure, and therefore G ∈ T1, contrary to the fact that G
is a counterexample to 9.1. This proves 9.1.
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