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Abstract

The bull is a graph consisting of a triangle and two pendant edges.
A graph is called bull-free if no induced subgraph of it is a bull. This is
a summary of the last two papers [2, 3] in a series [1, 2, 3]. The goal
of the series is to give a complete description of all bull-free graphs.
We call a bull-free graph elementary if it does not contain an induced
three-edge-path P such that some vertex c 6∈ V (P ) is complete to
V (P ), and some vertex a 6∈ V (P ) is anticomplete to V (P ). Here we
prove that every elementary graph either belongs to one a few basic
classes, or admits a certain decomposition, and then use this result
together with the results of [1] to give an explicit description of the
structure of all bull-free graphs.

1 Introduction

All graphs in this paper are finite and simple, unless stated otherwise. The
bull is a graph with vertex set {x1, x2, x3, y, z} and edge set

{x1x2, x2x3, x1x3, x1y, x2z}.

Let G be a graph. We say that G is bull-free if no induced subgraph of G is
isomorphic to the bull.

This is a summary of the last two papers [2, 3] in a series [1, 2, 3]. The
goal of the series is to give a complete description of all bull-free graphs. In
this paper we give all the necessary definitions and state the main result of
the series, which is an explicit description of the structure of all bull-free
graphs. Some of the more complicated proofs from [2, 3] have been either
∗Most of this research was conducted during the period the author served as a Clay

Mathematics Institute Research Fellow. Partially supported by NSF grant DMS-0758364.

1



completely omitted, or replaced by a very general “proof outline”. Thus
a reader who is interested to learn about the result, without spending too
much time and effort on studying the proofs may find this summary useful.

The complement of G is the graph G, on the same vertex set as G, and
such that two vertices are adjacent in G if and only if they are non-adjacent
in G. A clique in G is a set of vertices, all pairwise adjacent. A stable set
in G is a clique in the complement of G. A clique of size three is called a
triangle and a stable set of size three is a triad. For a subset A of V (G)
and a vertex b ∈ V (G) \ A, we say that b is complete to A if b is adjacent
to every vertex of A, and that b is anticomplete to A if b is not adjacent to
any vertex of A. For two disjoint subsets A and B of V (G), A is complete
to B if every vertex of A is complete to B, and A is anticomplete to B every
vertex of A is anticomplete to B. For a subset X of V (G), we denote by
G|X the subgraph induced by G on X, and by G \X the subgraph induced
by G on V (G) \X.

An obvious example of a bull-free graph is a graph with no triangle, or a
graph with no triad; but there are others. Let us call a graph G an ordered
split graph if there exists an integer n such that the vertex set of G is the
union of a clique {k1, . . . , kn} and a stable set {s1, . . . , sn}, and si is adjacent
to kj if and only if i + j ≤ n + 1. It is easy to see that every ordered split
graph is bull-free. A large ordered split graph contains a large clique and
a large stable set, and therefore the three classes (triangle-free, triad-free
and ordered split graphs) are significantly different. Another way to make
a bull-free graph that has both a large clique and a large stable set is by
using the operation of substitution (this is a well known operation, but, for
completeness, we define it in Section 6). It turns out, however, that we can
give and explicit description of the structure of all bull-free graphs that are
not obtained from smaller bull-free graphs by substitution. To do so, we first
define “bull-free trigraphs”, which are objects generalizing bull-free graphs:
while in a graph every two vertices are either adjacent or nonadjacent, in
a trigraph every pair of vertices is either adjacent, or antiadjacent or semi-
adjacent (this is done in Section 2).

Let us call a bull-free graph G elementary it does not contain an induced
three-edge-path P such that some vertex c 6∈ V (P ) is complete to V (P )
and some vertex a 6∈ V (P ) is anticomplete to V (P ). Our first goal in
this paper is to prove that every elementary graph either belongs to a one
of a few basic classes, or admits a decomposition (this is the main result
of [2], and theorem 3.2 here.) Sections 3 and 4 are devoted to the proof
of 3.2. In Section 3 we describe the class T1 of bull-free trigraphs and
the decompositions needed to state the theorem, and state 3.2. We also
define the class of “unfriendly trigraphs”, which is the subject of most of the
theorems in Section 4. In Section 4 we first discuss unfriendly trigraphs, that
contain a “prism” (an induced subtrigraph consisting of two disjoint cliques
and a matching between them, for a precise definition see Section 4). We
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prove that every such trigraph satisfies one of the outcomes of 3.2 . Then we
study the behavior of an unfriendly trigraph relative to an induced triangle-
free subtrigraph (again, see Section 4 for the definitions). We prove that
one of the outcomes of 3.2 holds for every unfriendly trigraph that contains
an induced three-edge path. We finish Section 4 with a proof of 3.2, using
the main result of [1].

In the remainder of the paper, we use 3.2 to describe the structure of
all bull-free trigraphs. To do that, we need to restrict the list of decom-
positions we use. In Section 5, we describe the class T2 of trigraphs, and
state a theorem that says that, up to taking complements, every elemen-
tary bull-free trigraph either belongs to one of the classes T1, T2, or admits
a decomposition from the “restricted list” (this is 5.7). At this point, we
recall a result of [1], that says that every non-elementary bull-free trigraph
either belongs to the class T0 (defined in [1]) or admits a decomposition
from the “restricted list” (this is 5.6). In Section 6, we turn 5.6 and 5.7
into a “composition theorem”, which is our main result, 6.2. Roughly, 6.2
says that every bull-free trigraph that is not obtained from smaller bull-free
trigraphs by substitution is an “expansion” of a trigraph in T0 ∪T1 ∪T2 (we
postpone the definition of an “expansion” to Section 6). The rest of the
paper is devoted to proving 5.7.

2 Trigraphs

In order to prove our main result, we consider objects, slightly more gen-
eral than bull-free graphs, that we call “bull-free trigraphs”. A trigraph
G consists of a finite set V (G), called the vertex set of G, and a map
θ : V (G)2 → {−1, 0, 1}, called the adjacency function, satisfying:

• for all v ∈ V (G), θG(v, v) = 0

• for all distinct u, v ∈ V (G), θG(u, v) = θG(v, u)

• for all distinct u, v, w ∈ V (G), at most one of θG(u, v), θG(u,w) = 0.

Two distinct vertices of G are said to be strongly adjacent if θ(u, v) = 1,
strongly antiadjacent if θ(u, v) = −1, and semi-adjacent if θ(u, v) = 0. We
say that u and v are adjacent if they are either strongly adjacent, or semi-
adjacent; and antiadjacent if they are either strongly antiadjacent, or semi-
adjacent. If u and v are adjacent (antiadjacent), we also say that u is
adjacent (antiadjacent) to v, or that u is a neighbor (antineighbor) of v.
Similarly, if u and v are strongly adjacent (strongly antiadjacent), then u
is a strong neighbor (strong antineighbor) of v. Let η(G) be the set of all
strongly adjacent pairs of G, ν(G) the set of all strongly antiadjacent pairs
of G, and σ(G) the set of all pairs {u, v} of vertices of G, such that u and v
are distinct and semi-adjacent. Thus, a trigraph G is a graph if σ(G) empty.
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Let G be a trigraph. The complement G of G is a trigraph with the
same vertex set as G, and adjacency function θ = −θ. Let A ⊂ V (G)
and b ∈ V (G) \ A. For v ∈ V (G) let N(v) denote the set of all vertices in
V (G)\{v} that are adjacent to v, and let S(v) denote the set of all vertices in
V (G)\{v} that are strongly adjacent to v. We say that b is strongly complete
to A if b is strongly adjacent to every vertex of A, b is strongly anticomplete
to A if b is strongly antiadjacent to every vertex of A, b is complete to A if b is
adjacent to every vertex of A, and b is anticomplete to A if b is antiadjacent
to every vertex of A. For two disjoint subsets A,B of V (G), B is strongly
complete (strongly anticomplete, complete, anticomplete) to A if every vertex
of B is strongly complete (strongly anticomplete, complete, anticomplete,
respectively) to A. We say that b is mixed on A, if b is not strongly complete
and not strongly anticomplete to A. A clique in G is a set of vertices all
pairwise adjacent, and a strong clique is a set of vertices all pairwise strongly
adjacent. A stable set is a set of vertices all pairwise antiadjacent, and a
strongly stable set is a set of vertices all pairwise strongly antiadjacent. A
(strong) clique of size three is a (strong) triangle and a (strong) stable set
of size three is a (strong) triad. For X ⊂ V (G), the trigraph induced by
G on X (denoted by G|X) has vertex set X, and adjacency function that
is the restriction of θ to X2. Isomorphism between trigraphs is defined
in the natural way, and for two trigraphs G and H we say that H is an
induced subtrigraph of G (or G contains H as an induced subtrigraph) if H
is isomorphic to G|X for some X ⊆ V (G). We denote by G\X the trigraph
G|(V (G) \X).

A bull is a trigraph with vertex set {x1, x2, x3, v1, v2} such that {x1, x2, x3}
is a triangle, v1 is adjacent to x1 and antiadjacent to x2, x3, v2, and v2 is
adjacent to x2 and antiadjacent to x1, x3. For a trigraph G, a subset X of
V (G) is said to be a bull if G|X is a bull. We say that a trigraph is bull-free
if no induced subtrigraph of it is a bull, or, equivalently, no subset of its
vertex set is a bull.

Let G be a trigraph. An induced subtrigraph P of G with vertices
{p1, . . . , pk} is a path in G if either k = 1, or for i, j ∈ {1, . . . , k}, pi is
adjacent to pj if |i− j| = 1 and pi is antiadjacent to pj if |i− j| > 1. Under
these circumstances we say that P is a path from p1 to pk, its interior is
the set P ∗ = V (P ) \ {p1, pk}, and the length of P is k − 1. We also say
that P is a (k − 1)-edge-path. Sometimes we denote P by p1- . . . -pk. An
induced subtrigraph H of G with vertices h1, . . . , hk is a hole if k ≥ 4, and
for i, j ∈ {1, . . . , k}, hi is adjacent to hj if |i − j| = 1 or |i − j| = k − 1;
and hi is antiadjacent to hj if 1 < |i − j| < k − 1. The length of a hole is
the number of vertices in it. Sometimes we denote H by h1- . . . -hk-h1. An
antipath (antihole) in G is an induced subtrigraph of G whose complement
is a path (hole) in G.

Let G be a trigraph, and let X ⊆ V (G). Let Gc be the graph with
vertex set X, and such that two vertices of X are adjacent in Gc if and only
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if they are adjacent in G, and let Ga be be the graph with vertex set X,
and such that two vertices of X are adjacent in Ga if and only if they are
strongly adjacent in G. We say that X (and G|X) is connected if the graph
Gc is connected, and that X (and G|X) is anticonnected if Ga is connected.
A connected component of X is a maximal connected subset of X, and an
anticonnected component of X is a maximal anticonnected subset of X. For
a trigraph G, if X is a component of V (G), then G|X is a component of G.

We finish this section by two easy observations from [1].

2.1 If G be a bull-free trigraph, then so is G.

2.2 Let G be a trigraph, let X ⊆ V (G) and v ∈ V (G) \ X. Assume that
|X| > 1 and v is mixed on X. Then there exist vertices x1, x2 ∈ X such
that v is adjacent to x1 and antiadjacent to x2. Moreover, if X is connected,
then x1 and x2 can be chosen adjacent.

3 Elementary bull-free trigraphs

In this section we state a decomposition theorem for elementary bull-free
trigraphs. We start by describing a few special types of trigraphs.

Clique connectors. Let G be a trigraph. Let K = {k1, . . . , kt} be a
strong clique in G, and let A,B,C,D be strongly stable sets, such that
the sets K,A,B,C,D are pairwise disjoint and A ∪ B ∪ C ∪ D ∪ K =
V (G). Let A1, . . . , At be disjoint subsets of A with

⋃t
i=1Ai = A, and let

B1, . . . , Bt, C1, . . . , Ct, D1, . . . , Dt be defined similarly. Let us now describe
the adjacencies in G:

• For i ∈ {1, . . . , t}
Ai is strongly complete to {k1, . . . , ki−1},
Ai is complete to {ki},
Ai is strongly anticomplete to {ki+1, . . . , kt},
Bi is strongly complete to {kt−i+2, . . . , kt},
Bi is complete to {kt−i+1}, and
Bi is strongly anticomplete to {k1, . . . , kt−i}.

Let A′i be the set of vertices of Ai that are semi-adjacent to ki, and let
B′t−i+1 be the set of vertices of Bt−i+1 that are semi-adjacent to ki. (Thus
|A′i| ≤ 1 and |B′t−i+1| ≤ 1.)

• For i, j ∈ {1, . . . , t}, if i+ j 6= t and Ai is not strongly complete to Bj ,
then |A| = |B| = |K| = 1 and A is complete to B.

• A′i is strongly complete to Bt−i, B′t−i is strongly complete to Ai, and
the adjacency between Ai \A′i and Bt−i \B′t−i is arbitrary.
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• A∪K is strongly anticomplete to D, and B∪K is strongly anticomplete
to C.

• For i ∈ {1, . . . , t}, Ci is strongly complete to
⋃

j<iAj , and Ci is
strongly anticomplete to

⋃
j>iAj .

• For i ∈ {1, . . . , t}, Ci is strongly complete to A′i, every vertex of Ci has
a neighbor in Ai, and otherwise the adjacency between Ci and Ai \A′i
is arbitrary.

• For i ∈ {1, . . . , t}, Di is strongly complete to
⋃

j<iBj , and Di is
strongly anticomplete to

⋃
j>iBj .

• For i ∈ {1, . . . , t}, Di is strongly complete to B′i, every vertex of Di

has a neighbor in Bi, and otherwise the adjacency between Di and
Bi \B′i is arbitrary.

• For i, j ∈ {1, . . . , t}, if i + j > t, then Ci is strongly complete to Dj ,
and otherwise the adjacency between Ci and Dj is arbitrary.

If At 6= ∅ and Bt 6= ∅, then G is a (K,A,B,C,D)-clique connector.
Melts. Let G be a trigraph, such that V (G) is the disjoint union of four

sets K,M,A,B, where A and B are strongly stable sets, and K and M are
strong cliques. Assume that |A| > 1 and |B| > 1. Let K = {k1, . . . , km}
and M = {m1, . . . ,mn}. Let A be the union of pairwise disjoint subsets Ai,j

where i ∈ {0, . . . ,m} and j ∈ {0, . . . , n}, and let B be the disjoint union of
subsets Bi,j where i ∈ {0, . . . ,m} and j ∈ {0, . . . , n}. Let A0,0 = B0,0 = ∅.
Assume also that

• K is strongly anticomplete to M

• for i ∈ {1, . . . ,m} and j ∈ {1, . . . , n} Ai,j is
strongly complete to {k1, . . . , ki−1} ∪ {mn−j+2, . . . ,mn},
complete to {ki} ∪ {mn−j+1},
strongly anticomplete to {ki+1, . . . , km} ∪ {m1, . . . ,mn−j},
and the set Bi,j is
strongly complete to {km−i+2, . . . , km} ∪ {m1, . . . ,mj−1},
complete to {km−i+1} ∪ {mj},
strongly anticomplete to {k1, . . . , km−i} ∪ {mj+1, . . . ,mn}.

• for i ∈ {1, . . . ,m}, Ai,0 is
strongly complete to {k1, . . . , ki−1},
complete to {ki},
strongly anticomplete to {ki+1, . . . , km} ∪M

• for j ∈ {1, . . . , n}, A0,j is
strongly complete to {mn−j+2, . . . ,mn},
complete to {mn−j+1},
strongly anticomplete to K ∪ {m1, . . . ,mn−j}
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• for i ∈ {1, . . . ,m}, Bi,0 is
strongly complete to {km−i+2, . . . , km},
complete to {km−i+1},
strongly anticomplete to {k1, . . . , km−i} ∪M

• for j ∈ {1, . . . , n}, B0,j is
strongly complete to {m1, . . . ,mj−1},
complete to {mj},
strongly anticomplete to K ∪ {mj+1, . . . ,mn}

• the sets
⋃

0≤j≤nAm,j ,
⋃

0≤j≤nBm,j ,
⋃

0≤i≤mAi,n and
⋃

0≤i≤mBi,n are
all non-empty

• Let i, i′ ∈ {0, . . . ,m} and j, j′ ∈ {0, . . . , n}, and suppose that i′ > i
and j′ > j. Then at least one of the sets Ai,j and Ai′,j′ is empty, and
at least one of the sets Bi,j and Bi′,j′ is empty

• For i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}, Ai,j is strongly complete to B,
and Bi,j is strongly complete to A

• For i, i′ ∈ {1, . . . ,m} and j, j′ ∈ {1, . . . , n}, Ai,0 is strongly complete
to Bi′,0, and A0,j is strongly complete to B0,j′

• for i ∈ {1, . . . ,m} and j ∈ {1, . . . n}, Ai,0 is the disjoint union of sets
Ak

i,0 with k ∈ {0, . . . , n}, and A0,j is the disjoint union of sets Ak
0,j

with k ∈ {0, . . . ,m},

• for i ∈ {1, . . . ,m} and j ∈ {1, . . . n}, Bi,0 is the disjoint union of sets
Bk

i,0 with k ∈ {0, . . . , n}, and B0,j is the disjoint union of sets Bk
0,j

with k ∈ {0, . . . ,m}.

• for i ∈ {1, . . . ,m}, every vertex of A0
i,0 is strongly anticomplete to⋃

1≤j≤nB0,j , and has a neighbor in
⋃

1≤j≤m

⋃
1≤k≤nBj,k

• for j ∈ {1, . . . , n}, every vertex of A0
0,j is strongly anticomplete to⋃

1≤i≤mBi,0, and has a neighbor in
⋃

1≤i≤m

⋃
1≤k≤nBi,k

• for i ∈ {1, . . . ,m}, every vertex of B0
i,0 is strongly anticomplete to⋃

1≤j≤nA0,j , and has a neighbor in
⋃

1≤j≤m

⋃
1≤k≤nAj,k

• for j ∈ {1, . . . , n}, every vertex of B0
0,j is strongly anticomplete to⋃

1≤i≤mAi,0, and has a neighbor in
⋃

1≤i≤m

⋃
1≤k≤nAi,k

• for i ∈ {1, . . . ,m} and j ∈ {1, . . . , n},
every vertex of Ai

0,j has a neighbor in Bi,0,
every vertex of Bj

i,0 has a neighbor in A0,j ,
every vertex of Aj

i,0 has a neighbor in B0,j ,
every vertex of Bi

0,j has a neighbor in Ai,0,
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Ai
0,j is strongly complete to

⋃
1≤s<iBs,0

Ai
0,j is strongly anticomplete to

⋃
i<s≤mBs,0

Aj
i,0 is strongly complete to

⋃
1≤s<j B0,s

Aj
i,0 is strongly anticomplete to

⋃
j<s≤nB0,s

Bj
i,0 is strongly complete to

⋃
1≤s<j A0,s

Bj
i,0 is strongly anticomplete to

⋃
j<s≤nA0,s

Bi
0,j is strongly complete to

⋃
1≤s<iAs,0

Bi
0,j is strongly anticomplete to

⋃
i<s≤mAs,0

• for i ∈ {1, . . . ,m} and j ∈ {1, . . . , n} let
A′i,0 be the set of vertices of Ai,0 that are semi-adjacent to ki

A′0,j be the set of vertices of A0,j that are semi-adjacent to mn−j+1,
B′i,0 be the set of vertices of Bi,0 that are semi-adjacent to km−i+1,
B′0,j be the set of vertices of B0,j that are semi-adjacent to mj .
Then
A′i,0 is strongly complete to

⋃
1≤s≤nB

i
0,s,

A′0,j is strongly complete to
⋃

1≤s≤mBj
s,0,

B′i,0 is strongly complete to
⋃

1≤s≤nA
i
0,s,

B′0,j is strongly complete to
⋃

1≤s≤mAj
s,0.

• there exist i ∈ {1, . . . ,m} and j ∈ {1, . . . , n} such that either Ai,j 6= ∅,
or Bi,j 6= ∅.

• Let i, s, s′ ∈ {1, . . . ,m} and j, t, t′ ∈ {1, . . . , n} such that t′ ≥ j ≥
n+ 1− t and s ≥ i ≥ m+ 1− s′. Then at least one of As,t and Bs′,t′

is empty.

Under these circumstances we say that G is a melt. We say that a melt is an
A-melt if Bi,j = ∅ for every i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}. We say that
a melt is a B-melt if Ai,j = ∅ for every i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}.
We say that a melt is a double melt if there exist i, i′ ∈ {1, . . . ,m} and
j, j′ ∈ {1, . . . , n} such that Ai,j 6= ∅, and Bi′,j′ 6= ∅.

Let H be a graph. For a vertex v ∈ V (H), the degree of v in H, de-
noted by deg(v), is the number of edges of H incident with v. If H is the
empty graph let maxdeg(H) = 0, and otherwise we define maxdeg(H) =
maxv∈V (H) deg(v).

The class T1. Before giving a precise definition of the class T1, let us
describe roughly what a trigraph in this class looks like. The idea is the
following. Every trigraph in T1 consists of a triangle-free part X (in what
follows V (X) is the union of L, the sets h(e), and the sets h(e, v)∩B), and
a collection of pairwise disjoint and pairwise anticomplete strong cliques Yv

(in what follows Yv is the union of h(v) and the sets h(e, v) \B for all edges
e incident with v). Every vertex of X has neighbors in at most two cliques
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Yv. Each Yv, together with vertices of X at distance at most two from Yv,
induces a clique connector. If every vertex of X has neighbors in at most
one Yv, this describes the graph completely. Describing the adjacency rules
for vertices of X that have neighbors in two different cliques, Yu and Yv is
more complicated (we need to explain how the clique connectors for Yu and
Yv overlap). Without going into details, the structure there is locally a melt.

Let us now turn to the precise definition of T1. Let H be a loopless
triangle-free graph with maxdeg(H) ≤ 2 (H may be empty, and may have
parallel edges). We say that a trigraph G admits an H-structure if there
exist a subset L of V (G) and a map

h : V (H) ∪ E(H) ∪ (E(H)× V (H))→ 2V (G)\L

such that

• every vertex of V (G)\L is in h(x) for exactly one element x of V (H)∪
E(H) ∪ (E(H)× V (H)), and

• h(v) 6= ∅ for every v ∈ V (H) of degree zero, and

• h(e) 6= ∅ for every e ∈ E(H), and

• h(e, v) 6= ∅ if e is incident with v, and

• h(e, v) = ∅ if e is not incident with v, and

• for u, v ∈ V (H), h(u) is strongly anticomplete to h(v), and

• h(v) is a strong clique for every v ∈ V (H), and

• every vertex of L has a neighbor in at most one of the sets h(v) where
v ∈ V (H), and

• G|(L ∪ (
⋃

e∈E(H) h(e))) has no triangle, and

• for every e ∈ E(H), every vertex of L is either strongly complete or
strongly anticomplete to h(e), and

• h(e) is either strongly complete or strongly anticomplete to h(f) for
every e, f ∈ E(H); if e and f share an endpoint, then h(e) is strongly
complete to h(f), and

• for every e ∈ E(H) and v ∈ V (H), h(e) is strongly anticomplete to
h(v), and

• for v ∈ V (H), let Sv be the vertices of L with a neighbor in h(v),
and let Tv be the vertices of (L∪ (

⋃
e∈E(H) h(e))) \Sv with a neighbor

in Sv. Then there is a partition of Sv into two sets Av, Bv, and a
partition of Tv into two sets Cv, Dv such that G|(h(v)∪ Sv ∪ Tv) is an
(h(v), Av, Bv, Cv, Dv)-clique connector, and
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• for v ∈ V (H), if there exist a ∈ Av and b ∈ Bv antiadjacent with a
common neighbor in h(v), then v has degree zero in H.

Moreover, let e be an edge of H with ends u, v. Then

• if f ∈ E(H) \ {e} is incident with v, then h(e, v) is strongly complete
to h(f, v), and

• G|(h(e)∪h(e, v)∪h(e, u)) is an h(e)-melt, such that if (K,M,A,B) are
as in the definition of a melt, then K ⊆ h(e, v), M ⊆ h(e, u), A = h(e),
B ⊆ h(e, v) ∪ h(e, u), every vertex of h(e, v) ∩B has a neighbor in K,
and every vertex of h(e, u)∩B has a neighbor in M (and, in particular,
h(e, v) is strongly anticomplete to h(e, u)); and

• h(e, v) is strongly complete to h(v), and h(e, v) is strongly anticomplete
to h(w) for every w ∈ V (H) \ {v}, and

• h(e, v) is strongly anticomplete to h(f, w) for every f ∈ E(H) \ {e},
and w ∈ V (H) \ {v}, and

• h(e, v) is strongly anticomplete to h(f) for every f ∈ E(H) \ {e}.

Furthermore, either the following statements all hold, or they all hold with
the roles of Au ∪Av and Bu ∪Bv switched:

• h(e) is strongly complete to Bu ∪Bv, and

• h(e, v) is strongly complete to Av and strongly anticomplete to L\Av,
and, and

• every vertex of (L ∪ (
⋃

f∈E(H) h(f))) \ (Au ∪ Av) with a neighbor in
Au ∪Av is strongly complete to h(e).

Let us say that G belongs to T1 if either G is a double melt, or G admits an
H structure for some loopless triangle-free graph H with maximum degree
at most two.

In the definition of an H-structure, we did not specify the adjacencies
between the sets h(e) for disjoint edges e of H, except that

• h(e) is either strongly complete or strongly anticomplete to h(f) for
every e, f ∈ E(H).

In fact, the only constraints on these adjacencies come from the condition
that

• G|(L ∪ (
⋃

e∈E(H) h(e))) has no triangle.

To tighten the structure, one might want to add another ingredient, which is
a triangle-free supergraph F of the line graph of H, that would “record” for
which pairs of disjoint edges e, f of H, the sets h(e) and h(f) are strongly
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complete to each other. We did not do that here, since such a graph F can
be easily reconstructed from the H-structure. The situation concerning the
adjacencies between the vertices of L and the sets h(e) is similar.

We observe the following:

3.1 Every clique connector, every melt and every trigraph in T1 is bull-free.

For the proof of 3.1 see [2].
Next let us describe some decompositions (some of these definitions ap-

pear in [1], but we repeat them for completeness). Let G be a trigraph.
A proper subset Xof V (G) is a homogeneous set in G if every vertex of
V (G)\X is either strongly complete or strongly anticomplete to X. We say
that G admits a homogeneous set decomposition, if there is a homogeneous
set in G of size at least two.

For two disjoint subsets A and B of V (G), the pair (A,B) is a homoge-
neous pair in G if A is a homogeneous set in G \B and B is a homogeneous
set in G \A. We say that the pair (A,B) is tame if

• |V (G)| − 2 > |A|+ |B| > 2, and

• A is not strongly complete and not strongly anticomplete to B.

The graph G admits a homogeneous pair decomposition if there is a tame
homogeneous pair in G.

Let S ⊆ V (G). A center for S is a vertex of V (G) \ S that is complete
to S, and an anticenter for S is a vertex of V (G) \S that is anticomplete to
S. A vertex of G is a center (anticenter) for an induced subgraph H of G if
it is a center (anticenter) for V (H).

We say that a trigraph G is elementary if there does not exist a path
P of length three in G, such that some vertex c of V (G) \ V (P ) is a center
for P , and some vertex a of V (G) \ V (P ) is an anticenter for P . The main
result of [2] is the following:

3.2 Let G be an elementary bull-free trigraph. Then either

• one of G,G belongs to T1, or

• G admits a homogeneous set decomposition, or

• G admits a homogeneous pair decomposition.

In the next section we describe the proof of 3.2. Let us call a bull-
free trigraph that does not admit a homogeneous set decomposition, or a
homogeneous pair decomposition, and does not contain a path of length
three with a center unfriendly. In view of the main result of [1], in the
next few sections of this paper we deal mainly with unfriendly graphs (for
a precise explanation, see the end of Section 4).
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4 The proof of 3.2

Let G be a trigraph. A k-prism in G is a trigraph whose vertex set is the
disjoint union of two cliques A = {a1, . . . , ak} and B = {b1, . . . , bk}; and
such that for every i, j ∈ {1, . . . , k}, ai is adjacent to bj if i = j and ai is
antiadjacent to bj if i 6= j. A prism is a 3-prism.

The first step in the proof of 3.2 is the following:

4.1 Let G be an unfriendly trigraph. Assume that for some integer n ≥ 3,
G contains an induced subtrigraph that is an n-prism. Then G is a prism.

To prove 4.1 we start with a maximal structure W in G that we call
a hyperprism. A hyperprism consists of pairwise disjoint non-empty sub-
sets A1, . . . Ak, B1, . . . , Bk, where k ≥ 3 is an integer, such that for i, j ∈
{1, . . . , k}

• Ai is complete to Aj and Bi is complete to Bj

• if i 6= j, then Ai is anticomplete to Bj

• every vertex of Ai has a neighbor in Bi

• every vertex in Bi has a neighbor in Ai

• k ≥ 3.

Since G contains an n-prism, there is a hyperprism in G. Next we analyze
how the vertices of V (G) \W attach to W . It turns out the the structure
there is pretty tight, forcing either a homogeneous set, or a homogeneous pair
decomposition, contrary to the fact that G is unfriendly. Thus V (G) = W .
But now, again since G is unfriendly, it follows that G is a prism. For details,
please see [2].

Next we prove (or state without proof) a few lemmas about unfriendly
trigraphs, all from [2].

4.2 Let G be an unfriendly graph, let m > 2 be an integer, and let Y1, . . . , Ym

be pairwise disjoint anticonnected sets, such that for i, j ∈ {1, . . . ,m}, Yi is
complete to Yj. Let v ∈ V (G) \ (

⋃m
i=1 Yi), assume that |Y1| > 1 and v has a

neighbor and an antineighbor in
⋃m

i=2 Yi. Then v is either strongly complete,
or strongly anticomplete to Y1.

Proof. Suppose not. Then v has a neighbor a and an antineighbor a′ in
Y1, and by 2.2 we may assume that a and a′ are distinct and antiadjacent.
From the symmetry, we may assume that v has a neighbor x ∈ Y2 and an
antineighbor h ∈ Y3. But now v-a-h-a′ is a path, and x is a center for it,
contrary to the fact that G is unfriendly. This proves 4.2.
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4.3 Let G be an unfriendly trigraph such that there is no prism in G, and
let a1-a2-a3-a4-a1 be a hole of length four. Let K be the set of vertices that
are complete to {a1, a2} and anticomplete to {a3, a4}. Then K is a strong
clique.

Proof. Suppose some two vertices of K are not strongly adjacent, and
let C be an anti-component of K with |C| > 1. Since G is unfriendly, it
follows that C is not a homogeneous set in G, and so, by 2.2 applied in G,
there exist vertices c, c′, v such that c, c′ ∈ C, v 6∈ C, v is adjacent to c′ and
antiadjacent to c, and c′ is antiadjacent to c. Since {a4, a1, c

′, a2, c} is not a
bull, it follows that v 6= a1, and from the symmetry v 6= a2. Since a4-c′-a2-c
is not a path with center a1, it follows that v 6= a4, and from the symmetry
v 6= a3.

Suppose first that v is anticomplete to {a1, a2}. Since {v, c′, a2, a1, a4}
is not a bull, it follows that v is strongly adjacent to a4, and, similarly,
v is strongly adjacent to a3. But now G|{a1, a2, c

′, a3, a3, v} is a prism, a
contradiction. So we may assume that v is strongly adjacent to a1, and by
4.2, v is strongly adjacent to a2. Since {c, a2, c

′, v, a4} is not a bull, it follows
that v is strongly antiadjacent to a4, and similarly to a3. But now v ∈ C, a
contradiction. This proves 4.3.

4.4 Let G be an unfriendly trigraph such that there is no prism in G, let
a1-a2-a3-a4-a1 be a hole in G, and let c be a center and a an anticenter for
{a1, a2, a3, a4}. Then c is strongly antiadjacent to a.

Proof. Suppose c is adjacent to a.

(1) Let i ∈ {1, . . . , 4}. Then ai is strongly adjacent to ai+1 (here the ad-
dition is performed mod 4), c is strongly adjacent to ai, and a is strongly
antiadjacent to ai.

Since ai-ai+3-ai+2-ai+1 is not a path with a center c, it follows that ai is
strongly adjacent to ai+1. Since {ai, ai+1, ai+2, c, a} is not a bull, it fol-
lows that ai is strongly adjacent to c. Finally, since a-ai-ai+1-ai+2 is not a
path with center c, we deduce that a is strongly antiadjacent to ai. This
proves (1).

Let A1, A2, A3, A4 be connected subsets of V (G), where ai ∈ Ai for i ∈
{1, . . . , 4}, such that

• for i ∈ {1, . . . , 4}, Ai is strongly complete to Ai+1 (with addition mod
4),

• for i = 1, 2, Ai is anticomplete to Ai+2,

• c is strongly complete to A1 ∪A2 ∪A3 ∪A4
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• a is strongly anticomplete to A1 ∪A2 ∪A3 ∪A4.

Let W = A1 ∪A2 ∪A3 ∪A4, and assume that A1, A2, A3, A4 are chosen
with W maximal. Since G is unfriendly, it follows that A1 ∪ A3 is not a
homogeneous set in G, and so some vertex v of V (G)\ (A1∪A3) is mixed on
A1 ∪A3. Then v 6∈ A2 ∪A3 ∪ {a, c}. We may assume that v has a neighbor
v1 ∈ A1, and antineighbor v3 ∈ A3. Since A1 ∪ A3, A2 ∪ A4 and {c} are
three anticonnected sets complete to each other, 4.2 implies that v is either
strongly complete or strongly anticomplete to A2 ∪A4 ∪ {c}.

Suppose first that v is strongly anticomplete to A2 ∪ A4 ∪ {c}. Since
{v, v1, a2, c, a} is not a bull, it follows that v is adjacent to a. But now
v-a-c-v1-v is a hole of length four, and a2, a4 are two antiadjacent vertices,
each complete to {v1, c} and anticomplete to {v, a}, contrary to 4.3. This
proves that v is strongly complete to A2 ∪ A4 ∪ {c}. Since a-v-a2-v3 is
not a path with center c, it follows that v is strongly antiadjacent to a.
If v is anticomplete to A3, then replacing A1 by A1 ∪ {v} contradicts the
maximality of W , so v has a strong neighbor in A3, and therefore A3 6= {v3}.
Since A3 is connected, 2.2 implies that there exist vertices x, y ∈ A3, such
that v is adjacent to x and antiadjacent to y, and x is adjacent to y. But
now y-x-v-v1 is a path, and c is a center for it, contrary to the fact that G
is unfriendly. This proves 4.4.

4.5 Let H be a trigraph such that no induced subtrigraph of H is a path of
length three. Then either

1. H is not connected, or

2. H is not anticonnected, or

3. there exist two vertices v1, v2 ∈ V (H) such that v1 is semi-adjacent to
v2, and V (H) \ {v1, v2} is strongly complete to v1 and strongly anti-
complete to v2.

The proof is similar to the proof of the analogous result for graphs, and
we omit it (see [2] for details).

4.6 Let G be an unfriendly trigraph with no prism, and let u, v ∈ V (G) be
adjacent. Let A, B be subsets of V (G) such that

• u is strongly complete to A and strongly anticomplete to B,

• v is strongly complete to B and strongly anticomplete to A,

• No vertex of V (G) \ (A ∪B) is mixed on A, and

• if x, y ∈ B are adjacent, then no vertex of V (G) \ (A∪B) is mixed on
{x, y}.
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Then A = K ∪ S, where K is a strong clique and S is a strongly stable set.

The proof of this lemma is too long to include here, and we refer the
reader to [2].

4.7 Let G be an unfriendly bull-free trigraph with no prism. Then there do
not exist six vertices a, b, c, d, x, y ∈ V (G) such that

• the pairs ab, cd, xy are adjacent,

• {a, b} is anticomplete to {c, d}, and

• {x, y} is complete to {a, b, c, d}.

Proof. Since b-a-y-c is not a path with center x, it follows that y is
strongly adjacent to b, and from the symmetry, {x, y} is strongly adjacent
to {a, b, c, d}.

Let k ≥ 2 be an integer, and let Y0, . . . , Yk be pairwise disjoint anticon-
nected sets, such that

• Y0 is strongly complete to
⋃k

i=1 Yi,

• for i, j ∈ {1, . . . , k}, Yi is complete to Yj , and

• {a, b, c, d} ⊆ Y0.

We may assume that Y0, . . . , Yk are chosen with W =
⋃k

i=0 Yi maximal.

(1) Let v ∈ V (G) \ W and assume that v has a neighbor in Y0. Then v
is strongly anticomplete to W \ Y0.

We may assume that v has a neighbor in W \ Y0. Suppose first that v
is mixed on Y0. By 4.2, it follows that v strongly complete to W \ Y0, and
therefore Y0 ∪ {v}, Y1, . . . , Yk contradict the maximality of W . This proves
that v is strongly complete to Y0.

Next suppose that v has a neighbor in Y1, and v is not complete to Y1.
Then |Y1| > 1, and 4.2 implies that v is strongly complete to W \ Y1. But
then replacing Y1 with Y1∪{v} contradicts the maximality of W . Using the
symmetry, this proves that if v has a neighbor in Yi with 1 ≤ i ≤ k, then v
is complete to Yi.

Let I be the set of all i ∈ {1, . . . , k}, such that v is complete to Yi, and
let J = {1, . . . , k}\I. Then v is strongly anticomplete to

⋃
j∈J Yj . From the

symmetry we may assume that I = {1, . . . , t} for some t ∈ {1, . . . , k}. Let
Zt+1 = {v} ∪

⋃
j∈J Yj . Then Y0, Y1, . . . , Yt, Zt+1 contradict the maximality

of W . This proves (1).

Since W \ Y0 is strongly complete to Y0, and since Y0 is not a homoge-
neous set in G, it follows that some vertex of V (G) \ Y0 has a neighbor in
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Y0. Let Z0 be the set of all vertices of V (G) \W with a neighbor in Y0.
Then Z0 6= ∅, and by (1), Z0 is strongly anticomplete to W \ Y0. Moreover,
no vertex of V (G) \ (Y0 ∪ Z0) is mixed on Y0.

Since Y0 is strongly complete to W \Y0, and Z0 is strongly anticomplete
to W \ Y0, and since W \ Y0 is not a homogeneous set in G, it follows that
some vertex z1 ∈ V (G) \ (W ∪Z0) is mixed on W \ Y0. Since Z0 is strongly
anticomplete to W \ Y0, it follows that z1 6∈ Z0, and therefore z1 is strongly
anticomplete to Y0. We may assume that z1 has a neighbor y1 ∈ Y1 and
antineighbor y2 ∈ Y2.

(2) z1 is strongly complete to Z0.

Suppose z0 ∈ Z0 is antiadjacent to z1. Let y0 ∈ Y0 be a neighbor of z0.
Then {z0, y0, y2, y1, z1} is a bull, a contradiction. This proves (2).

(3) Let s, t ∈ Z0 be adjacent, and let v ∈ V (G) \ (Y0 ∪ Z0). Then v is
not mixed on {s, t}.

Suppose that v is adjacent to s and antiadjacent to t. Let ys ∈ Y0 be
adjacent to s, and yt to t, choosing ys = yt if possible. Since v is mixed on
Z0, it follows that v 6∈ (W \ Y0). Since v 6∈ Z0, it follows that v is strongly
antiadjacent to ys, yt.

Assume first that ys = yt. Since {v, s, t, yt, w} is not a bull for any
w ∈ W \ Y0, it follows that v is strongly complete to W \ Y0. But now
Y0∪{v}, Y1, . . . , Yk contradict the maximality ofW . This proves that ys 6= yt,
and therefore s is antiadjacent to yt, and t to ys. Since {ys, s, z1, t, yt} is not a
bull, it follows that ys is strongly adjacent to yt. But nowG|{s, t, z1, ys, yt, y1}
is a prism, a contradiction. This proves (3).

Now y1, z1 are adjacent, and Y0, Z0 are subsets of V (G) such that

• y1 is strongly complete to Y0 and strongly anticomplete to Z0,

• z1 is strongly complete to Z0 and strongly anticomplete to Y0,

• No vertex of V (G) \ (Y0 ∪ Z0) is mixed on Y0, and

• if s, t ∈ Z0 are adjacent, then no vertex of V (G) \ (Y0 ∪ Z0) is mixed
on {s, t}.

By 4.6, we deduce that Y0 = K ∪ S, where K is a strong clique and S is a
strongly stable set. But then at least one of a, b is in K, and at least one
of c, d is in K, contrary to the fact that {a, b} is strongly anticomplete to
{c, d}. This proves 4.7.

We have now reached the heart of the proof of 3.2, which is understand-
ing unfriendly trigraphs that contain a three edge path and do not contain
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a prism. Let G be such a trigraph. We choose a maximal subtrigraph H
of G such that there is no triangle in H, and analyze how the vertices of
V (G)\V (H) attach to H. It turns out that each component of V (G)\V (H)
is a strong clique, no vertex of H has neighbors in more than two components
of V (G) \ V (H), and we can describe how each of the cliques “connects” to
H, thus proving that G ∈ T1.

We start with a lemma.

4.8 Let G be an unfriendly trigraph with no prism, and let h1-h2-h3-h4-h5-h1

be a hole of length five in G, say H. Then no vertex of V (G) \ V (H) is ad-
jacent to h1, h2, h5.

Proof. Suppose some v ∈ V (G) \ V (H) is adjacent to h1, h2, h5. Since
{h2, v, h1, h5, h4} and {h2, h1, v, h5, h4} are not bulls, it follows that h2 is
strongly complete to {v, h1}, and from the symmetry, h5 is strongly complete
to {v, h1}. Since h5-v-h2-h3 is not a path with center h1, it follows that h3

is strongly antiadjacent to h1, and therefore h3 is strongly anticomplete to
{v, h1}. From the symmetry h4 is strongly anticomplete to {v, h1}.

Let X the set of vertices of V (G) \ {h2, h3, h4, h5} that are strongly
complete to {h2, h5} and strongly anticomplete to {h3, h4} and let C be a
component of X such that v, h1 ∈ C. Since G is unfriendly, it follows that
C is not a homogeneous set in G, and therefore some vertex w ∈ V (G) \ C
is mixed on C. Then w 6∈ V (H). By 2.2, there exists c, c′ ∈ C such that c
is adjacent to c′, and w is adjacent to c and antiadjacent to c′.

Assume first that w is antiadjacent to h5. Since {w, c, c′, h5, h4} is not a
bull, it follows that w is strongly adjacent to h4. If w is antiadjacent to h2,
then, form the symmetry, w is strongly adjacent to h3, and {h2, h3, w, h4, h5}
is a bull, a contradiction; thus w is strongly adjacent to h2. Since c-h2-h3-h4

is not a path with center w, it follows that w is strongly antiadjacent to h3.
But now, {h5, c, w, h2, h3} is a bull, a contradiction. This proves that w is
strongly adjacent to h5, and so, from the symmetry, w is strongly adjacent to
h2. Since h5-c-h2-h3 is not a path with center w, it follows that w is strongly
antiadjacent to h3, and from the symmetry, w is strongly antiadjacent to
h4. But then w ∈ C, a contradiction. This proves 4.8.

A frame is a trigraph T such that

• T is connected, and

• there is no triangle in T , and

• T has an induced subtrigraph which is a path of length three.

A trigraph is called framed if some induced subtrigraph of it is a frame. We
prove the following:

4.9 Every unfriendly framed trigraph with no prism is in T1.
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Proof. Let G be an unfriendly framed trigraph, and let F be an induced
subtrigraph of G that is a frame. We may assume that there is a triangle
in G, for otherwise G admits an H-structure where H is the empty graph.
Since G is unfriendly, it follows that G is connected. Assume that F is cho-
sen with |V (F )| maximum, subject to that with |η(F )|+ |σ(F )| maximum.

(1) Every vertex of V (G) \ V (F ) has a neighbor in V (F ).

Suppose some vertex of V (G) \ V (F ) is strongly anticomplete to V (F ).
Since G is connected, there exist adjacent vertices u, v ∈ V (G) \ V (F ) such
that u has a neighbor in V (F ), and v is strongly anticomplete to V (F ). Let
N be the set of neighbors of u in V (F ), and let M = V (F ) \ N . By the
maximality of |V (F )|, there are two adjacent vertices in N . Let C be a
component of N with |C| > 1. Since G is unfriendly, F contains a path of
length three and u is complete to C, it follows that C 6= V (F ). Since F is
connected, some vertex f ∈ V (F ) \C has a neighbor in C, and since C is a
component of N , it follows that f belongs to M . Let c ∈ C be adjacent to
f . Since C is connected, it follows that c has a neighbor, say c′, in C. Since
F is triangle-free, we deduce that f is strongly antiadjacent to c′. But now
{v, u, c′, c, f} is a bull, a contradiction. This proves (1).

For a vertex v ∈ V (G) \ V (F ), let NF (v) be the set of neighbors of v in
V (F ), and let M(v) = V (F ) \NF (v).

(2) Let H be a triangle free trigraph, no induced subtrigraph of which is a
path of length three, and assume that H is connected. Then V (H) = S1∪S2,
where S1 and S2 are disjoint strongly stable sets, complete to each other.
Moreover, if both |S2| > 1 and |S2| > 1, then S1 is strongly complete to S2.

By 4.5, and since H is connected, one of the following holds:

• H is not anticonnected, or

• there exist two vertices v1, v2 ∈ V (H) such that v1 is semi-adjacent
to v2, and V (H) \ {v1, v2} is strongly complete to v1 and strongly
anticomplete to v2.

Assume first that H is not anticonnected. Since H is triangle free, H
has exactly two anti-components, and each of them is a strongly stable set,
and (2) holds.

Next assume that there exist two vertices v1, v2 ∈ V (H) such that
v1 is semi-adjacent to v2, and V (H) \ {v1, v2} is strongly complete to v1
and strongly anticomplete to v2. Since H is triangle free, it follows that
V (H) \ {v1} is strongly stable, and again (2) holds. This proves (2).

(3) Let v ∈ V (G) \ V (F ). Then there exist non-empty strongly stable sets
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S1(v) and S2(v) in F , such that NF (v) = S1(v) ∪ S2(v), S1(v) is complete
to S2(v), and if both |S1(v)| > 1 and |S2(v)| > 1, then S1(v) is strongly
complete to S2(v).

Let H = F |NF (v). Since G is unfriendly, it follows that no induced subtri-
graph of H is a path of length tree. If H is connected, (3) follows from (2),
so we may assume not. It follows from the maximality of |V (F )| that some
two vertices of NF (v) are adjacent. Let C be component of NF (v) with
|C| > 1. Since H is not connected, it follows that NF (v) 6= C. Since F is
connected, some vertex m ∈ V (F ) \C has a neighbor in C, and since C is a
component of NF (v), we deduce that m ∈M(v). Let c ∈ C be a neighbor of
m. Since C is connected and F is triangle free, there exists c′ ∈ C such that
c′ is adjacent to c and antiadjacent to m. Since {m, c, c′, v, n} is not a bull
for any n ∈ NF (v) \C, it follows that m is strongly complete to NF (v) \C.
Since F is triangle-free, it follows that the set NF (v) \ C is strongly stable.

By (2), C = C1 ∪ C2, such that C1 and C2 are disjoint non-empty
strongly stable sets, and C1 is complete to C2. Let n ∈ NF (v) \ C. If both
|C1| > 1 and |C2| > 1, then G|C contains a hole of length four, with cen-
ter v and anticenter n, contrary to 4.4. So we may assume that |C1| = 1,
say C1 = {c1}. Let F ′ = G|((V (F ) \ {c1}) ∪ {v}). By the choice of F ,
|η(F ′)| + |σ(F ′)| ≤ |η(F )| + |σ(F )|, and therefore some vertex m1 ∈ M(v)
is adjacent to c1. By the argument in the previous paragraph with m re-
placed by m1, we deduce that m1 is strongly complete to NF (v) \ C. Now
c1-m1-n-v-c1 is a hole of length four, and, since F is triangle-free, it follows
that every vertex of C2 is complete to {c1, v} and anticomplete to {m1, n}.
By 4.3, it follows that C2 is a strong clique, and therefore |C2| = 1, say
C2 = {c2}. Exchanging the roles of c1 and c2, we deduce that some vertex
m2 ∈ M(v) is adjacent to c2 and to n. Since F is triangle-free, it follows
that m1 6= m2, and since {m1, c1, v, c2,m2} is not a bull, it follows that
m2 is strongly adjacent to m1. But now {m1,m2, n} is a triangle in F , a
contradiction. This proves (3).

(4) Let u, v ∈ V (G) \ V (F ) be adjacent. Then there exist s1, s2 ∈ NF (u) ∩
NF (v) such that s1 is adjacent to s2.

Let S1(u), S1(v), S2(u), S2(v) be as in (3). Since S1(u), S1(v), S2(u), S2(v)
are non-empty strongly stable sets, and since S1(u) is complete to S2(u),
and S1(v) to S2(v), we may assume that S1(u)∩S2(v) = S2(u)∩S1(v) = ∅.

If both S1(u) ∩ S1(v) and S2(u) ∩ S2(v) are non-empty then (3) holds,
so we may assume that S2(u) ∩ S2(v) = ∅. From the maximality of |V (F )|,
there exist tu ∈ S2(u) and tv ∈ S2(v).

Suppose S1(u) ∩ S1(v) 6= ∅, and choose s ∈ S1(u) ∩ S1(v). Since F
is triangle free and s is adjacent to both tu and tv, it follows that tu is
antiadjacent to tv. But now tu-u-v-tv is a path, and s is a center for it,
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contrary to the fact that G is unfriendly. This proves that S1(u)∩S1(v) = ∅.
If |S1(u)| > 1 and |S2(u)| > 1, then G|(S1(u) ∪ S2(u)) contains a hole

of length four, say H; and u is a center for H and v is an anticenter for H,
contrary to 4.4, since u is adjacent to v. So we may assume that S1(u) =
{su}, say. Similarly, we may assume that S1(v) = {sv}.

Suppose su is strongly antiadjacent to sv. Let F ′ = (F \{su, sv})+{u, v}.
Then F ′ is triangle-free, and therefore |η(F ′)| + |σ(F ′)| ≤ |η(F )| + |σ(F )|.
Consequently, we may assume from the symmetry, that su has a neighbor
m ∈M(u). Then m is strongly anticomplete to S2(u). Since {m, su, tu, u, v}
is not a bull, it follows that m ∈ NF (v); and since su is strongly antiadjacent
to sv, we deduce that m ∈ S2(v). Now u-su-m-v-u is a hole of length four,
and, since F is triangle free, S2(u) is complete to {u, su} and anticomplete
to {m, v}. Therefore, 4.3 implies that S2(u) is a strong clique, and therefore
|S2(u)| = 1, namely S2(u) = {tu}.

Since F is triangle free, it follows that tu is strongly antiadjacent to
m. Since G|{u, su, tu, v,m, sv} is not a prism, it follows that sv is strongly
antiadjacent to tu. Let F ′′ = (F \{tu, sv})+{u, v}. Then F ′′ is triangle-free,
and therefore |η(F ′′)| + |σ(F ′′)| ≤ |η(F )| + |σ(F )|. Consequently, either tu
has a neighbor in M(u), or sv has a neighbor in M(v). If sv has a neighbor
x ∈ M(v), then x 6= su, tu, and so {x, sv,m, v, u} is a bull, a contradiction.
Thus tu has a neighbor y ∈ M(u). Since {y, tu, su, u, v} is not a bull, it
follows that y ∈ S2(v). Then y 6= m, and since F is triangle free, we deduce
that y is strongly antiadjacent to su. But then {m, su, u, tu, y} is a bull, a
contradiction. This proves that su is adjacent to sv.

Now u-su-sv-v-u is a hole of length four, S2(u) is complete to {u, su}
and anticomplete to {v, sv}, and S2(v) complete to {v, sv} and anticom-
plete to {u, su}. Thus, 4.3 implies that |S2(u)| = |S2(v)| = 1, and therefore
S2(u) = {tu}, and S2(v) = {tv}. Now, reversing the roles of S1(u) and
S2(u), and of S1(v) and S2(v), we deduce that tu is adjacent to tv. But
then, since F is triangle free, it follows that G|{u, su, tu, v, sv, tv} is a prism,
a contradiction. This proves (4).

(5) Let u, v ∈ V (G) \ V (F ) be antiadjacent. Then NF (u) ∩ NF (v) is a
strongly stable set.

Let S1(u), S2(u), S1(v), S2(v) be as in (3). Suppose s1, s2 ∈ NF (u) ∩NF (v)
are adjacent. We may assume that s1 ∈ S1(u)∩S1(v), and s2 ∈ S2(u)∩S2(v).
Then S2(u) ∩ S1(v) = S1(u) ∩ S2(v) = ∅.

First we claim that NF (u) = NF (v). Suppose S2(u) \ S2(v) 6= ∅, and let
t ∈ S2(u) \S2(v). Then t-u-s2-v is a path, and s1 is a center for it, contrary
to the fact that G is unfriendly. Therefore, S2(u) \ S2(v) = ∅, and, form
the symmetry, this implies that NF (u) = NF (v), and the claim follows. Let
S1(u) = S1(v) = S1, and S2(u) = S2(v) = S2.

Let C0 be the set of all vertices of V (G)\V (F ) that are complete to S1∪S2
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and strongly anticomplete to V (F ) \ (S1 ∪ S2). Let C be an anticomponent
of C0 with u, v ∈ C. Since C is not a homogeneous set in G, some vertex
x ∈ V (G) \ C is mixed on C. By 2.2, there exist c1, c2 ∈ C such that c1 is
antiadjacent to c2, and x is adjacent to c1 and antiadjacent to c2.

Suppose first that x 6∈ S1∪S2. By 4.2, it follows that x is either strongly
complete or strongly anticomplete to S1 ∪ S2. If x is strongly complete to
S1 ∪ S2, then, x ∈ V (G) \ V (F ), and since x is antiadjacent to c2, the claim
above implies that NF (x) = NF (c2) = S1 ∪ S2, contrary to the fact that
x 6∈ C. Therefore x is strongly anticomplete to S1 ∪ S2. Since x 6∈ S1 ∪ S2,
and since x is adjacent to c1, it follows that x ∈ V (G) \ V (F ). But now
(4) implies that NF (x)∩NF (c1) 6= ∅, contrary to the fact that x is strongly
anticomplete to S1 ∪ S2. This proves that x ∈ S1 ∪ S2, and, since x was
chosen arbitrarily, that every vertex of V (G)\C that is mixed on C belongs
to S1∪S2. We may assume that x ∈ S1. Since for any s ∈ S1 \{x}, x-c1-s-c2
is not a path with center s2, it follows that S1 = {x}. Since (C, {x}) is not a
homogeneous pair in G, it follows that some vertex y is mixed on C. Since
every vertex that is mixed on C belongs to S1 ∪ S2, it follows that y ∈ S2,
and therefore, from the symmetry between x and y, S2 = {y} and y is semi-
adjacent to some vertex c3 ∈ C. Since x is semi-adjacent to c2, it follows
that c2 6= c3. Suppose that there exist x′, y′ ∈ V (F ) \ {x, y} such that x′

is adjacent to x, and y′ to y. Since F is triangle free, it follows that x′ is
strongly antiadjacent to y, and y′ to x. Since {x′, x, u, y, y′} is not a bull, we
deduce that x′ is adjacent to y′. But now x-y-y′-x′-x is a hole of length four,
and {u, v} is complete to {x, y} and anticomplete to {x′, y′}, contrary to
4.3. So we may assume from the symmetry that y is strongly anticomplete
to V (F ) \ {x, y}. Since F is connected and since there is a three-edge path
in F , it follows that there exists a vertex x′ ∈ V (F ) \ {x, y} adjacent to
x. Since {x′, x, c3, y, c2} is not a bull, it follows that c2 is strongly adjacent
to c3. Since C is anticonnected, there is an antipath Q from c2 to c3 with
V (Q) ⊆ C. Since x is complete to C and G is unfriendly, it follows that Q
has a unique internal vertex, say q. Then q is complete to {x, y} and strongly
antiadjacent to x′. But now {x′, x, q, y, c2} is a bull, a contradiction. This
proves (5).

(6) Let C be a component of V (G) \ V (F ). Then C is a strong clique.

Suppose C is not a strong clique. Then, since C is connected, there ex-
ist vertices x, y, z ∈ C, such that y is adjacent to both x and z; and x is
antiadjacent to z. By (4), there exist a, b, c, d ∈ V (F ) such that a is adjacent
to b, c is adjacent to d, {x, y} is complete to {a, b} and {y, z} is complete to
{c, d}. By (5), z is not complete to {a, b}, and x is not complete to {c, d};
and therefore {a, b} 6= {c, d}. Suppose b is complete to {z, d}. Since F is
triangle-free, it follows that a is strongly antiadjcaent to d. Then, by (5), x
is strongly antiadjacent to d, and z to a. But now {x, a} is anticomplete to

21



{z, d}, and {y, b} is complete to {x, a, z, d}, contrary to 4.7. This proves that
b is not complete to {z, d}, and, in particular, b 6= c. From the symmetry,
this implies that a is not complete to {z, c}, and that {a, b} ∩ {c, d} = ∅.
Since a, b, c, d,∈ NF (y), by (3) and the symmetry we may assume that a is
adjacent to c and b to d. Since F is triangle-free, it follows that b is strongly
antiadjacent to c. Since b is adjacent to d, it follows that b is antiadjacent
to z, and, since a is adjacent to c, it follows that a is antiadjacent to z. But
now z-c-a-b is a path, and y is a center for it, contrary to the fact that G is
unfriendly. This proves (6).

Let C be a component of V (G) \ V (F ), and let f ∈ V (F ). We denote
by C(f) the set of vertices of C that are adjacent to f , and by NF (C) the
set of vertices of F with a neighbor in C.

(7) Let C be a component of V (G) \ V (F ), and let c ∈ C. For i = 1, 2
let Si(c) be defined as in (3). Then, for i = 1, 2 there exists si ∈ Si(c) such
that si is complete to C.

Choose s1 ∈ S1(c) with C(s1) maximal. We may assume that C(s1) 6= C, for
otherwise (7) holds. Let c′ ∈ C \C(s1). By (4), c′ has a neighbor s′1 ∈ S1(c).
It follows from the maximality of C(s1) that there exists c1 ∈ C(s1) such
that s′1 is strongly antiadjacent to c1. But now s1-c1-c′-s′1 is a path with
center c, a contradiction. This proves (7).

(8) Let C be a component of V (G) \ V (F ). Then NF (C) = S1(C) ∪ S2(C)
where each of S1(C), S2(C) is a non-empty strongly stable set.

Let c ∈ C, and let S1(c), S2(c) be as in (3). By (7), for i = 1, 2 there
exists si ∈ Si(c) such that C is complete to si. Now, by (3), we may assume
that for every c′ ∈ C, S1(c′) is complete to s2, and S2(c′) is complete to s1.
For i = 1, 2, let Si(C) =

⋃
c′∈C Si(c′). Then NF (C) = S1(C) ∪ S2(C). But

S1(C) is complete to s2, and S2(C) is complete to s1, and therefore, since
F is triangle free, it follows that each of S1(C) and S2(C) is strongly stable.
This proves (8).

For a component C of V (G) \ V (F ) we call the sets S1(C), S2(C) defined
in (8) the anchors of C.

(9) Let C be a component of V (G) \V (F ). Let S1(C), S2(C) be the anchors
of C, for i = 1, 2 let Ti(C) be the set of vertices of V (F ) \ (S1(C) ∪ S2(C))
with a neighbor in Si(C); and for si ∈ Si(C), let Ti(si) be the set of neighbors
of si in V (F ) \ (S1(C) ∪ S2(C)). Then

• for every s, s′ ∈ S1(C) either s is strongly complete to C(s′), or s′ is
strongly complete to C(s),
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• Let s1 ∈ S1(C) be antiadjacent to s2 ∈ S2(C). Then every vertex of C
is strongly adjacent to one of s1, s2. If some c ∈ C is adjacent to both
s1 and s2, then C = {c}, NF (C) = {s1, s2} and s1 is semi-adjacent to
s2.

• for every s, s′ ∈ S1(C), if some vertex of C(s′) is antiadjacent to s,
then s is strongly complete to T (s′).

• T1(s1) is disjoint from and strongly complete to T2(s2) for every s1 ∈
S1(c), s2 ∈ S2(c) and c ∈ C.

• let c ∈ C, s1 ∈ S1(C) and s2 ∈ S2(C) such that c is adjacent to both
s1 and s2. Then every vertex of C is strongly adjacent to at least one
of s1, s2.

Let s, s′ ∈ S1(C), and suppose there exist c ∈ C adjacent to s and
antiadjacent to s′, and c′ ∈ C adjacent to s′ and antiadjacent to s. By (4),
there is s2 ∈ S2(C) adjacent to both c, c′. By (3), s2 is adjacent to both s
and s′. But now s-c-c′-s′ is a path, and s2 is a center for it, contrary to the
fact that G is unfriendly. This proves the first assertion of (9).

Next assume that s1 ∈ S1(C) is antiadjacent to s2 ∈ S2(C). Suppose
first that some c ∈ C is adjacent to both s1 and s2. By (3), it follows
that S1(c) = {s1}, S2(c) = {s2}, and s1 is semi-adjacent to s2. Suppose
there exists c′ ∈ C \ {c}. By (4), c′ is complete to {s1, s2}. Suppose c′ has a
neighbor f ∈ V (F )\{s1, s2}. By (3), we may assume that f is adjacent to s1
and antiadjacent to s2. But now f -s1-c-s2 is a path, and c′ is a center for it,
a contradiction. Therefore, NF (C) = {s1, s2}. Since s1 is semi-adjacent to
s2, it follows that C is strongly complete to NF (C), and C is a homogeneous
set in G, contrary to the fact that G is unfriendly. Thus C = {c}, and the
second assertion of (9) holds. So we may assume that C(s1) ∩ C(s2) = ∅.
Suppose there exists a vertex c ∈ C anticomplete to {s1, s2}. For i = 1, 2, let
ci ∈ C be adjacent to si. If c, c1, c2 are all distinct, then {s1, c1, c, c2, s2} is a
bull, a contradiction. Thus we may assume that c = c1. By (7), there exists
a vertex s ∈ S2(C) adjacent to both c1 and c2. Since c1 is semi-adjacent to
s1, it follows that c1 is strongly antiadjacent to s2, and so s 6= s2. By (3), s
is adjacent to s1. But now {s1, s, c1, c2, s2} is a bull, a contradiction. This
proves the second assertion of (9).

Next let s, s′ ∈ S1(C), and assume that some vertex c′ ∈ C(s′) is antiad-
jacent to s, and some vertex t′ ∈ T1(s′) is antiadjacent to s. Let s2 ∈ S2(C)
be complete to C (such a vertex s2 exists by (7)). By the second assertion
of (9), and since both s, s′ have neighbors in C, it follows that s2 is adjacent
to both s, s′. But now, since F is triangle-free, {t′, s′, c′, s2, s} is a bull, a
contradiction. This proves the third assertion of (9).

Next, let c ∈ C, and for i = 1, 2, let si ∈ Si(c), and let ti ∈ Ti(si). By (3),
s1 is adjacent to s2. Since F is triangle-free, s1 is strongly antiadjacent to
t2, and s2 to t1, and therefore t1 6= t2. Now since {t1, s1, c, s2, t2} is not a
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bull, it follows that t1 is strongly adjacent to t2, and the fourth assertion
of (9) follows.

Finally, suppose that there exist c, c′ ∈ C, s1 ∈ S1(C) and s2 ∈ S2(C)
such that c is adjacent to both s1 and s2, and c′ is antiadjacent to both s1, s2.
Since c is semi-adjacent to at most one of s1, s2, it follows that c is strongly
adjacent to at least one of s1, s2, and so c 6= c′. By the second assertion
of (9), s1 is adjacent to s2. Since c′ is semi-adjacent to at most one of s1, s2,
we may assume that s1 is strongly antiadjacent to c′. By (7), there exists
s ∈ S1(C) complete to C. Then s 6= s1. By the second assertion of (9),
since s2 has a neighbor in C, it follows that s is adjacent to s2. But now
s1-s2-s-c′ is a path, and c is a center for it, contrary to the fact that G is un-
friendly. This proves the fifth assertion of (9), and completes the proof of (9).

(10) Let X be a component of V (G)\ (F ), with anchors S1, S2. For i = 1, 2,
let Ti be the set of vertices of V (F ) \ (S1 ∪ S2) with a neighbor in Si. Then
G|(X ∪ S1 ∪ S2 ∪ T1 ∪ T2) is a (X,S1, S2, T1, T2)-clique connector.

Let |X| = t. By (9), we can number the vertices of X as {x1, . . . , xt} such
that for every s ∈ S1, N(s) ∩ C = {x1, . . . , xi} for some i ∈ {1, . . . , t}, and
s is strongly complete to {x1, . . . , xi−1}, and for every s ∈ S2, N(s) ∩ C =
{xt−i+1, . . . , xt} for some i ∈ {1, . . . , t}, and s is strongly complete to
{xt−i+2, . . . , xt}. Let i ∈ {1, . . . , t}. Let Ai be the set of vertices of S1

that are strongly complete to {x1, . . . , xi−1}, adjacent to xi and strongly
anticomplete to {xi+1, . . . , xt}. Let A′i be the set of vertices of Ai that are
semi-adjacent to xi. Let Bi be the set of vertices of S2 that are strongly
complete to {xt−i+2, . . . , xt}, adjacent to xt−i+1 and strongly anticomplete
to {x1, . . . , xt−i}. Let B′i be the set of vertices of Bi that are semi-adjacent to
xt−i+1. Then S1 =

⋃t
i=1Ai, and S2 =

⋃t
i=1Bi. Let i ∈ {1, . . . , t}. Let Ci be

the set of vertices of T1 with a neighbor in Ai, and that are strongly anticom-
plete to

⋃
j>iAj , and let Di be the set of vertices of T2 with a neighbor in Bi,

and that are strongly anticomplete to
⋃

j>iBj . Then T1 =
⋃t

i=1Ci, and T2 =⋃t
i=1Di. We show that the setsX,A1, . . . , At, B1, . . . , Bt, C1, . . . , Ct, D1 . . . , Dt

satisfy the axioms of a clique connector.
If i+ j 6= t, then either some vertex of X is complete to Ai∪Bj , or some

vertex of C is anticomplete to Ai∪Bj . Therefore, (9) implies, that if i+j 6= t,
and Ai is not strongly complete to Aj , then |X| = |S1| = |S2| = 1, and S1 is
complete to S2. Since for every i, xi is anticomplete to A′i ∪Bt−i, it follows
from (9) that A′i is strongly complete to Bt−i, and from the symmetry B′t−i

is strongly complete to Ai.
Next we show that S1 is strongly anticomplete to T2. Suppose s1 ∈ S1

has a neighbor u ∈ T2. Let s2 ∈ S2 be a neighbor of u. Then, since F is
triangle-free, it follows that s is strongly antiadjacent to u, and so s1 ∈ Ai\A′i
and s2 ∈ Bt−i \B′t−i for some i ∈ {1, . . . , t}. Now xi-xi+1-s2-u-s1-xi is a hole
of length five. By (7), there exists s′1 ∈ S1 complete to X. Then s′1 6= s1,
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and s′1 is adjacent to xi, xi+1, and, by (9), to s2, contrary to 4.8. This proves
that S1 is strongly anticomplete to T2. Similarly, S2 is strongly anticomplete
to T1.

By (9), for i ∈ {1, . . . , t}, Ci is strongly complete to
⋃

j<iAj , and Di is
strongly complete to

⋃
j<iBj .

We claim that for i ∈ {1, . . . , t}, Ci is strongly complete to A′i. Suppose
c ∈ Ci is antiadjacent to a′ ∈ A′i. Since a′ is semi-adjacent to xi, it follows
that a′ is strongly antiadjacent to c. Since c ∈ Ci, there is a vertex a ∈
Ai \ {a′} that is adjacent to c. But then a is adjacent to both xi and c,
and a′ is antiadjacent to both ci and c, contrary to (9). This proves that
Ci is strongly complete to A′i. Similarly, for i ∈ {1, . . . , t}, Di is strongly
complete to B′i.

Finally, let i, j ∈ {1, . . . , t}, such that i + j > t. We claim that Ci is
strongly complete to Dj . Suppose c ∈ Ci is antiadjacent to d ∈ Dj . Let
ai ∈ Ai be adjacent to c, and let bj ∈ Bj be adjacent to d. Since j > t− i,
it follows that bj is adjacent to ci. But now {c, ai, xi, bj , d} is a bull, a
contradiction.

Finally, by (7), At 6= ∅ and Bt 6= ∅. Thus, all the axioms of a clique
connector are satisfied. This proves (10).

Now, if NF (C1) ∩ NF (C2) = ∅ for every two components C1, C2 of V (G) \
V (F ), then taking H to be the graph whose vertices are the components of
V (G) \V (F ), and with E(H) = ∅, we observe, using (10), that G admits an
H-structure and thus G ∈ T1.

Let us now sketch the general case (see [2] for details). Let C1, C2 be
components of V (G)\V (F ). Renumbering the anchors if necessary, we may
assume that S1(C1) ∩ S2(C2) = S2(C1) ∩ S1(C2) = ∅. Let

i(C1, C2) =


0 if NF (C1) ∩NF (C2) = ∅
1 if S1(C1) ∩ S1(C2) 6= ∅ and S2(C1) ∩ S2(C2) = ∅
1 if S1(C1) ∩ S1(C2) = ∅ and S2(C1) ∩ S2(C2) 6= ∅
2 if S1(C1) ∩ S1(C2) 6= ∅ and S2(C1) ∩ S1(C2) 6= ∅

Let H be the graph whose vertices are the components of V (G) \ V (F ),
and such that if C1, C2 ∈ V (H), then there are i(C1, C2) edges with ends
C1, C2. Then H is a loopless graph, and one can show that H is triangle-
free, maxdeg(H) ≤ 2, and G admits an H-structure. Thus G ∈ T1. This
completes the proof of 4.9.

We can now prove 3.2, which we restate.

4.10 Let G be an elementary bull-free trigraph. Then either

• one of G,G belongs to T1, or

• G admits a homogeneous set decomposition, or
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• G admits a homogeneous pair decomposition.

Let us first remind the reader the main result of [1]. First we repeat the
definition of the class T0. Let G be the trigraph with vertex set

{a1, a2, b1, b2, c1, c2, d1, d2}

and adjacency as follows: {b1, b2, c1, c2} is a strong clique; a1 is strongly
adjacent to b1, b2 and semi-adjacent to c1; a2 is strongly adjacent to c1, c2
and semi-adjacent to b1; d1 is strongly adjacent to a1, a2; d2 is either strongly
adjacent or semi-adjacent to d1; and all the remaining pairs are strongly
antiadjacent. Let X be a subset of {b1, b2, c1, c2} such that |X| ≤ 1. Then
G \X ∈ T0. We observe that since |X| ≤ 1, every trigraph in T0 contains a
three-edge path with a center and an anticenter, and therefore no trigraph
in T0 is elementary.

The main result of [1] is the following:

4.11 Let G be a bull-free trigraph. Let P and Q be paths of length three,
and assume that there is a center for P and an anticenter for Q in G. Then
either

• G admits a homogeneous set decomposition, or

• G admits a homogeneous pair decomposition, or

• G or G belongs to T0.

Proof of 4.10. We may assume that G does not admit a homogeneous
set decomposition or a homogeneous pair decomposition. Assume first that
there are paths P and Q, each of length three, in G, and that there is a
center for P and an anticenter for Q in G. By 4.11, one of G,G belongs
to T0, contrary to the fact that G is elementary. Consequently, no such
paths P,Q exist in G, and therefore we may assume that either G or G is
unfriendly. Since one of the outcomes of 4.10 holds for G if and only if one
of the outcomes of 4.10 holds for G, we may assume that G is unfriendly.
Since if G is a prism, then G has no triangle, and therefore admits and
H-structure with H being the empty graph, 4.1 implies that no induced
subtrigraph of G is a prism.

If G is framed, then G ∈ T1 by 4.9, and if G is not framed, we use 4.5 to
show that G ∈ T1. This proves 4.10.

5 The decomposition theorem for trigraphs

In this section we state a decomposition theorem for bull-free trigraphs. We
start by describing a special type of trigraphs.

1-thin trigraphs. Let G be a trigraph. Let a, b ∈ V (G) be distinct
vertices, and let A = {a1, . . . , an} and B = {b1, . . . , bm} be disjoint subsets
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of V (G) such that A∪B = V (G)\{a, b}. Let us now describe the adjacency
in G.

• a is strongly complete to A and strongly anticomplete to B.

• b is strongly complete to B and strongly anticomplete to A.

• a is semi-adjacent to b.

• If i, j ∈ {1, . . . , n}, and i < j, and ai is adjacent to aj , then ai is
strongly complete to {ai+1, . . . , aj−1}, and aj is strongly complete to
{a1, . . . , ai−1}.

• If i, j ∈ {1, . . . ,m}, and i < j, and bi is adjacent to bj , then bi is
strongly complete to {bi+1, . . . , bj−1}, and bj is strongly complete to
{b1, . . . , bi−1}.

• If p ∈ {1, . . . , n} and q ∈ {1, . . . ,m}, and ap is adjacent to bq, then ap

is strongly complete to {bq+1, . . . , bm}, and bq is strongly complete to
{ap+1, . . . , an}.

Under these circumstances we say that G is 1-thin. We call the pair (a, b)
the base of G.

5.1 Every 1-thin trigraph is bull-free.

We omit the proof, it can be found in [3].
2-thin trigraphs. Let G be a trigraph. Let xAK , xAM , xBK , xBM be

pairwise distinct vertices of G, and let A,B,K,M be pairwise disjoint sub-
sets of V (G), such that K,M are strong cliques, A,B are strongly stable
sets and

A ∪B ∪K ∪M ∪ {xAK , xAM , xBK , xBM} = V (G).

Let t, s ≥ 0 be integers and let K = {k1, . . . , kt} and M = {m1, . . . ,ms} (so
if t = 0 then K = ∅, and if s = 0 then M = ∅). Let A be the disjoint union
of sets Ai,j , and B the disjoint union of sets Bi,j , where i ∈ {0, . . . , t} and
j ∈ {0, . . . , s}.

Assume that :

• A is strongly complete to B

• K is strongly anticomplete to M

• A is strongly complete to {xAK , xAM} and strongly anticomplete to
{xBK , xBM}

• B is strongly complete to {xBK , xBM} and strongly anticomplete to
{xAK , xAM}
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• K is strongly complete to {xAK , xBK} and strongly anticomplete to
{xAM , xBM}

• M is strongly complete to {xAM , xBM} and strongly anticomplete to
{xAK , xBK}

• xAK is semi-adjacent to xBM

• xAM is semi-adjacent to xBK

• the pairs xAKxBK and xAMxBM are strongly adjacent, and the pairs
xAKxAM and xBKxBM are strongly antiadjacent.

Let i ∈ {0, . . . , t} and j ∈ {0, . . . , s}. Then

• if i′ ∈ {0, . . . , t} and j′ ∈ {0, . . . , s} such that i > i′ and j > j′, then
at least one of the sets Ai,j , Ai′,j′ is empty, and at least one of the sets
Bi,j , Bi′,j′ is empty.

• Ai,j is strongly complete to {k1, . . . , ki−1} ∪ {ms−j+2, . . . ,ms},
Ai,j is complete to {ki,ms−j+1},
Ai,j is strongly anticomplete to {ki+1, . . . , kt} ∪ {m1, . . . ,ms−j},

• Bi,j is strongly complete to {kt−i+2, . . . , kt} ∪ {m1, . . . ,mj−1},
Bi,j is complete to {kt−i+1,mj},
Bi,j is strongly anticomplete to {k1, . . . , kt−i} ∪ {mj+1, . . . ,ms}.

Then G is 2-thin with base (xAK , xBM , xBK , xAM ). We call (A,B,K,M)
the partition of G with respect to the base (xAK , xBM , xBK , xAM ).

5.2 Every 2-thin trigraph is bull-free.

Proof. Let G be 2-thin. We observe that G is 1-thin with base (xAK , xBM ),
and the result follows from 5.1. This proves 5.2.

For a semi-adjacent pair a0b0 in a trigraph G, we say that a0b0 is doubly
dominating if every vertex of V (G) \ {a0, b0} is strongly adjacent to one of
a0, b0 and strongly anti-adjacent to the other. 2-thin trigraphs are a subclass
of 1-thin trigraphs, they arise in the following way (see [3] for the proof):

5.3 Let G be a 1-thin trigraph with base (a0, b0) and let x, y ∈ V (G) \
{a0, b0} be such that (x, y) is a doubly dominating semi-adjacent pair. Then
(possibly exchanging the roles of x and y)

• x ∈ A, y ∈ B, and

• G is 1-thin with base (x, y), and

• G is 2-thin with base (a0, b0, x, y).
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Moreover, there exist 1-thin trigraphs that are not 2-thin, for a example all
1-thin trigraphs with a unique semi-adjacent pair.

We will need the following three classes of trigraphs in order to state our
main theorem. The class T0 was defined in [1] and in Section 4, and the
class T1 was defined in Section 3.

The class T2. Let G be a bull-free trigraph and let (A,B) be a homoge-
neous pair in G. Let C be the set of vertices of G that are strongly complete
to A and strongly anticomplete to B, and let D be the set of vertices of G
that are strongly complete to B and strongly anticomplete to A. We say
that (A,B) is doubly dominating if V (G) = A∪B ∪C ∪D, and both C and
D are non-empty.

Let G1, G2 be bull-free trigraphs, and for i = 1, 2 let (ai, bi) be a doubly
dominating semi-adjacent pair in Gi, let Ai be the set of vertices of Gi

that are strongly complete to ai, and let Bi be the set of vertices of Gi

that are strongly complete to bi. We say that G is obtained from G1 and
G2 by composing along (a1, b1, a2, b2) if V (G) = A1 ∪ A2 ∪ B1 ∪ B2, for
i = 1, 2 G|(Ai ∪ Bi) = Gi|(Ai ∪ Bi), A1 is strongly complete to A2 and
strongly anticomplete to B2, and B1 is strongly complete to B2 and strongly
anticomplete to A2. We observe that if (x, y) is a doubly dominating semi-
adjacent pair in Gi and {x, y} 6= {ai, bi}, then (x, y) is a doubly dominating
semi-adjacent pair in G; and these are all the doubly dominating semi-
adjacent pairs in G.

Let H be either the complete graph on two vertices, or the complete
graph on three vertices, or the graph on three vertices with no edges. We
say that a trigraph G is an H-pattern if the vertex set of G consist of two
distinct copies av, bv of every vertex v of H, and such that

• for every v ∈ V (H), av is semi-adjacent to bv, and

• if u, v ∈ V (H) are adjacent, then au is strongly adjacent to av and
strongly antiadjacent to bv, and bu is strongly adjacent to bv and
strongly antiadjacent to av, and

• if u, v ∈ V (H) are non-adjacent, then au is strongly adjacent to bv
and strongly antiadjacent to av, and bu is strongly adjacent to av and
strongly antiadjacent to bv.

Thus for every v ∈ V (H), (av, bv) is a doubly dominating semi-adjacent
pair in G, and there are no other semi-adjacent pairs in G. We say that G
is a triangle pattern if H is the complete graph on three vertices, an edge
pattern if H is the complete graph on two vertices, and a triad pattern if H
is the graph on three vertices with no edges. We remark that edge patterns
are 2-thin graphs, however, it is convenient to have a special name for them.

Let k ≥ 1 be an integer, and let G′1, . . . , G
′
k be trigraphs, such that for

i ∈ {1, . . . , k}, G′k is either a triangle pattern, or a triad pattern, or a 2-thin
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trigraph (possibly an edge pattern). For i ∈ {2, . . . , k}, let (ci, di) be a dou-
bly dominating semi-adjacent pair in G′i. For j ∈ {1, . . . , k − 1}, let (xj , yj)
be a doubly dominating semi-adjacent pair in G′q for some q ∈ {1, . . . , j},
and such that the pairs {c2, d2}, . . . {ck, dk}, {x1, y1}, . . . , {xk−1, yk−1} are all
distinct (and therefore pairwise disjoint).

Let G1 = G′1. Then (x1, y1) is a doubly dominating semi-adjacent pair in
G1. For i ∈ {1, . . . , k − 1}, let Gi+1 be the trigraph obtained by composing
Gi and G′i+1 along (xi, yi, ci+1, di+1). Let G = Gk. We call such a trigraph
G a skeleton. Every skeleton is in T2.

We observe that a semi-adjacent pair {u, v} is doubly dominating in G if
and only if (u, v) is a doubly dominating semi-adjacent pair in some G′i with
i ∈ {1, . . . , k}, and {u, v} is not one of {c2, d2}, . . . , {ck, dk}, {x1, y1}, . . . , {xk−1, yk−1}.

Let G′0 be a skeleton, and for i ∈ {1, . . . , n} let (ai, bi) be a doubly dom-
inating semi-adjacent pair in G′0, such that the pairs {a1, b1}, . . . , {an, bn}
are all distinct (and therefore pairwise disjoint). For i = {1, . . . , n}, let G′i
be a trigraph such that

• V (G′i) = Ai ∪Bi ∪ {a′i, b′i}, and

• the sets Ai, Bi, {a′i, b′i} are all non-empty and pairwise disjoint, and

• a′i is strongly complete to Ai and strongly anticomplete to Bi, and

• b′i is strongly complete to Bi and strongly anticomplete to Ai, and

• a′i is semi-adjacent to b′i, and either

– both Ai, Bi are strong cliques, and there do not exist a ∈ Ai

and b ∈ Bi, such that a is strongly anticomplete to Bi \ {b}, b is
strongly anticomplete to Ai \ {a}, and a is semi-adjacent to b, or

– both Ai, Bi are strongly stable sets, and there do not exist a ∈ Ai

and b ∈ Bi, such that a is strongly complete to Bi \ {b}, b is
strongly complete to Ai \ {a}, and a is semi-adjacent to b, or

– one of G′i, G
′
i is a 1-thin trigraph with base (a′i, b

′
i), and G′i is not

a 2-thin trigraph.

Let G0 = G′0, and for i ∈ {1, . . . , n}, let Gi be obtained by composing
Gi−1 and G′i along (ai, bi, a

′
i, b
′
i). Let G = Gn. Then G ∈ T2.

By [1] and 3.1, every trigraph in T0 ∪ T1 is bull-free. The following is a
theorem from [3] that we state here without a proof.

5.4 Every trigraph in T2 is bull-free.

We also observe that

5.5 G ∈ T2 for every trigraph G ∈ T2.
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The proof of 5.5 is easy and we omit it.
Next let us describe some more decompositions, in addition to the ones

from Section 3. Let G be a trigraph. We say that G admits a 1-join, if V (G)
is the disjoint union of four non-empty sets A,B,C,D such that

• B is strongly complete to C, A is strongly anticomplete to C ∪D, and
B is strongly anticomplete to D;

• |A ∪B| > 2 and |C ∪D| > 2, and

• A is not strongly complete and not strongly anticomplete to B, and

• C is not strongly complete and not strongly anticomplete to D.

We need three special kinds of homogeneous pairs. Let (A,B) be a
homogeneous pair in G. Let C be the set of vertices of V (G) \ (A ∪ B)
that are strongly complete to A and strongly anticomplete to B, D the set
of vertices of V (G) \ (A ∪ B) that are strongly complete to B and strongly
anticomplete to A, E the set of vertices of V (G) \ (A∪B) that are strongly
complete to A ∪ B, and F the set of vertices of V (G) \ (A ∪ B) that are
strongly anticomplete to A ∪B. A homogeneous pair of type zero in G was
defined in [1].

We say that (A,B) is a homogeneous pair of type one in G if

• at least one member of C is adjacent to at least one member of F , and

• at least one member of D is adjacent to at least one member of F , and

• E = ∅, and

• |A| + |B| > 2, and A is not strongly complete and not strongly anti-
complete to B, and

• both A and B are strongly stable sets.

A trigraph T is a forest if there are no holes and no triangles in T . Thus,
for every two vertices of T , there is at most one path between them. A forest
T is a tree if T is connected. A rooted forest is a (k+ 1)-tuple (T, r1, . . . , rk),
where T is a forest with components T1, . . . , Tk, and ri ∈ V (Ti) for i ∈
{1, . . . , k}. Let u, v ∈ V (F ) be distinct. We say that u is a child of v, if
for some i ∈ {1, . . . , k}, both u, v ∈ V (Ti), and u is adjacent to v, and if P
is the unique path of Ti from ri to u, then v ∈ V (P ). We say that u is a
descendant of v if for some i ∈ {1, . . . , k}, both u, v ∈ V (Ti), and if P is the
unique path of Ti from ri to u, then v ∈ V (P ).

Let (T, r1, . . . , rk) be a rooted forest. We say that the trigraph T ′ is the
closure of (T, r1, . . . , rk), if V (T ′) = V (T ), σ(T ) = σ(T ′), and u is adjacent
to v in T ′ if and only if one of u, v is a descendant of the other.

Finally, we say that (A,B) is a homogeneous pair of type two in G if
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• at least one member of C is adjacent to at least one member of F , and

• D 6= ∅, and

• D strongly anticomplete to F , and

• E = ∅, and

• |A| + |B| > 2, and A is not strongly complete and not strongly anti-
complete to B, and

• A is strongly stable, and

• there exists a rooted forest (T, r1, . . . , rk) such that G|B is the closure
of (T, r1, . . . , rk), and

• if b, b′ ∈ B are semi-adjacent, then, possibly with the roles of b and b′

exchanged, b is a leaf of T and a child of b′, and

• if a ∈ A is adjacent to b ∈ B, then a is strongly adjacent to every
descendant of b in T , and

• let u, v ∈ B and assume that u is a child of v. Let i ∈ {1, . . . , k} and let
Ti be the component of T such that u, v ∈ V (Ti). Let P be the unique
path of Ti from v to ri, and let X be the component of Ti\(V (P )\{v})
containing v (and therefore u). Let Y be the set of vertices of X that
are semi-adjacent to v. Let a ∈ A be adjacent to u and antiadjacent
to v. Then a is strongly complete Y and to B \ (V (X) ∪ V (P )), and
a is strongly anticomplete to V (P ) \ {v}.

Please note that every homogeneous pair of type zero, one, or two is
tame in both G and G, and therefore if there is a homogeneous pair of
type zero, one or two in either G or G, then G admits a homogeneous pair
decomposition.

We remind the reader a result from [1]

5.6 Let G be a bull-free trigraph that is not elementary. Then either

• one of G,G belongs to T0, or

• one of G,G contains a homogeneous pair of type zero,or

• G admits a homogeneous set decomposition.

The goal of most of the remainder of this paper is to modify 3.2 to obtain
the following:

5.7 Let G be an elementary bull-free trigraph. Then either

• one of G,G belongs to T1 ∪ T2, or
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• one of G,G contains a homogeneous pair of type one or two, or

• G admits a homogeneous set decomposition.

Then we use 5.6 and 5.7 to prove our main theorem, which we state in the
next section.

6 The main theorem

Let G be a bull-free trigraph, and let a, b ∈ V (G) be semi-adjacent. Let C
be the set of vertices of V (G) \ {a, b} that are strongly adjacent to a and
strongly antiadjacent to b, D the set of vertices of V (G) \ {a, b} that are
strongly adjacent to b and strongly antiadjacent to a, E the set of vertices of
V (G) \ {a, b} that are strongly complete to {a, b}, and F the set of vertices
of V (G) \ {a, b} that are strongly anticomplete to {a, b}. Then V (G) =
{a, b}∪C ∪D∪E ∪F . We say that ab is a semi-adjacent pair of type zero if

• D = ∅, and

• some member of C is antiadjacent to some member of E, and

• |C ∪ E ∪ F | > 2.

We say that ab is a semi-adjacent pair of type one if

• at least one member of C is adjacent to at least one member of F , and

• at least one member of D is adjacent to at least one member of F , and

• E = ∅.

Finally, we say that ab is a semi-adjacent pair of type two if

• at least one member of C is adjacent to at least one member of F , and

• D 6= ∅, and

• D strongly anticomplete to F , and

• E = ∅.

We say that ab is of complement type zero, one or two if ab is of type zero,
one or two in G, respectively. We remark that the type of a semi-adjacent
pair is well defined with one exception—a pair ab may be of both type zero,
and complement type zero. Also, not every semi-adjacent pair in a bull-free
trigraph needs to be of one of the types above, but it turns out that these
are the only types of semi-adjacent pairs that are needed to describe the
structure of bull-free trigraphs.

We say that H is an elementary expansion of G if for every vertex v of G
there exists a non-empty subset Xv of V (H), all pairwise disjoint and with
union V (H), such that
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• for u, v ∈ V (G), if u is strongly adjacent to v, then Xu is strongly
complete to Xv, and if u is strongly antiadjacent to v, then Xu is
strongly anticomplete to Xv,

• if v ∈ V (G) does not belong to any semi-adjacent pair of type 1 or 2
or of complement type 1 or 2, then |Xv| = 1

• if u is semi-adjacent to v, and neither of uv, vu is a semi-adjacent pair
of type 1 or 2 or of complement type 1 or 2, then the unique vertex of
Xu is semi-adjacent to the unique vertex of Xv

• if uv is a semi-adjacent pair of type 1 or 2 in G, then either |Xv| =
|Xu| = 1 and the unique vertex of Xu is semi-adjacent to the unique
vertex of Xv, or (Xu, Xv) is a homogeneous pair of type 1 or 2, respec-
tively, in H

• if uv is a semi-adjacent pair of complement type 1 or 2 in G, then
either |Xv| = |Xu| = 1 and the unique vertex of Xu is semi-adjacent
to the unique vertex of Xv, or (Xu, Xv) is a homogeneous pair of type
1 or 2, respectively, in H.

We say that H is a non-elementary expansion of G if for every vertex v
of G there exists a non-empty subset Xv of V (H), all pairwise disjoint and
with union V (H), such that

• for u, v ∈ V (G), if u is strongly adjacent to v, then Xu is strongly
complete to Xv, and if u is strongly antiadjacent to v, then Xu is
strongly anticomplete to Xv,

• if v ∈ V (G) does not belong to any semi-adjacent pair of type 0 or of
complement type 0, then |Xv| = 1

• if u is semi-adjacent to v, and neither of uv, vu is a semi-adjacent pair
of type 0 or of complement type 0, then the unique vertex of Xu is
semi-adjacent to the unique vertex of Xv

• if uv is a semi-adjacent pair that is both of type 0 and of complement
type zero, then either |Xv| = |Xu| = 1 and the unique vertex of Xu is
semi-adjacent to the unique vertex ofXv, or (Xu, Xv) is a homogeneous
pair of type 0 either in H or in H

• if uv is a semi-adjacent pair of type 0 in G and not in G, then either
|Xv| = |Xu| = 1 and the unique vertex of Xu is semi-adjacent to the
unique vertex of Xv, or (Xu, Xv) is a homogeneous pair of type 0 in
H

• if uv is a semi-adjacent pair of type 0 in G and not in G, then either
|Xv| = |Xu| = 1 and the unique vertex of Xu is semi-adjacent to the
unique vertex of Xv, or (Xu, Xv) is a homogeneous pair of type 0 in
H.
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We leave it to the reader to verify that an elementary expansion of an
elementary bull-free trigraph is another elementary bull-free trigraph, and
that a non-elementary expansion of a bull-free trigraph is another bull-free
trigraph.

Before we can state our main theorem, we need to define an operation.
Let G1, G2 be bull-free trigraphs with disjoint vertex sets. We say that G is
obtained from G1, G2 by substitution if

• there exist a vertex v ∈ V (G1) such that no vertex of V (G1) \ {v} is
semi-adjacent to v, and

• V (G) = (V (G1) ∪ V (G2)) \ {v}, and

• G|(V (G1) \ {v}) = G1 \ {v}, and

• G|V (G2) = G2, and

• for x ∈ V (G1) and y ∈ V (G2), x is strongly adjacent to y if x is
strongly adjacent to v, and x is strongly antiadjacent to y otherwise.

It is easy to check that a trigraph obtained from two bull-free trigraphs by
substitution is another bull-free trigraph.

We can now describe the structure of all bull-free trigraphs (and therefore
of all bull-free graphs). First let us state a theorem that describes the
structure of elementary bull-free trigraphs that are not obtained from smaller
bull-free trigraphs by substitutions.

6.1 Let G be an elementary bull-free trigraph that is not obtained from
smaller bull-free trigraphs by substitution. Then one of G, G is an elemen-
tary expansion of a member of T1 ∪ T2; and every elementary expansion of
a trigraph H such that either H or H is member of T1 ∪ T2 is elementary.

Finally, we describe the structure of all bull-free trigraphs.

6.2 Let G be a bull-free trigraph. Then either

• G is obtained by substitution from smaller bull-free trigraphs, or

• G is a non-elementary expansion of an elementary bull-free trigraph,
or

• one of G,G belongs to T0, or

• one of G, G is an elementary expansion of a member of T1 ∪ T2,

and every trigraph obtained this way is bull-free.

We remark that in view of 5.5 and the definition of an elementary expansion,
6.2 may be restated as follows:

6.3 Let G be a bull-free trigraph. Then either
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• G is obtained by substitution from smaller bull-free trigraphs, or

• G is a non-elementary expansion of an elementary bull-free trigraph,
or

• one of G,G belongs to T0, or

• one of G, G is an elementary expansion of a member of T1, or

• G is an elementary expansion of a member of T2,

and every trigraph obtained this way is bull-free.

In the remainder of this section we prove 6.1 and 6.2 assuming 5.6 and
5.7, and some lemmas from Section 7.

Proof of 6.1 assuming 5.7. Let G be an elementary bull-free trigraph
that is not obtained from smaller bull-free trigraphs by substitution. The
proof is by induction on |V (G)|. By 5.7 either

• one of G,G belongs to T1 ∪ T2, or

• one of G,G contains a homogeneous pair of type one or two, or

• G admits a homogeneous set decomposition.

We may assume that neither of G,G belongs to T1 ∪ T2, for then 6.1 holds.
If G admits a homogeneous set decomposition, then G is obtained from
smaller bull-free trigraphs by substitution, a contradiction. Consequently,
there exists a homogeneous pair (A,B) in G, such that (A,B) is of type 1
or 2 in one of G,G. Since the conclusion of 6.1 is invariant under taking
complements, we may assume that (A,B) is a homogeneous pair of type 1
or 2 in G. Let C be the set of vertices of V (G) \ (A ∪ B) that are strongly
complete to A and strongly anticomplete to B, D the set of vertices of
V (G)\(A∪B) that are strongly complete to B and strongly anticomplete to
A, E the set of vertices of V (G)\(A∪B) that are strongly complete to A∪B,
and F the set of vertices of V (G) \ (A ∪ B) that are strongly anticomplete
to A ∪ B. Let G′ be the trigraph obtained from G|(C ∪ D ∪ E ∪ F ) by
adding two new vertices a and b, such that a is strongly complete to C ∪E
and strongly anticomplete to D ∪ F , b is strongly complete to D ∪ E and
strongly anticomplete to C ∪ F , and a is semi-adjacent to b. We observe
that for i = 1, 2, if (A,B) is a homogeneous pair of type i in G, then ab is a
semi-adjacent pair of type i in G′. Since |V (G′)| < |V (G)|, it follows from
the inductive hypothesis, that either G′ is obtained by substitution from
smaller bull-free trigraphs, or one of G′, G′ is an elementary expansion of a
member of T1 ∪ T2. It is easy to check that if G′ is obtained by substitution
from smaller elementary trigraphs then so is G, and so we may assume
that one of G′, G′ is an elementary expansion of a member of T1 ∪ T2. We
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observe that if G′ is an elementary expansion of a trigraph K, then G′ is
an elementary expansion of K. Thus there exists a trigraph K such that
one of K,K belongs to T1 ∪ T2, and for every vertex v of K there exists a
non-empty subset Xv of V (G′), all pairwise disjoint and with union V (G′),
such that

• for u, v ∈ V (K), if u is strongly adjacent to v, then Xu is strongly
complete to Xv, and if u is strongly antiadjacent to v, then Xu is
strongly anticomplete to Xv,

• if v ∈ V (K) does not belong to any semi-adjacent pair of type 1 or 2
or of complement type 1 or 2, then |Xv| = 1

• if u is semi-adjacent to v, and neither of uv, vu is a semi-adjacent pair
of type 1 or 2 or of complement type 1 or 2, then the unique vertex of
Xu is semi-adjacent to the unique vertex of Xv

• if uv is a semi-adjacent pair of type 1 or 2 in K, then either |Xv| =
|Xu| = 1 and the unique vertex of Xu is semi-adjacent to the unique
vertex of Xv, or (Xu, Xv) is a homogeneous pair of type 1 or 2, respec-
tively, in G′

• if uv is a semi-adjacent pair of complement type 1 or 2 in K, then
either |Xv| = |Xu| = 1 and the unique vertex of Xu is semi-adjacent
to the unique vertex of Xv, or (Xu, Xv) is a homogeneous pair of type
1 or 2, respectively, in G′.

Suppose first that a, b ∈ Xv for some v ∈ V (K). Then, since |Xv| > 2, there
exist u ∈ V (K) such that uv is a semi-adjacent pair of type 1 or 2, or of
complement type 1 or 2, and, consequently, some vertex V (K) \ {u, v} is
strongly adjacent to v. But then some vertex of V (G′) is strongly adjacent
to both a and b, contrary to the fact that ab is a semi-adjacent pair of type
1 or 2 in G′. Thus there exist distinct u, v ∈ V (K) such that a ∈ Xu and
b ∈ Xv. Since a is semi-adjacent to b, it follows that u is semi-adjacent to v
in K.

We claim that uv is a semi-adjacent pair of type 1 or 2 in K. Since ab
is of type 1 or 2 in G′, it follows that no vertex of G′ is adjacent to both
a and b, and, consequently, no vertex of K is adjacent to both u and v,
which implies that uv is not of complement type 1 or 2. Since uv is the
only semi-adjacent pair of K involving u or v, if |Xu| > 1 or |Xv| > 1, then
it follows from the definition of an elementary expansion that uv is of type
1 or 2 in K, and the claim holds. So we may assume that Xu = {a} and
Xv = {b}. But now uv has the same type in K as ab is in G′, and therefore
uv is of type 1 or 2 in K. This proves the claim.

Now, if uv is of type one in K, then 7.4 implies that ((Xu\{a})∪A, (Xv \
{b})∪B) is a homogeneous pair of type one in G; and if uv is of type two in
K, then 7.5 implies that ((Xu \ {a}) ∪A, (Xv \ {b}) ∪B) is a homogeneous

37



pair of type two in G. In both cases, replacing Xu by (Xu \ {a}) ∪ A and
Xv by (Xv \ {b}) ∪B, we observe that G is an elementary expansion of K.
This proves 6.1.

Proof of 6.2 assuming 5.6. Let G be a bull-free trigraph. The proof
is by induction on |V (G)|. We may assume that G is not obtained from
smaller trigraphs by substitutions. If G is elementary, then, by 6.1, one of
G,G is an elementary expansion of a member of T1 ∪ T2, and 6.2 holds. So
we may assume that G is not elementary. So, by 5.6 either

• one of G,G belongs to T0, or

• one of G,G contains a homogeneous pair of type zero, or

• G admits a homogeneous set decomposition.

We may assume that neither of G,G belongs to T0, for then 6.2 holds.
If G admits a homogeneous set decomposition, then G is obtained from
smaller bull-free trigraphs by substitution, a contradiction. Consequently,
there exists a homogeneous pair (A,B) in G, such that (A,B) is of type
zero in one of G,G. Since the conclusion of 6.2 is invariant under taking
complements, we may assume that (A,B) is a homogeneous pair of type zero
in G. Let C be the set of vertices of V (G)\(A∪B) that are strongly complete
to A and strongly anticomplete to B, D the set of vertices of V (G)\ (A∪B)
that are strongly complete to B and strongly anticomplete to A, E the set
of vertices of V (G)\ (A∪B) that are strongly complete to A∪B, and F the
set of vertices of V (G) \ (A ∪ B) that are strongly anticomplete to A ∪ B.
Since (A,B) is of type zero in G, it follows that D = ∅, and some vertex
of C is antiadjacent to some vertex of E. Let G′ be the trigraph obtained
from G|(C ∪ D ∪ E ∪ F ) by adding two new vertices a and b such that
a is strongly complete to C ∪ E and strongly anticomplete to D ∪ F , b is
strongly complete to D ∪ E and strongly anticomplete to C ∪ F , and a is
semi-adjacent to b. Then ab is a semi-adjacent pair of type zero in G′. Since
|V (G′)| < |V (G)|, by the inductive hypothesis, one of the outcomes of 6.2
holds for G′. Therefore, either

• G′ is obtained by substitution from smaller bull-free trigraphs, or

• one of G′, G′ is an elementary expansion of a member of T1 ∪ T2, or

• one of G′, G′ belongs to T0, or

• G′ is a non-elementary expansion of an elementary bull-free trigraph.

If G′ is obtained by substitution from smaller bull-free trigraphs, then
so is G, so we may assume not. If one of G′, G′ is an elementary expansion
of a member of T1 ∪ T2, then G′ is an elementary trigraph, and so setting
Xv = {v}, for v ∈ V (G′) \ {a, b}, and setting Xa = A and Xb = B, we
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observe that G is a non-elementary expansion of G′. So we may assume
that neither of G′, G′ is an elementary expansion of a member of T1 ∪ T2.
We observe that if H is a trigraph such that either H or H belongs to T0,
then for every semi-adjacent pair xy of H, there is a vertex of V (H) \ {x, y}
that is strongly adjacent to x and strongly antiadjacent to y, and a vertex
of V (H) \ {x, y} that is strongly adjacent to y and strongly antiadjacent to
x, and hence there is no semi-adjacent pair of type zero in H. Consequently
neither of G′, G′ belongs to T0. This implies that G′ is a non-elementary
expansion of an elementary bull-free trigraph. This means that there is an
elementary trigraph K such that for every vertex v of K there exists a non-
empty subset Xv of V (G′), all pairwise disjoint and with union V (G′), such
that

• for u, v ∈ V (K), if u is strongly adjacent to v, then Xu is strongly
complete to Xv, and if u is strongly antiadjacent to v, then Xu is
strongly anticomplete to Xv,

• if v ∈ V (K) does not belong to any semi-adjacent pair of type 0 or of
complement type 0, then |Xv| = 1

• if u is semi-adjacent to v, and neither of uv, vu is a semi-adjacent pair
of type 0 or of complement type 0, then the unique vertex of Xu is
semi-adjacent to the unique vertex of Xv

• if uv is a semi-adjacent pair that is both of type 0 and of complement
type zero, then either |Xv| = |Xu| = 1 and the unique vertex of Xu is
semi-adjacent to the unique vertex ofXv, or (Xu, Xv) is a homogeneous
pair of type 0 either in G′ or in G′

• if uv is a semi-adjacent pair of type 0 in K and not in K, then either
|Xv| = |Xu| = 1 and the unique vertex of Xu is semi-adjacent to the
unique vertex of Xv, or (Xu, Xv) is a homogeneous pair of type 0 in
G′

• if uv is a semi-adjacent pair of type 0 in K and not in K, then either
|Xv| = |Xu| = 1 and the unique vertex of Xu is semi-adjacent to the
unique vertex of Xv, or (Xu, Xv) is a homogeneous pair of type 0 in
G′.

Since for every v ∈ V (K), Xv is either a strongly stable set or a strong
clique, it follows that there exist distinct u, v ∈ V (K) such that a ∈ Xu

and b ∈ Xv. Suppose that either |Xu| > 1 or |Xv| > 1. Then (Xu, Xv) is a
homogeneous pair of type zero in either G′ or G′, and so (from the definition
of a homogeneous pair of type zero) some vertex of G′ is strongly adjacent
to b and strongly antiadjacent to a, contrary to the fact that D = ∅. This
proves that |Xu| = |Xv| = 1, and so Xu = {a} and Xv = {b}. Since ab is
a semi-adjacent pair of type zero in G′, it follows that that uv is a semi-
adjacent pair of type zero in K. But now, replacing Xu by A and Xv by
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B, we observe that G is a non-elementary expansion of K. This proves 6.2.

From now on we will turn our efforts to proving 5.7. The difference
between 3.2, that we have already proved, and 5.7 is that while we have no
control over the homogeneous pairs that come up in 3.2, in 5.7 only special
kinds of homogeneous pair decomposition are permitted (at the expense of
introducing a new basic class T2.) Thus, most of the work in the remainder
of this paper will be devoted to understanding what kind of homogeneous
pairs can occur in an elementary bull-free trigraph.

We start Section 7 by understanding elementary bull-free trigraphs that
admit only very special tame homogeneous pairs, called “doubly dominat-
ing”. We show that every such trigraph is obtained by repeated substitu-
tions from trigraphs in T2 and their complements. Then we classify other
tame homogeneous pairs in elementary bull-free trigraphs, proving that (up
to taking complements) every elementary bull-free trigraph either belongs
to T1 ∪ T2, or admits a homogeneous set decomposition, or a 1-join, or a
homogeneous pair of type one, two or three (7.2). Section 8 shows that
homogeneous pairs of type three are in fact unnecessary (8.1). Finally, in
Section 9 we prove that no minimum size counterexample to 5.7 admits a
1-join, thus proving 5.7.

7 Understanding homogeneous pairs

Let G be a bull-free trigraph, and let (A,B) be a homogeneous pair in G.
We remind the reader that (A,B) is doubly dominating if every vertex of
V (G) \ (A ∪ B) is either strongly complete to A and strongly anticomplete
to B, or strongly complete to B and strongly anticomplete to A. As it
turns out, elementary bull-free trigraphs that admit tame doubly dominating
homogeneous pairs but no other homogeneous pairs are very restricted. In [3]
we prove the following:

7.1 Let G be an elementary bull-free trigraph. Assume that there is a doubly
dominating tame homogeneous pair in G, and that every tame homogeneous
pair in G is doubly dominating. Then either G admits a homogeneous set
decomposition, or one of G,G belongs to T2.

The proof of 7.1 is quite involved, and we omit it here.
We now turn our attention to other homogeneous pairs in elementary

bull-free trigraphs. We remind the reader that homogeneous pairs of types
zero, one and two are defined in Section 3. Let (A,B) be a tame homoge-
neous pair in G. Let C be the set of vertices of V (G) \ (A ∪ B) that are
strongly complete to A and strongly anticomplete to B, D the set of vertices
of V (G)\(A∪B) that are strongly complete to B and strongly anticomplete
to A, E the set of vertices of V (G) \ (A ∪B) that are strongly complete to

40



A ∪ B, and F the set of vertices of V (G) \ (A ∪ B) that are strongly anti-
complete to A ∪B. We say that (A,B) is a homogeneous pair of type three
in G if

• A is a strongly stable set, and

• B is a strong clique, and

• C is not strongly anticomplete to F , and

• C is not strongly complete to E.

We observe that the pair (A,B) is a of type three in G if and only if (B,A)
is of type three in G.

Our goal is to prove the following:

7.2 Let G be an elementary bull-free trigraph. Assume that G does not
admit a homogeneous set decomposition. Let (A,B) be a tame homogeneous
pair in G that is not doubly dominating. Then one of G,G admits a 1-join,
or a homogeneous pair of type one, two or three.

First, given a tame homogeneous pair (A,B), we study the behavior of
G \ (A ∪B).

7.3 Let G be an elementary bull-free trigraph, and let (A,B) be a tame
homogeneous pair in G. Let C be the set of vertices of V (G) \ (A ∪ B)
that are strongly complete to A and strongly anticomplete to B, D the set
of vertices of V (G) \ (A ∪ B) that are strongly complete to B and strongly
anticomplete to A, E the set of vertices of V (G) \ (A ∪B) that are strongly
complete to A ∪ B, and F the set of vertices of V (G) \ (A ∪ B) that are
strongly anticomplete to A ∪B. Assume that E ∪ F 6= ∅. Then either

1. G admits a homogeneous set decomposition, or

2. one of G,G admits a 1-join, or

3. (possibly with the roles of C and D switched) each of the sets C,D, F
is non-empty, E = ∅, D is strongly anticomplete to F , and C is not
strongly anticomplete to F , or

4. (possibly with the roles of C and D switched) each of the sets C,D,E is
non-empty, F = ∅, D is strongly complete to E, and C is not strongly
complete to E, or

5. both of the following two statements hold:

• D is not strongly complete to E, or C is not strongly anticomplete
to F , and

• C is not strongly complete to E, or D is not strongly anticomplete
to F .
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Proof. First we observe that G satisfies the hypotheses of 7.3 if and only if
G does, and G satisfies the conclusions of 7.3 if and only if G does. Moreover,
passing to G exchanges the roles of C and D, and the roles of E and F we
may assume that neither of G,G admits 1-join, and that G (and therefore
G) does not admit a homogeneous set decomposition.

(1) If F 6= ∅, then F is not strongly anticomplete to C ∪D.

Suppose F 6= ∅, and F is strongly anticomplete to C ∪ D. Since G does
not admit a homogeneous set decomposition, it follows that E 6= ∅, and
there exist vertices e ∈ E and f ∈ F such that e is adjacent to f . Choose
a ∈ A and b ∈ B adjacent. Since {f, e, b, a, c} is not a bull for any c ∈ C, it
follows that e is strongly complete to C, and similarly e is strongly complete
to D. Let E0 be the set of vertices of E with a neighbor in F . Then E0 is
strongly complete to C ∪ D. Let E′ be the union of anticomponents X of
E such that X ∩ E0 6= ∅. We claim that E′ is strongly complete to C ∪D.
First we observe that if e1-e2-e3 is an antipath with e1 ∈ E0, e2 ∈ E \ E0

and e3 ∈ C ∪ D ∪ (E \ E0), then, choosing f1 ∈ F adjacent to e1, we get
that one of {f1, e1, e3, b, e2} and {f1, e1, e3, a, e2} is a bull, a contradiction.
So no such antipath e1-e2-e3 exists. This implies that every vertex of E′ \E0

has an antineighbor in E0, and, consequently, that E′ is strongly complete
to C ∪ D. But now, since E \ E′ is strongly complete to E′ and strongly
anticomplete to F , it follows that X = A∪B ∪C ∪D ∪ (E \E′) is a homo-
geneous set in G, and e, f ∈ V (G) \X, contrary to the fact that G does not
admit a homogeneous set decomposition. This proves (1).

Passing to the complement if necessary, we may assume that F 6= ∅. By (1),
we may assume that some vertex c ∈ C is adjacent to some vertex f ∈ F .
Now we may assume that C is strongly complete to E, and that D is strongly
anticomplete to F , for otherwise the fifth outcome of 7.3 holds.

(2) If E 6= ∅, then 7.3 holds.

Suppose E 6= ∅. Since C is strongly complete to E, (1) applied in G implies
that there exists a vertex d ∈ D antiadjacent to a vertex e ∈ E. Passing
to G if necessary, we may assume that f is antiadjacent to e. But now,
choosing a ∈ A and b ∈ B antiadjacent, we observe that {f, c, a, e, b} is a
bull, a contradiction. This proves (2).

In view of (2) we may assume that E = ∅. Now, since G does not ad-
mit a 1-join, it follows that D 6= ∅, and the fourth outcome of 7.3 holds.
This proves 7.3.

Next we prove two useful lemmas about the structure of the sets A and
B of a homogeneous pair (A,B).
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7.4 Let G be a bull-free trigraph, and let (A,B) be a homogeneous pair in
G. Let C be the set of vertices of V (G) \ (A∪B) that are strongly complete
to A and strongly anticomplete to B, D the set of vertices of V (G)\ (A∪B)
that are strongly complete to A and strongly anticomplete to B, E the set of
vertices of V (G) \ (A ∪ B) that are strongly complete to A ∪ B, and F the
set of vertices of V (G) \ (A ∪ B) that are strongly anticomplete to A ∪ B.
Assume that G does not admit a homogeneous set decomposition. Then:

1. If some vertex of C is adjacent to some vertex of F , then A is strongly
stable.

2. If some vertex of D is antiadjacent to some vertex of E, then A is a
strong clique.

Proof. Since the second assertion of 7.4 follows from the first by passing
to G, it is enough to prove the first assertion. Let c ∈ C be adjacent to
f ∈ F . Suppose A is not strongly stable, and let X be a component of A
with |X| > 1. Since G does not admit a homogeneous set decomposition,
it follows that some vertex v ∈ V (G) \X is mixed on X. Since (A,B) is a
homogeneous pair in G, and X is a component of A, it follows that v ∈ B.
By 2.2, there exist vertices x, y ∈ X such that x is adjacent to y, and v
is adjacent to x and antiadjacent to y. But now {v, x, y, c, f} is a bull, a
contradiction. This proves 7.4.

7.5 Let G be a bull-free trigraph, and let (A,B) be a homogeneous pair in
G. Let C be the set of vertices of V (G)\(A∪B) that are strongly complete to
A and strongly anticomplete to B, D the set of vertices of V (G)\(A∪B) that
are strongly complete to B and strongly anticomplete to A, and F the set of
vertices of V (G) \ (A∪B) that are strongly anticomplete to A∪B. Assume
that V (G) = A∪B ∪C ∪D ∪F , and that G does not admit a homogeneous
set decomposition. Suppose that each of the sets C,D, F is non-empty, D is
strongly anticomplete to F , and C is not strongly anticomplete to F . Then
(A,B) is a homogeneous pair of type two in G.

We omit the proof and refer the reader to [3]. We can now prove 7.2
Proof of 7.2. Let C be the set of vertices of V (G) \ (A ∪ B) that

are strongly complete to A and strongly anticomplete to B, D the set of
vertices of V (G) \ (A ∪ B) that are strongly complete to B and strongly
anticomplete to A, E the set of vertices of V (G) \ (A∪B) that are strongly
complete to A ∪ B, and F the set of vertices of V (G) \ (A ∪ B) that are
strongly anticomplete to A∪B. We may assume that neither of G,G admits
a 1-join. SinceG does not admit a homogeneous set decomposition, it follows
that one of the last three outcomes of 7.3 holds. Passing to G if necessary,
we may assume that F 6= ∅ and C is not strongly anticomplete to F . Since
F 6= ∅, we deduce that either the third, or the fifth outcome of 7.3 holds. If
the third outcome of 7.3 holds, then by 7.5 G admits a homogeneous pair

43



of type two, so we may assume that the fifth outcome of 7.3 holds. Since C
is not strongly anticomplete to F , 7.3 implies that either C is not strongly
complete to E, or D is not strongly anticomplete to F .

Since C is not strongly anticomplete to F , 7.4 implies that A is a strongly
stable set. If C is not strongly complete to E, then, by 7.4 applied in G,
we deduce that B is a strong clique and (A,B) is a homogeneous pair of
type three in G. So we may assume that D is not strongly anticomplete
to F . But then, again by 7.4, B is a strongly stable set, and (A,B) is a
homogeneous pair of type one in G. This proves 7.2.

8 Dealing with homogeneous pairs of type three

Let us first summarize what we know about the structure of elementary
bull-free trigraphs so far:

8.1 Let G be an elementary bull-free trigraph. Then either

• one of G,G belongs to T1 ∪ T2, or

• G admits a homogeneous set decomposition, or

• one of G,G admits a 1-join, or

• one of G,G admits a homogeneous pair decomposition of type one, two
or three.

Proof. By 3.2, one of the following holds:

• one of G,G belongs to T1, or

• G admits a homogeneous set decomposition, or

• G admits a homogeneous pair decomposition.

We may assume that G admits a homogeneous pair decomposition, for oth-
erwise one of the outcomes of 8.1 holds. Thus there is a tame homogeneous
pair in G. If every tame homogeneous pair in G is doubly dominating, then
by 7.1, either G admits a homogeneous set decomposition, or one of G,G
belongs to T2, and again 8.1 holds. Thus we may assume that there is a
homogeneous pair in G which is not doubly dominating. Now, by 7.2, one
of G,G admits a 1-join, or a homogeneous pair of type one, two or three.
This proves 8.1.

In fact, 8.1 can be strengthened further, omitting one of the outcomes,
namely a homogeneous pair decomposition of type three. We prove the
following:

8.2 Let G be an elementary bull-free trigraph. Then either
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• one of G,G belongs to T1 ∪ T2, or

• G admits a homogeneous set decomposition, or

• one of G,G admits a 1-join, or

• one of G,G admits a homogeneous pair decomposition of type one or
two.

Proof. Suppose 8.2 is false, and let G be a counterexample to 8.2 with
|V (G)|minimum. It follows from 8.1 that one ofG,G admits a homogeneous
pair decomposition of type three, and therefore both G and G admit a
homogeneous pair decomposition of type three. Let (P,Q) be a homogeneous
pair of type three in G (and so (Q,P ) is a homogeneous pair of type three in
G). Let C be the set of vertices of V (G)\(P ∪Q) that are strongly complete
to P and strongly anticomplete to Q, D the set of vertices of V (G)\ (P ∪Q)
that are strongly complete to Q and strongly anticomplete to P , E the set
of vertices of V (G)\ (P ∪Q) that are strongly complete to P ∪Q, and F the
set of vertices of V (G)\(P ∪Q) that are strongly anticomplete to P ∪Q. Let
G′ be the trigraph obtained from G \ (P ∪Q) by adding two new vertices a
and b such that a is strongly complete to C∪E and strongly anticomplete to
D∪F , b is strongly complete to D∪E and strongly anticomplete to C ∪F ,
and a is semi-adjacent to b. Then G′ is an elementary bull-free trigraph.
From the minimality of |V (G)|, it follows that one of the outcomes of 8.2
holds for G′. Since so far we have preserved the symmetry between G and
G, we may assume that either:

• G′ ∈ T1 ∪ T2, or

• G′ admits a homogeneous set decomposition, or

• G′ admits a 1-join, or

• G′ admits a homogeneous pair decomposition of type one or two.

Now one can show (see [3] for details) that G satisfies the same outcome of
8.2 as G. This proves 8.2.

9 The proof of 5.7

In this section we finish the proof of 5.7, which we restate.

9.1 Let G be an elementary bull-free trigraph. Then either

• one of G,G belongs to T1 ∪ T2, or

• one of G,G contains a homogeneous pair of type one or two, or

• G admits a homogeneous set decomposition.
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Proof. Suppose 9.1 is false, and let G be a counterexample of 9.1 with
|V (G)| minimum. Then G is also a counterexample to 9.1, and |V (G)| =
|V (G)|. By 8.2, and since both G and G are counterexamples to 9.1, we
may assume that G admits a 1-join. Therefore, V (G) is the disjoint union
of four non-empty sets A,B,C,D such that

• B is strongly complete to C, A is strongly anticomplete to C ∪D, and
B is strongly anticomplete to D;

• |A ∪B| > 2 and |C ∪D| > 2, and

• A is not strongly complete and not strongly anticomplete to B, and

• C is not strongly complete and not strongly anticomplete to D.

Let G1 be the trigraph obtained from G|(A ∪ B) by adding two new
vertices c and d, such that c is strongly complete to B and strongly an-
ticomplete to A, and d is semi-adjacent to c and strongly anticomplete to
A ∪ B. Let G2 be the trigraph obtained from G|(C ∪ D) by adding two
new vertices a and b, such that b is strongly complete to C and strongly
anticomplete to D, and a is semi-adjacent to b and strongly anticomplete to
C ∪D.

Since for i = 1, 2, |V (Gi)| < |V (G)|, it follows that one of the outcomes
of 9.1 holds for Gi, and one can show (see [3]) that G1, G2 ∈ T1. Since
every vertex in a double melt has a strong neighbor in the melt, it follows
that G1, G2 are not double melts. Therefore, there exist graphs H1, H2 each
with maximum degree at most two, such that for i = 1, 2 Gi admits an
Hi-structure. Let Li ⊆ V (Gi) and

hi : V (Hi) ∪ E(Hi) ∪ (E(Hi)× V (Hi))→ 2V (Gi)\Li

be as in the definition of an Hi-structure. Since for every e ∈ E(Hi) with
ends u, v, Gi|(h(e)∪h(e, v)∪h(e, u)) is an h(e)-melt, and since every vertex of
a melt has a strong neighbor in the melt, it follows that d 6∈ h1(e)∪ h1(e, v)
for any e ∈ E(H1), v ∈ V (H1). Similarly, a 6∈ h2(e) ∪ h2(e, v) for any
e ∈ E(H2), v ∈ V (H2). Since every vertex of hi(v) has a strong neighbor
in V (Gi) it follows that d 6∈ h1(v) for any v ∈ V (H1), and a 6∈ h2(v) for
any v ∈ V (H2). Consequently, d ∈ L1 and a ∈ L2. Since d has no strong
neighbors in V (G1) \ {d}, and d is semi-adjacent to c, it follows that c ∈ L1

and similarly b ∈ L2.
By 7.4, B and C are strongly stable sets, and one can show that B ⊆

L1 ∪ (
⋃

e∈E(H1) h1(e)), and similarly, C ⊆ L2 ∪ (
⋃

e∈E(H2) h2(e)).
Let L = (L1∪L2)\{a, b, c, d}, let H be the disjoint union of H1 and H2.

We observe that G|L has no triangle. Now, defining

h : V (H) ∪ E(H) ∪ (E(H)× V (H))→ 2V (G)\L

as h(x) = hi(x) for x ∈ V (Hi) ∪E(Hi) ∪ (E(Hi)× V (Hi)), we observe that
G admits an H-structure, and therefore G ∈ T1, contrary to the fact that G
is a counterexample to 9.1. This proves 9.1.
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