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Abstract

A graph is claw-free if no vertex has three pairwise nonadjacent neighbours. In this series of papers
we give a structural description of all claw-free graphs. In this paper, we achieve a major part of
that goal; we prove that every claw-free graph either belongs to one of a few basic classes, or admits
a decomposition in a useful way.



1 Introduction

Let G be a graph. (All graphs in this paper are finite and simple.) If X ⊆ V (G), the subgraph
G|X induced on X is the subgraph with vertex set X and edge-set all edges of G with both ends in
X. (V (G) and E(G) denote the vertex- and edge-sets of G respectively.) We say that X ⊆ V (G)
is a claw in G if |X| = 4 and G|X is isomorphic to the complete bipartite graph K1,3. We say G is
claw-free if no X ⊆ V (G) is a claw in G. Our objective in this series of papers is to show that every
claw-free graph can be built starting from some basic classes by means of some simple constructions.

For instance, one of the first things we shall show is that if G is claw-free, and has an induced
subgraph that is a line graph of a (not too small) cyclically 3-connected graph, then either the whole
graph G is a line graph, or G admits a decomposition of one of two possible types. That suggests
that we should investigate which other claw-free graphs do not admit either of these decompositions;
and that turns out to be a good question, because at least when α(G) ≥ 4 there is a nice answer.
(We denote the size of the largest stable set of vertices in G by α(G).) All claw-free graphs G with
α(G) ≥ 4 that do not admit either of these decompositions can be explicitly described, and fall into
a few basic classes; and all connected claw-free graphs G with α(G) ≥ 4 can be built from these basic
types by simple constructions. (When α(G) ≤ 3 the situation becomes more complicated; there are
both more basic types and more decompositions required, as we shall explain.)

There is a difference between a “decomposition theorem” and a “structure theorem”, although
they are closely related. In this paper we prove a decomposition theorem for claw-free graphs; we
show that they all either belong to a few basic classes or admit certain decompositions. But this can
be refined into a structure theorem that is more informative; for instance, every connected claw-free
graph G with α(G) ≥ 4 has the same overall “shape” as a line graph, and more or less can be
regarded as a line graph with “strips” substituted for some of the vertices. For reasons of space, that
development, and its application to several open questions about claw-free graphs, is postponed to
a future paper.

2 Trigraphs

To facilitate converting this decomposition theorem to a structure theorem, it is very helpful (indeed,
necessary, as far as we can see) to work with slightly more general objects than graphs, that we call
“trigraphs”. In a graph, every pair of vertices are either adjacent or nonadjacent, but in a trigraph,
some pairs may be “undecided”. For our purposes, we may assume that this set of undecided pairs
is a matching. Thus, let us say a trigraph G consists of a finite set V (G) of vertices, and a map
θG : V (G)2 → {1, 0,−1}, satisfying:

• for all v ∈ V (G), θG(v, v) = 0

• for all distinct u, v ∈ V (G), θG(u, v) = θG(v, u)

• for all distinct u, v,w ∈ V (G), at most one of θG(u, v), θG(u,w) = 0.

We call θG the adjacency function of G. For distinct u, v in V (G), we say that u, v are strongly
adjacent if θG(u, v) = 1, strongly antiadjacent if θG(u, v) = −1, and semiadjacent if θG(u, v) = 0. We
say that u, v are adjacent if they are either strongly adjacent or semiadjacent, and antiadjacent if they
are either strongly antiadjacent or semiadjacent. Also, we say u is adjacent to v and u is a neighbour
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of v if u, v are adjacent (and a strong neighbour if u, v are strongly adjacent); u is antiadjacent to v
and u is an antineighbour of v if u, v are antiadjacent. We denote by F (G) the set of all pairs {u, v}
such that u, v ∈ V (G) are distinct and semiadjacent. Thus a trigraph G is a graph if F (G) = ∅.

For a vertex a and a set B ⊆ V (G) \ {a} we say that a is complete to B or B-complete if a
is adjacent to every vertex in B; and that a is anticomplete to B or B-anticomplete if a has no
neighbour in B. For two disjoint subsets A and B of V (G) we say that A is complete, respectively
anticomplete, to B, if every vertex in A is complete, respectively anticomplete, to B. (We sometimes
say A is B-complete, or the pair (A,B) is complete, meaning that A is complete to B.) Similarly,
we say that a is strongly complete to B if a is strongly adjacent to every member of B, and so on.

Let G be a trigraph. A clique in G is a subset X ⊆ V (G) such that every two members of X are
adjacent, and a strong clique is a subset such that every two of its members are strongly adjacent.
A set X ⊆ V (G) is stable if every two of its members are antiadjacent, and strongly stable if every
two of its members are strongly antiadjacent. We define α(G) to be the maximum cardinality of a
stable set.

If X ⊆ V (G), we define the trigraph G|X induced on X as follows. Its vertex set is X, and its
adjacency function is the restriction of θG to X2. Isomorphism for trigraphs is defined in the natural
way, and if G,H are trigraphs, we say that G contains H and H is an induced subtrigraph of G if
there exists X ⊆ V (G) such that H is isomorphic to G|X.

A claw is a trigraph with four vertices a0, a1, a2, a3, such that {a1, a2, a3} is stable and a0 is
complete to {a1, a2, a3}. If X ⊆ V (G) and G|X is a claw, we often loosely say that X is a claw;
and if no induced subtrigraph of G is a claw, we say that G is claw-free. Thus, our object here is to
obtain a decomposition theorem for claw-free trigraphs.

An induced subtrigraph G|X of G is said to be a path from u to v if |X| = n for some n ≥ 1, and
X can be ordered as {p1, . . . , pn}, satisfying

• p1 = u and pn = v

• pi is adjacent to pi+1 for 1 ≤ i < n, and

• pi is antiadjacent to pj for 1 ≤ i, j ≤ n with i + 2 ≤ j.

We say it has length n − 1. (Thus it has length 0 if and only if u = v.) It is often convenient to
describe such a path by the sequence p1-p2- · · · -pn. Note that the sequence is uniquely determined
by the set {p1, . . . , pn} and the vertices u, v, because F (G) is a matching.

A hole in G is an induced subtrigraph C with n vertices for some n ≥ 4, whose vertex set can be
ordered as {c1, . . . , cn}, satisfying (reading subscripts modulo n)

• ci is adjacent to ci+1 for 1 ≤ i ≤ n, and

• ci is antiadjacent to cj for 1 ≤ i, j ≤ n with j 6= i − 1, i, i + 1.

Again, it is often convenient to describe C by the sequence c1-c2- · · · -cn-c1, and we say it has length n.
The sequence is uniquely determined by a knowledge of V (C), up to choice of the first term and up to
reversal. An n-hole means a hole of length n. A centre for a hole C is a vertex in V (G) \ V (C) that
is adjacent to every vertex of the hole. A hole C is dominating in G if every vertex in V (G) \ V (C)
has a neighbour in C.
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3 The main theorem

In this section we state our main theorem, but first we need a number of further definitions. A
clique with cardinality three is a triangle. A triad in a trigraph G means a set of three vertices of G,
pairwise antiadjacent. Let us explain the decompositions that we shall use in the main theorem.

The first is that G admits “twins”. Two strongly adjacent vertices of a trigraph G are called
twins if (apart from each other) they have the same neighbours in G, and the same antineighbours,
and if there are two such vertices, we say “G admits twins”. If X ⊆ V (G) is a strong clique and
every vertex in V (G) \ X is either strongly complete or strongly anticomplete to X, we call X a
homogeneous set. Thus, G admits twins if and only if some homogeneous set has more than one
member.

For the second decomposition, let A,B be disjoint subsets of V (G). The pair (A,B) is called
a homogeneous pair in G if A,B are strong cliques, and for every vertex v ∈ V (G) \ (A ∪ B), v is
either strongly A-complete or strongly A-anticomplete and either strongly B-complete or strongly
B-anticomplete. (This is related to, but not the same as, the standard definition of “homogeneous
pair”, due to Chvatal and Sbihi [5]; it was convenient for us to modify their definition a little.) Let
(A,B) be a homogeneous pair, such that A is neither strongly complete nor strongly anticomplete
to B, and at least one of A,B has at least two members. In these circumstances we call (A,B) a
W-join. A homogeneous pair (A,B) is nondominating if some vertex of G\(A∪B) has no neighbour
in A∪B (and dominating otherwise); and it is coherent if the set of all (A∪B)-complete vertices in
V (G) \ (A ∪ B) is a strong clique.

Next, suppose that V1, V2 is a partition of V (G) such that V1, V2 are nonempty and V1 is strongly
anticomplete to V2. We call the pair (V1, V2) a 0-join in G.

Next, suppose that V1, V2 is a partition V (G), and for i = 1, 2 there is a subset Ai ⊆ Vi such that:

• Ai, Vi \ Ai 6= ∅ for i = 1, 2

• A1 ∪ A2 is a strong clique, and

• V1 \ A1 is strongly anticomplete to V2, and V1 is strongly anticomplete to V2 \ A2.

In these circumstances, we say that (V1, V2) is a 1-join.
Next, suppose that V0, V1, V2 are disjoint subsets with union V (G), and for i = 1, 2 there are

subsets Ai, Bi of Vi satisfying the following:

• V0∪A1∪A2 and V0∪B1∪B2 are strong cliques, and V0 is strongly anticomplete to Vi\(Ai∪Bi)
for i = 1, 2;

• for i = 1, 2, Ai ∩ Bi = ∅ and Ai, Bi and Vi \ (Ai ∪ Bi) are all nonempty; and

• for all v1 ∈ V1 and v2 ∈ V2, either v1 is strongly antiadjacent to v2, or v1 ∈ A1 and v2 ∈ A2, or
v1 ∈ B1 and v2 ∈ B2.

We call the triple (V0, V1, V2) a generalized 2-join, and if V0 = ∅ we call the pair (V1, V2) a 2-join.
(This is closely related to, but not exactly the same as, what has been called a 2-join in other papers.)

We use one more decomposition, the following. Let (V1, V2) be a partition of V (G), such that for
i = 1, 2 there are strong cliques Ai, Bi, Ci ⊆ Vi with the following properties:
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• V1, V2 are both nonempty;

• for i = 1, 2 the sets Ai, Bi, Ci are pairwise disjoint and have union Vi;

• if v1 ∈ V1 and v2 ∈ V2, then v1 is strongly adjacent to v2 unless either v1 ∈ A1 and v2 ∈ A2, or
v1 ∈ B1 and v2 ∈ B2, or v1 ∈ C1 and v2 ∈ C2; and in these cases v1, v2 are strongly antiadjacent.

In these circumstances we say that G is a hex-join of G|V1 and G|V2. Note that if G is expressible
as a hex-join as above, then the sets A1 ∪ B2, B1 ∪ C2 and C1 ∪ A2 are three strong cliques with
union V (G), and consequently no trigraph with four pairwise antiadjacent vertices is expressible as
a hex-join.

Next, we list some basic classes of trigraphs. First some convenient terminology. If H is a graph
and G is a trigraph, we say that G is an H-trigraph if V (G) = V (H), and for all distinct u, v ∈ V (H),
if u, v are adjacent in H then they are adjacent in G, and if u, v are nonadjacent in H then they are
antiadjacent in G.

• Line trigraphs. Let H be a graph, and let G be a trigraph with V (G) = E(H). We say that
G is a line trigraph of H if for all distinct e, f ∈ E(H):

– if e, f have a common end in H then they are adjacent in G, and if they have a common
end of degree at least three in H, then they are strongly adjacent in G

– if e, f have no common end in H then they are strongly antiadjacent in G.

We say that G ∈ S0 if G is isomorphic to a line trigraph of some graph. It is easy to check
that any line trigraph is claw-free.

• Trigraphs from the icosahedron. The icosahedron is the unique planar graph with twelve
vertices all of degree five. For k = 0, 1, 2, 3, icosa(−k) denotes the graph obtained from the
icosahedron by deleting k pairwise adjacent vertices. We say G ∈ S1 if G is a claw-free icosa(0)-
trigraph, icosa(−1)-trigraph or icosa(−2)-trigraph. (We prove in 5.1 and 5.2 below that for
k = 0, 1, every claw-free icosa(−k)-trigraph G satisfies F (G) = ∅ and therefore is a graph; and
every claw-free icosa(−2)-trigraph G satisfies |F (G)| ≤ 2.)

• The graphs S2. Let G be the trigraph with vertex set {v1, . . . , v13}, with adjacency as fol-
lows. v1- · · · -v6 is a hole in G of length 6. Next, v7 is adjacent to v1, v2; v8 is adjacent to
v4, v5 and possibly to v7; v9 is adjacent to v6, v1, v2, v3; v10 is adjacent to v3, v4, v5, v6, v9; v11

is adjacent to v3, v4, v6, v1, v9, v10; v12 is adjacent to v2, v3, v5, v6, v9, v10; and v13 is adjacent to
v1, v2, v4, v5, v7, v8. No other pairs are adjacent, and all adjacent pairs are strongly adjacent
except possibly for v7, v8 and v9, v10. (Thus the pair v7v8 may be strongly adjacent, semiadja-
cent or strongly antiadjacent; the pair v9v10 is either strongly adjacent or semiadjacent.) We
say H ∈ S2 if H is isomorphic to G \ X, where X ⊆ {v7, v11, v12, v13}.

• Long circular interval trigraphs. Let Σ be a circle, and let F1, . . . , Fk ⊆ Σ be homeomorphic
to the interval [0, 1]. Assume that no three of F1, . . . , Fk have union Σ, and no two of F1, . . . , Fk

share an end-point. Now let V ⊆ Σ be finite, and let G be a trigraph with vertex set V in
which, for distinct u, v ∈ V ,
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– if u, v ∈ Fi for some i then u, v are adjacent, and if also at least one of u, v belongs to the
interior of Fi then u, v are strongly adjacent

– if there is no i such that u, v ∈ Fi then u, v are strongly antiadjacent.

Such a trigraph G is called a long circular interval trigraph. We write G ∈ S3 if G is a long
circular interval trigraph. (“Long” refers to the fact that no three of F1, . . . , Fk have union Σ;
in later papers we shall need to omit this condition.)

• Modifications of L(K6). Let H be a graph with seven vertices h1, . . . , h7, in which h7 is
adjacent to h6 and to no other vertex, h6 is adjacent to at least three of h1, . . . , h5, and there
is a cycle with vertices h1-h2- · · · -h5-h1 in order. Let J(H) be the graph obtained from the line
graph of H by adding one new vertex, adjacent precisely to those members of E(H) that are
not incident with h6 in H. Then J(H) is a claw-free graph. Let G be either J(H) (regarded
as a trigraph), or (in the case when h4, h5 both have degree two in H), the trigraph obtained
from J(H) by making the vertices h3h4, h1h5 ∈ V (J(H)) semiadjacent. Let S4 be the class of
all such trigraphs G.

• The trigraphs S5. Let n ≥ 2. Construct a trigraph G as follows. Its vertex set is the
disjoint union of four sets A,B,C and {d1, . . . , d5}, where |A| = |B| = |C| = n, say A =
{a1, . . . , an}, B = {b1, . . . , bn} and C = {c1, . . . , cn}. Let X ⊆ A ∪ B ∪ C with |X ∩ A|, |X ∩
B|, |X ∩ C| ≤ 1. Adjacency is as follows: A,B,C are strong cliques; for 1 ≤ i, j ≤ n, ai, bj are
adjacent if and only if i = j, and ci is strongly adjacent to aj if and only if i 6= j, and ci is
strongly adjacent to bj if and only if i 6= j. Moreover

– ai is semiadjacent to ci for at most one value of i ∈ {1, . . . , n}, and if so then bi ∈ X

– bi is semiadjacent to ci for at most one value of i ∈ {1, . . . , n}, and if so then ai ∈ X

– ai is semiadjacent to bi for at most one value of i ∈ {1, . . . , n}, and if so then ci ∈ X

– no two of A \ X, B \ X, C \ X are strongly complete to each other.

Also, d1 is strongly A∪B∪C-complete; d2 is strongly complete to A∪B, and either semiadjacent
or strongly adjacent to d1; d3 is strongly complete to A ∪ {d2}; d4 is strongly complete to
B∪{d2, d3}; d5 is strongly adjacent to d3, d4; and all other pairs are strongly antiadjacent. Let
the trigraph just constructed be G, and let H = G|(V (G) \X). Then H is claw-free; let S5 be
the class of all such trigraphs H.

• Near-antiprismatic trigraphs. Let n ≥ 2. Construct a trigraph as follows. Its vertex
set is the disjoint union of three sets A,B,C, where |A| = |B| = n + 1 and |C| = n, say
A = {a0, a1, . . . , an}, B = {b0, b1, . . . , bn} and C = {c1, . . . , cn}. Adjacency is as follows.
A,B,C are strong cliques. For 0 ≤ i, j ≤ n with (i, j) 6= (0, 0), let ai, bj be adjacent if and only
if i = j, and for 1 ≤ i ≤ n and 0 ≤ j ≤ n let ci be adjacent to aj , bj if and only if i 6= j 6= 0.
a0, b0 may be semiadjacent or strongly antiadjacent. All other pairs not mentioned so far are
strongly antiadjacent. Now let X ⊆ A ∪ B ∪ C \ {a0, b0} with |C \ X| ≥ 2. Let all adjacent
pairs be strongly adjacent except:

– ai is semiadjacent to ci for at most one value of i ∈ {1, . . . , n}, and if so then bi ∈ X

– bi is semiadjacent to ci for at most one value of i ∈ {1, . . . , n}, and if so then ai ∈ X
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– ai is semiadjacent to bi for at most one value of i ∈ {1, . . . , n}, and if so then ci ∈ X

Let the trigraph just constructed be G, and let H = G|(V (G) \ X). Then H is claw-free; let
S6 be the class of all such trigraphs H. We call such a trigraph H near-antiprismatic, since
making a0, b0 strongly adjacent would produce an antiprismatic trigraph.

• Antiprismatic trigraphs. Let us say a trigraph is antiprismatic if for every X ⊆ V (G) with
|X| = 4, X is not a claw and there are at least two pairs of vertices in X that are strongly
adjacent. We give a structural description of such trigraphs elsewhere (for instance, the first
two papers of this series [1, 2] describe all antiprismatic trigraphs that are graphs). Let S7 be
the class of all antiprismatic trigraphs.

Now we can state the main result of this paper, the following.

3.1 Let G be a claw-free trigraph. Then either

• G ∈ S0 ∪ · · · ∪ S7, or

• G admits either twins, a nondominating W-join, a 0-join, a 1-join, a generalized 2-join, or a
hex-join.

The proof is given in the final section of the paper. We postpone to future papers the problem
of converting this decomposition theorem to a structure theorem.

4 More on decompositions

Before we begin the main proof, it is helpful to develop a few tools that will enable us to prove more
easily that trigraphs are decomposable. First, here is a useful decomposition. Suppose that there is
a partition (V1, V2,X) of V (G) such that X is a strong clique, and |V1|, |V2| ≥ 2, and V1 is strongly
anticomplete to V2. In these circumstances we say that X is an internal clique cutset. This is not
one of the decompositions used in the statement of the main theorem (indeed, it is not the inverse
of a composition that preserves being claw-free, unlike the other decompositions we mentioned).
Nevertheless, we win if we can prove that our trigraph admits an internal clique cutset, because of
the following, proved in [3]. We say that a trigraph G is a linear interval trigraph if the vertices of
G can be numbered v1, . . . , vn such that for all i, j with 1 ≤ i < j ≤ n, if vi is adjacent to vj then
{vi, vi+1, . . . , vj−1} and {vi+1, vi+2, . . . , vj} are strong cliques. (Every such trigraph is a long circular
interval trigraph, as may easily be checked.)

4.1 Let G be a claw-free trigraph. If G admits an internal clique cutset, then either G is a linear
interval trigraph, or G admits either a 1-join, a 0-join, a coherent W-join, or twins.

For brevity, let us say that G is decomposable if it admits either a generalized 2-join, or a 1-join,
or a 0-join, or a nondominating W-join, or twins, or an internal clique cutset, or a hex-join. There
follow four lemmas that will speed up our recognition of decomposable trigraphs.

4.2 Let G be a claw-free trigraph, and let A,C ⊆ V (G) be disjoint, such that
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• A is a strong clique

• if C = ∅ then |A| > 1

• every vertex in V (G) \ (A ∪ C) is strongly C-anticomplete, and either strongly A-complete or
strongly A-anticomplete

• |V (G) \ (A ∪ C)| ≥ 2.

Then G is decomposable.

Proof. If C is empty then |A| > 1 and any two members of A are twins. So we may assume that
C is nonempty. If A is strongly anticomplete to C then G admits a 0-join, so we may assume that
a ∈ A and c ∈ C are adjacent. Let Y be the set of vertices in V (G) \ (A ∪ C) that are A-complete,
and let Z = V (G) \ (A ∪ C ∪ Y ). If y1, y2 ∈ Y , then since {a, c, y1, y2} is not a claw, it follows that
y1, y2 are strongly adjacent, and so Y is a strong clique. If Z is nonempty then (A ∪ C, Y ∪ Z) is a
1-join, so we assume that Z is empty. But |Y | ≥ 2 by hypothesis, and all members of Y are twins,
and so G is decomposable. This proves 4.2.

4.3 Let G be a claw-free trigraph, and let (A,B) be a homogeneous pair in G.

• If (A,B) is nondominating and at least one of A,B has cardinality > 1, then G admits twins
or a nondominating W-join.

• If (A,B) is dominating and coherent, A is not strongly anticomplete to B, and A∪B 6= V (G),
then G admits a hex-join.

In either case G is decomposable.

Proof. Suppose that (A,B) is nondominating and at least one of A,B has cardinality > 1, say
|A| > 1. If B is either strongly complete or strongly anticomplete to A then the elements of A are
twins, and otherwise (A,B) is a nondominating W-join. Thus in this case G is decomposable.

Now suppose that (A,B) is dominating and coherent, A is not strongly anticomplete to B, and
A ∪B 6= V (G). Let V = V (G) \ (A ∪B); thus V 6= ∅. Let X,Y be the sets of vertices in V that are
strongly adjacent to A, and strongly adjacent to B, respectively. Since (A,B) is a homogeneous pair,
every vertex in V \X is strongly antiadjacent to A, and similarly for B; since (A,B) is dominating,
it follows that X ∪ Y = V ; and since (A,B) is coherent, X ∩ Y is a strong clique. We claim that
X \Y is a strong clique; for suppose not. Let u, v ∈ X \Y be antiadjacent. Choose a ∈ A and b ∈ B,
adjacent (this is possible since A is not strongly anticomplete to B by hypothesis). Then {a, b, u, v}
is a claw, a contradiction. This proves that X \ Y is a strong clique, and similarly so is Y \ X.
Moreover, A and B are strong cliques, since (A,B) is a homogeneous pair. But then if we define
P1 = X \ Y, P2 = Y \X and P3 = X ∩ Y , and Q1 = B,Q2 = A,Q3 = ∅, we see that each of the sets
P1, P2, P3, Q1, Q2, Q3 is a strong clique, and their union is V (G), and Pi is strongly anticomplete to
Qj if i = j, and otherwise Pi is strongly complete to Qj. Since A,B 6= ∅ and V 6= ∅, it follows that
then G admits a hex-join. This proves 4.3.
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We say a triple (A,C,B) is a breaker in G if it satisfies:

• A,B,C are disjoint nonempty subsets of V (G), and A,B are strong cliques

• every vertex in V (G) \ (A ∪ B ∪ C) is either strongly A-complete or strongly A-anticomplete,
and either strongly B-complete or strongly B-anticomplete, and strongly C-anticomplete

• there is a vertex in V (G)\ (A∪B ∪C) with a neighbour in A and an antineighbour in B; there
is a vertex in V (G) \ (A∪B ∪C) with a neighbour in B and an antineighbour in A; and there
is a vertex in V (G) \ (A ∪ B ∪ C) with an antineighbour in A and an antineighbour in B

• if A is strongly complete to B, then there do not exist adjacent x, y ∈ V (G) \ (A∪B ∪C) such
that x is A ∪ B-complete and y is A ∪ B-anticomplete.

The reason for interest in breakers is that they allow us to deduce that our trigraph admits one
of our decompositions, without having to figure out which one, in view of the following theorem.

4.4 Let G be a claw-free trigraph. If G admits a breaker, then G admits either a 0-join, a 1-join,
or a generalized 2-join.

Proof. Let (A1, C1, B1) be a breaker; let V1 = A1 ∪ B1 ∪ C1, let V0 be the set of all vertices
not in V1 that are A1 ∪ B1-complete, and let V2 = V (G) \ (V1 ∪ V0). Let A2 be the set of A1-
complete vertices in V2, and B2 the set of B1-complete vertices in V2. Let C2 = V2 \ (A2 ∪ B2). By
hypothesis, A2, B2, C2 are all nonempty. If C1 is strongly anticomplete to A1 ∪ B1, then G admits
a 0-join, so from the symmetry we may assume that C1 is not strongly anticomplete to A1. Since
A1 ∪ C1 ∪ A2 ∪ V0 includes no claw, it follows that A2 ∪ V0 is a strong clique. We claim that also
B2 ∪ V0 is a strong clique. For suppose not; then by the same argument, C1 is strongly anticomplete
to B1. Let A′ be the set of vertices in A1 with a neighbour in C1. Since B2 6= ∅ and we may assume
that (C1 ∪A′, V (G) \ (C1 ∪A′)) is not a 1-join, it follows that A′ is not strongly anticomplete to B1.
Consequently some vertex a ∈ A1 has a neighbour b ∈ B1 and a neighbour c ∈ C1; and since C1 is
anticomplete to B1, it follows that {a, b, c, a2} is a claw (where a2 ∈ A2) a contradiction. This proves
that B2 ∪ V0 is a strong clique.

Suppose that V0 is not strongly anticomplete to C2, and choose x ∈ V0 and y ∈ C2, adjacent.
By hypothesis, A1 is not strongly complete to B1; choose a ∈ A1 and b ∈ B1, antiadjacent. Then
{x, y, a, b} is a claw, a contradiction. It follows that V0 is strongly anticomplete to C2, and conse-
quently (V0, V1, V2) is a generalized 2-join. This proves 4.4.

Here is another shortcut, this time useful for handling hex-joins.

4.5 Let G be a claw-free trigraph, and let A,B,C be disjoint nonempty strong cliques. Suppose that
every vertex in V (G) \ (A ∪B ∪ C) is strongly complete to two of A,B,C and strongly anticomplete
to the third. Suppose also that one of A,B,C has cardinality > 1, and A ∪ B ∪ C 6= V (G). Then G
admits either a hex-join, or a nondominating W-join, or twins.

Proof. Let V1 = A ∪ B ∪ C, and V2 = V (G) \ V1. Let A2 be the set of vertices in V2 that are
anticomplete to A, and define B2, C2 similarly. If A2, B2, C2 are strong cliques, then G is the hex-
join of G|V1 and G|V2, so we may assume that there exist antiadjacent u, v ∈ A2. For w ∈ A and
x ∈ B ∪ C, {x,w, u, v} is not a claw, and so w, x are strongly antiadjacent; and consequently A is
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strongly anticomplete to B ∪ C. Thus (B,C) is a homogeneous pair, and it is nondominating since
A is nonempty; so by 4.3 we may assume that |B|, |C| = 1, and therefore |A| > 1 by hypothesis, and
yet every two members of A are twins. This proves 4.5.

5 The icosahedron

Our first main goal is to prove that claw-free trigraphs that include a “substantial” line trigraph
either are line trigraphs or are decomposable. To make this theorem as useful as possible, we want
to weaken the meaning of “substantial” as far as we can; and on the borderline where the theorem
is just about to become false, there are two situations where the theorem is false in a way we can
handle. It is convenient to deal with them first before we embark on line trigraphs in general. We do
one in this section and the other in the next, and then start on line trigraphs proper in the section
after that. Some general notation; if G is a trigraph and v ∈ V (G), we denote by NG(v) the union of
{v} and the set of all neighbours of v in G, and by N∗

G(v) the union of {v} and the set of all strong
neighbours of v in G. (Sometimes we abbreviate these to N(v),N∗(v) when the dependence on G is
clear.)

In this section we study the icosahedron and some of its subgraphs. We begin by proving the
assertions of the previous section about icosa(−k) for k = 0, 1, 2.

5.1 Let G be a claw-free icosa(0)-trigraph or a claw-free icosa(−1)-trigraph. Then F (G) = ∅.

Proof. Let H be a graph obtained from the icosahedron by deleting one vertex, and let G be a
claw-free H-trigraph. We must show that F (G) = ∅. Number V (H) as {v1, . . . , v11}, where for
1 ≤ i < j ≤ 10, vi is adjacent to vj if either j − i ≤ 2 or j − i ≥ 8, and v11 is adjacent to
v1, v3, v5, v7, v9, and all other pairs are nonadjacent in H. We recall that V (G) = V (H), and every
pair of vertices that are adjacent in H are adjacent in G, and every pair that are are nonadjacent
in H are antiadjacent in G. We show first that all pairs that are nonadjacent in H are strongly
antiadjacent in G. From the symmetry, it suffices to check three pairs, namely v2v11, v1v7 and v1v6.
Since {v2, v11, v4, v10} is not a claw, v11 is strongly antiadjacent to v2 in G; since {v1, v3, v7, v10} is
not a claw, v1 is strongly antiadjacent to v7; and since {v6, v1, v4, v8} is not a claw, v1 is strongly
antiadjacent to v6. This proves that all pairs that are nonadjacent in H are strongly antiadjacent in
G.

Next we claim that all pairs that are adjacent in H are strongly adjacent in G. Again, from the
symmetry it suffices to check four pairs, namely v1v11, v1v2, v1v3, v2v10. Since {v3, v4, v1, v11} is not
a claw, v1, v11 are strongly adjacent; since {v3, v5, v1, v2} is not a claw, v1, v2 are strongly adjacent;
since {v11, v7, v1, v3} is not a claw, v1, v3 are strongly adjacent; and since {v1, v11, v2, v10} is not a
claw, v2, v10 are strongly adjacent. This proves that all pairs that are adjacent in H are strongly
adjacent in G. Consequently F (G) = ∅.

Next we assume that H is the icosahedron and G is a claw-free H-trigraph. Again we must show
that F (G) = ∅. Suppose not, and choose v ∈ V (G) such that some member of F (G) does not contain
v. Then deleting v from G yields a claw-free H \ {v}-trigraph G′ with F (G′) 6= ∅, a contradiction to
what we proved before. This proves 5.1.

Next we need a similar statement for icosa(−2). This graph has ten vertices, and they can be
labelled as

{a1, b1, c1, d1, a2, b2, c2, d2, e, f},
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where its edges are the pairs aici, bici, aidi, bidi, cidi, aie, die, bif, dif for i = 1, 2, together with
a1a2, b1b2 and ef .

5.2 Let H be icosa(−2), and let G be a claw-free H-trigraph. Label the vertices of H as above.
Then F (G) ⊆ {a1b1, a2b2}.

Proof. We claim first that every pair of vertices that is adjacent in H is strongly adjacent in G. To
show this, it suffices from the symmetry to check the pairs

a1c1, a1a2, a1d1, a1e, c1d1, d1e, ef.

Because {d1, f, a1, c1} is not a claw, it follows that a1, c1 are strongly adjacent; and the other six
pairs follows similarly, since the sets

{e, f, a1, a2}, {e, d2, a1, d1}, {d1, b1, a1, e}, {a1, a2, c1, d1}, {f, b2, d1, e}, {d1, c1, e, f}

are not claws, respectively. Now to check the pairs that are nonadjacent in H, it suffices to check
the pairs

c1e, c1a2, c1c2, c1d2, d1a2, d1d2, a1f, a1b2, a1b1.

Since {e, c1, a2, f} is not a claw, c1, e are strongly antiadjacent. Similarly the next seven pairs listed
are strongly antiadjacent, because the sets

{a2, c1, e, c2}, {c2, c1, a2, b2}, {d2, c1, a2, b2}, {d1, a2, c1, f}, {d1, d2, a2, b2}, {f, a1, b1, d2}, {b2, a1, b1, c2}

respectively are not claws. (The last pair a1b1 cannot be shown strongly adjacent this way.) This
proves 5.2.

Frequently we assume that our current claw-free trigraph G has an induced subtrigraph H that
we know, and we wish to enumerate all the possibilities for the neighbour set in V (H) of vertices in
V (G) \ V (H). And having done so, then we try to figure out the adjacencies between the vertices
in V (G) \ V (H). To aid with that, here are three trivial facts that are used so often that it is worth
stating them explicitly. (All three proofs are obvious and we omit them.)

5.3 Let G be a claw-free trigraph, and let v ∈ V (G); then NG(v) includes no triad.

5.4 Let G be claw-free, let X ⊆ V (G), and let v ∈ V (G) \ X. Then there is no path of length 2 in
G|X with middle vertex in NG(v) and with both ends not in N∗

G(v).

5.5 Let G be claw-free, and let X ⊆ V (G). Let u, v ∈ V (G)\X have a common neighbour a ∈ X and
a common antineighbour b ∈ V (H). If a, b are distinct and adjacent then u, v are strongly adjacent.

The icosahedron is claw-free, and in this section we study claw-free trigraphs which contain it
(or most of it) as an induced subtrigraph.

5.6 Let G be claw-free, containing an icosa(−1)-trigraph. Then either G ∈ S1, or two vertices of
G are twins, or G admits a 0-join. In particular, either G ∈ S1, or G is decomposable.
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Proof. Since G contains an icosa(−1)-trigraph, 5.1 implies that there exist disjoint strong cliques
V1, . . . , V11, V12 in V (G), such that

• V1, . . . , V11 are nonempty (possibly V12 = ∅)

• for 1 ≤ i < j ≤ 10, Vi, Vj are strongly complete if either j − i ≤ 2 or j − i ≥ 8, and otherwise
Vi, Vj are strongly anticomplete

• for 1 ≤ i ≤ 10 and j ∈ {11, 12}, if i, j are both odd or both even then Vi, Vj are strongly
complete, and otherwise they are strongly anticomplete.

Let W be the union of V1, . . . , V12, and choose these cliques with W maximal. Suppose first that
W = V (G). If some Vi has at least two members, then they are twins, so we may assume that
|Vi| = 1 for 1 ≤ i ≤ 11 and |V12| ≤ 1; but then G ∈ S1. We may therefore assume that W 6= V (G).
If V (G) \ W is strongly anticomplete to W then G admits a 0-join, so we may assume that there
exists v ∈ V (G) \ W such that N(v) ∩ W 6= ∅. Let N = NG(v) ∩ W and N∗ = N∗

G(v) ∩ W .
Suppose first that there exists v11 ∈ N ∩ V11. For v1 ∈ V1 and v5 ∈ V5, 5.4 applied to the path

v1-v11-v5 tells us that at least one of v1, v5 ∈ N∗, and so N∗ includes one of V1, V5. (We will need this
argument many times, and we speak of “5.4 applied to V1-V11-V5” or “5.4 with V1-V11-V5” for brevity.)
Similarly N∗ includes at least one of every antiadjacent pair of sets in the list V1, V3, V5, V7, V9, and
so we may assume that V1, V3, V5 ⊆ N∗, from the symmetry. From 5.3, N ∩V8,N ∩V12 = ∅. Suppose
that N ∩ V7, N ∩ V9 are both nonempty. Then 5.3 implies that N is disjoint from V2, V4, V6, V10;
5.4 applied to V2-V1-V9 implies that V9 ⊆ N∗, and similarly V7 ⊆ N∗, and 5.4 applied to V2-V1-V11

implies that V11 ⊆ N∗, and so v can be added to N11, contrary to the maximality of W . Hence from
the symmetry we may assume that N ∩ V9 = ∅. By 5.4 with V2-V1-V9, it follows that V2 ⊆ N∗, and
by 5.3, it follows that N ∩ V6 = ∅. By 5.4 with V6-V7-V9, N ∩ V7 = ∅, and by 5.4 with V4-V5-V7,
V4 ⊆ N∗. By 5.3, N ∩V10 = ∅, and by 5.4 with V11-V5-V6, V11 ⊆ N∗. But then v can be added to V3,
contrary to the maximality of W . This proves that N ∩V11 = ∅. If V12 6= ∅, then from the symmetry
between V1, . . . , V12, it follows that N ∩ Vi = ∅ for 1 ≤ i ≤ 12, a contradiction. Thus V12 = ∅.

Suppose next that N ∩ V1 6= ∅. By 5.4 with V11-V1-V2, V2 ⊆ N∗, and similarly V10 ⊆ N∗. By
5.4 with V3-V1-V9, one of V3, V9 ⊆ N∗, and from the symmetry we may assume that V3 ⊆ N∗. By
5.4 with V4-V3-V11, V4 ⊆ N∗. By 5.3, N is disjoint from V6, V7, V8. By 5.4 with V6-V5-V11 and with
V8-V9-V11, N is disjoint from V5, V9; and by 5.4 with V1-V3-V5, V11 ⊆ N∗. But then v can be added
to V2, contrary to the maximality of W .

Hence N is disjoint from V1, and similarly from V3, V5, V7, V9. By 5.4 with V1-V2-V4 and V2-V4-V5,
it follows that either N∗ includes V2 ∪ V4 or N is disjoint from V2 ∪ V4; and the same holds for all
adjacent pairs of V2, V4, V6, V8, V10. Since N is nonempty, it follows that N∗ = V2∪V4∪V6∪V8∪V10.
But then v can be added to V12, contrary to the maximality of W . This proves 5.6.

5.6 handles claw-free trigraphs that contain icosa(−1)-trigraphs; next we need to consider icosa(−2).

5.7 Let G be a claw-free trigraph containing an icosa(−2)-trigraph. Then either G ∈ S1, or G is
decomposable.

Proof. Since G contains an icosa(−2)-trigraph, we may choose ten disjoint nonempty strong cliques
A1, B1, C1, A2, B2, C2,D1,D2, E, F in G, satisfying:
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• The following pairs are strongly complete: A1A2, B1B2, EF , and for i = 1, 2, the pairs
AiCi, BiCi, AiDi, BiDi, CiDi, AiE,DiE,BiF,DiF .

• The pairs A1B1 and A2B2 are not strongly complete (but not necessarily anticomplete).

• All remaining pairs are strongly anticomplete.

Let us choose such a set of cliques with maximal union W say. Suppose first that W = V (G).
Then (A1, B1) is a homogeneous pair, nondominating since C2 6= ∅, and so by 4.3 we may assume
|A1| = |B1| = 1, and similarly |A2| = B2| = 1. If one of the other six cliques has cardinality > 1,
say X, then the members of X are twins and the theorem holds. If all ten cliques have cardinality
1 then G ∈ S1, as required. So we may assume that W 6= V (G). If W is strongly anticomplete to
V (G) \ W , then G admits a 0-join, so we may assume that there exists v ∈ V (G) \ W with N 6= ∅,
where N = NG(v) ∩ W . Let N∗ = N∗

G(v) ∩ W .

(1) At least one of N ∩ C1, N ∩ C2 is nonempty.

For suppose that N ∩ Ci = ∅ for i = 1, 2. Suppose first that N ∩ A1 6= ∅. Then 5.4 (with C1-A1-A2

and A1-A2-C2) implies that A2, A1 ⊆ N∗. 5.4 (with C1-A1-E) implies that E ⊆ N∗. Suppose in
addition that N ∩ (B1 ∪ B2) 6= ∅. Then from the symmetry, B1 ∪ B2 ∪ F ⊆ N∗; and 5.3 (with
A1, B1,D2 and A2, B2,D1) implies that N is disjoint from D1,D2, contrary to 5.4 (with D1-E-D2).
So N ∩ (B1 ∪B2) = ∅. 5.4 (with D1-E-D2) implies that N∗ includes one of D1,D2, say D1; 5.4 (with
C1-D1-F ) implies that F ⊆ N∗; 5.4 (with B1-F -D2) implies that D2 ⊆ N ; but then v can be added
to E, contrary to the maximality of W . This proves that N is disjoint from A1, and by symmetry
from B1, A2, B2. 5.4 (with A1-D1-B1) implies that N ∩ D1 = ∅, and by symmetry N ∩ D2 = ∅; and
then 5.4 (with D1-E-D2 and D1-F -D2) implies that N is disjoint from E,F . But then N = ∅, a
contradiction. This proves (1).

(2) Both N ∩ C1, N ∩ C2 are nonempty.

For suppose not; then from (1) and the symmetry, we may assume that N ∩C1 6= ∅ and N ∩C2 = ∅.
Suppose first that N∩A2 6= ∅. Then 5.4 (with A1-A2-C2 and with E-A2-C2) implies that A1, E ⊆ N∗.
5.3 (with A2, C1, F ) implies that N ∩ F = ∅. 5.4, applied in turn to the triples A2-E-F ; C2-B2-F ;
C2-D2-F ; D1-E-D2; C1-D1-F implies that A2 ⊆ N∗; N ∩ B2 = ∅; N ∩ D2 = ∅; D1 ⊆ N∗, and
C1 ⊆ N∗. But then v can be added to A1, contrary to the maximality of W . This proves that
N ∩ A2 = ∅, and by symmetry N ∩ B2 = ∅. 5.4 (with A2-D2-B2) implies that N ∩ D2 = ∅. 5.4
(with A1-C1-B1) implies that N∗ meets one of A1, B1. (Recall that A1 is not necessarily strongly
anticomplete to B1, so we cannot deduce that N∗ includes one of A1, B1). 5.4 (with D1-A1-A2 if N
meets A1, and D1-B1-B2 otherwise) implies that D1 ⊆ N∗. Suppose first that N is disjoint from both
E,F . Then 5.4 (with B1-D1-E and A1-D1-F ) implies that B1, A1 ⊆ N∗, and 5.4 (with A2-A1-C1)
implies that C1 ⊆ N∗. But then v can be added to C1, contradicting the maximality of W . Hence
N is not disjoint from both E,F , and from the symmetry we may assume that N ∩E 6= ∅. 5.4 (with
A2-E-F ) implies that F ⊆ N∗, and from symmetry E ⊆ N∗. 5.4 (with A1-E-D2) implies A1 ⊆ N∗,
and by symmetry B1 ⊆ N∗; and 5.4 (with C1-A1-A2) implies that C1 ⊆ N∗. Then v can be added
to D1, contrary to the maximality of W . This proves (2).

12



From (2) and 5.3, N is disjoint from E,F . Since A1, B1 are not strongly complete, 5.3 (with
A1-B1-C2) implies that A1 ∪B1 6⊆ N ; and so 5.4 (with A1-D1-F if A1 6⊆ N , and B1-D1-E otherwise)
implies that D1 ∩ N = ∅. Similarly D2 ∩ N = ∅. Since A1, B1 are not strongly complete, 5.4 (with
A1-C1-B1) implies that N meets at least one of A1, B1, say A1. Then 5.4 (with D1-A1-A2) implies
A2 ⊆ N∗, and by symmetry A1 ⊆ N∗. Similarly, if N ∩ (B1 ∪B2) 6= ∅, then B1 ∪B2 ⊆ N∗, contrary
to 5.3 (with A2, B2, C1), and so N ∩ (B1 ∪B2) = ∅. Then G contains an icosa(−1)-trigraph (choose
one vertex from each of the ten cliques, choosing neighbours of v from C1, C2, and such that for
i = 1, 2 the representatives of Ai, Bi are nonadjacent; and take v as the eleventh vertex). Then the
theorem holds by 5.6. This proves 5.7.

Next we need to consider deleting from the icosahedron two vertices at distance two. This is a
case of what we call an “XX-configuration”. Let J be a graph with ten vertices

a1, a2, b1, b2, b3, c1, c2, c3, d1, d2,

where the following pairs are adjacent:

d1d2, and aibi, aici, bici, bidi, cidi, bib3, cic3, dib3, dic3 for i = 1, 2,

and possibly the edge a1a2. Let H be a claw-free J-trigraph. We call any such trigraph H an
XX-configuration.

We need the following lemma:

5.8 Let J be as above, with vertices labelled as above, and let H be a claw-free J-trigraph. Then
F (H) ⊆ {a1a2, d1d2}.

The proof is straightforward and we leave it to the reader.

5.9 Let G be a claw-free trigraph containing an XX-configuration. Then either G ∈ S1 ∪ S2, or G
is decomposable.

Proof. Since G contains an XX-configuration, by 5.8 we may choose fourteen disjoint subsets

A1, A2, A3, B1, B2, B3, C1, C2, C3,D1,D2, E1, E2, F,

with the following properties:

• all fourteen sets are strong cliques except possibly A3; and the ten sets

A1, A2, B1, B2, B3, C1, C2, C3,D1,D2

are nonempty

• the pairs
AiBi, AiCi, BiCi, BiB3, CiC3, BiDi, CiDi, B3Di, C3Di

are strongly complete for i = 1, 2; E1 is strongly complete to B1, B3,D1,D2, C3, C2; E2 is
strongly complete to B2, B3,D1,D2, C3, C1; and F is strongly complete to A1, B1, C1, A2, B2, C2.
All other pairs of the fourteen subsets named are strongly anticomplete, with the possible ex-
ception of D1D2, A1A2, A1A3, A2A3
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• D1 is not strongly anticomplete to D2.

Consequently we may choose these fourteen sets with maximal union W say.
Suppose first that W = V (G). Any two vertices of B1 are twins in G, and the same holds

for B2, B3, C1, C2, C3, E1, E2, F , and so we may assume that these sets all have cardinality at most
one (and therefore the first six of them have cardinality exactly one.) Moreover, (D1,D2) is a
homogeneous pair, nondominating since A1 6= ∅, and so by 4.3, we may assume that D1,D2 both
have cardinality 1. Now every vertex not in A1 ∪ A2 ∪A3 is either strongly A1-complete or strongly
A1-anticomplete, and either strongly A2-complete or strongly A2-anticomplete, and strongly A3-
anticomplete. Also, if x, y ∈ V (G) \ A1 ∪ A2 ∪ A3 and x is A1 ∪ A2-complete and y is A1 ∪ A2-
anticomplete, then x ∈ F and y ∈ B3 ∪ C3 ∪ D1 ∪ D2 ∪ E1 ∪ E2, and so x, y are not adjacent.
Consequently if A3 6= ∅ then (A1, A3, A2) is a breaker, and the theorem holds by 4.4, so may assume
that A3 = ∅. Then (A1, A2) is a homogeneous pair, nondominating since D1 6= ∅, and therefore by
4.3 we may assume that |Ai| = 1 for i = 1, 2. But then G ∈ S2, and the theorem holds.

We may therefore assume that W 6= V (G). If W is strongly anticomplete to V (G) \ W then G
admits a 0-join, so we may assume that there exists v ∈ V (G)\W with N 6= ∅, where N = NG(v)∩W .
Let N∗ = N∗

G(v) ∩ W .
First assume that N ∩ B3, N ∩ C3 6= ∅. By 5.3, N is disjoint from A1 ∪ A2 ∪ A3. By 5.4 (with

B1-B3-B2), N∗ includes one of B1, B2, and we may assume that it includes B1 from the symmetry.
By 5.3, N ∩B2 = ∅. By 5.4 applied in turn to B2-B3-D1, A1-B1-B3, A1-B1-E1, A1-F -B2 we deduce
that D1 ⊆ N∗, B3 ⊆ N∗, E1 ⊆ N∗, and N ∩ F = ∅. Suppose that N ∩ C1 is nonempty. By 5.3,
N ∩C2 = ∅; by 5.4 applied in turn to C1-C3-C2, C3-C1-A1 and C2-C3-E2, we deduce that C1 ⊆ N∗,
C3 ⊆ N∗, and E2 ⊆ N∗; but then v can be added to D1, contrary to the maximality of W . Thus
N ∩ C1 = ∅. By 5.4, applied to D2-C3-C1, C1-C3-C2, B2-D2-C3, and C1-E2-B2, we deduce that
D2 ⊆ N∗, C2 ⊆ N∗, C3 ⊆ N∗, and N ∩ E2 = ∅; but then v can be added to E1, contrary to the
maximality of W .

So we may assume that N is disjoint from one of B3 and C3, say C3. Next assume that N meets
both D1 and D2. By 5.4 (with B3-D1-C3), B3 ⊆ N∗. By 5.4 (with B1-D1-C3), B1 ⊆ N∗, and
similarly B2 ⊆ N∗. By 5.3, N is disjoint from A1 ∪A2 ∪A3. By 5.4 (with A1-B1-D1), D1 ⊆ N∗, and
similarly D2 ⊆ N∗. By 5.4 (with A1-C1-C3), N ∩ C1 = ∅, and similarly N ∩ C2 = ∅. By 5.4 applied
to Ai-Bi-Ei for i = 1, 2 and to C1-F -C2, we deduce that E1, E2 ⊆ N∗ and N ∩ F = ∅. But then v
can be added to B3, contrary to the maximality of W .

So we may assume that N is disjoint from both C3 and D2 say. Choose d1 ∈ D1 and d2 ∈ D2,
adjacent. Suppose that d1 ∈ N . By 5.4, applied in turn to B1-d1-C3, B3-d1-C3, C1-d1-d2, and
A1-C1-C3 we deduce that B1 ⊆ N∗, B3 ⊆ N∗, C1 ⊆ N∗ and A1 ⊆ N∗. By 5.3, N ∩ (B2 ∪ C2) = ∅
and N ∩ (A2 ∪A3) = ∅. By 5.4 applied to B2-B3-D1, E1-B3-D2, B2-E2-C3 and F -C1-C3, we deduce
that D1 ⊆ N∗, E1 ⊆ N∗, N ∩E2 = ∅, and F ⊆ N∗. But then v can be added to B1, contrary to the
maximality of W .

Hence d1 /∈ N . Suppose next that N ∩ B3 is nonempty. By 5.4 (with d1-B3-B2), B2 ⊆ N∗,
and similarly B1 ⊆ N∗. By 5.4 (with d1-B1-A1), A1 ⊆ N∗, and similarly A2 ⊆ N∗. By 5.3, A1 is
complete to A2, and for the same reason, N is disjoint from A3 ∪C1 ∪C2 ∪D1. But then G contains
an icosa(−1)-trigraph (choose one vertex from each of the eight sets A1, A2, B1, B2, B3, C1, C2, C3,
together with d1, d2, v), and the theorem holds by 5.6.

So we may assume that N ∩ B3 = ∅. By 5.4 (with B3-D1-C3), N ∩ D1 = ∅, and so N is disjoint
from all four of B3, C3,D1,D2. By 5.4 (with B3-Ei-C3 for i = 1, 2) it follows that N is disjoint from
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E1, E2. If N intersects none of B1, B2, C1, C2, then 5.4 (with B1-F -B2) implies that N ∩ F = ∅,
and then v can be added to A3, contrary to the maximality of W . So we may assume from the
symmetry that N meets B1. By 5.4 (with C1-B1-B3), C1 ⊆ N∗, and similarly B1 ⊆ N∗; by 5.4 (with
B3-B1-A1), A1 ⊆ N∗; and by 5.4 (with B3-B1-F ), F ⊆ N∗. If N intersects either B2 or C2, then
similarly it includes A2 ∪B2 ∪C2, and by 5.3, N is disjoint from A3, but then v can be added to F ,
contrary to the maximality of W . So we may assume that N is disjoint from B2 ∪ C2. But then v
can be added to A1, contrary to the maximality of W . This proves 5.9.

6 The second line trigraph anomaly

Now we handle the second peculiarity that will turn up when we come to treat line trigraphs. Let J
be a graph with eleven vertices

a1, a2, a3, b1, b2, b3, c1, c2, c3, d1, d2,

and the following edges: for i = 1, 2, {ai, bi, ci, di} are cliques, and so are {b1, b2, b3} and {c1, c2, c3};
d1, d2 are nonadjacent, and every other pair of a3, b3, c3, d1, d2 are adjacent; and there are no other
edges except possibly a1a2. We call any claw-free J-trigraph a YY-configuration. We begin with a
lemma:

6.1 Let J be as above, with vertices labelled as above, and let H be a claw-free J-trigraph. Then
F (H) ⊆ {d1d2, a1a2, a1a3, a2a3}.

The proof is straighforward (analogous to that of 5.1), and we leave it to the reader. The main result
of this section is the following.

6.2 Let G be a claw-free trigraph containing a YY-configuration. Then G is decomposable.

Proof. Since there is a YY-configuration in G, by 6.1 we may choose nine strong cliques Ai
j (1 ≤

i, j ≤ 3), with the following properties (for 1 ≤ i ≤ 3, Ai denotes Ai
1 ∪ Ai

2 ∪ Ai
3, and Ai denotes

A1
i ∪ A2

i ∪ A3
i ):

• these nine sets are nonempty and pairwise disjoint

• for 1 ≤ i, j, i′, j′ ≤ 3, if i 6= i′ and j 6= j′ then Ai
j is strongly anticomplete to Ai′

j′

• for 1 ≤ j ≤ 3, Aj is a strong clique

• for i = 1, 2, Ai is a strong clique

• A3
1 and A3

2 are not strongly complete to A3
3

• for 1 ≤ j ≤ 3, let Sj be the set of all vertices that are strongly anticomplete to Aj and
strongly complete to the other two of A1, A2, A3; then S1 is not strongly complete to S2 (and
consequently S1, S2 are nonempty)

• subject to these conditions, the union W of the sets Ai
j (1 ≤ i, j ≤ 3) is maximal.
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(To see this, take a YY-configuration, with vertices a1, a2, . . . as before, and let A1
j = {bj}, A

2
j =

{cj}, A
3
j = {aj} for j = 1, 2, 3; then d1, d2 belongs to S2, S1 respectively.)

Let Z = V (G) \ (W ∪ S1 ∪ S2 ∪ S3), and for i = 1, 2, let Hi be the set of vertices in A3
i that are

strongly antiadjacent to A3
3. Choose s1 ∈ S1 and s2 ∈ S2, antiadjacent.

(1) Every vertex in W ∪ S1 ∪ S2 ∪ S3 with a neighbour in Z belongs to H1 ∪ H2.

For let v ∈ Z, and let N,N∗ be respectively the intersections of NG(v),N∗

G(v) with W ∪S1∪S2∪S3.
We will show that

N ∩ (W ∪ S1 ∪ S2 ∪ S3) ⊆ H1 ∪ H2.

Assume for a contradiction that s1, s2 ∈ N . We claim that A1
3 ⊆ N∗. For suppose not. 5.4 (with

A1
3-s2-(A

2
1 ∪ A3

1)) implies that A2
1 ∪ A3

1 ⊆ N∗, and similarly A2
2 ∪ A3

2 ⊆ N∗. Since A3
1 is not strongly

complete to A3
3, 5.3 (with A3

1, A
3
3, A

2
2) implies that A3

3 6⊆ N . 5.4 (with A1
1-s2-A

3
3 and A1

2-s1-A
3
3) implies

that A1
1, A

1
2 ⊆ N∗, and then three applications of 5.3 imply that N ∩ A3 = ∅. But then v ∈ S3, a

contradiction. This proves our claim that A1
3 ⊆ N∗, and similarly A2

3 ⊆ N∗. Suppose that A3
3 6⊆ N∗.

Then for 1 ≤ i, j ≤ 2, 5.4 (with A3
3-A

i
3-A

i
j) implies that Ai

j ⊆ N∗, and 5.3 implies that N is disjoint

from A3
1, contrary to 5.4 (with A3

1-s2-A
3
3). Thus A3

3 ⊆ N∗. Since v cannot be added to A3
3, N meets

one of the sets Ai
j where 1 ≤ i, j ≤ 2, and from the symmetry we may assume that N ∩ A1

1 6= ∅. 5.3

implies that N is disjoint from A2
2, A

3
2. If N meets A1

2, then similarly N is disjoint from A2
1, A

3
1, and

5.4 (with A2
1-A

1
1-A

1
2) implies that A1

2 ⊆ N∗, and similarly A1
1 ⊆ N∗; but then v can be added to A1

3,
a contradiction. Thus N ∩A1

2 = ∅. By 5.4 (with A1
2-A

1
1-(A

2
1 ∪A3

1)), A2
1 ∪A3

1 ⊆ N∗, and by 5.4 (with
A1

1-A
2
1-A

2
2), A1

1 ⊆ N ; but then v ∈ S2, a contradiction. This completes the case when s1, s2 ∈ N .
Next assume (for a contradiction) that s1 ∈ N and s2 /∈ N . Suppose first that A1

2 6⊆ N∗. 5.4
(with A1

2-s1-(A
2
3 ∪A3

3)) implies that A2
3 ∪A3

3 ⊆ N∗; 5.4 (with s2-A
1
3-A

1
2) implies that N ∩A1

3 = ∅; 5.4
(with A1

3-s1-A
3
2) implies A3

2 ⊆ N∗; 5.3 (with A2
1, A

3
3, A

3
2) implies that N∩A2

1 = ∅; and this contradicts
5.4 (with A2

1-A
2
3-A

1
3). This proves that A1

2 ⊆ N∗. Similarly A2
2 ⊆ N∗. If A3

2 6⊆ N∗, then 5.4 (with
A3

2-A
i
2-A

i
j) implies that Ai

j ⊆ N∗, for i = 1, 2 and j = 1, 3; and then 5.3 implies that N is disjoint

from both A3
3, A

3
2, contrary to 5.4 (with A3

3-s1-A
3
2). Hence A3

2 ⊆ N∗. Suppose that N∩(A1
3∪A2

3) = ∅.
Since v cannot be added to A3

2, it follows that N ∩ (A1
1 ∪ A2

1) 6= ∅, and from the symmetry we may
assume that N ∩ A1

1 6= ∅. 5.4 (with (A2
1 ∪ A3

1)-A
1
1-A

1
3) implies that A2

1 ∪ A3
1 ⊆ N∗, and similarly

A1
1 ⊆ N∗, and 5.3 implies that N ∩A3

3 = ∅; but then v ∈ S3, a contradiction. Thus N ∩(A1
3∪A2

3) 6= ∅,
and from the symmetry we may assume that N ∩ A1

3 6= ∅. Suppose that A1
1 6⊆ N∗. Then 5.4 (with

A1
1-A

1
3-(A

2
3∪A3

3)) implies that A2
3∪A3

3 ⊆ N∗; three applications of 5.3 imply that N ∩A1 = ∅; and 5.4
(with A2

1-A
2
3-A

1
3) implies that A1

3 ⊆ N∗; but then v ∈ S1, a contradiction. This proves that A1
1 ⊆ N∗.

By 5.3, N ∩ Ai
j = ∅ for i = 2, 3 and j = 1, 3; and 5.4 (with A2

1-A
1
1-A

1
3) implies that A1

3 ⊆ N∗. But

then v can be added to A1
2, a contradiction. This completes the case when s1 ∈ N and s2 /∈ N .

We deduce that s1 /∈ N , and similarly s2 /∈ N . 5.4 (with s1-A3-s2) implies that N ∩A3 = ∅. Sup-
pose that N ∩ (A1

1 ∪A2
1) 6= ∅. Then 5.4 (with A1

3-A
1
1-A

2
1 and A2

3-A
2
1-(A

1
1 ∪A3

1)) implies that A1 ⊆ N∗.
Also 5.4 (with s2-A

1
1-A

1
2) implies that A1

2 ⊆ N∗, and so similarly A2 ⊆ N∗ and therefore v ∈ S3,
a contradiction. This proves that N ∩ (A1

1 ∪ A2
1) = ∅, and similarly N ∩ (A1

2 ∪ A2
2) = ∅. 5.4 (with

A1
1-S2-A

2
3) implies that N ∩ S2 = ∅, and similarly N ∩ S1 = N ∩ S3 = ∅. 5.4 (with A1

j -(A
3
j \Hj)-A

3
3)

implies that N ∩ A3
j ⊆ Hj for j = 1, 2. Consequently N ⊆ H1 ∪ H2. This proves (1).
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(2) Let v ∈ (W \ (H1 ∪ H2)) ∪ S1 ∪ S2 ∪ S3. If v ∈ A1 ∪ S2 ∪ S3 then v is strongly complete to
H1, and otherwise v is strongly anticomplete to H1. An analogous statement holds for H2.

For if v ∈ A1 ∪ S2 ∪ S3 then v is strongly complete to H1, and if v ∈ A3 ∪ S1 ∪ A1
2 ∪ A2

2 then
v is anticomplete to H1, so we may assume that v ∈ A3

2. Let a2
2 ∈ A2

2. Since v /∈ H2, v has a neigh-
bour a3

3 ∈ A3
3; and if v also has a neighbour h1 ∈ H1, then {v, h1, a

2
2, a

3
3} is a claw, a contradiction.

Thus v is strongly anticomplete to H1. This proves (2).

We claim that there do not exist adjacent x, y ∈ (W \ (H1 ∪ H2)) ∪ S1 ∪ S2 ∪ S3 such that x is
H1 ∪ H2-complete and y is H1 ∪ H2-anticomplete. For suppose that such x, y exist. By (2), x ∈ S3,
and y ∈ A3; but then x, y are strongly antiadjacent, a contradiction. If Z 6= ∅, then (H1, Z,H2) is a
breaker, by (1) and (2), and the theorem holds by 4.4. We may therefore assume that Z = ∅. Now
S1, S2, S3 are strong cliques by 5.5, and so G is the hex-join of G|W and G|(S1 ∪ S2 ∪ S3). This
proves 6.2.

7 Line graphs

Our next goal is to prove that if a trigraph G is claw-free and contains an induced subtrigraph which
is a line trigraph of some graph H, and H is sufficiently nondegenerate, then either G itself is a line
trigraph or it is decomposable. It is helpful first to weaken slightly what we mean by a line trigraph.

If H is a graph and e, f ∈ E(H), we say that e, f are cousins if they have no common end in H,
and there is an edge xy of H such that e is incident with x and f is incident with y and x, y both
have degree two in H. Let H be a graph, and let G be a trigraph with V (G) = E(H). We say that
G is a weak line trigraph of H if for all distinct e, f ∈ E(H):

• if e, f have a common end in H then they are adjacent in G, and if they have a common end
of degree at least three in H, then they are strongly adjacent in G

• if e, f have no common end in H then they are antiadjacent in G, and if they are not cousins
in H then they are strongly antiadjacent in G.

We remark:

7.1 Let G be a claw-free trigraph with α(G) ≥ 3 and |V (G)| ≥ 7. If G is a weak line trigraph of
some graph H, then either G ∈ S0 or G is decomposable.

Proof. We may assume that G is not decomposable, and that H has no vertex of degree zero. If
there do not exist any pair of cousins in E(H) that are semiadjacent in G, then G is a line trigraph
of H as required, so we suppose that a, b ∈ E(H) are cousins that are semiadjacent in G. Let
v1, v2, v3, v4 be vertices of H such that a = v1v2, b = v3v4, there is an edge c = v2v3, and v2, v3 both
have degree two in H.

Suppose first that c has no neighbours in G except a, b. Let A,B,C,D be respectively the sets
of edges of H different from a, b, c that are incident with v1 and not v4, v4 and not v1, neither of
v1, v4, and both v1, v4 respectively. Since G is not decomposable, it follows that ({a}, {c}, {b}) is not
a breaker, and so one of A,B,C is empty. Suppose that C = ∅. Then {a}, {b},D are strong cliques,
and so are A,B, {c}; and each of the first triple is strongly complete to two of the second triple and
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anticomplete to the third, and so G is expressible as a hex-join, a contradiction. Thus C 6= ∅, and
so we may assume that A = ∅. But then ({a, b, c} ∪ D,B ∪ C) is a 1-join, a contradiction.

Thus c has a neighbour in G different from a, b; and so c is semiadjacent to some cousin of c.
Hence we may assume that there is a vertex v5 of H adjacent to v4, so that v4 has degree two,
and c, d are semiadjacent in G where d = v4v5; and v5 6= v2, v3, v4. Let A,B,C,D be respectively
the sets of edges of H different from a, b, c, d that are incident with v1 and not v5, v5 and not v1,
neither of v1, v5, and both v1, v5 respectively. (Thus if v5 = v1 then A = B = ∅.) Suppose that
v5 = v1; then C 6= ∅ since α(G) ≥ 3, and so ({a, b, c, d}, C ∪ D) is a 1-join, a contradiction. Thus
v1 6= v5. Since ({a}, {b, c}, {d}) is not a breaker, one of A,B,C is empty. Suppose that C = ∅.
Since (A,B) is a nondominating homogeneous pair, we may assume by 4.3 that |A|, |B| ≤ 1. Since
|V (G)| ≥ 7, it follows that D 6= ∅, and so G is expressible as a hex-join, with the six cliques
A ∪ {a}, B ∩ {d}, {b, c}, ∅, ∅,D, a contradiction. Thus C 6= ∅, and we may therefore assume that
A = ∅. But then ({a, b, c, d} ∪ D,B ∪ C) is a 1-join, a contradiction. This proves 7.1.

In this paper, a separation of a graph H means a pair (A,B) of subsets of V (H), such that
A ∪ B = V (H) and A \ B is anticomplete to B \ A. A k-separation means a separation (A,B) such
that |A ∩B| ≤ k, and a separation (A,B) is cyclic if both H|A,H|B contain cycles. We say that H
is cyclically 3-connected if it is 2-connected and not a cycle, and there is no cyclic 2-separation. (For
instance, the complete bipartite graph K2,3 is cyclically 3-connected, but the graph obtained from
K4 by deleting an edge is not. This differs slightly from the definition used in [4].)

A branch-vertex of a graph H means a vertex with at least three neighbours; and, if a graph H is
cyclically 3-connected, a branch of H means a path B of H with distinct ends, both branch-vertices,
such that no internal vertex of B is a branch-vertex. (The reason for insisting that H is cyclically
3-connected is because of our convention that all “paths” are induced subgraphs, and that is not our
intention for branches; but no conflict arises when H is cyclically 3-connected.) A graph H is robust
if:

• H is cyclically 3-connected,

• |V (H)| ≥ 7, and

• |V (H) \ V (B)| ≥ 4 for every branch B.

There is an analogue of 5.1 and 5.2 for line trigraphs, as follows.

7.2 Let H be a robust graph. Let L(H) be its line graph, and let G be a claw-free L(H)-trigraph.
Then either G is a weak line trigraph of H, or G contains an XX-configuration or a YY-configuration.

Proof. Thus V (G) = E(H), and for all distinct e, f ∈ E(H), if e, f share an end in H then they
are adjacent in G, and if e, f are disjoint in H then they are antiadjacent in G. We must check that
either G contains an XX-configuration or a YY-configuration, or

• if e, f share an end in H that has degree at least three in H, then e, f are strongly adjacent in
G

• if e, f are disjoint in H and not cousins then they are strongly antiadjacent in G.
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For the first claim, let t ∈ V (H) be incident with e1, . . . , ek say, where k ≥ 3, and suppose that e1, e2

are antiadjacent in G. For 1 ≤ i ≤ k let ei have ends t, ti. For 3 ≤ i ≤ k, if g ∈ E(H) is incident
with ti and different from ei, then since {g, ei, e1, e2} is not a claw in G, it follows that g is incident
in H with one of t1, t2; and so ti has no neighbours in H except t and possible t1, t2. Since H is
cyclically 3-connected, each of t3, . . . , tk is adjacent to both of t1, t2. For 3 ≤ i ≤ k let the three edges
of H incident with ti be ei = tit, fitit1 and gi = tit2. Now ({t, t1, . . . , tk}, V (H) \ {t, t3, . . . , tk}) is a
2-separation of H, and so either V (H) = {t, t1, . . . , tk}, or H \{t, t3, . . . , tk}) is a path between t1, t2.
Suppose the first holds. Then k ≥ 6 since |V (H)| ≥ 7; and then G contains a YY-configuration (take
the vertices called

a1, a2, a3, b1, b2, b3, c1, c2, c3, d1, d2

in the definition of a YY-configuration to be

f6, g6, e5, f3, g3, e3, f4, g4, e4, e1, e2

respectively). Now suppose the second holds, that is, H \ {t, t3, . . . , tk}) is a path between t1, t2. Let
a1, a2 be the edges of this path incident with t1, t2 respectively. Then k ≥ 5, since there are at least
four vertices of H not in the branch between t1, t2, and again G contains a YY-configuration (take
the same bijection as before, except use a1, a2 in place of f6, g6). This proves the first claim.

For the second claim, let e, f be disjoint edges of H, and suppose they are adjacent (and therefore
semiadjacent) in G. Since H is robust, there is a cycle C of H of length at least five, containing
e, f . Let e1, e2 be the two edges of C that share an end with e, and define f1, f2 similarly. Since
{e, e1, e2, f} is not a claw in G, f is strongly adjacent in G to one of e1, e2, and therefore f shares
an end with one of e1, e2 in H. Hence we may assume that e2 = f2. Let C have vertices c1- · · · -ck-c1

in order, where e1 is c1c2, e is c2c3, e2 is c3c4, f is c4c5, and f1 if c5c6 (where c6 = c1 if k = 5). If
e, f belong to the same branch of H, then so does e2, and therefore c3, c4 both have degree two in
H and e, f are cousins as required; so we may assume that e, f do not belong to the same branch of
H, and therefore ({c2, c3, c4, c5}, V (H) \ {c3, c4}) is not a 2-separation of H. Hence we may assume
that c3 is adjacent in H to some vertex x 6= c2, c3, c4, c5. If x 6= c1 then {e, e1, c3x, f} is a claw in G,
a contradiction, and so x = c1. Since H is cyclically 3-connected, and no branch contains all vertices
except three, it follows that

({c1, c2, c3, c4, c5}, V (H) \ {c2, c3, c4})

is not a 2-separation, and so one of c2, c3, c4 has a neighbour y ∈ V (H) \ {c1, c2, c3, c4, c5}. We have
already seen that c3 has no such neighbour, and if c2, y are adjacent then {e, c2y, c1c3, f} is a claw in
G, a contradiction; and so c4, y are adjacent. Since {f, f1, c4y, e} is not a claw, it follows that y = c6.
If c2, c5 are adjacent then G contains an XX-configuration (take the vertices called

a1, a2, b1, b2, b3, c1, c2, c3, d1, d2

in the definition of an XX-configuration to be

c1ck, c6c7, c1c3, c4c6, e2, e1, f1, c2c5, e, f

respectively), so we assume not. Since the neighbours c1, c3 of c2 are adjacent and H is cyclically
3-connected, it follows that c2 has a neighbour z 6= c1, c3; and since {e, c2z, c1c3, f} is not a claw
in G, z is incident with f . Hence c2, c4 are adjacent, and similarly so are c3, c5. But then again G
contains an XX-configuration, since exchanging c2, c3 puts us back in the previous case. This proves
7.2.
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7.3 Let H be a robust graph, and let X ⊆ E(H), satisfying the following:

(Z1) there do not exist three pairwise nonadjacent edges in X

(Z2) there do not exist distinct vertices t1, t2, t3, t4 of H, such that ti is adjacent to ti+1 for i = 1, 2, 3,
and the edge t2t3 belongs to X, and the other two edges t1t2, t3t4 do not belong to X.

Then one of the following holds:

• There is a subset Y ⊆ V (H) with |Y | ≤ 2 such that X is the set of all edges of H incident with
a vertex in Y .

• There are vertices s1, s2, s3, t1, t2, t3, u1, u2 ∈ V (H), all distinct except that possibly t1 = t2, such
that the following pairs are adjacent in H: siti, siu1, siu2 for i = 1, 2, 3, and s1s3. Moreover,
X contains exactly six of these ten edges, the six not incident with s1.

• There is a subgraph J of H isomorphic to a subdivision of K4 (let its branch-vertices be
v1, . . . , v4, and let Bi,j denote the branch between vi, vj); and B2,3, B3,4, B2,4 all have length
1, B1,2, B1,3 have length 2, and B1,4 has length ≥ 2. Moreover, the edges of J in X are
precisely the five edges of B1,2, B1,3 and B2,3.

Proof. Since H is cyclically 3-connected, we have:

(1) No vertex of H of degree 2 is in a triangle.

(2) If there is a vertex y ∈ V (H) such that every edge in X is incident with y, then the theorem holds.

For suppose y is such a vertex; let N be the set of neighbours v of y such that the edge yv ∈ X, and
M the remaining neighbours of y. If M = ∅ or N = ∅ then the first statement of the theorem holds,
so we assume that there exist m ∈ M and n ∈ N . The only edge in X incident with n is ny, and by
(Z2), there is no edge in E(H) \ X incident with n except possibly nm. Since n has degree ≥ 2, it
follows that n has degree 2 and is in a triangle, contrary to (1). This proves (2).

(3) If there exist two vertices y1, y2 of H such that every edge in X is incident with one of y1, y2,
then the theorem holds.

For let us choose y1, y2 with the given property, adjacent if possible. For i = 1, 2, let Ni be the
set of all neighbours v ∈ V (H) \ {y1, y2} of yi such that the edge yiv ∈ X, and let Mi be the other
neighbours of yi in V (H) \ {y1, y2}. If M1,M2 are both empty, then the first statement of the the-
orem holds, so we may assume that there exists m1 ∈ M1. By (2) we may assume that there exists
n1 ∈ N1. Let a be any neighbour of n1 different from y1. If an1 ∈ X then a = y2, since every edge
in X is incident with one of y1, y2; and if an1 /∈ X then a = m1, by (Z2) applied to m1-y1-n1-a. In
particular, if n1 /∈ N2 then n1 has degree 2 and belongs to a triangle, contrary to (1). It follows that
N1 ⊆ N2. Suppose that |M1| > 1. Then no vertex in N1 has a neighbour in M1, and therefore every
vertex in N1 has degree 2. Since H is cyclically 3-connected, it follows that N1 = {n1}; and so every
edge in X is incident with one of n1, y2. From the choice of y1, y2 it follows that y1, y2 are adjacent,
and so n1 belongs to a triangle, contrary to (1). This proves that M1 = {m1}. If there exist distinct
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u, v ∈ N1 both nonadjacent to m1, then ({u, v, y1, y2}, V (H) \ {u, v}) is a 2-separation of G contra-
dicting that H is robust. Thus every vertex in N1 is adjacent to m1 except possibly one. Moreover,
(N1∪{y1, y2,m1}, V (H)\(N1∪{y1})) is a 2-separation of H, and so either N1∪{y1, y2,m1} = V (H),
or H \ (N1 ∪ {y1})) is a path of length > 1 between m1, y2. In the first case, it follows that |N1| ≥ 4
since |V (H)| ≥ 7, and the second statement of the theorem holds. Thus we assume the second case
applies. Let P be the path H \ (N1 ∪{y1})). By hypothesis, at least four vertices of H do not belong
to V (P ), and so |N1| ≥ 3. Let x be the neighbour of y2 in P ; then x 6= m1. Choose n′

1 ∈ N1 adjacent
to m1; then from (Z2) applied to x-y2-n

′

1-m1 we deduce that the edge xy2 belongs to X. But then
again the second statement of the theorem holds. This proves (3).

(4) If there are three edges in X forming a cycle of length 3, then there is a fourth edge in X
incident with a vertex of this cycle.

For suppose that y1, y2, y3 are vertices such that y1y2, y2y3, y3y1 ∈ X, and for i = 1, 2, 3 no other
edge in X is incident with yi. Since H is cyclically 3-connected and |V (H)| ≥ 7, it follows that there
are two edges between {y1, y2, y3} and V (H)\{y1, y2, y3}, with no common end. But then both these
edges belong to E(H) \ X, and (Z2) is violated. This proves (4).

(5) There do not exist Y ⊆ V (H) with |Y | = 3 and y4 ∈ V (H) \ Y , such that every two mem-
bers of Y are joined by an edge in X, and every other edge in X is incident with y4.

For let Y = {y1, y2, y3}, and suppose first that there is a matching of size 2 consisting of edges
of H \ {y4}, each with one end in Y and the other not in this set. These two edges therefore do
not belong to X, and so (Z2) is violated. Thus there is no such matching. Consequently, there is a
vertex y5 such that every edge of H with one end in Y and the other not in this set is incident with
one of y4, y5. It follows that (Y ∪ {y4, y5}, V (H) \ Y ) is a 2-separation of H, and therefore H \ Y is
a path between y4, y5, contrary to the hypothesis. This proves (5).

In view of (3),(4),(5), (Z1) and (for instance) Tutte’s theorem [6], it follows that there is a set
Y ⊆ V (H) with |Y | = 5 such that every edge in X has both ends in Y , and H|(Y \{y}) has a 2-edge
matching with both edges in X, for every vertex y ∈ Y . (We call this “criticality”.) Criticality
implies that among every three vertices in Y , some two are joined by an edge in X. Suppose that
there is a 3-edge matching between V (H)\Y and Y . None of these three edges belongs to X, and so
from (Z2) it follows that no two of y1, y2, y3 are joined by an edge in X, contrary to criticality. We
deduce that no such matching of size 3 exists. Consequently there is a set Z ⊆ V (H) with |Z| ≤ 2,
such that every edge between Y and V (H) \ Y is incident with a member of Z. By choosing Z
with Z ∪ Y minimal, we deduce that every vertex in Z \ Y has at least two neighbours in Y . Now
(Y ∪ Z, (V (H) \ Y ) ∪ Z) is a 2-separation. Since H|Y has a cycle, it follows that H \ (Y \ Z) has
no cycle; and consequently, either Y ∪ Z = V (H) (which implies that |Z| = 2, since |V (H)| ≥ 7), or
|Z| = 2 and H \ (Y \ Z) is a path joining the two members of Z. Thus in either case, |Z| = 2.

Suppose first that Y ∩ Z = ∅. From the choice of Z minimizing Y ∪ Z, it follows that we can
write Z = {z1, z2} and Y = {y1, . . . , y5} such that z1y1, z2y2, z2y3 are edges. By criticality, some
two of y1, y2, y3 are joined by an edge in X. From (Z2), this edge is not y1y2 or y1y3, so it must
be y2y3; that is, y2, y3 are adjacent and X contains the edge joining them. Consequently, by (Z2),
z1, y1 are both nonadjacent to both of y2, y3. Since z1 has at least two neighbours in Y , we may
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assume that z1 is adjacent to y4; and so, by the symmetry between y1, y4 we deduce that y4 is
nonadjacent to y2, y3, and exchanging z1, z2 implies that y1y4 ∈ X, and z2 is nonadjacent to y1, y4.
Then ({z1, y1, y4, y5}, V (H) \ {z1, y5}) is a cyclic 2-separation of H, a contradiction.

So Y ∩Z is nonempty, and in particular Y ∪Z 6= V (H), since |V (H)| ≥ 7. Consequently H\(Y \Z)
is a path P say, joining the two vertices in Z. Let Z = {z1, z2} and Y = {y1, . . . , y5}. Suppose first
that Z 6⊆ Y ; then we may assume that z2 = y4 (since we have shown that Y ∩ Z is nonempty),
and z1 is adjacent to y1, y2, and P has length ≥ 2. By criticality, some two of y1, y2, y4 are joined
by an edge in X, and by (Z2) it must be y1y2; and therefore, by (Z2) again, y4 is nonadjacent to
y1, y2. Consequently, by criticality, y4 is adjacent to y3, y5, and the edges y3y4, y4y5 ∈ X. Thus z1

is nonadjacent to y3, y5. Since H is cyclically 3-connected, we may assume that y2y3, y1y5 are edges;
and (Z2) implies they are both in X. Thus all edges of the cycle y1-y2-y3-y4-y5-y1 belong to X. But
then the third statement of the theorem holds.

Finally, we may assume that Z ⊆ Y ; but then |V (H) \ V (P )| = 3, contrary to the hypothesis.
This proves 7.3.

We need a small lemma for the next proof.

7.4 Let H be a cyclically 3-connected graph, and let B be a branch of H. Let Y ⊆ V (B) with
|Y | ≤ 2, such that if |Y | = 1 then the member of Y is an internal vertex of B. Let e be an edge of H
not in E(B) and not incident with any vertex in Y . There is no Z ⊆ V (H) with |Z| ≤ 2 such that
for every edge f ∈ E(H), f has an end in Z if and only if either f = e or f has an end in Y .

Proof. Suppose Z is such a subset, and let N be the set of edges of H with an end in Y . Since
N ∪ {e} is the set of edges with an end in Z, it follows that N 6= ∅, and therefore Y 6= ∅. Since
Y ⊆ V (B), it follows that N ∩E(B) 6= ∅, and therefore Z ∩V (B) 6= ∅. Let z ∈ Z be incident with e.
Since e /∈ E(B), z does not belong to the interior of B, and therefore is incident with an edge e′ 6= e
and not in B. Hence e′ ∈ N , and therefore is incident with a member of Y , say y; and consequently
y is an end of B. There is an edge e′′ 6= e′ incident with y and not in B, and since e′′ ∈ N , it
follows that y ∈ Z. But y 6= z since e is not incident with any member of Y ; and so Z = {y, z}, and
z /∈ V (B) since H is cyclically 3-connected. Since y is an end of B, by hypothesis there is a second
member y′ ∈ Y . There is an edge incident with y′ and not incident with y or z, a contradiction.
This proves 7.4.

Let us say a graph H is a theta if it is cyclically 3-connected and has exactly two branch-vertices
and three branches. If G is a trigraph, a subset X ⊆ V (G) is connected if X 6= ∅ and there is no
partition of X into two nonempty sets that are strongly anticomplete to each other. A component of
a trigraph G is a maximal connected subset of V (G). The earlier results of this section are combined
with 5.9 and 6.2 to prove the following.

7.5 Let H be a robust graph, and let G be a claw-free trigraph, containing an L(H)-trigraph. Then
either G ∈ S0 ∪ S1 ∪ S2, or G is decomposable.

Proof. We assume that G /∈ S1 ∪ S2, and G is not decomposable; and we shall prove that G ∈ S0.
We may choose H with |V (H)| maximum satisfying the hypotheses of the theorem (we call this the
“maximality” of H). By hypothesis, E(H) ⊆ V (G), and G|E(H) is an L(H)-trigraph. By 7.2, 5.9
and 6.2, we may therefore assume that G|E(H) is a weak line trigraph of H. For each h ∈ V (H),
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let D(h) denote the set of edges of H incident with h in H. We begin with:

(1) Let v ∈ V (G) \ E(H).

• There exists Y ⊆ V (H) with |Y | ≤ 2 such that N(v) ∩ E(H) =
⋃

(D(y) : y ∈ Y ), and there is
a branch B of H including Y .

• If N∗(v)∩E(H) 6= N(v)∩E(H), then |Y | = 2, Y = {y, y′} say, where y belongs to the interior
of B, and y, y′ are either adjacent or have a common neighbour in B, and the (unique) edge
of H in N(v) ∩ E(H) \ N∗(v) is the edge of B incident with y that is not in the subpath of B
between y and y′.

• If |Y | = 2 and the two members of Y are adjacent in H, joined by an edge q of H say, let H ′

be obtained from H by deleting the edge q and adding a new edge v with the same two ends as
q; then G|E(H ′) is an L(H ′)-trigraph.

For let N = N(v) ∩ E(H) or N∗(v) ∩ E(H). Then N ⊆ E(H), and satisfies the hypotheses of
7.3, by 5.3 and 5.4. Thus one of the three conclusions of 7.3 holds. Suppose that the second holds;
then there are s1, s2, s3, t1, t2, t3, u1, u2 ∈ V (H), all distinct except that possibly t1 = t2, such that
the following pairs are adjacent in H: siti, siu1, siu2 for i = 1, 2, 3, and s1s3. Moreover, N contains
exactly six of these ten edges, the six not incident with s1. Since {u2s2, v, u1s2, u2s1} is not a claw,
it follows that u1s2 ∈ N∗(v), and similarly u1s3, u2s2, u2s3 ∈ N∗(v); since {u1s2, v, s2t2, u1s1} is
not a claw, s2t2 ∈ N∗(v) and similarly s3t3 ∈ N∗(v); and since {v, u1s1, u2s2, s3t3} is not a claw,
u1s1 /∈ N(v), and similarly u2s1, s1t1 /∈ N(v). Thus each of these six edges that belong to N also
belongs to N∗(v), and the four that do not belong to N also do not belong to N(v), except possibly
for s1s3. It follows that G contains a YY-configuration (take the vertices called

a1, a2, a3, b1, b2, b3, c1, c2, c3, d1, d2

to be
s1t1, s2t2, s3t3, s1u1, s2u1, s3u1, s1u2, s2u2, s3u2, s1s3, v

respectively), and so by 6.2, we deduce that G is decomposable, a contradiction.
Suppose that the third conclusion of 7.3 holds. Then there is a subgraph J of H isomorphic to a

subdivision of K4 (let its branch-vertices be v1, . . . , v4, and let Bi,j denote the branch between vi, vj);
and B2,3, B3,4, B2,4 all have length 1, B1,2, B1,3 have length 2, and B1,4 has length ≥ 2. Moreover,
the edges of J in N are precisely the five edges of B1,2, B1,3 and B2,3. As in the previous case, it
follows that the edges of B1,2 and B1,3 belong to N∗(v), and the edges of B1,4, B2,4, B3,4 are not
in N(v). But then G contains an XX-configuration (take the edges of J incident in J with one of
v1, . . . , v4, together with v), and by 5.9, either G is decomposable, or it belongs to S1 ∪ S2, again a
contradiction.

Thus the first outcome of 7.3 holds (when N = N(v) ∩ E(H) and when N = N∗(v) ∩ E(H)).
Choose Y,Z ⊆ V (H) with |Y |, |Z| ≤ 2 such that N(v)∩E(H) =

⋃
(D(y) : y ∈ Y ) and N∗(v)∩E(H) =⋃

(D(y) : y ∈ Z).
Suppose that N(v)∩E(H) 6= N∗(v)∩E(H). Choose e0 ∈ E(H) semiadjacent to v in G. Choose

y ∈ Y incident with e0 in H. Let D(y) = {e0, . . . , ek}, and for i = 0, . . . , k let xi be the vertex of
H different from y that is incident with ei in H, and let Bi be the branch of H containing ei. Thus
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k ≥ 1. Since H is cyclically 3-connected, x1 has a neighbour different from y, x0; let f be an edge of
H incident with x1 and not with x0, y. Since G is claw-free, it follows that f ∈ N∗(v), and so there
exists y′ ∈ Y \ {y} incident with f . Hence |Y | = 2, and Y = {y, y′}, and if x1 6= y′ then x1, y

′ are
adjacent in H and x1 has no neighbours in H except y, y′ and possibly x0. Suppose that k = 1. Then
B0 = B1, and y is an internal vertex of B0, and x0, x1 ∈ V (B0). Moreover, x0, x1 are nonadjacent,
and so either y′ = x1 or x1 has only two neighbours y, y′. In either case the result holds. We may
therefore suppose (for a contradiction) that k ≥ 2, and so B0, B1, . . . , Bk are all distinct. Now from
the choice of Z,

D(y) ∪ D(y′) \ {e0} =
⋃

(D(z) : z ∈ Z).

In particular, y, x0 /∈ Z, and since k ≥ 2 and ei ∈ N∗(v) for 1 ≤ i ≤ k, it follows that k = 2 and
Z = {x1, x2}. From the symmetry between B1 and B2, we may assume that y′ does not belong to
B1. Hence x1, y

′ are adjacent in H and x1 has no neighbours in H except y, y′ and possibly x0. In
particular, x1 has no neighbour in B1 except y, and so x1 is a branch-vertex. Thus x1 is adjacent
to x0. If also y′ does not belong to B2, then similarly x2 is a branch-vertex with neighbours set
{y, y′, x0}, and so ({y, y′, x0, x1, x2}, V (H) \ {y, x1, x2}) is a 2-separation of H. Hence H \ {y, x1, x2}
is a branch of H between x0, y

′, and it contains all except three vertices of H, a contradiction. Thus
y′ belongs to B2. Since y′ is adjacent to x1, it follows that y′ is a branch-vertex, and so y, y′ are the
ends of the branch B2. Since every edge incident with y′ belongs to N∗(v) and so has an end in Z,
and |Z| ≤ 2, it follows that y′ ∈ Z, and so y′ = x2. But then ({y, x0, x1, x2}, V (H) \ {y, x1}) is a
2-separation, and so H\{y, x1} is a branch of H containing all its vertices except two, a contradiction.

This proves the second assertion of (1), and the third assertion follows. If |Y | ≤ 1, or |Y | = 2 and
some branch of H contains both members of Y , then the first assertion of (1) holds, so we assume
(for a contradiction) that Y = {h1, h2} say, and no branch of H contains both h1, h2. Consequently
N(v)∩E(H) = N∗(v)∩E(H). Let H ′ be the graph obtained from H by adding the edge v incident
with both h1, h2. Then H ′ is robust (since h1, h2 do not belong to the same branch of H), and yet
G|E(H ′) is an L(H ′)-trigraph, a contradiction to the maximality of H. This proves (1).

For each v ∈ V (G) \ E(H), let Y (v) ⊆ V (H) be the set Y described in (1). For each v ∈ E(H),
let Y (v) be the set consisting of the two vertices of H incident with v in H. Make the following
definitions:

• For each branch-vertex t of H, let M(t) = {v ∈ V (G) : Y (v) = {t}}.

• For each branch B with ends t1, t2 say, let M(B) = {v ∈ V (G) : Y (v) = {t1, t2}}.

• For each branch B and each end t of B, let

M(t, B) = {v ∈ V (G) : Y (v) = {t, h} for some h in the interior of B}.

• For each branch B with ends t1, t2 say, let

S(B) = {v ∈ V (G) : ∅ 6= Y (v) ⊆ V (B) \ {t1, t2}}.

• Let Z = {v ∈ V (G) : Y (v) = ∅}.
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From (1), we see that all these sets are pairwise disjoint (unless H is a theta, in which case all the
sets M(B) are equal), and have union V (G).

(2) Let B be a branch of H with ends t1, t2, let v ∈ M(B), and let u ∈ V (G) be adjacent to v.
Then Y (u) contains at least one of t1, t2.

For Y (v) = {t1, t2}, and we may assume that t1, t2 /∈ Y (u). Suppose that |Y (u)| ≤ 1. Let B1 6= B
be a branch incident with t1 and with V (B1) ∩ Y (u) = ∅, with ends t1, t3 say. Let e1 be the edge of
B1 incident with t1, and let e2 be any edge incident with t2. Since {v, e1, e2, u} is not a claw of G,
we deduce that for every choice of e2, either e2 is incident with a member of Y (u) or e2 shares an
end with e1. Since there are at least three choices of e2, and at most two of them share an end with
e1, and at most one is incident with a member of Y (u), it follows that we have equality throughout;
that is, t2 has degree three, |Y (u)| = 1, Y (u) = {s} say, and t1, t2 are adjacent (and consequently
H is not a theta, and therefore t3 6= t2), and the pairs t2s, t1t3, t2t3 are adjacent. By exchanging
t1, t2 we deduce also that t1 has degree 3 and t1, s are adjacent. Consequently H is a subdivision of
K4, and there is a branch of H with ends s, t3. There are only two vertices of H not in this branch,
contrary to hypothesis.

This proves that |Y (u)| = 2, say Y (u) = {s1, s2}. Let B′ be a branch with Y (u) ⊆ V (B′). Since
we have already seen that one of s1, s2 does not belong to B, it follows that B′ 6= B. Suppose that
B,B′ share an end, say t1, and let t3 be the other end of B′. There is an edge e1 of H incident
with t1, that belongs to neither of B,B′. Let e2 be any edge incident with t2; for each such choice,
{v, u, e1, e2} is not a claw in G. By choosing e2 from B we deduce that t1, t2 are adjacent and
therefore H is not a theta. It follows that for all choices of e2, either e2 has an end in Y (u) (which,
since H is not a theta, implies that e2 is incident with t3 and t3 ∈ Y (u)), or e2 shares an end with
e1. There is at most one choice for which the first occurs, and two for which the second occurs; and
since t2 has degree ≥ 3, we have equality throughout. More precisely, t2 has degree 3, t3 ∈ Y (u),
and the pairs t1t2, t2t3, t2t4 are adjacent, where e1 has ends t1, t4. Moreover, no other choice of e1 is
possible, and so t1 also has degree 3. Consequently H is a subdivision of K4, and there is a branch
P between t3, t4. By hypothesis, at least four vertices of H do not belong to P , and so B′ has length
≥ 3. Let f1 be an edge of B′ incident with a vertex in Y (u) but not incident with either of t1, t3
(this exists since B′ has length ≥ 3 and one of its internal vertices is in Y (u)). Let f2 be the edge of
P incident with t3. Then {u, v, f1, f2} is a claw in G, a contradiction.

This proves that B,B′ do not share an end, and so H is not a theta. We have already seen that
one of s1, s2 is adjacent to one of t1, t2, say s1, t1 are adjacent. Consequently s1 is an end of B′.
Suppose that s2 belongs to the interior of B′. Let e1 be an edge incident with t1, not in B and not
incident with s1; and let e2 be any edge incident with t2. Since {v, u, e1, e2} is not a claw in G, it
follows that for all choices of e2, either e2 is adjacent to s1 or to an end of e1. Consequently t2 has
degree 3, and t2 is adjacent to s1 and to both ends of e1. Since this also holds for all choices of e1,
we deduce that t1 also has degree 3. Let e1 have ends t1, t3 say. Since H is cyclically 3-connected,
it follows H is a subdivision of K4 and t3 is an end of B′. But then only two vertices of H do not
belong to the branch B′, contrary to hypothesis.

This proves that s1, s2 are both ends of B′, and so u ∈ M(B′). Thus there is symmetry between
u, v. Suppose that B has length 1, and let q be the edge of H incident with t1, t2. Let H ′ be the
graph obtained from H by deleting q and adding a new edge v with the same ends t1, t2 as q. Then
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H ′ is isomorphic to H, and by (1), G|E(H ′) is an L(H ′)-trigraph, and so from (1) applied to H ′,
there is a set Y ⊆ V (H ′) with |Y | ≤ 2 such that an edge of H ′ is adjacent to u in G if and only if
it is incident in H ′ with a member of Y . But the edges of H ′ adjacent to u in G are precisely those
with an end in {s1, s2}, together with the new edge v, and this contradicts 7.4. We may therefore
assume that B has length > 1, and by symmetry we may assume the same for B′.

Let e1 be the edge of B incident with t1, and let e2 be any edge of H incident with t2. Since
{v, u, e1, e2} is not a claw in G, it follows that for all choices of e2, either e2 is incident in H with one
of s1, s2, or it shares an end with e1. Consequently t2 has degree 3, and t2 is adjacent to both s1, s2,
and B has length 2. Similarly t1, s1, s2 have degree 3, and B′ has length 2, and s1, s2 are adjacent
to both of t1, t2. But then |V (H)| = 6, a contradiction. This proves (2).

(3) Let p1- · · · -pk be a path of G such that k ≥ 2, p1, pk /∈ Z, and p2, . . . , pk−1 ∈ Z. Then either

• there is a branch B of H with ends t1, t2 say, such that p1, pk both belong to

M(t1) ∪ M(t2) ∪ M(t1, B) ∪ M(t2, B) ∪ S(B),

or

• k = 2, and Y (p1) ∩ Y (p2) contains a branch-vertex of H.

For suppose first that p1 ∈ M(B) for some branch B. By (2), k = 2 and the second statement of
the claim holds. So we may assume that p1 does not belong to any M(B), and the same for pk. Since
p1 /∈ Z, it follows that either Y (p1) = {t1} for some branch-vertex t1 of H, or there is a branch B1 of
H such that Y (p1) ⊆ V (B1) and some internal vertex of B1 belongs to Y (p1). Analogous statements
hold for pk. Suppose that |Y (p1)| = 1 and |Y (pk)| = 1, say Y (p1) = {y1} and Y (pk) = {y2}. We
claim that y1, y2 belong to the same branch of H. For suppose not. Then we may assume that pi, pj

are strongly antiadjacent for 1 ≤ i, j ≤ k with j ≥ i + 2. Let H ′ be the graph obtained from H by
adding a new branch between y1, y2 with edges p1, . . . , pk. Then H ′ is robust, and G|E(H ′) is an
L(H ′)-trigraph, contrary to the maximality of H. This proves that y1, y2 belong to the same branch
of H; and so the first statement of the claim holds.

Thus we may assume that at least one of |Y (p1)|, |Y (pk)| = 2, say |Y (p1)| = 2. Then N(p1)∩E(H)
is not a strong clique, and since p2 is adjacent to p1 and G contains no claw, it follows that p2 has a
strong neighbour in N(p1) ∩ E(H), and in particular p2 /∈ Z. Thus k = 2.

Since |Y (p1)| = 2, it follows that for some branch B1 of H, Y (p1) ⊆ V (B1) and some internal
vertex of B1 belongs to Y (p1). Let Y (p1) = {y, y′} say, where y′ belongs to the interior of B1. Next
suppose that |Y (p2)| = 1, say Y (p2) = {z}. We may assume that z /∈ V (B1), for otherwise the first
statement of the claim holds. Let e′ be an edge of B1 incident with y′ and not with y. Let e be an
edge of H incident with y, not incident with z, and with no common end with e′. (This exists, since
if y is an end of B1 there are at least two edges incident with y and disjoint from e′, and at most
one of them is incident with z.) But then {p1, p2, e, e

′} is a claw in G, a contradiction. This proves
that |Y (p2)| = 2. Let Y (p2) = {z, z′} say, and let B2 be a branch of H with z, z′ ∈ V (B2) and with
z′ in the interior of B2. We may assume that B2 6= B1, for otherwise the first statement of the claim
holds.

Suppose that Y (p1) ∩ Y (p2) 6= ∅. It follows that y = z is a common end of B1, B2. But then
p1 ∈ M(y,B1) and p2 ∈ M(y,B2), and the second statement of the claim holds. We assume therefore
that Y (p1) ∩ Y (p2) = ∅.
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If p2 ∈ E(H), then its ends in H are z, z′, and therefore it has no end in Y (p1), a contradiction
since p1, p2 are adjacent in G. Thus p2 /∈ E(H), and similarly p1 /∈ E(H). We claim that z, z′ are
nonadjacent in H. For suppose they are adjacent. Let q be the edge of B2 joining them. Since
Y (p1)∩Y (p2) = ∅, it follows that q, p1 are strongly antiadjacent in G. Let H ′ be the graph obtained
from H by deleting q and replacing it by an edge p2, joining the same two vertices z, z′. Then
G|E(H ′) is an L(H ′)-trigraph, by (1). Since H ′ is isomorphic to H, it follows from (1) applied to
H ′ that there is a subset Y ⊆ V (H ′) such that the set of members of E(H ′) adjacent in G to p1

equals the set of edges of H ′ with an end in Y . Now the set of members of E(H ′) adjacent in G to
p1 equals (N(p1) ∩E(H)) ∪ {p2}, since q is not adjacent to p1 in G. Moreover, N(p1) ∩E(H) is the
set of edges of H with an end in Y (p1), and since q has no end in Y (p1), this is equal to the set of
edges of H ′ with an end in Y (p1). Consequently, the set of edges of H ′ with an end in Y equals the
union of {p2} and the set of edges of H ′ with an end in Y (p1). But this is impossible, by 7.4. This
proves that z, z′ are nonadjacent, and similarly y, y′ are nonadjacent.

Since y, y′ are nonadjacent vertices of B1 and y′ is in the interior of B1, there are edges e, e′

of B1 incident with y, y′ respectively, such that e, e′ have no end in common. Since {p1, p2, e, e
′}

is not a claw in G, it follows that p2 is adjacent in G to one of e, e′, and so some vertex of Y (p2)
belongs to V (B1). Since z′ is an internal vertex of B2, we deduce that B1, B2 have a common end z.
Similarly their common end is y, and so y = z, contradicting that Y (p1)∩Y (p2) = ∅. This proves (3).

(4) Let t ∈ V (H) be a branch-vertex. If v1, v2 ∈ V (G) are distinct and antiadjacent in G, and
t ∈ Y (v1) ∩ Y (v2), then there are distinct branches B1, B2, both of length ≥ 2, with vi ∈ M(Bi) (i =
1, 2); and every vertex of V (H) adjacent to t in H either belongs to one of B1, B2, or has degree 3
in H and is adjacent in H to all the ends of B1, B2.

For since v1, v2 are antiadjacent in G, and t ∈ Y (v1)∩Y (v2) is a branch-vertex, it follows that v1, v2 /∈
E(H). By (1), there are branches B1, B2 of H, incident with t, such that Y (vi) ⊆ V (Bi) (i = 1, 2).
(If H is a theta, and some Y (vi) consists of the two branch-vertices, then we can choose any branch
to be Bi; in this case, choose a shortest branch.) Let Bi have ends t, ti (i = 1, 2) say. Let x be
adjacent in H to t, and not in V (B1)∪V (B2). Let y 6= t be a second neighbour of x. Let e, f be the
edges tx, xy of H. Since {e, f, v1, v2} is not a claw in G, it follows that f is strongly adjacent in G to
at least one of v1, v2, and in particular, y ∈ Y (v1)∪Y (v2). Since Y (vi) ⊆ V (Bi) (i = 1, 2), we deduce
that for some i ∈ {1, 2}, y = ti ∈ Y (vi). If H is a theta, then x is the internal vertex of some branch
of length 2; and since vi ∈ M(Bi), from the choice of Bi it follows that Bi has length ≤ 2. But then a
branch of H contains all its vertices except two, contrary to the hypothesis. Thus, H is not a theta.
Since no two branches have the same pair of ends, it follows that x is a branch-vertex; and since
this holds for all choices of y, we deduce that x has degree 3 and is adjacent in H to both t1, t2, and
ti ∈ Y (vi) (i = 1, 2). Moreover, B1, B2 are distinct. Suppose that say B2 has length 1, and let q be
the edge tt2. Let H ′ be obtained from H by deleting q and adding a new edge v2 incident with the
same two vertices t, t2. Then H ′ is isomorphic to H, and by (1) G|E(H ′) is an L(H ′)-trigraph, and
so by (1) applied to H ′, we may assume that there exists Y ⊆ V (H ′) = V (H) with |Y | ≤ 2, such
that the set of edges of H ′ with an end in Y equals the set of edges of H ′ that are adjacent to v1 in
G. But in the triangle {x, t, t2} of H ′, exactly one of its edges is adjacent to v1 in G, a contradiction.
This proves that B2, and similarly B1, has length ≥ 2, and so proves (4).
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(5) If B is a branch of H of length 1, with ends t1, t2, then M(t1) is strongly anticomplete to M(t2).

If there exists v1 ∈ M(t1) adjacent to some v2 ∈ M(t2), let H ′ be the graph obtained from H
by deleting the edge of B, and adding a two-edge path between t1, t2, with edges v1, v2 (with vi

incident with ti for i = 1, 2, and the middle vertex of this path being a new vertex). Then H ′ is
robust, and G|E(H ′) is an L(H ′)-trigraph, contrary to the maximality of H. This proves (5).

For each branch B of H with ends t1, t2, we define C(B), A(t1, B), A(t2, B) as follows. Let C(B)
be the union of S(B) and the set of all v ∈ Z such that there is a path with interior in Z from v to
some vertex in S(B). (Thus if B has length 1 then C(B) is empty.) Let A(t1, B) be the set of all
v ∈ M(t1) ∪ M(t1, B) with a neighbour in C(B). Define A(t2, B) similarly.

(6) For every branch B with ends t1, t2, every vertex in V (G) \ C(B) with a neighbour in C(B)
belongs to A(t1, B) ∪ A(t2, B).

For let v ∈ V (G) \ C(B), with a neighbour in C(B). From the definition of C(B), v /∈ S(B) ∪ Z.
Let P be a minimal path of G between S(B) and v with interior in Z. By (3),

v ∈ M(t1) ∪ M(t1, B) ∪ M(t2) ∪ M(t2, B).

Hence v ∈ A(t1, B) ∪ A(t2, B). This proves (6).

(7) Let B be a branch with ends t1, t2. If v ∈ V (G) \ (A(t1, B)∪A(t2, B)∪C(B)) has a neighbour in
A(t1, B), then there is a branch B′ of H incident with t1 such that v ∈ M(t1) ∪ M(B′) ∪ M(t1, B

′).
In particular, v is either strongly complete or strongly anticomplete to A(t1, B).

The second claim follows from the first and (4). To prove the first, let v ∈ V (G) \ (A(t1, B) ∪
A(t2, B) ∪ C(B)), and assume it has a neighbour in A(t1, B). Since A(t1, B) is nonempty, it follows
that t1, t2 are nonadjacent in H. If t1 ∈ Y (v), then the claim holds, so we may assume that t1 /∈ Y (v).
Suppose first that v is adjacent in G to every e ∈ D(t1) that is not in B. Since t1 /∈ Y (v), it follows
that Y (v) contains all vertices of H that are adjacent to t1 and not in V (B). There are at least two
such vertices, and |Y (v)| ≤ 2, and so t1 has degree 3, and its two neighbours not in B are both in
Y (v). By (1), there is a branch B′ joining these two vertices, and v ∈ M(B′), contrary to (2). Thus
there exists e ∈ D(t1) not in B, such that no end of e belongs to Y (v). Now v has a neighbour
a ∈ A(t1, B). By definition of A(t1, B), a has a neighbour c ∈ C(B). Also, a is adjacent in G to
v, e, c, and v, e are nonadjacent. Moreover, v, e /∈ A(t1, B) ∪ A(t2, B) ∪C(B), and since c ∈ C(B), it
follows from (6) that c is nonadjacent to v, e. But then {a, v, e, c} is a claw in G, a contradiction.
This proves (7).

(8) There is no branch B of H with S(B) nonempty, and consequently every branch has length
at most 2. In particular, H is not a theta.

For suppose that B is a branch with S(B) nonempty. Let its ends be t1, t2. Since S(B) is nonempty,
it follows that B has length ≥ 2. We claim that (A(t1, B), C(B), A(t2, B)) is a breaker. To show
this, in view of (6) and (7) it remains to check that:
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• A(t1, B), A(t2, B) are nonempty strong cliques

• there is a vertex in V (G) \ (A(t1, B) ∪ A(t2, B) ∪ C(B)) with a neighbour in A(t1, B) and
an antineighbour in A(t2, B); there is a vertex in V (G) \ (A(t1, B) ∪ A(t2, B) ∪ C(B)) with
a neighbour in A(t2, B) and an antineighbour in A(t1, B); and there is a vertex in V (G) \
(A(t1, B)∪A(t2, B)∪C(B)) with an antineighbour in A(t2, B) and an antineighbour in A(t1, B)

• if A(t1, B) is strongly complete to A(t2, B), then there do not exist adjacent x, y ∈ V (G) \
(A(t1, B) ∪ A(t2, B) ∪ C(B)) such that x is A(t1, B) ∪ A(t2, B)-complete and y is A(t1, B) ∪
A(t2, B)-anticomplete.

Since B has length > 1, and S(B) 6= ∅, it follows that M(t1, B) is nonempty and is a subset of
A(t1, B), and in particular, A(t1, B) 6= ∅, and similarly A(t2, B) 6= ∅. By (4), A(t1, B), A(t2, B) are
strong cliques, and so the first statement holds. For the second, let e ∈ E(H) \ E(B) be incident
with t1; then e has a neighbour in A(t1, B) and an antineighbour in A(t2, B), namely the first and
last edges of B. Moreover, since H is cyclically 3-connected and at least four vertices of H do not
belong to B, it follows that some edge f of H has no end in V (B), and therefore is antiadjacent in G
to both the first and last edges of B. The second claim follows. Thus, it remains to check the third.

Suppose then that x, y ∈ V (G) \ (A(t1, B) ∪ A(t2, B) ∪ C(B)); x is A(t1, B) ∪ A(t2, B)-complete
and y is A(t1, B) ∪ A(t2, B)-anticomplete, and x, y are adjacent. By (7), x ∈ M(B). Since x, y are
adjacent, (2) implies that y ∈ M(t1) ∪ M(B′) ∪ M(t1, B

′) for some branch B′ incident with t1. But
then y is complete to A(t1, B), by (4). Since A(t1, B) is nonempty, it is not also anticomplete to
A(t1, B), a contradiction. Consequently (A(t1, B), C(B), A(t2, B)) is a breaker. By 4.4, G is decom-
posable, a contradiction. This proves (8).

(9) Z = ∅.

For suppose not, and let W be a component of G|Z. Since G does not admit a 0-join, there
are vertices not in W with neighbours in W ; let X be the set of all such vertices. Thus, for each
x ∈ X, x /∈ E(H) (since it has a neighbour in Z) and Y (x) is nonempty (since W is a component
of G|Z). Moreover, the set of neighbours of x in E(H) is a strong clique, since G contains no claw;
and consequently |Y (x)| = 1, say Y (x) = {t}. If t belongs to the interior of a branch B then
x ∈ S(B), contrary to (8); and so t is a branch-vertex. Suppose that there exists x1, x2 ∈ X with
Y (xi) = {ti} (i = 1, 2), where t1 6= t2. There is a minimal path P between x1, x2 with interior
in W ; and by (3) applied to this path, there is a branch B with ends t1, t2. By (8), B has length
≤ 2. Let H ′ be obtained from H by deleting the edges and interior vertices of B, and adding the
members of V (P ) to H as the edges of a new branch B′ between t1, t2, in the appropriate order.
Then H ′ is robust, and G|E(H ′) is an L(H ′)-trigraph, and so by the maximality of H, we deduce
that B′ has length at most that of B. In particular, B′ has length at most 2, and so |V (P )| ≤ 2.
But x1, x2 ∈ V (P ), and so x1, x2 are adjacent; and moreover, B has length 2. Now we recall that
x1 has a neighbour w say in W . Since {x1, w, x2, e} is not a claw in G (where e is some edge of H
incident with t1 and not with t2), it follows that x2 is strongly adjacent to w. Thus x1, x2 are the
only edges of H ′ that are adjacent to w in G. We deduce that when H is replaced by H ′, and Y ′

denotes the function analogous to Y for H ′, then Y ′(w) contains the middle vertex of B′, contrary
to (8) applied to H ′. Consequently there is no such x2; and so there is a branch-vertex t of H such
that Y (x) = {t} for all x ∈ X. By 5.5, X is a strong clique. By (3) and (4), every vertex of G not in
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W ∪ X is either strongly complete or strongly anticomplete to X. But then the result follows from
4.2. This proves (9).

(10) For every branch B with ends t1, t2, if vi ∈ M(ti) ∪ M(ti, B) for i = 1, 2, and v1, v2 are
adjacent in G, then B has length 2 and v1, v2 are its two edges.

For let F1 be the set of vertices in M(t1) ∪ M(t1, B) with a neighbour in M(t2) ∪ M(t2, B), and
define F2 similarly. By (4), F1, F2 are strong cliques. We claim that every vertex v /∈ F1∪F2 is either
strongly complete or strongly anticomplete to Fi, for i = 1, 2. For let v have a neighbour f1 ∈ F1

say. We may assume that t1 /∈ Y (v), for otherwise v is strongly complete to F1, by (4). By (3) and
(9), there is a branch B′ with ends t1, t3 say, such that v ∈ M(t3) ∪ M(t3, B

′), and in particular,
t3 ∈ Y (v) ⊆ V (B′) \ {t1}. Since v /∈ F2, it follows that B′ 6= B, and therefore t3 6= t2, since H is
not a theta. Since v, f1 are adjacent, (3) implies that f1 /∈ M(t1, B), and so f1 ∈ M(t1). Let e be
an edge of H incident with t1 and not in B,B′, and let f2 ∈ F2 be adjacent in G to f1. Then f1

is adjacent in G to all of v, f2, e. Since Y (v) ⊆ V (B′) \ {t1}, it follows that v, e are antiadjacent in
G. Similarly, since f2 ∈ M(t2) ∪ M(t2, B), f2, e are antiadjacent in G. Since {f1, v, f2, e} is not a
claw, it follows that v, f2 are strongly adjacent in G. By (3), v /∈ M(t3, B

′), and so v ∈ M(t3); and
similarly f2 ∈ M(t2); and also by (3), there is a branch B′′ of H with ends t2, t3. Let H ′ be the
graph obtained from H by adding a new vertex x and three new edges f1, v, f2, joining x to t1, t2, t3
respectively. Then H ′ is robust, and G|E(H ′) is an L(H ′)-trigraph, contrary to the maximality of
H. This proves our claim that every vertex not in F1 ∪ F2 is either strongly complete or strongly
anticomplete to Fi, for i = 1, 2. Thus (F1, F2) is a homogeneous pair, nondominating since H is not
a theta and therefore some edge of H is incident with no vertex in B; and so by 4.3 F1, F2 both
contain at most one element. To deduce the claim, let v1, v2 be as in the statement of (10); if B
has length 2, then the edges of B belong to F1 ∪ F2 and the claim follows. If B has length 1, then
vi ∈ M(ti) for i = 1, 2, contrary to (5). This proves (10).

From (10), every vertex of G not in E(H) belongs either to M(B) for some branch B, or to M(t)
for some branch-vertex t. If for all pairs v1, v2 of vertices in V (G) \E(H), v1 is adjacent to v2 if and
only if Y (v1)∩Y (v2) 6= ∅, then G is a weak line trigraph and the theorem holds by 7.1 (for α(G) ≥ 3
and |V (G)| ≥ 7 since H is robust). And we have already shown that this statement holds for all
v1, v2 such that one of |Y (v1)|, |Y (v2)| = 1, by (4) and (10), and the “only if” implication holds for
all v1, v2, by (2). From (4), we may therefore assume that there are antiadjacent v1, v2 ∈ V (G), and
distinct branch-vertices t1, t2, t3 of H, and branches B1, B2 between t1, t3 and t2, t3 respectively, such
that:

• vi ∈ M(Bi) (i = 1, 2)

• B1, B2 both have length 2, and

• every vertex of V (H) adjacent to t3 in H either belongs to one of B1, B2, or has degree 3 in H
and is adjacent to all the ends of B1, B2.

Now H is not a theta. Let B3 be the branch of H with ends t1, t2, if it exists. Let N be the set
of all neighbours of t3 that do not belong to B1, B2, let V1 = N ∪{t1, t2, t3}∪V (B1)∪V (B2) and let
V2 = (V (H) \ V1) ∪ {t1, t2}. Since (V1, V2) is a 2-separation of H, we deduce that either V (H) = V1,
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or the branch B3 exists and V (H) = V1 ∪ V (B3). In either case, no branches of H have length > 1
except possibly B1, B2 and B3 if it exists.

(11) For u1, u2 ∈ V (G) \E(H), either u1, u2 belong to distinct sets M(Bi) (i = 1, 2, 3), or u1, u2 are
adjacent if and only if Y (u1) ∩ Y (u2) 6= ∅.

For we have seen that if u1, u2 are adjacent, then Y (u1) ∩ Y (u2) 6= ∅; and the converse holds
by (4) unless u1 ∈ M(B) and u2 ∈ M(B′) for distinct branches B,B′, both of length ≥ 2. But
B1, B2, B3 are the only such branches. This proves (11).

(12) M(t) = ∅ for all branch-vertices t 6= t1, t2, t3 of H.

For suppose that x ∈ M(t) where t 6= t1, t2, t3. We have seen that t is adjacent in H to all of
t1, t2, t3. Let e be the edge of H between t, t3. Then e is adjacent in G to all of x, v1, v2. But v1, v2

are antiadjacent, and x is antiadjacent to v1, v2 by (2). Hence {e, x, v1, v2} is a claw, a contradiction.
This proves (12).

For i = 1, 2, 3, let Ei = E(Bi) ∪ M(Bi), setting E3 = ∅ if B3 does not exist. Thus E1, E2, E3 are
three strong cliques. For i = 1, 2, 3, let

Fi = M(ti) ∪
⋃

(M(B) : B 6= B1, B2, B3 is a branch of H incident with ti).

From (8), (9), (10), (12) it follows that the six sets E1, E2, E3, F1, F2, F3 are pairwise disjoint and
have union V (G). From (4) and (11), F1, F2, F3 are strong cliques. By (4) and (11) Ei is strongly
complete to Fi and to F3 for i = 1, 2, and E3 is strongly complete to F1 ∪ F2. By (2), E1 is strongly
anticomplete to F2, and E2 is strongly anticomplete to F1, and E3 is strongly anticomplete to F3.
Thus G is expressible as a hex-join, a contradiction. This proves 7.5.

8 Prisms

We say a trigraph G is a prism if it is a line trigraph of a theta graph. If G is a prism, then there are
disjoint strong triangles {a1, a2, a3}, {b1, b2, b3}, and three paths P1, P2, P3, where each Pi has ends
ai, bi, such that V (G) = V (P1) ∪ V (P2) ∪ V (P3) and for 1 ≤ i < j ≤ 3, if u ∈ V (Pi) and v ∈ V (Pj)
are adjacent then (u, v) = (ai, aj) or (bi, bj). We say the three paths P1, P2, P3 form the prism. A
prism formed by paths of length n1, n2, n3 ≥ 1 is called an (n1, n2, n3)-prism.

Our objective in this section is to handle the claw-free trigraphs that contain certain prisms.
For big enough prisms, this is accomplished by 7.5. More precisely, we have (immediately from 7.5,
taking H to be the theta):

8.1 Let G be a claw-free trigraph, containing an (n1, n2, n3)-prism, where either n1, n2, n3 ≥ 2, or
n1, n2 ≥ 3. Then either G ∈ S0 ∪ S1 ∪ S2, or G is decomposable.

In this section we prove the same thing for some slightly smaller prisms, namely the (3, 2, 1)-
prism, the (2, 2, 1)-prism and the (3, 1, 1)-prism. We need first some lemmas about strips. A strip in
a trigraph G means a triple (A,C,B) of disjoint subsets of V (G), such that
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• A,B are nonempty strong cliques

• every vertex of A ∪ B belongs to a rung of the strip (a rung means a path between A and B
with interior in C)

• for every vertex v ∈ C, there is a path from A to v with interior in C, and a path from v to B
with interior in C.

Let (Ai, Bi, Ci) be a strip for i = 1, 2. We say they are parallel if

• A1, B1, C1 are disjoint from A2, B2, C2

• A1 is strongly complete to A2 and B1 is strongly complete to B2, and

• if v1 ∈ A1 ∪ B1 ∪ C1 and v2 ∈ A2 ∪ B2 ∪ C2 are adjacent then either vi ∈ Ai for i = 1, 2, or
vi ∈ Bi for i = 1, 2.

Then (A1 ∪ A2, C1 ∪ C2, B1 ∪ B2) is a strip that we call the disjoint union of the first two strips. If
a strip is not expressible as the disjoint union of two strips, we say it is nonseparable. We need the
following lemma.

8.2 Let G be a claw-free trigraph, and let (A1, B1, C1), (A2, B2, C2) be parallel strips. Suppose that
(A1, C1, B1) is nonseparable and C1 is nonempty. Then C1 is connected and every vertex of A1 ∪B1

has a neighbour in C1.

Proof. Let C3 be a component of C1 and C4 = C1 \ C3. Let A3 be the set of members of A1 with
a neighbour in C3, and A4 = A1 \ A3, and define B3, B4 similarly.

(1) If a ∈ A3, then no neighbour of a belongs to B4 ∪ C4.

For suppose that x ∈ B4 ∪ C4 is a neighbour of a. By definition of A3, a has a neighbour c ∈ C3;
and let a2 ∈ A2. Since {a, a2, x, c} is not a claw, it follows that x is adjacent to c. Since x /∈ C3 and
C3 is a component of C1, we deduce that x /∈ C4; and since x has a neighbour in C3, we deduce that
x /∈ B4, a contradiction. This proves (1).

(2) Let R be a rung of (A1, C1, B1). Then either V (R) ⊆ A3 ∪ C3 ∪ B3, or V (R) ⊆ A4 ∪ C4 ∪ B4.

For suppose first that some vertex of the interior of R belongs to C3. Then C3 contains all the
interior of R, since C3 is a component of C1, and so the ends of R belong to A3 ∪ B3 and the claim
holds. We may therefore assume that C3 is disjoint from the interior of R. Let a be the end of R in
A1. Let r be the neighbour of a in R. If a ∈ A3, then by (1), r ∈ B3 ∪ C3, and since C3 is disjoint
from the interior of R, we deduce that R has length 1 and r ∈ B3 and the claim holds. Thus we may
assume that a /∈ A3, and similarly the other end of R is not in B3; but then V (R) ⊆ A4 ∪ C4 ∪ B4

and the claim holds. This proves (2).

(3) (A3, C3, B3) is a strip.
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For since C3 is nonempty, and (A1, B1, C1) is a strip, it follows that there is a path between C3

and A1 with interior in C1 and hence in C3; and consequently A3 is nonempty, and similarly B3 is
nonempty. Consequently (A3, C3, B3) is a strip, by (2). This proves (3).

Suppose that A4 ∪ B4 6= ∅. Then by (2), (A4, C4, B4) is a strip, and by (1) the two strips
(A3, C3, B3), (A4, C4, B4) are parallel, contrary to hypothesis that (A1, B1, C1) is nonseparable. Thus
A4 = B4 = ∅. If there exists v ∈ C4, then there is a path from v to A1 with interior in C1, which is
therefore disjoint from C3; and consequently this path has interior in C4. Let its end in A1 be a. By
(1), a ∈ A4, a contradiction since A4 = ∅. This proves 8.2.

In several applications later in the paper, we shall have two parallel strips, and a path between
them. Here is a lemma for use in that situation.

8.3 Let G be a claw-free trigraph, and for i = 1, 2 let Ri be a path in G of length ≥ 1, with ends
ai, bi. Suppose that a1-R1-b1-b2-R2-a2-a1 is a hole. Let X ⊆ V (G) \ {a1, b1, a2, b2} be connected, and
for i = 1, 2 let there be a vertex in Ri with a neighbour in X. Then there is a path p1- · · · -pk with
p1, . . . , pk ∈ X \ (V (R1) ∪ V (R2)) such that:

• none of p1, . . . , pk belong to R1 ∪ R2, and

• for 1 ≤ i ≤ k, pi has a neighbour in V (R1) if and only if i = k, and pi has a neighbour in R2

if and only if i = 1, and

• pi, pj are strongly antiadjacent for 1 ≤ i, j ≤ k with i ≤ j − 2.

Moreover, either:

1. p1 has exactly two neighbours in R2 and they are strongly adjacent, and the same for pk in R1,
or

2. k = 1, and one of R1, R2 has length 1, and the other has length 2, and p1 is complete to
V (R1) ∪ V (R2), or

3. k = 1 and for i = 1, 2 the neighbours of p1 in Ri are {ai, bi}, and p1 is strongly adjacent to all
of a1, b1, a2, b2, or

4. k = 1, and p1 is adjacent to both {a1, a2} or to both {b1, b2}, and p1 has a unique neighbour in
one of R1, R2.

Proof. We may assume that X is minimal with the given property, and therefore X is disjoint from
V (R1) ∪ V (R2), and X = {p1, . . . , pk} for some path p1- · · · -pk satisfying the three bullets above.
Let M = NG(p1) ∩ V (R2) and N = NG(pk) ∩ V (R1). Suppose first that |N | = 1. By 5.4, the vertex
of N is not an internal vertex of R1, and so we may assume that N = {a1}. By 5.4, pk is adjacent
to a2, and therefore k = 1 and a2 ∈ M . But then the final statement of the theorem holds.

We may therefore assume that |M |, |N | ≥ 2. If M consists of two strongly adjacent vertices,
and so does N , then the first statement of the theorem holds. So we may assume that there exist
x, y ∈ N , antiadjacent. Since {pk, x, y, pk−1} is not a claw, k = 1. Since {p1, x, y, z} is not a claw for
z in the interior of R2, it follows that M = {a2, b2}. Since {p1, x, y, a2} is not a claw, it follows that
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a1 ∈ {x, y} and the same for b1. If |N | = 2 then the third statement of the theorem holds, and so
we may assume that N contains some vertex c from the interior of R1. Since {p1, c, a2, b2} is not a
claw, R2 has length 1. Since {p1, c, a1, b2} is not a claw, c is adjacent to a1 and similarly to b1. But
then R1 has length 2 and the second statement of the theorem holds. This proves 8.3.

Next we show, for several different prisms, that if a claw-free trigraph G contains one of these
prisms, then either G is decomposable, or belongs to one of our basic classes. These proofs are quite
similar, so we have extracted the main argument in the following lemma.

8.4 Let G be a claw-free trigraph, and let the three paths R1, R2, R3 form a prism in G. Let Ri have
ends ai, bi for 1 ≤ i ≤ 3, where {a1, a2, a3} and {b1, b2, b3} are strong triangles. Suppose that R1 has
length > 1. Then one of the following holds (possibly after exchanging R2, R3):

• R1 has length 2, R2 has length 1, and there is a vertex v complete to V (R1) ∪ V (R2) and
strongly anticomplete to V (R3), or

• R2 has length 1, and either R3 has length 1 or R1 has length 2, and there is a vertex v that
is complete to V (R2) and strongly anticomplete to V (R3), with exactly two neighbours in R1,
namely either the first two or last two vertices of R1, or

• R2 and R3 both have length 1, and there is no vertex w that is complete to one of V (R2), V (R3)
and anticomplete to the other and to V (R1), or

• G ∈ S0 ∪ S1 ∪ S2, or G is decomposable.

Proof. For i = 2, 3, let Ai = {ai}, Bi = {bi} and Ci be the interior of Ri. Then (Ai, Ci, Bi) is a
strip with a unique rung Ri. It follows that there is a strip (A1, C1, B1) such that:

• (Ai, Ci, Bi) (i = 1, 2, 3) are three parallel strips,

• R1 is a rung of (A1, B1, C1), and

• (A1, B1, C1) is nonseparable.

Choose (A1, B1, C1) such that W is maximal, where W denotes the union of the vertex sets of the
three strips.

(1) We may assume that every vertex v ∈ V (G) \ (A1 ∪ B1 ∪ C1) is strongly anticomplete to C1.

For let v ∈ V (G) \ (A1 ∪ B1 ∪ C1), and suppose it has a neighbour in C1. Consequently v /∈ W .
Let N = NG(v) ∩ W,N∗ = N∗

G(v) ∩ W . From the maximality of W , it follows that N meets
one of V (R2), V (R3). Suppose first that a2, a3 ∈ N . Since N meets C1, it follows from 5.3 that
N ∩ V (Ri) = {ai} for i = 2, 3. Let c2 be the neighbour of a2 ∈ R2. By 5.4 (with a3-a2-c2 and
A1-a2-c2), it follows that a3 ∈ N∗ and A1 ⊆ N∗, and similarly a2 ∈ N∗, and so v can be added to
A1, contrary to the maximality of W . Thus N contains at most one of a2, a3, and at most one of
b2, b3 by symmetry. By 5.3, it follows that N meets exactly one of R2, R3, say R2.

Now C1 ∪ {v} is connected, and so by 8.3 there is a path p1- · · · -pk of G with v = p1 and
with p2, . . . , pk ∈ C1, satisfying one of the four statements of 8.3. Certainly none of p1, . . . , pk have
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neighbours in R3, and so 5.4 implies that that the fourth statement of 8.3 is impossible. Also 5.4
implies the third is impossible, since R1 has length > 1. If the second statement of 8.3 holds, then
the first statement of the theorem holds. Consequently we may assume that the first statement of
8.3 holds.

Since R1, R2, R3 form a prism, there is a theta H say with two branch-vertices t1, t2, and three
branches B1, B2, B3, where the edges of Bi are the vertices of Ri in order. For i = 1, 2, choose a
vertex si of H, in the interior of Bi, such that the two edges of Bi incident with si are the two
neighbours of pk in R1 (if i = 1) and the two neighbours of p1 in R2 (if i = 2). Let H ′ be obtained
from H by adding a new branch between s2 and s1 with edges p1, . . . , pk in order. Then G|E(H ′) is
an L(H ′)-trigraph, and so by 7.5, we may assume that H ′ is not robust. But H ′ is a subdivision of
K4, and |V (H ′)| ≥ 6 . If |V (H ′)| = 6 then k = 1 and the second statement of the theorem holds. If
|V (H ′)| ≥ 7 then some branch of H ′ contains all its vertices except at most three, and so k = 1 and
again the second statement holds. This proves (1).

(2) We may assume that every vertex v ∈ V (G) \ (A1 ∪ B1 ∪ C1) is either strongly complete or
strongly anticomplete to A1.

For let v ∈ V (G) \ (A1 ∪ B1 ∪ C1), and suppose it has a neighbour and an antineighbour in A1.
Then v /∈ W . Let N = NG(v) ∩ W,N∗ = N∗

G(v) ∩ W . By (1), we may assume that N ∩ C1 = ∅. By
8.2, every vertex in A1 has a neighbour in C1. Since N meets A1, 5.4 (with a2-A1-C1 and a3-A1-C1)
implies that a2, a3 ∈ N∗. Choose a′1 ∈ A1 such that a′1 /∈ N∗. For i = 2, 3, if Ci is nonempty then 5.4
(with a′1-ai-Ci) implies that N∗ meets Ci, and if Ci = ∅ then 5.4 (with a′1-ai-bi) implies that bi ∈ N∗.
By 5.3, N ∩ (B2 ∪ C2) is complete to N ∩ (B3 ∪ C3); and so C2, C3 are empty, and b2, b3 ∈ N∗.
Suppose there is a vertex w that is complete to one of V (R2), V (R3) and anticomplete to the other
and to V (R1). Thus w /∈ W . Let w be complete to V (R2) say. By 5.4 (with a′1-a2-w) it follows that
w ∈ N∗; but that contradicts 5.3, since N ∩ (A1 ∪{w, b3}) includes a triad. Thus there is no such w;
but then the third statement of the theorem holds. This proves (2).

If every vertex in V (G) \ (A1 ∪ B1 ∪ C1) is strongly complete to one of A1, B1, then the third
statement of the theorem holds. If not, then from (1) and (2), (A1, C1, B1) is a breaker, and so by
4.4 G is decomposable. This proves 8.4.

Now we can process the little prisms.

8.5 Let G be a claw-free trigraph, containing an (n1, n2, n3)-prism, where n1 ≥ 3 and n2 ≥ 2. Then
either G ∈ S0 ∪ S1 ∪ S2 or G is decomposable.

Proof. By 8.1 we may assume that n2 = 2 and n3 = 1. Then the result is immediate from 8.4.

8.6 Let G be a claw-free trigraph, containing an (n1, n2, n3)-prism, where n1, n2 ≥ 2. Then either
G ∈ S0 ∪ S1 ∪ S2 or G is decomposable.

Proof. By 8.5 and 8.1, we may assume that n1 = n2 = 2 and n3 = 1. Let R1, R2, R3 be three
paths of G, forming a prism, with lengths 2, 2, 1. Let W be the union of their vertex sets. Let Ri

be ai-ci-bi for i = 1, 2, and let R3 have vertices a3-b3, where {a1, a2, a3} and {b1, b2, b3} are strong
triangles. By 8.4, we may assume there is a vertex v1 ∈ V (G) \ W , complete to V (R3), strongly
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anticomplete to V (R2), and adjacent to c1 and to at least one of a1, b1. By exchanging R1, R2, we
may also assume there exists v2 ∈ V (G) \ W complete to V (R3), strongly anticomplete to V (R1),
and adjacent to c2 and to at least one of a2, b2. Suppose first that v1 is adjacent to both a1, b1.
Since {v1, v2, a1, b1} is not a claw, v1 is antiadjacent to v2. Since {a3, v1, v2, a2} is not a claw, v2 is
adjacent to a2, and by symmetry v2 is adjacent to b2. But then the subtrigraph induced on these
ten vertices is an icosa(−2)-trigraph, and the theorem follows from 5.7. We may therefore assume
that v1 is adjacent to exactly one of a1, b1, and v2 to exactly one of a2, b2. Since {a3, a1, v1, v2} and
{b3, b1, v1, v2} are not claws, v1, v2 are strongly adjacent. Then the subtrigraph induced on these ten
vertices is an L(H)-trigraph, where H is a graph consisting of a cycle of length six and one more
vertex with four neighbours in the cycle, not all consecutive. In particular, H is robust, and the
result follows from 7.2. This proves 8.6.

Let (A, ∅, B) be a strip. A step (in this strip) means a hole a1-a2-b2-b1-a1 where a1, a2 ∈ A and
b1, b2 ∈ B. We say the strip is step-connected if for every partition (X,Y ) of A or of B with X,Y 6= ∅,
there is a step meeting both X,Y . We say an (n1, n2, n3)-prism is long if n1 + n2 + n3 ≥ 5.

8.7 Let G be a claw-free trigraph, containing a long prism. Then either G ∈ S0 ∪ S1 ∪ S2, or G is
decomposable.

Proof. Let the paths R1, R2, R3 form a long (n1, n2, n3)-prism in G. By 8.6 we may assume that
n1 ≥ 3, and n2 = n3 = 1. Let the paths Ri have ends ai, bi as usual, where R1 has length ≥ 3, and
R2, R3 have length 1.

(1) We may assume that, for every such choice of R1, R2, R3, there is no vertex w that is com-
plete to one of V (R2), V (R3) and anticomplete to the other and to V (R1).

For if not then by 8.4, we may assume that there is a vertex v that is complete to V (R2) and
anticomplete to V (R3), with exactly two neighbours in R1, namely either the first two or last two
vertices of R1. From the symmetry we may assume that v is adjacent to a1 and its neighbour in
R1. But then G|(V (R1)∪ V (R2)∪ V (R3)∪ {v}) \ {a2} is a (2, 2, 1)-prism (or longer), and the result
follows from 8.6. So we may assume that the statement of (1) holds.

Let A1 = {a1}, B1 = {b1}, and let C1 be the interior of R1. Now ({a2, a3}, ∅, {b2, b3}) is a
step-connected strip, parallel to (A1, C1, B1); and therefore we may choose a strip (A2, ∅, B2) such
that

• (A2, ∅, B2) is step-connected, and a2, a3 ∈ A2 and b2, b3 ∈ B2

• the strips (A1, C1, B1), (A2, ∅, B2) are parallel, and

• A2 ∪ B2 is maximal.

Let W = V (R1) ∪ A2 ∪ B2.

(2) Every vertex v ∈ V (G) \ (A2 ∪ B2) is either strongly complete or strongly anticomplete to A2.

For let v ∈ V (G) \ (A2 ∪ B2), and suppose it has a neighbour and an antineighbour in A2. Thus
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v /∈ W . Let N = NG(v) ∩ W,N∗ = N∗

G(v) ∩ W . Since (A2, ∅, B2) is step-connected and |A2| ≥ 2,
there is a step a′2-a

′

3-b
′

3-b
′

2-a
′

2 such that a′2 ∈ N and a′3 /∈ N∗. 5.4 (with a′3-a
′

2-b
′

2) implies that
b′2 ∈ N∗. Suppose that b′3 ∈ N . Then 5.4 (with a′3-b

′

3-b1) implies that b1 ∈ N∗; 5.3 implies that
C1 ∩N = ∅; 5.4 (with a′3-a1-C1) implies that a1 /∈ N ; and 5.4 (with B2-b1-C1) implies that B2 ⊆ N∗.
If we add v to B2 then a′2-a

′

3-b
′

3-v-a′2 is a step of the enlarged strip, showing that this new strip
is step-connected; but this contradicts the maximality of W . Thus b′3 /∈ N . Let R′

2, R
′

3 be the
rungs a′2-b

′

2 and a′3-b
′

3; then v is complete to V (R′

2), and anticomplete to V (R′

3). By (1) applied to
the paths R1, R

′

2, R
′

3, v has a neighbour in V (R1). Let us apply 8.3 to R1, R
′

2. Since a′3, b
′

3 /∈ N ,
the third and fourth outcomes of 8.3 contradict 5.4, and so one of the first two outcomes applies.
The second is impossible since R1, R

′

2 both do not have length 2, and so v has two adjacent neigh-
bours in both R1 and R′

2. If the neighbours of v in R1 both belong to the interior of R1, then
G|((V (R1) ∪ V (R′

2) ∪ V (R′

3) ∪ {v}) is an L(H)-trigraph where H is a graph consisting of a cycle
and one extra vertex with three pairwise nonadjacent neighbours in the cycle; and in particular, H
is robust and the result follows from 7.5. So we may assume that v is adjacent to a1 and to its
neighbour in R1. Hence G|((V (R1) ∪ V (R′

2) ∪ V (R′

3) ∪ {v}) \ {a′2} is a (2, 2, 1)-prism or longer, and
the result follows from 8.6. This proves (2).

Let c1 ∈ C1 be a neighbour of a1. For u, v ∈ A2, since {a1, u, v, c1} is not a claw, it follows
that A2 is a strong clique in G, and similarly so is B2. From (1) and (2), we deduce that (A2, B2)
is a homogeneous pair, nondominating since C1 6= ∅, and the result follows from 4.3. This proves
8.7.

9 Neighbours in holes

Our goal in the next few sections is to handle claw-free trigraphs that contain holes of length ≥ 7.
We begin with some definitions. An n-hole in a trigraph G means a hole in G of length n. Let
C be a n-hole, with vertices c1- · · · -cn-c1 in order; we call this an n-numbering. (We shall read
these and similar subscripts modulo n, usually without saying so.) Let v ∈ V (G) \ V (C), and let
N = NG(v) ∩ V (C), N∗ = N∗

G(v) ∩ V (C). We say that

• v is a hat (relative to C, and to the given n-numbering) if N∗ = {ci, ci+1} for some i

• v is a clone if one of N,N∗ equals {ci−1, ci, ci+1} for some i

• v is a star if n ≥ 5 and one of N,N∗ equals {ci−1, ci, ci+1, ci+2} for some i

• v is a centre if N = V (C) (and therefore n ≤ 5)

• c is a hub if n ≥ 6 and N = N∗ = {ci, ci+1, cj , cj+1} for some i, j such that i − 1, i, i + 1, j −
1, j, j + 1 are all distinct modulo n.

Since N,N∗ may be different, it is possible for v to be both a hat and a clone, and various other
combinations are also possible. If N∗ = N , we say that v is a strong hat, clone etc.

9.1 Let G be a claw-free trigraph, and let C, v,N,N∗ as above. If N∗ = N then either N = ∅, or v
is a hat, clone, star, hub or centre with respect to C. If N 6= N∗, then v is either both a hat and a
clone, or both a clone and a star, or both a star and a centre, or (if n = 4) both a clone and a centre.
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The proof is clear. We also need:

9.2 Let G be a claw-free trigraph, and let C be a hole in G. Let v1, v2 ∈ V (G) \ V (C), and for
i = 1, 2, let Ni, N

∗

i be respectively the sets of neighbours and strong neighbours of vi in V (C).

• If there exist x ∈ N1 ∩N2 and y ∈ V (C) \ (N∗

1 ∪N∗

2 ), consecutive in C, then v1, v2 are strongly
adjacent.

• If there exist x, y ∈ N1 \ N∗

2 that are antiadjacent, then v1, v2 are strongly antiadjacent.

Again, the proof is clear.

9.3 Let G be claw-free, and let C be a hole in G of length ≥ 7, with a hub. Then either G ∈
S0 ∪ S1 ∪ S2 or G is decomposable.

Proof. Let w be a hub for C. Let w have neighbours a1, a2, b1, b2 in C, where a1 is adjacent to a2,
and b1 is adjacent to b2, and a1, b1, b2, a2 lie in this order in C. Consequently there are two disjoint
paths R1, R2 in C between {a1, a2} and {b1, b2}, with V (C) = V (R1) ∪ V (R2), where Ri is between
ai, bi for i = 1, 2, and R1, R2 both have length at least two, and one of them, say R1, has length at
least three. Let A1 = {a1}, B1 = {b1}, and let C1 be the interior of R1. If u ∈ V (R1) and v ∈ V (R2)
are adjacent, then either u ∈ {a1, b1} or v ∈ {a2, b2}, for otherwise {u, v, x, y} would be a claw (where
x, y are the neighbours of u in R1); and if say u = a1, then since {u,w, x, v} is not a claw (where x is
a neighbour of u in R1 \{a2}), it follows that v ∈ {a2, b2}; and if u = a1 and v = b2, then {u, v, a2, x}
is a claw, with x as before. Hence (u, v) is one of (a1, a2), (b1, b2). Moreover, since {w, a1, a2, b1} is
not a claw, it follows that a1 is strongly adjacent to a2 and similarly b1 is strongly adjacent to b2.

We may therefore choose a strip (A2, C2, B2) with the following properties:

• (Ai, Ci, Bi) (i = 1, 2) are parallel strips

• a2 ∈ A2, b2 ∈ B2 and R2 is a rung of (A2, C2, B2)

• (A2, C2, B2) is nonseparable

• w is strongly complete to A2 ∪ B2 and strongly anticomplete to C2, and

• W = V (R1) ∪ A2 ∪ C2 ∪ B2 is maximal with these properties.

(1) We may assume that every v ∈ V (G) \ (A2 ∪ B2 ∪ C2) is strongly anticomplete to C2.

For suppose that v ∈ V (G) \ (A2 ∪ B2 ∪ C2) has a neighbour in C2. Then v /∈ W ; let N =
NG(v) ∩ W,N∗ = N∗

G(v) ∩ W . From the maximality of W , N meets {w} ∪ V (R1). Suppose first
that w ∈ N . From 5.4 (with a1-w-b1), we may assume that a1 ∈ N∗. From 5.3 (with C2, w,C1

and C2, a1, b1) it follows that N ∩ C1 = ∅, and b1 /∈ N . From 5.4 (with A2-a1-C1), it follows that
A2 ⊆ N∗. But then v can be added to A2, contrary to the maximality of W . Thus w /∈ N . Conse-
quently N meets V (R1). Now C2 ∪ {v} is connected, by 8.2; choose p1- · · · -pk as in 8.3 (with R1, R2

exchanged, and taking X = C2 ∪ {v}), where p1 = v, and p2, . . . , pk ∈ C2. Then none of p1, . . . , pk

are adjacent to w. By 9.1 applied to pk and the hole w-a2-R2-b2-w, it follows that pk has at least two
neighbours in R2, and similarly p1 has at least two neighbours in R1. Thus the fourth outcome of 8.3
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is impossible; and since R1 has length at least two, 5.4 implies the third is impossible. The second is
false since R1, R2 have length at least two, and so the first holds. If either k > 1 or the four vertices
of N in the hole C are not consecutive or R2 has length > 2, then G|(V (C) ∪ {w, p1, . . . , pk}) is an
L(H)-trigraph, where H is a robust graph, and the result follows from 7.5. If k = 1 and the four
vertices of N in C are consecutive and R2 has length 2, we may assume that v is adjacent to a1, a2

and their neighbours in C. But then G|(V (C) ∪ {v,w} \ {a2}) is a (2, 2, 1)-prism or longer, and the
result follows from 8.6. This proves (1).

(2) Every v ∈ V (G) \ (A2 ∪ B2 ∪ C2) is either strongly complete or strongly anticomplete to A2.

For suppose that v ∈ V (G) \ (A2 ∪ B2 ∪ C2) has a neighbour and an antineighbour in A2. Then
v /∈ W . By the assumption of (1), NG(v) ∩ C2 = ∅. By 8.2, every vertex in A2 has a neighbour in
C2, and so 5.4 (with C2-A2-w; C2-A2-a1; A2-w-b1; and A2-a1-C1) implies that w, a1, b1 ∈ NG(v), and
NG(v) contains the neighbour of a1 in R1. But this contradicts 5.3. This proves (2).

From (1) and (2) we deduce that (A2, C2, B2) is a breaker, and the result follows from 4.4. This
proves 9.3.

9.4 Let G be a claw-free trigraph, and let C be a hole in G of length ≥ 7. Let a1, a2, b2, b1 be four
consecutive vertices of C, in order, and let h,w ∈ V (G) \ V (C), such that the neighbours of w in C
are a1, a2, b2, b1, and the strong neighbours of h in C are a2, b2. Then G is decomposable.

Proof. By 9.1, w and h are strongly antiadjacent; and by 9.1 again, it follows that h has no
neighbours in C except a2, b2. By 5.3 (with a1, a2, b1) it follows that a1, a2 are strongly adjacent,
and similarly so are b1, b2. Let R1 be the path C \ {a2, b2}, and let C1 = V (C) \ {a1, a2, b1, b2}. Let
R2 be the path a2-b2. Thus ({a1}, C1, {b1}) is a strip, and ({a2}, {h}, {b2}) is another. We claim
that these strips are parallel. For suppose that u ∈ V (R1) and v ∈ {a2, b2, h} are adjacent. Then
v 6= h, so we may assume that v = a2. Since {v, h,w, u} is not a claw, u is adjacent to w, and so
u ∈ {a1, b1}; and u 6= b1 since {a2, h, a1, b1} is not a claw. Thus (u, v) = (a1, a2). This proves that
the two strips are parallel. Hence we may choose a strip (A2, C2, B2) with the following properties:

• (A2, C2, B2) is parallel to ({a1}, C1, {b1})

• a2 ∈ A2, h ∈ C2, b2 ∈ B2

• (A2, C2, B2) is nonseparable

• w is strongly complete to A2 ∪ B2 and strongly anticomplete to C2

• W = V (R1) ∪ A2 ∪ B2 ∪ C2 is maximal subject to these conditions.

(1) We may assume that every v ∈ V (G) \ (A2 ∪ B2 ∪ C2) is strongly anticomplete to C2.

For suppose that v ∈ V (G) \ (A2 ∪ B2 ∪ C2) has a neighbour in C2. Then v /∈ W ; let N =
NG(v) ∩ W,N∗N∗

G(v) ∩ W . From the maximality of W , N meets {w} ∪ V (R1). Suppose first that
w ∈ N . From 5.4 (with a1-w-b1), we may assume that a1 ∈ N∗. From 5.3 (with C2, w,C1 and
C2, a1, b1) it follows that N ∩ C1 = ∅, and b1 /∈ N . From 5.4 (with A2-a1-C1), it follows that
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A2 ⊆ N∗. But then v can be added to A2, contrary to the maximality of W . Thus w /∈ N . Con-
sequently N meets V (R1). Choose p1- · · · -pk as in 8.3 (with R1, R2 exchanged), where p1 = v, and
p2, . . . , pk ∈ C2. Then none of p1, . . . , pk are adjacent to w. By 9.1 applied to p1 and the hole
w-a1-R1-b1-w, it follows that p1 is adjacent to more than one vertex of R1. Let c1 be the vertex in R1

consecutive with a1. Suppose that the fourth outcome of 8.3 holds; then k = 1, and v = p1 = pk has
a unique neighbour in R2, say a2, and v is adjacent to a1. By 5.4 applied to w-a2-h, it follows that
v is adjacent to h. Then by 5.4 applied to w-a1-c1, v is adjacent to c1. By 5.3, v has no neighbours
in C except c1, a1, a2; but then the subgraph of G induced on (V (C) \ {a2})∪ {h, v} is a long prism,
and the result follows from 8.7. Thus we may assume that the fourth outcome of 8.3 does not hold.
Since R1 has length > 1, 5.4 implies the third outcome is impossible. The second is false since R1

has length ≥ 3, and so the first holds. If k > 1 then G|(V (C) ∪ {p1, . . . , pk}) is a long prism, and
the result follows from 8.7; so we assume that k = 1. If the four vertices of N in the hole C are not
consecutive, then v is a hub for C and the result follows from 9.3. We may therefore assume that v
is adjacent to c1, a1, a2, b2. But then G|(V (C)∪ {v,w} \ {a2}) is a long prism, and the result follows
from 8.7. This proves (1).

The remainder of the proof of 9.4 is identical with the latter part of the proof of 9.3, and we omit
it. This proves 9.4.

10 Circular interval trigraphs

So far, our method has been to show that claw-free trigraphs containing subtrigraphs of certain types
either are line trigraphs, or are decomposable (with a few sporadic exceptions). That is not adequate
to handle all claw-free trigraphs with holes of length ≥ 7, because there is another major basic class
of them, the long circular interval trigraphs. In this section we prove the following (we recall that
S3 is the class of all long circular interval trigraphs):

10.1 Let G be a claw-free trigraph with a hole of length ≥ 7. Then either G ∈ S0 ∪ · · · ∪ S3, or G
is decomposable.

To prove this we need two lemmas. A subset X ⊆ V (G) is said to be dominating if every vertex
of G either belongs to X or has a neighbour in X; and a subtrigraph H of G is said to be dominating
if V (H) is dominating. Let us say a maximum hole is a hole in G of maximum length. Dominating
holes are convenient because of the following:

10.2 Let C be a hole in a claw-free trigraph G, and let v ∈ V (G) \ V (C) with a neighbour in C.
Then v has two consecutive strong neighbours in C.

Proof. Let C have vertices c1- · · · -cn-c1 in order, where v is adjacent to c1 say. Then 5.4 (with
cn-c1-c2) implies that v is strongly adjacent to one of c2, cn, say c2; and 5.4 (with c1-c2-c3) implies
that v is strongly adjacent to one of c1, c3. This proves 10.2.

10.3 Let C be a maximum hole (of length n say) in a claw-free trigraph G. Then either G contains
an (n1, n2, n3)-prism, for some n1, n2, n3 ≥ 1 with n1 + n2 = n − 2, or G is decomposable, or C is
dominating.
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Proof. Let Z be the set of all vertices of G that are not in V (C) and have no neighbour in V (C). We
may assume that Z is nonempty; let W be a component of G|Z. Let X be the set of all vertices not in
W but with a neighbour in W . Let x ∈ X; we claim that it has exactly two neighbours in V (C) and
they are strongly adjacent and therefore consecutive in C. For if it has two antiadjacent neighbours
u, v ∈ V (C), let w ∈ W be adjacent to x; then {x, u, v, w} is a claw, a contradiction. From 9.1, this
proves that x has precisely two neighbours in C and they are consecutive in C. Suppose there exist
x1, x2 ∈ X with distinct sets of neighbours in C. Let P be a path between x1, x2 with interior in
W . If x1, x2 have no common neighbour in C, then the subgraph of G induced on V (C) ∪ V (P )
is an (n1, n2, |E(P )|)-prism for some n1, n2 ≥ 1 with n1 + n2 = n − 2, and the theorem holds. If
c ∈ V (C) is adjacent to both x1, x2, then the subgraph induced on V (C) ∪ V (P ) \ {c} is a hole of
length > n, a contradiction. We may therefore assume that there are no such x1, x2. Let C have
vertices c1- · · · -cn-c1 say, where every member of X is adjacent to c1 and c2 and to no other vertex of
C. By 5.5, X is a strong clique. Let v ∈ V (G)\ (X ∪W ); we claim that v is either strongly complete
or strongly anticomplete to X. If v ∈ V (C) this is true, so we assume v /∈ V (C). Suppose that v is
adjacent to x1 ∈ X and antiadjacent to x2 ∈ X. Let w ∈ W be adjacent to x1. Since v /∈ W ∪ X it
follows that v,w are antiadjacent. Since {x1, w, v, c1} is not a claw, v is adjacent to c1 and similarly
to c2. Since {c2, c3, v, x2} is not a claw, v is adjacent to c3 and similarly to cn; but then {v, x1, c3, cn}
is a claw, a contradiction. This proves that v is either strongly complete or strongly anticomplete to
X. By 4.2, G is decomposable. This proves 10.3.

Before the second lemma, we need a few definitions. Let C be a hole in a trigraph G, with vertices
c1-c2- · · · -cn-c1 in order. Let v1, . . . , vk ∈ V (G) \ V (C), and for 1 ≤ i ≤ k let Ni ⊆ V (C) such that
vi is complete to Ni and anticomplete to V (C) \ Ni.

• If k = 2 and N1 = {ci, ci+1} and N2 = {cj , cj+1} for some i, j, and N1 ∩N2 = ∅, and v1, v2 are
adjacent, we call {v1, v2} a hat-diagonal for C.

• If n ≥ 5 and k = 2 and N1 = {ci, ci+1} and N2 = {ci−1, ci, ci+1, ci+2} for some i, we call {v1, v2}
a coronet for C.

• If n ≥ 5 and k = 2 and N1 = {ci, ci+1, ci+2, ci+3} and N2 = {ci+1, ci+2, ci+3, ci+4} for some i,
and v1, v2 are antiadjacent, we call {v1, v2} a crown for C.

• If n = 5 or 6 and k = 2 and N1 = {ci, ci+1, ci+2, ci+3} and N2 = {ci+3, ci+4, ci+5, ci+6} and
v1, v2 are adjacent, we call {v1, v2} a star-diagonal for C.

• If n = 6 and k = 3 and N1 = {ci, ci+1, ci+2, ci+3} and N2 = {ci+2, ci+3, ci+4, ci+5} and N3 =
ci−2, ci−1, ci, ci+1} for some i, and {v1, v2, v3} is a clique, we call {v1, v2, v3} a star-triangle for
C.

The second lemma we need is the following, the main result of [3].

10.4 Let G be a claw-free trigraph with a hole. Suppose that every maximum hole is dominating,
and has no hub, coronet, crown, hat-diagonal, star-diagonal, star-triangle or centre. Then either G
admits a coherent W-join, or G is a long circular interval trigraph.

Now we are ready to prove the main result of this section.
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Proof of 10.1. Let G be a claw-free trigraph with a hole of length at least seven. By 8.7, we
may assume that G does not contain a long prism, and that G is not decomposable. By 10.3, every
maximum hole is dominating. By 9.3, we may assume that no maximum hole has a hub, and by
9.4, we may assume that no maximum hole has a coronet. If {s1, s2} is a crown for a maximum hole
C, then G contains a long prism (obtained from G|V (C) ∪ {s1, s2} by deleting the middle common
neighbour of s1, s2 in C), which is impossible. Also no maximum hole has a hat-diagonal, since G
has no long prism. By 10.4, we deduce that G ∈ S3. This proves 10.1.

11 Near-antiprismatic trigraphs

We turn now to a very special type of claw-free trigraph, which nevertheless turns up surprisingly
often as an exceptional case.

11.1 Let G be a claw-free trigraph, and let a0, b0 ∈ V (G) be semiadjacent. Suppose that no vertex
is adjacent to both a0, b0, and the set of vertices antiadjacent to both a0, b0 is a strong clique. Then
one of the following holds:

• G admits twins or a nondominating or coherent W-join.

• The trigraph obtained from G by making a0, b0 strongly antiadjacent is a linear interval trigraph,
and a0, b0 are the first and last vertices of the corresponding linear order of its vertex set (and
in particular, G ∈ S3).

• G is a line trigraph of some graph H, and a0, b0 have a common end in H with degree two.

• There is a graph H with E(H) = V (G), such that a0, b0 have a common end in H with degree
two, and there is a cycle of H of length 4 with edges a0, a, b, b0 in order, such that every edge
of H is incident with some vertex of this cycle, and a, b are antiadjacent in G, and the trigraph
obtained from G by making a, b strongly adjacent is a line trigraph of H (and consequently G
is expressible as a hex-join).

• G = H or H \ {a2}, where H is the trigraph with vertex set {a0, a1, a2, b0, b1, b2, b3, c1, c2} and
adjacency as follows: {a0, a1, a2}, {b0, b1, b2, b3}, {a2, c1, c2} and {a1, b1, c2} are strong cliques;
b2, c2 are semiadjacent; b2, c1 are strongly adjacent; b3, c1 are semiadjacent; a0, b0 are semiad-
jacent; and all other pairs are strongly antiadjacent. (Moreover if G = H then G is expressible
as a hex-join, and if G = H \ {a2} then G admits a generalized 2-join).

• G is near-antiprismatic.

In particular, either G ∈ S0 ∪ S3 ∪ S6 or G is decomposable.

Proof. We assume that G does not admit a nondominating or coherent W-join or twins. Let A,B
and C be the sets of all vertices different from a0, b0 that are adjacent to a0, to b0 and to neither
of a0, b0 respectively. Thus V (G) = A ∪ B ∪ C ∪ {a0, b0}. Moreover, a0 is strongly complete to A
since a0, b0 are semiadjacent and F (G) is a matching; and therefore A∪ {a0} is a strong clique since
A ∪ {a0, b0} includes no claw. Similarly B ∪ {b0} is a strong clique, and by hypothesis C is a strong
clique.
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(1) We may assume that A,B 6= ∅. Moreover, if a ∈ A and b ∈ B are adjacent, they have the
same neighbours in C (and in particular no vertex in C is semiadjacent to either of a, b).

For suppose that A = ∅, say. Then (B,C) is a homogeneous pair, nondominating, and so 4.3
implies that |B|, |C| ≤ 1. But then G is obtained from a linear interval trigraph as in the second
outcome of the theorem. This proves the first claim. For the second, note that if c ∈ C is adjacent
to a ∈ A and antiadjacent to b say, then {a, a0, b, c} is a claw, a contradiction. This proves (1).

(2) Every vertex in A has at most one neighbour in B, and vice versa.

For let H be the graph with vertex set A ∪ B and in which a ∈ A and b ∈ B are adjacent if
they are adjacent in G. Let X be any component of H with |X| > 1; then by (1), (X ∩A,X ∩B) is
a homogeneous pair, coherent since all X-complete vertices belong to C (because |X| > 1), and so
|X ∩ A|, |X ∩ B| ≤ 1. This proves (2).

(3) Every vertex in A ∪ B has a neighbour in C; and in particular, C 6= ∅, and we may assume
that |C| ≥ 2.

For let A0 be the set of vertices in A with no neighbour in C, and define B0 similarly. By (1),
A0 is strongly anticomplete to B \ B0, and B0 is strongly anticomplete to A \ A0. Consequently,
(A0∪{a0}, B0∪{b0}) is a homogeneous pair, coherent since a0, b0 have no common neighbours. Since
G admits no coherent W-join, it follows that A0, B0 are empty. This proves the first assertion of (3),
and in particular C 6= ∅. Now suppose that |C| = 1, say C = {c}. Thus c is complete to A ∪ B. If
it is strongly complete to A ∪ B, then (A,B) is a coherent homogeneous pair, and so |A| = |B| = 1
since G does not admit twins or a coherent W-join; and then G arises as in the second outcome of
the theorem. We assume therefore that c is semiadjacent to some a ∈ A say. Then c is strongly
complete to (A \ {a}) ∪ B, since F (G) is a matching; and a is strongly anticomplete to B, by the
second assertion of (1). Hence (A \ {a}, B) is a coherent homogeneous pair, and so |A| ≤ 2 and
|B| = 1 since G does not admits twins or a coherent W-join; and then again G arises as in the second
outcome of the theorem. This proves (3).

(4) If every vertex in A is either strongly C-complete or strongly B-anticomplete, and every ver-
tex in B is either strongly C-complete or strongly A-anticomplete, then the theorem holds.

For then, let A1 be the set of vertices in A with a neighbour in B, and define B1 similarly. It
follows that (A1, B1) is a coherent homogeneous pair, and so |A1|, |B1| ≤ 1 since G does not admit
twins or a coherent W-join. Let us say that c, c′ ∈ C are A-incomparable if there exists a ∈ A adjacent
to c and antiadjacent to c′, and there exists a′ ∈ A adjacent to c′ and antiadjacent to c. Let H be
the graph with vertex set C, in which c, c′ are adjacent if they are A-incomparable, and suppose that
some component X of H satisfies |X| ≥ 2. Let Y be the set of vertices in A with a neighbour in X
and an antineighbour in X. Thus A1 ∩ Y = ∅. We claim that (X,Y ) is a homogeneous pair. For if
u ∈ A\Y then u is strongly Y -complete, and either strongly X-complete or strongly X-anticomplete,
from the definition of Y . If u ∈ B, then u is strongly Y -anticomplete, since A1 ∩ Y = ∅. Suppose
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that u ∈ B has a neighbour in X and an antineighbour in X; let X1 be the set of neighbours of u in
X, and let X2 be the set of its antineighbours in X. Thus |X1 ∩ X2| ≤ 1. From the definition of H,
and since |X| ≥ 2, there exist distinct c1 ∈ X1 and c2 ∈ X2 which are A-incomparable; and so there
exists a ∈ A adjacent to c1 and antiadjacent to c2. Hence a is antiadjacent to u; but then {c1, a, c2, u}
is a claw, a contradiction. This proves every u ∈ B is either strongly X-complete or strongly X-
anticomplete. Now let u ∈ C \ X; then u is strongly X-complete, and we claim that it is either
strongly Y -complete or strongly Y -anticomplete. For let X1 be the set of vertices x ∈ X such that
every vertex of A adjacent to x is strongly adjacent to u, and let X2 be the set of all x ∈ X such that
every vertex in A adjacent to u is strongly adjacent to x. For all x ∈ X, x, u are not A-incomparable,
from the definition of X, and so x ∈ X1 ∪ X2. Hence X1 ∪ X2 = X. For all x1 ∈ X1 and x2 ∈ X2,
every vertex in Y adjacent to x1 is strongly adjacent to u and therefore strongly adjacent to x2; and
so x1, x2 are not A-incomparable. Consequently one of X1,X2 = ∅. If X1 = ∅, then every neighbour
of u in A is strongly complete to X, and so u is strongly Y -anticomplete; and if X2 = ∅, then every
antineighbour of u in A is strongly X-anticomplete, and so u is strongly Y -complete. This completes
the proof of our claim that (X,Y ) is a homogeneous pair. It is nondominating, because of b0, and
so 4.3 implies that |X| ≤ 1, a contradiction. Thus there is no such X.

This proves that no two vertices in C are A-incomparable. For distinct c, c′ ∈ C, we write c ≥A c′

if every vertex in A adjacent to c′ is strongly adjacent to c. We define c ≥B c′ similarly. We write
c ≥ c′ if c ≥A c′ and c′ ≥B c. We claim that the relation ≥ is a total order of C. To see this we
observe:

• For distinct c, c′ ∈ C, not both c ≥ c′ and c′ ≥ c. For if both these hold, then c ≥A c′, c′ ≥B c,
c′ ≥A c, and c ≥B c′; and so c, c′ have the same neighbours in A ∪B and in C \ {c, c′}, and no
vertex is semiadjacent to either of them, and so they are twins, a contradiction.

• For distinct c, c′ ∈ C, either c ≥ c′ or c′ ≥ c. For if both are false, then we may assume
that c 6≥A c′, and so c′ ≥A c since c, c′ are not A-incomparable; choose a ∈ A adjacent to c′

and antiadjacent to c. Since c′ 6≥ c, it follows that c 6≥B c′; choose b ∈ B adjacent to c′ and
antiadjacent to c. Then a /∈ A1 and b /∈ B1, and so {c′, c, a, b} is a claw, a contradiction.

• For distinct c1, c2, c3 ∈ C, not all of c1 ≥ c2, c2 ≥ c3, and c3 ≥ c1 hold. For if they do all hold,
then since c1 ≥A c2 and c2 ≥A c3, it follows that c1 ≥A c3, and similarly c3 ≥B c1, and so
c1 ≥ c3; yet c3 ≥ c1, contrary to the first observation above.

From these three observations, we see that ≥ is a total order of C. But then the second outcome of
the theorem holds. This proves (4).

Let A = {a1, . . . , am} and B = {b1, . . . , bn}, where for 1 ≤ i ≤ k ai is adjacent to bi, and
otherwise each ai is strongly antiadjacent to each bj. By (4), we may assume that k > 0. Define
A′ = {ak+1, . . . , am}, and B′ = {bk+1, . . . , bn}. For each c ∈ C, let

Ic = {i : 1 ≤ i ≤ k and c is adjacent to ai, bi.}

We observe that, by (1), each c ∈ C is strongly adjacent to ai, bi for all i ∈ Ic.

(5) If c, c′ ∈ C, and i ∈ Ic \ Ic′, then ai, bi are the only vertices in A ∪ B that are adjacent to c
and antiadjacent to c′. In particular, |Ic \ Ic′ | ≤ 1.
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For suppose that aj is adjacent to c and antiadjacent to c′, say, where j 6= i. Then {c, c′, aj , bi}
is a claw by (2), a contradiction. This proves (5).

Let j be the maximum cardinality of the sets Ic (c ∈ C). By (5), |Ic| = j or j − 1 for all c ∈ C.
By (3) j ≥ 1. Let

P = {c ∈ C : |Ic| = j − 1}

and Q = C \ P . Let Z be the set of vertices in A′ ∪ B′ with a neighbour in Q. By (5), if p ∈ P and
q ∈ Q, then Ip ⊆ Iq, and every vertex in A′ ∪ B′ that is adjacent to q is strongly adjacent to p. In
particular, Z is strongly complete to P . By definition, Q is nonempty. Now there are four cases:

• P is empty and Iq1
= Iq2

for all q1, q2 ∈ Q

• There exist q1, q2 ∈ Q with Iq1
6= Iq2

• There exist p1, p2 ∈ P with Ip1
6= Ip2

, and

• P is nonempty, Iq1
= Iq2

for all q1, q2 ∈ Q, and Ip1
= Ip2

for all p1, p2 ∈ P .

We treat these cases separately. The first case is easy; for if P is empty and Iq1
= Iq2

for all q1, q2 ∈ Q,
then by (3), j = k and the hypotheses of (4) are satisfied, and so (4) implies that the theorem holds.

(6) If there exist q1, q2 ∈ Q with Iq1
6= Iq2

then the theorem holds.

For then by (5), no vertex of A ∪ B is semiadjacent to either of q1, q2, and q1, q2 have the same
neighbours in A′ ∪ B′. Let X be the set of neighbours of q1 (and hence of q2) in A′ ∪ B′. For any
third member q ∈ Q, Iq is different from one of Iq1

, Iq2
, and so by the same argument, X is the set

of neighbours of q in A′ ∪ B′. Consequently Q is strongly complete to X and strongly anticomplete
to (A′ ∪ B′) \ X. Hence X = Z, and therefore X is strongly complete to P and hence to C.

Choose q1, q2 ∈ Q with Iq1
6= Iq2

, and let Y = Iq1
∩ Iq2

. Now Ip = Y for every p ∈ P , by (5).
Suppose that there exists q3 ∈ Q with Y 6⊆ Iq3

. (Hence P = ∅, and therefore X = A′ ∪ B′ by (3).)
Let Y ′ = Iq1

∪ Iq2
. Since |Iq ∪ Iq′ | ≤ j + 1 for all q, q′ ∈ Q, it follows that |Y ′| = j + 1 and Iq3

⊆ Y ′;
and since no subset Y ′′ ⊆ Y ′ with |Y ′′| ≤ j − 1 has intersection of cardinality ≥ j − 1 with each of
Iq1

, Iq2
, Iq3

, it follows that Iq ⊆ Y ′ for all q ∈ Q. By (3), j + 1 = k. Moreover, there do not exist
q, q′ ∈ Q with Iq = Iq′ , since then q, q′ would be twins. Consequently, G is near-antiprismatic, and
the theorem holds.

We may therefore assume that Y ⊆ Iq for all q ∈ Q. If p ∈ P has a neighbour a ∈ A′ \ Z and
b ∈ B′ \ Z then {p, q1, a, b} is a claw, a contradiction; so P = P1 ∪ P2 where P1, P2 are the sets of
vertices in P strongly anticomplete to B′\Z,A′ \Z respectively. Since Ip = Y for all p ∈ P , it follows
that (P1, A

′ \ Z) is a homogeneous pair, nondominating because of b0, and so |P1|, |A
′ \ Z| ≤ 1; and

similarly |P2|, |B
′ \ Z| ≤ 1. Moreover

({ai : i ∈ Y } ∪ (A′ ∩ Z), {bi : i ∈ Y } ∪ (B′ ∩ Z))

is a coherent homogeneous pair, and so |Y | ≤ 1 since G does not admit twins or a coherent W-join,
that is, j ≤ 2; and moreover, either j = 1 or Z = ∅. If Z = ∅, then the third outcome of the theorem
holds; and if j = 1 then the fourth outcome holds. This proves (6).
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(7) If there exist p1, p2 ∈ P with Ip1
6= Ip2

, then the theorem holds.

For let Y = Ip1
∪ Ip2

; then |Y | = j. By (5), Iq = Y for all q ∈ Q. Choose q ∈ Q; then by
(5), Ip ⊆ Iq = Y for all p ∈ P . By (3), j = k, and so Q is strongly complete to (A \ A′) ∪ (B \ B′).

By (5), no vertex of A ∪ B is semiadjacent to either of p1, p2, and p1, p2 have the same set of
neighbours in A′ ∪ B′, say W . Moreover, if p ∈ P then Ip is different from one of Ip1

, Ip2
, and so W

is the set of neighbours of p in A′ ∪ B′. We deduce that P is strongly complete to W and strongly
anticomplete to (A′ ∪ B′) \ W . But by (3), every vertex in A′ ∪ B′ has a neighbour in C, and so
Z ∪W = A′ ∪B′; and since Z is strongly complete to P , it follows that Z ⊆ W , and so W = A′ ∪B′

and therefore A′ ∪ B′ is strongly complete to P .
We claim there is at most one value of i ∈ {1, . . . , k} that belongs to all the sets Ip (p ∈ P );

for if i, i′ were two such values, then ({ai, ai′}, {bi, bi′}) would be a coherent homogeneous pair, a
contradiction. Thus there is at most one such i, and therefore we may assume that for 1 ≤ i < k
there exists pi ∈ P with i /∈ Ipi

. There is at most one p ∈ P with i /∈ Pi, since two such vertices p, p′

would have Ip = Ip′ and therefore would be twins; and so P = {p1, . . . , pk−1} or {p1, . . . , pk}, where
pk is the unique vertex p ∈ P with k /∈ Ip, if such a vertex exists. Moreover, if for some i ∈ {1, . . . , k},
ai, bi are semiadjacent, then i ∈ Ip for all p ∈ P ; for if i /∈ Ip for some p, choose p′ ∈ P with i ∈ Ip′ ,
and then {p′, p, ai, bi} is a claw, a contradiction. Hence ai is strongly adjacent to bi for 1 ≤ i < k,
and also for i = k if pk exists.

If q ∈ Q has antineighbours a′ ∈ A′ and b′ ∈ B′, then {p1, q, a
′, b′} is a claw, a contradiction; so

Q = Q1∪Q2, where Q1, Q2 are the sets of vertices in Q strongly complete to B′, A′ respectively. Since
(Q1, A

′) is a homogeneous pair, nondominating because of b0, 4.3 implies that |Q1|, |A
′| ≤ 1, and

similarly |Q2|, |B
′| ≤ 1. If |Q| ≤ 1 then G is near-antiprismatic; so we may assume that Q1 = {q1}

and Q2 = {q2}, and Q1 ∩ Q2 = ∅. In particular, q1 is not strongly complete to A′, and so A′ is
nonempty; let A′ = {a′} say, where q1, a

′ are antiadjacent. Similarly, B′ = {b′} where b′, q2 are
antiadjacent. But then again, G is near-antiprismatic. This proves (7).

In view of (6),(7), we may henceforth assume that P is nonempty, Iq1
= Iq2

for all q1, q2 ∈ Q, and
Ip1

= Ip2
for all p1, p2 ∈ P . Let Ip = Y for all p ∈ P . Then |Y | = j−1, and ({ai : i ∈ Y }, {bi : i ∈ Y })

is a coherent homogeneous pair, and so j ≤ 2 since G does not admit twins or a coherent W-join.
By (3), k = j. If some q ∈ Q has antineighbours a′ ∈ A′ ∩ Z and b′ ∈ B′ ∩ Z, then {p, q, a′, b′} is
a claw where p ∈ P , a contradiction. Thus Q = Q1 ∪ Q2, where Q1, Q2 are the sets of members
of Q which are strongly complete to B′ ∩ Z and to A′ ∩ Z respectively. Since (Q1, A

′ ∩ Z) is a
homogeneous pair, nondominating because of b0, 4.3 implies that |Q1|, |A

′ ∩ Z| ≤ 1, and similarly
|Q2|, |B

′ ∩ Z| ≤ 1. If some p ∈ P has neighbours a′ ∈ A′ \ Z and b′ ∈ B′ \ Z then {p, q, a′, b′}
is a claw, where q ∈ Q, a contradiction. Thus P = P1 ∪ P2, where P1, P2 are the sets of mem-
bers of P that are strongly anticomplete to B′ \ Z and to A′ \ Z respectively. Since (P1, A

′ \ Z) is
a nondominating homogeneous pair, 4.3 implies that |P1|, |A

′ \Z| ≤ 1, and similarly |P2|, |B
′\Z| ≤ 1.

(8) If |Q| ≥ 2 then the theorem holds.

For in this case it follows that Q1, Q2 6= Q. Since Q1 ∪ Q2 = Q and |Q1|, |Q2| ≤ 1, we deduce
that Q = {q1, q2}, where Qi = {qi} for i = 1, 2. Since q1 /∈ Q2, there exists a′ ∈ A′ ∩ Z antiadjacent
to q1. Suppose that there exists p ∈ P \ P1. Since p /∈ P1, p has a neighbour b′ ∈ B′ \ Z; but
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then {p, q1, a
′, b′} is a claw, a contradiction. This proves that P1 = P , and similarly P2 = P . Hence

|P | = 1, P = {p} say. Since p ∈ P1, p has no neighbours in B′ \ Z; but every vertex in B′ \ Z is
adjacent to p, by (3), and so B′ ⊆ Z. Similarly A′ ⊆ Z, and so G is near-antiprismatic, and the
theorem holds. This proves (8).

In view of (8) we may assume that |Q| = 1. If Z = ∅ then the third outcome of the theorem holds,
so we may assume that Z is nonempty. If Y 6= ∅, let 1 ∈ Y , say; then ((Z∩A′)∪{a1}, (Z∩B′)∪{b1})
is a coherent W-join, a contradiction. Thus Y = ∅, and so k = 1. If Q is strongly complete to Z,
and one of Z ∩ A,Z ∩ B is empty, then again the third outcome of the theorem holds; while if Q is
strongly complete to Z and Z ∩ A,Z ∩ B are both nonempty, then the fourth outcome holds. Thus
we may assume that Q = {q} say, and q is antiadjacent to z ∈ Z ∩ B. Hence Z ∩ B = {z}. Since
z has a neighbour in Q, we deduce that q, z are semiadjacent. Now q /∈ Q1, and so q ∈ Q2 and
therefore q is strongly complete to Z ∩ A. If there exists p ∈ P \ P2, let a ∈ A′ \ Z be adjacent to
p; then {p, a, q, z} is a claw, a contradiction. Thus P = P2, and so |P | = 1, say P = {p}. Since
A′ \ Z is therefore strongly anticomplete to C, (3) implies that A′ ⊆ Z. If also B′ ⊆ Z then G is
antiprismatic, so we may assume that |B′ \Z| = 1, and the vertex in B′ \ Z is adjacent to p. If it is
strongly adjacent to p, then (B′, {q}) is a nondominating homogeneous pair, contrary to 4.3. Thus
the vertex in B′ \ Z is semiadjacent to p. Any two vertices in Z ∩ A are twins, and so |Z ∩ A| ≤ 1.
If Z ∩A = ∅, then G admits a generalized 2-join ({b1}, A ∪ {a0, b0}, B ∪C \ {b1}); and if Z ∩A 6= ∅,
then G admits a hex-join, since Z ∩ A, {a0} ∪ A \ Z,C, {b0} ∪ B are four strong cliques with union
V (G) and the first is strongly complete to the second and third and strongly anticomplete to the
last. Thus the fifth statement of the theorem holds. This proves 11.1.

The previous result has a convenient corollary, the following.

11.2 Let G be a claw-free trigraph with α(G) ≥ 3, and let a0, b0 ∈ V (G) be antiadjacent. Suppose
that the set of all vertices in V (G)\{a0, b0} adjacent to a0 is a strong clique, and they are all strongly
adjacent to a0; and the same for b0. Suppose that no vertex is adjacent to both a0, b0, and the set
of vertices antiadjacent to both a0, b0 is a strong clique. Then either G ∈ S0 ∪ S3 ∪ S6 or G is
decomposable.

Proof. Let G′ be the trigraph obtained from G by making a0, b0 semiadjacent, and leaving the
adjacency of all other pairs unchanged. Then G′ is claw-free, from the hypothesis, and therefore
satisfies the hypotheses of 11.1. Hence either G′ ∈ S0 ∪ S3 ∪ S6 or G′ is decomposable. Certainly if
G′ is decomposable then so is G, so we assume that G′ is not decomposable. It is easy to see that if
G′ ∈ S3 then the same holds for G, and if G′ ∈ S6 then G ∈ S6 ∪ S7. Suppose then that G′ ∈ S0,
and let G′ be a line trigraph of some graph H. Since a0, b0 are semiadjacent in G′, there is a vertex
of degree two in H incident with them both in H. It follows that G is also a line trigraph, for G
is an L(H ′)-trigraph where H ′ is obtained from H by “splitting” v into two vertices both of degree
one. This proves 11.2.

12 The icosahedron minus a triangle

Now we begin the next part of the paper. The objective of the next several sections is to prove 17.2,
that every claw-free trigraph with a hole of length ≥ 6 either belongs to one of our basic classes or
is decomposable. We begin by outlining the plan of the proof, as follows.
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• We can assume G is a claw-free trigraph with a maximum 6-hole, and with no long prism.
Consequently we may assume that every 6-hole is dominating, by 10.3.

• (In 13.6) If some 6-hole has a hub, and either a clone or a semiadjacent pair of consecutive
vertices, then either G belongs to one of the basic classes or G is decomposable.

• (In 13.7) If some 6-hole has both a star-diagonal and a clone then either G belongs to one of
the basic classes or G is decomposable.

• (In 14.3) Every 5-hole is dominating (or else either G is decomposable, or it belongs to one of
our basic classes). Consequently, no 6-hole has a coronet.

• (In 15.1) If some 6-hole has both a hub and a hat, then either G is in one of the basic classes
or it is decomposable.

• (In 15.2) If some 6-hole has both a star-diagonal and a hat, then either G is in one of the basic
classes or G is decomposable.

• (In 16.3) If no 6-hole has a hub, but some 6-hole has both a star-triangle and either a hat or
clone, then G is decomposable.

• (In 16.4) If no 6-hole has a hub or star-diagonal, but some 6-hole has a crown, then G is
decomposable.

• (In 17.1) If no 6-hole has a hub, star-diagonal, star-triangle or crown, then either G is a circular
interval trigraph or G is decomposable.

• To complete the proof of 17.2, we may therefore assume that some 6-hole has either a hub,
a star-diagonal, or a star-triangle, and has no hat or clone. We deduce that G is either
decomposable or antiprismatic.

The first step is to handle icosa(−3), and that is the goal of this section. We recall that icosa(−3)
is the graph obtained from icosa(0) by deleting three pairwise adjacent vertices. Thus it has nine
vertices c1, . . . , c6, b1, b3, b5, where {b1, b3, b5} is a triangle, c1- · · · -c6-c1 is a 6-numbering, and for
i = 1, 3, 5, bi is adjacent to ci−1, ci, ci+1 and antiadjacent to the other three of c1, . . . , c6.

12.1 Let G be claw-free, and with no long prism or hole of length > 6, containing an icosa(−3)-
trigraph. Then G is decomposable.

Proof. Let c1, . . . , c6, b1, b3, b5 ∈ V (G) such that the subtrigraph induced on these nine vertices
is an icosa(−3)-trigraph, labelled as above. By 10.3 we may assume that {c1, . . . , c6} is dominat-
ing. For i = 1, 3, 5, let Bi be the set of all v ∈ V (G) such that v is adjacent to b1, b3, b5, ci. Let
W = {c1, . . . , c6} ∪ B1 ∪ B3 ∪ B5.

(1) For i = 1, 3, 5, if v ∈ Bi then ci−1, ci, ci+1 ∈ N∗(v), and ci+2, ci+3, ci+4 /∈ N(v), and in par-
ticular, B1, B3, B5 are pairwise disjoint. Moreover, B1 ∪ B3 ∪ B5 is a strong clique.

For let v ∈ B1. By 5.3 it follows that c3, c5 /∈ N(v), so the sets B1, B3, B5 are pairwise disjoint.
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By 5.4 (with c3-c4-c5), c4 /∈ N(v). By 5.4 (with c4-b5-c6 and c4-b3-c2), c2, c6 ∈ N∗(v); and by 5.4
(with c1-c2-c3), c1 ∈ N∗(v). This proves the first two claims. For the final claim, suppose that
u, v ∈ B1 ∪ B3 ∪ B5 are antiadjacent. From the symmetry we may assume that u, v /∈ B1; and then
{b1, u, v, c1} is a claw, a contradiction. This proves that B1∪B3∪B5 is a strong clique, and therefore
proves (1).

For i = 1, 3, 5, let Ci be the set of all v ∈ V (G) \ (B1 ∪ B3 ∪ B5) such that Bi ⊆ N∗(v) and
Bi−2, Bi+2 6⊆ N∗(v). For i = 2, 4, 6, let Ci be the set of all v ∈ V (G) \ (B1 ∪ B3 ∪ B5) such that
Bi−1, Bi+1 ⊆ N∗(v) and Bi+3 6⊆ N∗(v).

(2) We may assume that the nine sets C1, . . . , C6, B1, B3, B5 are pairwise disjoint and have union
V (G).

For we have seen that B1, B3, B5 are pairwise disjoint, and therefore the nine sets are pairwise
disjoint. We must show they have union V (G). Let v ∈ V (G). Since each ci ∈ Ci and bi ∈ Bi, we
may assume that v 6= b1, b3, b5, c1, . . . , c6. If N∗(v) includes either one or two of B1, B3, B5, then v be-
longs to one of C1, . . . , C6; so we may assume that N∗(v) includes none or all of B1, B3, B5. Suppose
first that B1, B3, B5 ⊆ N∗(v). If c1 ∈ N(v) then v ∈ B1, so we may assume that c1 /∈ N(v), and sim-
ilarly c3, c5 /∈ N(v). By 5.4 (with c1-c2-c3), c2 /∈ N(v), and similarly c6 /∈ N(v), contrary to 5.4 (with
c2-b1-c6}). Second, suppose that B1, B3, B5 6⊆ N∗(v). If N(v) contains at least two of c2, c4, c6, say
c2, c4, then 5.4 (with c1-c2-B3}) implies that c1 ∈ N(v) and similarly c5 ∈ N(v); 5.4 (with c3-c4-B5)
implies that c3 ∈ N(v); and then {v, c1, c3, c5} is a claw, a contradiction. Thus N(v) contains at
most one of c2, c4, c6 and we may assume that c2, c4 /∈ N(v). By 5.4 (with c2-c3-c4), c3 /∈ N(v); by
5.4 (with c3-B3-B5), B3 ∩N(v) = ∅; and by 5.4 (with B1-B5-c4 and B5-B1-c2), N(v) is disjoint from
B1, B5. If c1 ∈ N(v) then 5.4 (with c6-c1-c2) implies that c6 ∈ N(v); and if c6 ∈ N(v) then 5.4 (with
B5-c6-c1) implies that c1 ∈ N(v). Since {c1, . . . , c6} is dominating, it follows that c5, c6, c1 ∈ N(v).
But then the subtrigraph induced on {c1, . . . , c6, b1, b3, b5, v} is an icosa(−2)-trigraph, and the result
follows from 5.7. This proves (2).

We remind the reader that v ∈ N(v).

(3) Let 1 ≤ i ≤ 6 and let v ∈ Ci.

• If i is odd then N(v) ∩ W = Bi ∪ {ci−1, ci, ci+1} ∪ X, where X is a subset of one of Bi−2 ∪
{ci−2}, Bi+2 ∪ {ci+2}.

• If i is even then N(v)∩W = Bi−1∪Bi+1∪{ci−1, ci, ci+1}∪X, where X is one of ∅, {ci−2}, {ci+2}.

For let v ∈ C1. Thus B1 ⊆ N∗(v), and B3, B5 6⊆ N∗(v). By 5.4 (with B5-B1-c2 and B5-B1-c1 if
v 6= c1), c2, c1 ∈ N∗(v) and similarly c6 ∈ N∗(v). By 5.3, c4 /∈ N(v), and not both c3, c5 ∈ N(v);
we assume c3 /∈ N(v). By 5.4 (with c3-B3-B5), N(v) ∩ B3 = ∅. This proves the first claim. For the
second, let v ∈ C2. Thus B1, B3 ⊆ N∗(v) and B5 6⊆ N∗(v). By 5.4 (with B5-B1-c2 if v 6= c2, and
B5-B1-c1), c1, c2 ∈ N∗(v), and similarly c3 ∈ N∗(v). By 5.3, B5 ∪ {c5} is disjoint from N(v), and
not both c4, c6 ∈ N∗(v). This proves the second claim and hence proves (3).

(4) For i = 1, 3, 5, Bi ∪ Ci is a strong clique, and for i = 2, 4, 6, Ci is a strong clique.
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For first suppose that u, v ∈ B1 ∪ C1 are antiadjacent. By (1), at least one of u, v ∈ C1, say
v ∈ C1. By (3) we may assume that N(v) ∩ (B3 ∪ {c3}) = ∅. If also u ∈ C1, choose x ∈ B3 antiadja-
cent to u; then {b1, x, u, v} is a claw, a contradiction. So u ∈ B1; but then {c2, c3, u, v} is a claw, a
contradiction. This proves the first claim. For the second, suppose that u, v ∈ C2 are antiadjacent.
Then {b3, b5, u, v} is a claw, a contradiction. This proves (4).

(5) For i = 1, 3, 5, Bi ∪ Ci is strongly complete to Ci−1 ∪ Ci+1.

For let u ∈ B1 ∪ C1 and v ∈ C2 say, and suppose that u, v are antiadjacent. Since B1 is strongly
complete to C2 from the definition of C2, it follows that u ∈ C1. Choose x ∈ B5 antiadjacent to u.
Then {b1, x, u, v} is a claw, a contradiction. This proves (5).

(6) For i = 1, 3, 5, Bi ∪ Ci is strongly anticomplete to Ci+3.

For let u ∈ B1 ∪ C1 and v ∈ C4 say, and suppose that u, v are adjacent. From (3), u /∈ B1, so
u ∈ C1. Choose x ∈ B5 antiadjacent to u. Since {v, u, x, c3} is not a claw, it follows that c3 ∈ N(u),
and similarly c5 ∈ N(u), contrary to (3). This proves (6).

From (2),(4),(5),(6), it follows that G is expressible as a hex-join and therefore decomposable.
This proves 12.1.

13 6-holes with clones

Let c1- · · · -cn-c1 be an n-numbering in a trigraph G, and let v ∈ V (G). We saw in 9.1 that if
v 6= c1, . . . , cn, and is neither strongly complete nor strongly anticomplete to {c1, . . . , cn}, and not a
hub, then there is an “interval” ci, ci+1, .., cj of C with

∅ 6= {ci, ci+1, . . . , cj} 6= {c1, . . . , cn},

such that v is adjacent to the vertices in this interval and antiadjacent to the other vertices of
c1, . . . , cn. In this case we say that v is in position (i + j)/2 relative to c1- · · · -cn-c1. (Possibly there
are two such intervals, if v is semiadjacent to one of c1, . . . , cn, and then v has two positions relative
to c1- · · · -cn-c1.) It is helpful also to say that for 1 ≤ i ≤ n, ci is in position i relative to c1- · · · -cn-c1.

Let c1- · · · -c6-c1 be a 6-numbering of a 6-hole C. If v is a hub relative to C, we say that v is in
hub-position i if v is adjacent to ci−2, ci−1, ci+1, ci+2. (Thus hub-position i is the same as hub-position
i + 3.)

13.1 Let G be a claw-free trigraph. Let C be a 6-hole in G with vertices c1- · · · -c6-c1 in order, and
let w be a hub in hub-position i. Let v ∈ V (G) \ (V (C) ∪ {w}). Then w, v are strongly adjacent if
and only if either:

• v is a hub in hub-position i, or

• v is a hat in position i + 11

2
or in position i − 11

2
, or
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• v is a clone in position i + 1, i + 2, i − 2 or i − 1, or

• v is a star in position i + 1

2
, i + 21

2
, i − 1

2
or i − 21

2

and strongly antiadjacent otherwise.

Proof. In each case listed, if v,w are antiadjacent there is a claw; and in the cases not listed, if v,w
are adjacent there is a claw. We leave the details to the reader.

This has the following consequence.

13.2 Let G be a claw-free trigraph, and let C be a 6-hole in G with vertices c1- · · · -c6-c1 in order.
If there are two hubs in the same hub-position, then G admits twins.

Proof. By 13.1, any two hubs in the same hub-position are strongly adjacent, and every other
vertex is either strongly adjacent to them both, or strongly antiadjacent to them both. Thus they
are twins. This proves 13.2.

Two n-numberings are proximate if they differ in exactly one place (and therefore they number
n-holes with n − 1 vertices in common; the exceptional vertex of each is a clone with respect to the
other). Note that we regard c1- · · · -cn-c1 and c2-c3- · · · -cn-c1-c2 as different numberings; the choice
of initial vertex is important. A nonempty set C of n-numberings is connected by proximity if the
graph with vertex set C, in which two n-numberings are adjacent if they are proximate, is connected.
The proximity distance between two n-numberings is the length of the shortest path between them
in this graph, if such a path exists, and is undefined otherwise. A proximity component of order n
means a set C of n-numberings that is connected by proximity and maximal with this property.

13.3 Let G be a claw-free trigraph, and let C be a proximity component of order 6. Let v ∈ V (G) be
a hub in hub-position i for some member of C. Then v is a hub in hub-position i for every member
of C.

Proof. It suffices to show that if c1- · · · -c6-c1 and c′1- · · · -c
′

6-c
′

1 are proximate, and v is a hub in
hub-position i for the first 6-numbering, then v is a hub in hub-position i for the second. We may
assume that i = 1. From the symmetry we may assume that cj = c′j for j = 3, 4, 5; and since v
is adjacent to c3, c5 and not to c4, it follows from 9.1 that v is a hub in hub-position 1 relative to
c′1- · · · -c

′

6-c
′

1. This proves 13.3.

If C is a proximity component of order n, we denote the union of the vertex sets of its members
by V (C); and for 1 ≤ i ≤ n, the set of vertices that are the ith term of some member of C is denoted
by Ai(C), or just Ai when there is no ambiguity. If these n sets are pairwise disjoint, we say that C
is pure.

13.4 Let G be a claw-free trigraph containing no long prism, with a maximum hole of length six, in
which every maximum hole is dominating. Let C be a pure proximity component of order 6. Then

• For 1 ≤ i ≤ 6, Ai is a strong clique, and Ai is strongly anticomplete to Ai+3

• If v ∈ V (G) and v /∈ A1 ∪ · · · ∪A6, then for 1 ≤ i ≤ 6, v is either strongly complete or strongly
anticomplete to Ai; and v is strongly complete to either two or four of the sets A1, . . . , A6.
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• For 1 ≤ i ≤ 6, every v ∈ Ai is either strongly complete to Ai+1 or strongly anticomplete to
Ai+2.

• For 1 ≤ i ≤ 6, either Ai is strongly complete to Ai−1 or Ai is strongly anticomplete to Ai+2.

• For 1 ≤ i ≤ 6, Ai is strongly complete to one of Ai−1, Ai+1.

Proof. For each vertex v ∈ V (G), let P (v) be the set of all k such that v is in position k relative
to some member of C (and therefore v is not a hub relative to this 6-numbering). Since v may
be semiadjacent to a vertex of the 6-numbering, it may have two distinct positions relative to the
same 6-numbering, and therefore the same 6-numbering may contribute two different terms to P (v),
differing by 1

2
.

(1) For every vertex v ∈ V (G), if k is an integer, then k ∈ P (v) if and only if v ∈ Ak. More-
over, |P (v)| ≤ 3, and the members of P (v) are consecutive multiples of 1

2
modulo 6.

For suppose first that v ∈ Ak. Then since the sets A1, . . . , A6 are pairwise disjoint, v is the kth
term of every member of C that contains it, and there is such a member since v ∈ Ak; and so
k ∈ P (v). For the converse, suppose that k is an integer and k ∈ P (v). We may assume that k = 1.
Choose a 6-numbering c1- · · · -c6-c1 ∈ C such that v is in position 1 relative to this 6-numbering.
Hence either v = c1 or v is a clone in position 1. In either case the 6-numbering v-c2- · · · -c6-v also
belongs to C, because of the maximality of C, and so v ∈ A1. This proves the first claim. For the
second claim, we may assume that P (v) is nonempty, and so by 13.3, v is not a hub with respect
to any member of C. Since every member of C is dominating (by hypothesis) and has no centre,
it follows that v has (at least) one position with respect to every member of C. But for any two
proximate 6-numberings, v has a position with respect to each of them such that these two positions
differ by at most 1

2
; and so the members of P (v) are consecutive multiples of 1

2
(modulo 6). Since

P (v) contains at most one integer, as we have seen, it follows that |P (v)| ≤ 3. This proves (1).

To prove the first statement of the theorem, we may assume that i = 1. Let u, v ∈ A1, and let
c1- · · · -c6-c1 ∈ C with c1 = u. Since v ∈ A1, it follows that 1 ∈ P (v); and so P (v) ⊆ {1

2
, 1, 11

2
} by

(1). In particular, v is in position 1

2
, 1 or 11

2
relative to c1- · · · -c6-c1; and in each case, it is strongly

adjacent to u. Hence A1 is a strong clique. Now let u ∈ A1 and v ∈ A4. As before, P (u) ⊆ {1

2
, 1, 11

2
}.

Choose c1- · · · -c6-c1 ∈ C with c4 = v; then u is in position 1

2
, 1 or 11

2
relative to c1- · · · -c6-c1, and in

each case u, v are strongly antiadjacent. This proves the first statement.
For the second statement, let v ∈ V (G) with v /∈ A1 ∪ · · · ∪A6. By 13.3 we may assume that v is

not a hub relative to any member of C. By (1), P (v) contains no integer, and so P (v) = {i + 1

2
} for

some integer i. Thus v is in position i + 1

2
relative to every member of C, and it is either a hat or a

star. Since it is not a clone (because P (v) contains no integer), it follows that v is not semiadjacent
to any member of A1 ∪ · · · ∪ A6. If v is sometimes a hat and sometimes a star, then there are two
proximate members of C such that v is a hat relative to one and a star relative to the other, which is
impossible. Hence either it is a hat in position i+ 1

2
relative to all members of C, or it is a star in the

same position for them all, and in either case the claim follows. This proves the second statement.
For the third statement, we may assume that i = 1; let v ∈ A1, and suppose it has a neighbour

a3 ∈ A3 and an antineighbour a2 ∈ A2. Choose c1-c2- · · · -c6-c1 ∈ C so that a2 = c2. Since v ∈ A1 it
follows that P (v) ⊆ {1

2
, 1, 11

2
}, and since v is antiadjacent to c2, we deduce that v is in position 1

2
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relative to c1-c2- · · · -c6-c1. Hence v is either a hat or a star. If v is a star, then v is semiadjacent to
c2, and therefore v is also a clone in position 6, a contradiction, since 6 /∈ P (v). Thus v is a hat. Since
a3 ∈ A3, it follows that P (a3) ⊆ {21

2
, 3, 31

2
}. If a3 is adjacent to both c2, c4 then {a3, c2, c4, v} is a

claw; and so a3 is a hat in position 21

2
or 31

2
relative to c1-c2- · · · -c6-c1. But then G|{c1, . . . , c6, v, a3}

is a long prism, a contradiction. This proves the third statement.
For the fourth statement, let us first prove the following.

(2) If 1 ≤ i ≤ 6, then every vertex in Ai is either strongly complete to Ai−1 or strongly anti-
complete to Ai+2.

For we may assume that i = 2. Let v ∈ A2, and suppose that v has a neighbour a4 ∈ A4 and
an antineighbour a1 ∈ A1. Choose c1-c2- · · · -c6-c1 and c′1-c

′

2- · · · -c
′

6-c
′

1 in C, with c1 = a1 and c′4 = a4,
and choose these two 6-numberings so that their proximity distance (k say) is as small as possible.
Since v ∈ A2, it follows that P (v) ⊆ {11

2
, 2, 21

2
}. Since v is antiadjacent to c1 we deduce that, relative

to c1-c2- · · · -c6-c1, either v is a hat in position 21

2
, or v = c2 and c2 is semiadjacent to c1; and in

either case v is strongly antiadjacent to c4 (since 3 /∈ P (v)). Similarly, relative to c′1-c
′

2- · · · -c
′

6-c
′

1,
either v is a star in position 21

2
, or v = c′2 and c′2 is semiadjacent to c4; and in either case v is

strongly adjacent to c′1. In particular, c1 6= c′1, and c4 6= c′4. It follows that the two 6-numberings
are not proximate, and so k > 1. Consequently there is a third 6-numbering c′′1-c

′′

2- · · · -c
′′

6-c
′′

1 in C,
proximate to c′1-c

′

2- · · · -c
′

6-c
′

1, and with proximity distance to c1-c2- · · · -c6-c1 less than k. From the
minimality of k, it follows that c′′4 is strongly antiadjacent to v, and therefore c′′4 6= a4; and so c′′i = c′i
for all i ∈ {1, . . . , 6} with i 6= 4. Consequently c′1-v-c′3-c

′′

4-c
′

5-c
′

6-c
′

1 is a 6-numbering, and therefore
belongs to C. Since c1 is antiadjacent to v, and P (c1) ⊆ {1

2
, 1, 11

2
}, it follows that relative to this last

6-numbering, c1 is in position 1

2
and is a hat. Consequently c1 is strongly antiadjacent to c′3, c

′

4, c
′

5,
and is strongly adjacent to c′6.

Suppose that c1 is in position 1 relative to c′1-c
′

2- · · · -c
′

6-c
′

1. Then c1-c
′

2-c
′

3- · · · -c
′

6-c1 belongs to
C, and yet v is in position 3 relative to it, contradicting that P (v) ⊆ {11

2
, 2, 21

2
}. So c1 is not in

position 1 relative to c′1-c
′

2- · · · -c
′

6-c
′

1. Since P (c1) ⊆ {1

2
, 1, 11

2
} and c1 is strongly antiadjacent to c′3

and strongly adjacent to c′6, we deduce that c1 is in position 1

2
relative to c′1-c

′

2- · · · -c
′

6-c
′

1. Since c1 is
strongly antiadjacent to c′5, it follows that c1 is antiadjacent to c′2.

Since {c2, c
′

2, c
′

4, c1} is not a claw, it follows that c2, c
′

4 are strongly antiadjacent and therefore
v 6= c2; and since A4 is a strong clique, c′4 is strongly adjacent to c4. Since {c′4, v, c4, c6} is not a
claw, c′4 is strongly antiadjacent to c6. Thus if c′4 is in position 41

2
relative to c1- · · · -c6-c1, then it is

a hat and therefore antiadjacent to c3; but then G|{c1, . . . , c6, v, c′4} is a long prism, a contradiction.
If c′4 is in position 4 relative to c1-c2- · · · -c6-c1, then v is in position 3 relative to c1-c2-c3-c

′

4-c5-c6-c1,
contradicting that P (v) = {11

2
, 2, 21

2
}. Thus, c′4 is in position 31

2
relative to c1-c2- · · · -c6-c1, and

therefore is a hat, since c2, c
′

4 are strongly antiadjacent. Then c1-c2-v-c′4-c4-c5-c6-c1 is a 7-hole, a
contradiction. Thus there is no such vertex v. This proves (2).

To complete the proof of the fourth statement of the theorem, again we may assume that i = 2.
Suppose that v, v′ ∈ A2, and v has a neighbour a4 ∈ A4, and v′ has an antineighbour a1 ∈ A1. By
(2), v′, a4 are antiadjacent, and v, a1 are adjacent. But then {v, v′, a1, a4} is a claw, a contradiction.
This proves the fourth statement of the theorem.

For the fifth statement, let us first prove the following:
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(3) For 1 ≤ i ≤ 6, every vertex in Ai is either strongly Ai+1-complete or strongly Ai−1-complete.

For we may assume that i = 2. Let a2 ∈ A2, and assume it has antineighbours a1 ∈ A1 and
a3 ∈ A3. Since a1 is not strongly complete to A2, it is therefore strongly anticomplete to A3 by the
third statement of the theorem; and in particular, a1, a3 are strongly antiadjacent. Choose x, y ∈ A2

adjacent to a1, a3 respectively. Since {x, a1, a2, a3} is not a claw, it follows that x is not adjacent to
a3, and similarly y is not adjacent to a1. Thus a1-x-y-a3 is a path. Choose c1-c2- · · · -c6-c1 ∈ C with
a2 = c2. Now P (a1) ⊆ {1

2
, 1, 11

2
}, and a1 is antiadjacent to a2; and so relative to c1-c2- · · · -c6-c1, a1 is

a hat in position 1

2
. Similarly, a3 is a hat in position 31

2
. Now x is strongly anticomplete to A4, A5, A6,

by respectively the third, first and fourth statements of the theorem, since x is not strongly complete
to A3. Similarly y is strongly anticomplete to A4 ∪ A5 ∪ A6. It follows that a1-x-y-a3-c4-c5-c6-a1 is
a 7-hole in G, a contradiction. This proves (3).

Now to prove the fifth statement of the theorem, we may assume that i = 2. Suppose that
a1 ∈ A1 and a3 ∈ A3 both have antineighbours in A2. By (3) they have no common antineighbour,
and so there is a path a1-x-y-a3 where x, y ∈ A2. Choose ci ∈ Ai for i = 4, 5, 6, such that c4-c5-c6 is
a path. By (3) and the first, third and fourth statements of the theorem, a1-x-y-a3-c4-c5-c6-a1 is a
7-hole in G, a contradiction. This proves the fifth statement, and therefore proves 13.4.

We have two applications for the previous theorem, but first we need another lemma.

13.5 Let G be a claw-free trigraph containing no long prism, with a maximum hole of length six,
in which every maximum hole is dominating. Let C be a pure proximity component of order 6, such
that there is a hub for some member of C. Suppose that for some i ∈ {1, . . . , 6}, Ai(C) is not strongly
complete to Ai+1(C). Then either G ∈ S0 ∪ S3 ∪ S6, or G is decomposable.

Proof. Let Ai = Ai(C) for 1 ≤ i ≤ 6, and let W = A1∪· · ·∪A6. For i = 0, . . . , 5, let Hi+ 1

2

and Si+ 1

2

be respectively the set of all hats and stars in V (G)\W in position i+ 1

2
relative to C. For i = 1, 2, 3,

let Wi be the set of all vertices in V (G) \ W that are strongly complete to Ai+1, Ai+2, Ai−1, Ai−2

(and therefore strongly anticomplete to Ai, Ai+3). Then since every 6-hole is dominating, from 9.2,
9.1 and 13.4 we have:

• S 1

2

, . . . , S
5

1

2

,H 1

2

, . . . ,H
5

1

2

,W1,W2,W3 are pairwise disjoint strong cliques with union V (G)\W

• for 1 ≤ i ≤ 6, Hi+ 1

2

is strongly complete to Ai ∪ Ai+1, and strongly anticomplete to Aj for

j 6= i, i + 1

• for 1 ≤ i ≤ 6, Si+ 1

2

is strongly complete to Ai−1, Ai, Ai+1, Ai+2 and strongly anticomplete to

Ai+3, Ai+4

• for i, j ∈ {1, . . . , 6}, Hi+ 1

2

is strongly complete to Sj+ 1

2

if i − j ∈ {1,−1}, and strongly anti-

complete otherwise

• H 1

2

, . . . ,H
5

1

2

are pairwise strongly anticomplete (since G has no 7-hole or long prism)

• for 1 ≤ i, j ≤ 6, Wi is strongly complete to Hj+1
1

2

if j ∈ {i+1, i−2} and strongly anticomplete

otherwise
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• for 1 ≤ i, j ≤ 6, Wi is strongly anticomplete to Sj+1
1

2

if j ∈ {i+1, i− 2} and strongly complete

otherwise.

Thus the only adjacencies that are not yet determined are between some pairs of Ai’s and between
some pairs of Sj+ 1

2

’s.

From the symmetry we may assume that A1 is not strongly complete to A2, and so 13.4 implies
that A1 is strongly complete to A6 and strongly anticomplete to A5, and similarly A2 is strongly
complete to A3 and strongly anticomplete to A4. Moreover S

1
1

2

is strongly anticomplete to S
4

1

2

since

S
1

1

2

∪ S
4

1

2

∪ A1 ∪ A2 includes no claw.

(1) S 1

2

, S
2

1

2

,H
1

1

2

,W3 are all empty.

For there exist c1 ∈ A1 and c2 ∈ A2, antiadjacent. If there exists v ∈ S 1

2

, choose c5 ∈ A5; then by

13.4, c5 is antiadjacent to c1, c2, and so {v, c1, c2, c5} is a claw, a contradiction. Thus S 1

2

= ∅, and

similarly S
2

1

2

,W3 are empty. If there exists v ∈ H
1

1

2

, then choose a1- · · · -a6-c1 in C; by 13.4, c1 is

antiadjacent to a3 since c1 is not strongly complete to A2, and similarly c2 is antiadjacent to a6, and
so

c1-v-c2-a3-a4-a5-a6-c1

is a 7-hole, a contradiction. This proves (1).

(2) If W1 6= ∅, then A5 is strongly complete to A6, A1 is strongly anticomplete to A3, and A6 is
strongly anticomplete to A4.

For A5 is strongly complete to A6 since W1 ∪ A5 ∪ A6 ∪ A3 includes no claw; A1 is strongly an-
ticomplete to A3 since A3 ∪ A1 ∪ A4 ∪ W1 includes no claw; and A6 is strongly anticomplete to A4

since A6 ∪ A4 ∪ A1 ∪ W1 includes no claw. This proves (2).

(3) If A4 is not strongly complete to A5 then either G ∈ S0 or G is decomposable.

For then it follows as in (1) that S
3

1

2

, S
5

1

2

,H
4

1

2

are all empty. Moreover, 13.4 implies that for

i ∈ {2, 3, 5, 6}, Ai is strongly complete to Ai+1, and for i ∈ {2, 5}, Ai is strongly anticomplete to
Ai+2. Since one of W1,W2 is nonempty, from the symmetry we may assume that W1 6= ∅. By (2),
A5 is strongly complete to A6, A1 is strongly anticomplete to A3, and A6 is strongly anticomplete to
A4. If also W2 6= ∅, then similarly A3 is strongly complete to A4, A6 is strongly anticomplete to A2,
and A3 is strongly anticomplete to A5; and so Ai is strongly anticomplete to Ai+2 for i = 1, . . . , 6,
and 9.2 implies that G ∈ S0. We may therefore assume that W2 = ∅. But then

(A2 ∪ H
2

1

2

∪ S
1

1

2

, A1 ∪ H 1

2

, A6)

is a breaker, and 4.4 implies that G is decomposable. This proves (3).

In view of (3) we assume henceforth that A4 is strongly complete to A5.

(4) If H
5

1

2

6= ∅ then:
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• A4 is strongly anticomplete to A6,

• A5 is strongly complete to A6,

• S
3

1

2

is strongly complete to S
5

1

2

,

• S
5

1

2

is strongly complete to S
1

1

2

, and

• S
4

1

2

is strongly anticomplete to S
5

1

2

.

For let h ∈ H
5

1

2

. Then A4 is strongly anticomplete to A6 since A6 ∪ A4 ∪ A1 ∪ {h} includes no

claw; A5 is strongly complete to A6 since G contains no 7-hole; S
3

1

2

is strongly complete to S
5

1

2

since

A5 ∪ S
3

1

2

∪ S
5

1

2

∪ {h} includes no claw; S
5

1

2

is strongly complete to S
1

1

2

since A6 ∪ S
5

1

2

∪ S
1

1

2

∪ {h}

includes no claw; and S
4

1

2

is strongly anticomplete to S
5

1

2

since S
4

1

2

∪ S
5

1

2

∪ A3 ∪ {h} includes no

claw. This proves (4).

(5) If H
5

1

2

and S
5

1

2

are both nonempty then either G ∈ S0 or G is decomposable.

For let h ∈ H
5

1

2

and s ∈ S
5

1

2

. By 9.2, h, s are strongly antiadjacent. Since S
3

1

2

∪ S
4

1

2

∪ A2 ∪ {s}

includes no claw, it follows that S
3

1

2

is strongly anticomplete to S
4

1

2

. Since A6 ∪A2 ∪ {h, s} includes

no claw, A6 is strongly anticomplete to A2, and similarly A5 is strongly anticomplete to A3. If A1 is
strongly anticomplete to A3 and S

1
1

2

is strongly complete to S
3

1

2

then G ∈ S0; so we may assume that

not both these hold. If W1 6= ∅ then (2) implies that A1 is strongly anticomplete to A3, and since
{W1, S1

1

2

, S
3

1

2

, h} includes no claw, it folows that S
1

1

2

is strongly complete to S
3

1

2

, a contradiction.

Thus W1 = ∅, and so there exists w ∈ W2. By (2), A3 is strongly complete to A4. If S
3

1

2

= ∅, then

(A6 ∪ S
5

1

2

, A5 ∪ H
5

1

2

∪ H
4

1

2

, A4 ∪ S
4

1

2

)

is a breaker, and the result follows from 4.4. So we may assume that S
3

1

2

6= ∅. If also H
3

1

2

6= ∅, then

from the symmetry between W1,W2 we deduce that W2 = ∅, a contradiction. Consequently H
3

1

2

= ∅.

Suppose that there exists s
4

1

2

∈ S
4

1

2

. We recall that either A1 is not strongly anticomplete to A3 or

S
1

1

2

is not strongly complete to S
3

1

2

. But if a1 ∈ A1 is adjacent to a3 ∈ A3, then {a3, a1, s4
1

2

, s
3

1

2

} is

a claw (where s
3

1

2

∈ S
3

1

2

), and if s
1

1

2

∈ S
1

1

2

is antiadjacent to s
3

1

2

∈ S
3

1

2

then {a3, s1
1

2

, s
3

1

2

, s
4

1

2

} is a

claw (where a3 ∈ A3), in either case a contradiction. Thus S
4

1

2

= ∅. But then

(A6 ∪ H 1

2

,H
5

1

2

, A5 ∪ H
4

1

2

)

is a breaker, and again the result follows from 4.4. This proves (5).

(6) If H
5

1

2

is nonempty then either G ∈ S0 or G is decomposable.

For suppose that H
5

1

2

6= ∅. By (5) we may assume that S
5

1

2

= ∅. By (4), A4 is strongly anti-

complete to A6, and A5 is strongly complete to A6. Suppose that W2 = ∅; then W1 6= ∅. By (2),
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A3 is strongly anticomplete to A1. Since W1 ∪ S
1

1

2

∪ S
3

1

2

∪ H
5

1

2

includes no claw, S
1

1

2

is strongly

complete to S
3

1

2

. But then

(A5 ∪ S
4

1

2

, A4 ∪ H
3

1

2

∪ H
4

1

2

, A3 ∪ S
3

1

2

)

is a breaker, and the result follows from 4.4. Thus we may assume that W2 6= ∅. By (2), A3 is
strongly complete to A4, and A3 is strongly anticomplete to A5, and A2 is strongly anticomplete to
A6. Suppose that S

3
1

2

= ∅. If also W1 = ∅ then

(A1 ∪ S
1

1

2

, A2 ∪ H
2

1

2

, A3)

is a breaker and the result follows from 4.4. On the other hand, if S
3

1

2

= ∅ and W1 6= ∅, then from

(2) A1 is strongly anticomplete to A3 and therefore G ∈ S0. We may therefore assume that S
3

1

2

6= ∅.

By (5) we may assume that H
3

1

2

= ∅. Since S
4

1

2

∪ S
3

1

2

∪ W2 ∪ H
5

1

2

includes no claw, it follows that

S
4

1

2

is strongly anticomplete to S
3

1

2

. If W1 6= ∅, then by (2), A1 is strongly anticomplete to A3, and

S
1

1

2

is strongly complete to S
3

1

2

since W1 ∪ S
1

1

2

∪ S
3

1

2

∪ H
5

1

2

includes no claw; and then G ∈ S0. So

we may assume that W1 = ∅. If S
4

1

2

= ∅ then (A5,H5
1

2

, A6) is a breaker, and the result follows from

4.4; so we may assume that S
4

1

2

6= ∅. Since A3 ∪ S
1

1

2

∪ S
3

1

2

∪ S
4

1

2

includes no claw, S
1

1

2

is strongly

complete to S
3

1

2

; and since A3 ∪A1 ∪S
3

1

2

∪S
4

1

2

includes no claw, A1 is strongly anticomplete to A3.

But then again G ∈ S0. This proves (6).

In view of (6) and the symmetry between H
5

1

2

,H
3

1

2

, we henceforth assume that H
5

1

2

= H
3

1

2

= ∅.

(7) If H
4

1

2

, S
4

1

2

are both nonempty, then either G ∈ S0 or G is decomposable.

For since S
3

1

2

∪ S
4

1

2

∪ A2 ∪ H
4

1

2

includes no claw, S
3

1

2

is strongly anticomplete to S
4

1

2

; and sim-

ilarly S
4

1

2

is strongly anticomplete to S
5

1

2

. Since A3 ∪ S
1

1

2

∪ S
3

1

2

∪ S
4

1

2

includes no claw, S
1

1

2

is

strongly complete to S
3

1

2

, and similarly S
1

1

2

is strongly complete to S
5

1

2

. Since S
4

1

2

6= ∅ it follows

that A3 is strongly complete to A4, and A5 is strongly complete to A6. Since A5 ∪ A3 ∪ H
4

1

2

∪ A6

includes no claw, A5 is strongly anticomplete to A3, and similarly A4 is strongly anticomplete to A6.
Since A5 ∪ S

3
1

2

∪ S
5

1

2

∪ S
4

1

2

includes no claw, S
3

1

2

is strongly complete to S
5

1

2

. If also A2 is strongly

anticomplete to A6 and A1 is strongly anticomplete to A3 then G ∈ S0; so we may assume that A1

is not strongly anticomplete to A3, from the symmetry. By (2), W1 = ∅, and so W2 6= ∅, and by
(2), A2 is strongly anticomplete to A6. Since A3 ∪ S

3
1

2

∪ A1 ∪ S
4

1

2

includes no claw, it follows that

S
3

1

2

= ∅. But then

(A1 ∪ S
1

1

2

, A2 ∪ H
2

1

2

, A3)

is a breaker, and the result follows from 4.4. This proves (7).

(8) If either S
1

1

2

6= ∅ or some vertex in S
3

1

2

∪S
5

1

2

is strongly complete to S
4

1

2

, or S
4

1

2

= ∅, then either

G ∈ S0 or G is decomposable.

For let S′

i+ 1

2

be the set of all vertices in Si+ 1

2

that are strongly complete to S
4

1

2

, for i = 3, 5.
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(Thus if S
4

1

2

= ∅ then S′

i+ 1

2

= Si+ 1

2

.) For i = 3, 5, let S′′

i+ 1

2

= Si+ 1

2

\S′

i+ 1

2

. Since A3∪S′′

3
1

2

∪S
1

1

2

∪S
4

1

2

includes no claw, it follows that S′′

3
1

2

is strongly complete to S
1

1

2

, and similarly S′′

5
1

2

is strongly com-

plete to S
1

1

2

. Moreover, since S′

3
1

2

∪ S′′

5
1

2

∪ S
4

1

2

∪ A2 includes no claw, it follows that S′

3
1

2

is strongly

anticomplete to S′′

5
1

2

, and similarly S′

5
1

2

is strongly anticomplete to S′′

3
1

2

. But

A1 ∪ A6 ∪ H 1

2

∪ S′′

5
1

2

∪ W2, A2 ∪ A3 ∪ H
2

1

2

∪ S′′

3
1

2

∪ W1, A4 ∪ A5 ∪ H
4

1

2

∪ S
4

1

2

are strong cliques; also, S′

3
1

2

, S′

5
1

2

, S
1

1

2

are strong cliques; these six cliques are pairwise disjoint and

have union V (G); and for i = 1, 2, 3, the ith clique of the first three is strongly anticomplete to the
ith clique of the second three, and strongly complete to the other two of the second three. Since
the first three cliques are certainly nonempty, we may assume that the second three are all empty,
for otherwise G admits a hex-join. This proves the first two assertions of the claim. In particular,
S

1
1

2

= ∅. For the third assertion, suppose that also S
4

1

2

= ∅. Then since S′

3
1

2

, S′

5
1

2

= ∅, it follows

that S
3

1

2

, S
5

1

2

= ∅. From the symmetry we may assume that W1 6= ∅, and so from (2), A5 is strongly

complete to A6, A1 is strongly anticomplete to A3, and A6 is strongly anticomplete to A4. If also
W2 6= ∅, then similarly A3 is strongly complete to A4, A6 is strongly anticomplete to A2, and A5 is
strongly anticomplete to A3, and therefore G ∈ S0. We may therefore assume that W2 = ∅. But
then (A6, A1 ∪ H 1

2

, A2) is a breaker, and the result follows from 4.4. This proves (8).

Thus we may assume that S
1

1

2

= ∅ and S
4

1

2

6= ∅; and no vertex in S
3

1

2

∪S
5

1

2

is strongly complete

to S
4

1

2

. Consequently H
4

1

2

= ∅, from (7). Suppose that A1 is not strongly anticomplete to A3. From

(2), W1 = ∅; and so W2 6= ∅, and therefore from (2), A3 is strongly complete to A4, A2 is strongly
anticomplete to A6, and A3 is strongly anticomplete to A5. Since A3 ∪ H

2
1

2

∪ A1 ∪ S
4

1

2

includes

no claw, H
2

1

2

= ∅. If there exists s
3

1

2

∈ S
3

1

2

, choose s
4

1

2

∈ S
4

1

2

antiadjacent to s
3

1

2

(this exists, by

(8)); and choose a1 ∈ A1 and a3 ∈ A3, adjacent. Then {a3, a1, s3
1

2

, s
4

1

2

} is a claw, a contradiction.

Hence S
3

1

2

= ∅. Consequently (A1, A2, A3) is a breaker, and the result follows from 4.4. Thus we

may assume that A1 is strongly anticomplete to A3, and similarly A2 is strongly anticomplete to
A6. Hence (A1, A2) is a nondominating homogeneous pair of cliques. By 4.3, we may assume that
|A1| = |A2| = 1; let Ai = {ai} for i = 1, 2. It follows that a1, a2 are semiadjacent. The set of vertices
antiadjacent to both a1, a2 is A4∪A5∪S

4
1

2

, and this is a strong clique. No vertex is adjacent to both

a1, a2. Thus the hypotheses of 11.1 are satisfied, and therefore 11.1 implies that G ∈ S0 ∪ S3 ∪ S6

and the theorem holds. This proves 13.5.

Our first application of 13.4 is the following.

13.6 Let G be a claw-free trigraph containing no long prism, in which every maximum hole is
dominating; and let C0 be a maximum hole of length six. Suppose that there is a hub for C0, and
either some vertex of V (G) \ V (C0) is a clone with respect to C0, or some two consecutive vertices
of C0 are semiadjacent. Then either G ∈ S0 ∪ S3 ∪ S6, or G is decomposable.

Proof. Let C0 have vertices a1- · · · -a6-a1 in order, and let w be a hub, adjacent to a1, a2, a4, a5 say.
Let C be the proximity component containing C0, and let Ai = Ai(C) for 1 ≤ i ≤ 6. By 13.3, w
is a hub in hub-position 3 relative to every member of C. Consequently, w is strongly complete to
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A1 ∪A2 ∪A4 ∪A5, and strongly anticomplete to A3 ∪A6, and in particular, A3, A6 are disjoint from
A1, A2, A4, A5. We observe first that:

(1) Let 1 ≤ i ≤ 6, and let v ∈ Ai. Let c1- · · · -c6-c1 ∈ C. If i = 3, 6, then N(v) contains ci and
at least one of ci−1, ci+1, and none of ci+2, ci+3, ci+4. (Consequently, A3 is strongly anticomplete
to A5 ∪ A6 ∪ A1.) If i = 1, 2, then N(v) contains both of c1, c2, and at most one of c4, c5 (and
symmetrically if i = 4, 5).

For v belongs to some member of C, and the claim holds for that member. Consequently it suf-
fices to show that if c1- · · · -c6-c1 and c′1- · · · -c

′

6-c
′

1 are proximate members of C, and the claim holds
for c1- · · · -c6-c1 then it holds for c′1- · · · -c

′

6-c
′

1. Let these two 6-numberings differ in their jth entry.
Assume first that i ∈ {3, 6}, say i = 3. Thus N(v) contains at least two of c2, c3, c4 and none of
w, c5, c6, c1. Hence if j ∈ {5, 6, 1} then N(v) contains at least two of c′2, c

′

3, c
′

4, and if j ∈ {2, 3, 4}
then N(v) contains none of c′5, c

′

6, c
′

1; and in either case, since w /∈ N(v), it follows from 13.1 that
N(v) contains c′3 and at least one of c′2, c

′

4, and contains none of c′5, c
′

6, c
′

1 as required. Now assume
that i ∈ {1, 2}, and consequently c1, c2, w ∈ N(v), and not both c4, c5 ∈ N(v). Thus if j ∈ {3, 4, 5, 6}
then c′1, c

′

2 ∈ N(v), and if j ∈ {6, 1, 2, 3} then not both c′4, c
′

5 ∈ N(v). Since w ∈ N(v) and v is not a
hub relative to c′1- · · · -c

′

6-c
′

1 (by 13.3), it follows in either case from 13.1 applied to c′1- · · · -c
′

6-c
′

1 that
v is {c′1, c

′

2}-complete and not {c′4, c
′

5}-complete, as required. This proves (1).

(2) C is pure.

We must show that A1, . . . , A6 are pairwise disjoint. The members of A1, A2, A4, A5 are adjacent
to w, and those of A3, A6 are not. Also, by (1), members of A1 ∪ A2 are {a1, a2}-complete and not
{a4, a5}-complete; and members A4 ∪A5 are {a4, a5}-complete and not {a1, a2}-complete. Thus the
three sets A3∪A6, A1∪A2, A4∪A5 are pairwise disjoint. To prove the claim, it remains to show that
the intersections A3∩A6, A1 ∩A2, A4 ∩A5 are all empty. Now members of A3 are adjacent to a3 and
not to a6 by (1), and vice versa for A6, and so A3 ∩ A6 = ∅. Suppose that v ∈ A1 ∩ A2 say. Since
v ∈ A1, there exists c1- · · · -c6-c1 ∈ C with c1 = v; and since c6 ∈ A6, it follows that v has a neighbour
x say in A6. Similarly v has a neighbour y in A3; and since A3, A6 are anticomplete by (1), it follows
that {v,w, x, y} is a claw, a contradiction. Thus A1 ∩A2 = ∅ and similarly A4 ∩A5 = ∅. This proves
(2).

We deduce that the five statements of 13.4 hold. In particular, each Ai is a strong clique, and
Ai is strongly anticomplete to Ai+3, and every vertex not in A1 ∪ · · · ∪ A6 is strongly complete or
strongly anticomplete to each Ai. By (2) and 13.5, we may assume that for i = 1, . . . , 6, Ai is strongly
complete to Ai+1. (In particular, every two consecutive vertices of C0 are strongly adjacent, and so by
hypothesis, some member of V (G)\V (C0) is a clone relative to C0). Now if c6 ∈ A6 and c2 ∈ A2 are
adjacent, choose c3 ∈ A3; then {c2, c3, c6, w} is a claw, a contradiction Consequently A6 is strongly
anticomplete to A2, and similarly Ai is strongly anticomplete to Ai+2 for i = 1, 3, 4, 6. It follows
that A3 is a homogeneous set, and (A2, A4) is a homogeneous pair, nondominating since A6 6= ∅; and
so we may assume that A2, A3, A4 all have cardinality one, for otherwise G is decomposable by 4.3.
Similarly we may assume (for a contradiction) that A5, A6, A1 all have cardinality one, contradicting
the hypothesis that some member of V (G) \ V (C0) is a clone relative to C0. This proves 13.6.
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Let c1- · · · -c6-c1 be a 6-hole. We recall that if b1, b2 are adjacent stars in positions i + 1

2
, i + 31

2

for some i ∈ {1, . . . , 6}, we call {b1, b2} a star-diagonal. The trigraph induced on these eight vertices
is also an induced subtrigraph of the icosahedron, obtained by deleting two vertices at distance two
and both their common neighbours. If v is a star relative to a hole C, we say v is a strong star if v
is not semiadjacent to any vertex of C. The next result is our second application of 13.4.

13.7 Let G be a claw-free trigraph containing no long prism, and such that every maximum hole
is dominating; and let C0 be a maximum hole of length six, with a star-diagonal. Then no two
consecutive vertices of C0 are semiadjacent. Moreover, if some vertex of V (G) \ V (C0) is a clone
with respect to C0, then either G ∈ S0 ∪ S3 ∪ S6, or G is decomposable.

Proof. Let C0 have vertices a1- · · · -a6-a1, and let b1, b2 be adjacent stars in positions 11

2
,−11

2
respec-

tively, say. Since {b1, b2, a1, a2} is not a claw, a1 is strongly adjacent to a2; and since {b1, a2, a3, a6} is
not a claw, a2 is strongly adjacent to a3. Similarly every two consecutive vertices of C0 are strongly
adjacent. This proves the first assertion.

We oberve also that b1, b2 are strong stars relative to C0. For b1 is strongly adjacent to a1 since
{a6, a1, b1, a5} is not a claw; and b1 is strongly adjacent to a3 since {b2, b1, a3, a5} is not a claw; and
b1 is strongly antiadjacent to a4 since {b1, a2, a4, a6} is not a claw. Similarly b1 is strongly adjacent
to each of a6, a1, a2, a3 are strongly antiadjacent to a4, a5, and so b1 is a strong star; and similarly
so is b2.

We may assume that some vertex of V (G) \ V (C0) is a clone with respect to C0. By 12.1, we
may assume that G does not contain an icosa(−3)-trigraph. By 13.6, we may assume that no vertex
is a hub for C0. Let C be the proximity component containing a1- · · · -a6-a1, and let Ai = Ai(C) for
1 ≤ i ≤ 6.

(1) For every c1- · · · -c6-c1 ∈ C, b1, b2 are strong stars in positions 11

2
,−11

2
respectively.

For let c1- · · · -c6-c1 and c′1- · · · -c
′

6-c
′

1 be proximate members of C, differing only in their jth term
say; it suffices to show that if the claim holds for c1- · · · -c6-c1 then it holds for c′1- · · · -c

′

6-c
′

1. Let
N = NG(c′j) and N∗ = N∗

G(c′j). Thus cj−1, cj , cj+1 ∈ N , and cj+2, cj+3, cj+4 /∈ N∗. From the
symmetry we may assume that j ∈ {2, 3}. Suppose first that j = 2. Then we must prove that
b1 ∈ N∗ and b2 /∈ N . Now 5.4 (with b1-c3-c4) implies that b1 ∈ N∗; and 5.4 (with c4-b2-c6) implies
that b2 /∈ N . Next, suppose that j = 3; we must prove that b1, b2 ∈ N∗. If b1, b2 /∈ N , then
G|{c1, . . . , c6, b1, b2, c

′

3} is an icosa(−3)-trigraph, a contradiction. Thus N contains at least one of
b1, b2, and from the symmetry we may assume it contains b1. By 5.4 (with c1-b1-b2), it follows that
b2 ∈ N∗, and similarly b1 ∈ N . This proves (1).

(2) Let 1 ≤ i ≤ 6 and let v ∈ Ai. Let c1- · · · -c6-c1 ∈ C. If i = 3, 6, then ci+3 /∈ NG(v), and
ci−1, ci, ci+1 ∈ N∗

G(v). If i = 1, 2, then N∗(v) contains both of c1, c2, and NG(v) contains at most
one of c4, c5 (and symmetrically if i = 4, 5). In particular, A3 is strongly anticomplete to A6.

For v belongs to some member of C, and the claim is true for that member. Consequently, it
suffices to show that if c1- · · · -c6-c1 and c′1- · · · -c

′

6-c
′

1 are proximate members of C, and the claim
holds for c1- · · · -c6-c1, then it holds for c′1- · · · -c

′

6-c
′

1. Let these two 6-numberings differ in their jth
entry. Assume first that i ∈ {3, 6}, say i = 3. Thus N∗

G(v) contains b1, b2, c2, c3, c4 and c6 /∈ NG(v).
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If j 6= 6, then c′6 = c6 /∈ NG(v), and by 5.4 (with c′2-b1-c
′

6, c′3-b1-c
′

6, and c′4-b2-c
′

6), it follows that
c′2, c

′

3, c
′

4 ∈ N∗

G(v). If j = 6, then c′2, c
′

4 ∈ N∗

G(v), and so c′6 /∈ NG(v) by 5.3. Thus in either case the
claim holds. Now assume that i = 1. Thus b1 ∈ N∗

G(v) and b2 /∈ NG(v). By 5.4 (with b2-b1-c
′

1),
c′1 ∈ N∗

G(v) and similarly c′2 ∈ N∗

G(v). Since v is not a hub relative to c′1- · · · -c
′

6-c
′

1 by 13.3, it follows
that NG(v) contains at most one of c′4, c

′

5. This proves (2).

(3) C is pure, and Ai is strongly complete to Ai+1 for 1 ≤ i ≤ 6.

We must show that A1, . . . , A6 are pairwise disjoint. By (1), the members of A3 ∪ A6 are strongly
adjacent to both b1, b2; the members of A1 ∪ A2 are strongly adjacent to b1 and strongly antiadja-
cent b2; and the members of A4 ∪ A5 are strongly adjacent to b2 and strongly antiadjacent to b1.
Consequently the three sets A3 ∪ A6, A1 ∪ A2, A4 ∪ A5 are pairwise disjoint. By (2), the members
of A3 \ {a3} are strongly adjacent to a3, and the members of A6 are strongly antiadjacent to a3, and
so A3 ∩ A6 = ∅. Suppose that v ∈ A1 ∩ A2 say. Since v ∈ A1, there exists c1- · · · -c6-c1 ∈ C with
c1 = v; and since c3 ∈ A3, it follows that v has an antineighbour x say in A3. Similarly v has an
antineighbour y in A6; and since A3, A6 are anticomplete by (1), it follows that {b1, v, x, y} is a claw,
a contradiction. Thus A1 ∩ A2 = ∅ and similarly A4 ∩ A5 = ∅. Thus C is pure, and the final claim
follows from (2). This proves (3).

We deduce that the five statements of 13.4 hold. In particular, each Ai is a strong clique, and
Ai is strongly anticomplete to Ai+3, and every vertex not in A1 ∪ · · · ∪ A6 is strongly complete or
strongly anticomplete to each Ai.

(4) We may assume (possibly after renumbering A1, . . . , A6) that there is a vertex h ∈ V (G) \ (A1 ∪
· · ·∪A6∪{b1, b2}), such that h is strongly A1∪A2-complete and strongly anticomplete to A3, A4, A5, A6.

For since some vertex is a clone relative to C0, at least one of the sets A1, . . . , A6 has at least
two members, and therefore from the symmetry we may assume that not all of A1, A3, A5 have car-
dinality 1. Now A1, A3, A5 are strong cliques, all nonempty, and their union is not equal to V (G);
so by 4.5, we may assume that some h ∈ V (G) \ (A1 ∪ A3 ∪ A5) does not have the property that
it is strongly complete to two of A1, A3, A5 and strongly anticomplete to the third. Consequently
h /∈ A1 ∪ · · · ∪ A6 ∪ {b1, b2}, and therefore h is strongly complete or strongly anticomplete to each
Ai, and is complete to exactly two of A1, . . . , A6, necessarily consecutive. If say h is complete to
A2, A3, then by 9.1 h is adjacent to b1 and antiadjacent to b2; and then {b1, b2, h, a1} is a claw, a
contradiction. Thus h is complete to either A1, A2 or to A4, A5, and anticomplete to the other four
sets. This proves (4).

(5) A2 is strongly anticomplete to A4 ∪ A6, and A1 is strongly anticomplete to A3 ∪ A5.

For let x ∈ A2 and y ∈ A4, and let h be as in (4). Then h is adjacent to x and antiadjacent
to y; and h is antiadjacent to b1 by 9.2. Since {x, b1, y, h} is not a claw, it follows that x, y are
strongly antiadjacent. Thus A2, A4 are strongly anticomplete, and similarly so are A1, A5. Now let
x ∈ A2, y ∈ A6. Let z be a neighbour of x in A3 (this exists, since x belongs to a member of C).
Since {x, y, z, h} is not a claw, x, y are strongly antiadjacent, and so A2, A6 are strongly anticomplete.
Similarly A1, A3 are strongly anticomplete. This proves (5).
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To complete the proof, we recall that one of A1, . . . , A6 has cardinality > 1 since there is a clone
relative to a1- · · · -a6-a1. But (A3, A5) is a homogeneous pair, nondominating since A1 6= ∅; and
similarly (A4, A6) is a nondominating homogeneous pair, and A1, A2 are homogeneous sets. Hence
4.3 implies that G is decomposable. This proves 13.7.

14 Nondominating 5-holes

Let us say that a triple (A,C,B) is a generalized breaker in a trigraph G if it satisfies:

• A,B,C are disjoint nonempty subsets of V (G), and A,B are strong cliques

• every vertex in V (G) \ (A ∪ B ∪ C) is either strongly A-complete or strongly A-anticomplete,
and either strongly B-complete or strongly B-anticomplete, and strongly C-anticomplete,

• there is a vertex in V (G)\ (A∪B ∪C) with a neighbour in A and an antineighbour in B; there
is a vertex in V (G) \ (A∪B ∪C) with a neighbour in B and an antineighbour in A; and there
is a vertex in V (G) \ (A ∪ B ∪ C) with an antineighbour in A and an antineighbour in B.

Thus, this is the same as the definition of a breaker, except that the final condition has been
removed. There is an analogue of 4.4 for generalized breakers, the following.

14.1 Let G be a claw-free trigraph. If there is a generalized breaker in G, then either G is decom-
posable, or G ∈ S2 ∪ S5.

Proof. We assume G is not decomposable. Let (D3,D5,D4) be a generalized breaker; let V1 =
D3 ∪ D4 ∪ D5, let D2 be the set of vertices in V (G) \ V1 that are D3 ∪ D4-complete, and let
V2 = V (G) \ (D2 ∪ V1). Let A be the set of vertices in V2 that are D3-complete, and B the set
that are D4-complete. Let D1 be the set of all vertices in V2 \ (A ∪ B) with a neighbour in D2. By
hypothesis, D3,D4, A,B are nonempty, and as in the proof of 4.4, it follows that A∪D2 and B ∪D2

are strong cliques. By 4.4, D1 6= ∅ and D3 is strongly complete to D4. Since D3 ∪ D4 is not an
internal clique cutset (because G is not decomposable), it follows that |D5| = 1, D5 = {d5} say. We
may assume that d5 has a neighbour d3 ∈ D3. Let d4 ∈ D4 and a ∈ A; then since {d3, d4, d5, a} is
not a claw, it follows that d5, d4 are strongly adjacent, and therefore that d5 is strongly complete
to D4. Similarly d5 is strongly complete to D3. Hence D3 is a homogeneous set, so D3 = {d3} and
similarly D4 = {d4}, and d5 is strongly adjacent to d3, d4. Every vertex in D1 has a neighbour in
D2, and since D2 ∪ A ∪ D1 ∪ D4 includes no claw, A ∪ D1 is a strong clique and similarly B ∪ D1 is
a strong clique. Let V3 = V2 \ (A ∪ B ∪ D1).

(1) A is not strongly complete to B.

For suppose it is. Since D2 ∪ A ∪ B is not an internal clique cutset and D1 6= ∅, it follows that
V3 = ∅. But then (D3 ∪D4, A∪B) is a coherent homogeneous pair, a contradiction. This proves (1).

Let C be the set of vertices in V3 with a neighbour in D1, and Z = V3 \ C. For each c ∈ C, let
Nc,Mc be the sets of neighbours and antineighbours of c in A ∪ B respectively.
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(2) For each c ∈ C, Mc is a strong clique, and Mc∩A is strongly anticomplete to Nc∩B, and Mc∩B
is strongly anticomplete to Nc ∩ A. Moreover, C is strongly complete to D1; and |D1| = |D2| = 1.

For let c ∈ C, and let d1 ∈ D1 be adjacent to c. If a ∈ Mc ∩ A and b ∈ Mc ∩ B, then since
{d1, a, b, c} is not a claw, it follows that a, b are strongly adjacent; and so Mc is a strong clique. If
a ∈ Mc∩A and b ∈ Nc∩B, then since {b, a, c, d4} is not a claw, a, b are strongly antiadjacent. Hence
Mc ∩A is strongly anticomplete to Nc ∩B, and similarly Mc ∩B is strongly anticomplete to Nc ∩A.
Now choose a ∈ A and b ∈ b, antiadjacent (this is possible by (1)). Then one of a, b /∈ Mc, say a.
For all d1 ∈ D1, since {a, d3, d1, c} is not a claw, it follows that c is strongly adjacent to d1. Hence
C is strongly complete to D1, and so (D1,D2) is a nondominating homogeneous pair. Consequently
|D1| = |D2| = 1. This proves (2).

Let D1 = {d1} and D2 = {d2}.

(3) Z is strongly anticomplete to A ∪ B, and |Z| ≤ 1, and Mc 6= ∅ for each c ∈ C.

For since {a, z, d3, d1} is not a claw, it follows that each z in Z is strongly antiadjacent to each
a ∈ A, and so Z is strongly anticomplete to A and similarly to B. Since C is not an internal clique
cutset, it follows that |Z| ≤ 1. If c ∈ C and Mc = ∅, then c is strongly anticomplete to Z (since
{c, z, a, b} is not a claw, where a ∈ A, b ∈ B are antiadjacent and z ∈ Z), and so ({d2}, {c, d1}) is a
nondominating homogeneous pair, a contradiction. This proves (3).

Let A0 be the set of vertices in A with no neighbour in B, and define B0 ⊆ B similarly.

(4) Every vertex in A has at most one neighbour in B and vice versa. Moreover, if c ∈ C then
Mc ∩ Nc ⊆ A0 ∪ B0.

For suppose that H is a component with |V (H)| ≥ 2 of the bipartite graph with vertex set A ∪ B
in which a ∈ A and b ∈ B are adjacent if and only if they are adjacent in G. For each c ∈ C, c is
either strongly complete or strongly anticomplete to V (H) by (2), and so (A ∩ V (H), B ∩ V (H)) is
a nondominating homogeneous pair. Hence |V (H)| = 2, and the claim follows.

Let A \ A0 = {a1, . . . , an}, and for 1 ≤ i ≤ n let bi be the neighbour of ai ∈ B. Thus
B \ B0 = {b1, . . . , bn}. Let P,Q be the set of all c ∈ C with Mc ⊆ A0 and Mc ⊆ B0 respec-
tively, and for 1 ≤ i ≤ n let Ci be the set of vertices c ∈ C with Mc = {ai, bi}.

(5) The sets P,Q,C1, . . . , Cn are pairwise disjoint and have union C. Moreover, if c ∈ C has a
neighbour in Z, then either

• n = 0 and Mc is one of A0, B0, or

• n = 1 and one of A0, B0 is empty, say B0, and Mc is one of A0, {a1, b1}, or

• n = 2 and A0, B0 = ∅ and Mc = {ai, bi} for some i ∈ {1, 2};
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and in each case Mc ∩ Nc = ∅.

For let c ∈ C. Since Mc 6= ∅, c belongs to at most one of the sets P,Q,C1, . . . , Cn. If Mc∩A,Mc∩B are
both nonempty, then since Mc is a strong clique it follows that Mc = {ai, bi} for some i ∈ {1, . . . , n},
and so c ∈ Ci. We may assume then that Mc ⊆ A. For 1 ≤ i ≤ n, since bi ∈ Nc, (2) implies that
ai /∈ Mc, and so Mc ⊆ A0 and c ∈ P . This proves the first claim.

For the second, suppose that c is adjacent to z ∈ Z. Since {c, z} ∪ Nc includes no claw, Nc is a
strong clique. Suppose first that Mc ⊆ A0. Then b1, . . . , bn /∈ Mc, and so by (2), a1, . . . , an ∈ Nc\Mc.
Then since there exists b ∈ B, it follows that b ∈ Nc and so b is strongly adjacent to all members
of A ∩ Nc. Hence |A ∩ Nc| ≤ 1, and Nc ∩ A0 = ∅; and so n ≤ 1, and Mc ∩ Nc = ∅, and Mc = A0,
and if n = 1 then b is the unique member of B and so B0 = ∅. Similarly if Mc ⊆ B0 then the claim
holds. Suppose then that Mc = {a1, b1} say. By (4), Mc ∩Nc ⊆ Mc ∩ (A0 ∪B0) = ∅. If a ∈ A \ {a1}
and b ∈ B \ {b1}, then a, b ∈ Nc, and so they are strongly adjacent; and therefore n = 2, and
A0 = B0 = ∅, and a = a2, b = b2, and Nc = {a2, b2}, and the claim holds. We may assume then that
there does not exist b ∈ B\{b1}, and so n = 1 and B0 = ∅, and again the claim holds. This proves (5).

(6) If Z 6= ∅ then G ∈ S2.

For suppose that Z 6= ∅, and let C0 be the set of all c ∈ C that are strongly anticomplete to
Z. Since G admits no 0-join, it follows that C0 6= C. Let Z = {z}. Let N be the union of all the
sets Nc (c ∈ C \ C0). If c0 ∈ C0 and m ∈ Nc for some c ∈ C \ C0, then since {c, c0,m, z} is not a
claw, it follows that m, c0 are strongly adjacent; and so C0 is strongly complete to N . Suppose first
that Nc = N for all c ∈ C \C0. Then N is a strong clique, and hence N ∪C0 is a strong clique, and
therefore is an internal clique cutset (since C \ C0, Z 6= ∅), a contradiction. This proves that there
exist c1, c2 ∈ C \ C0 with Nc1 6= Nc2 , and therefore with Mc1 ∩ Mc2 = ∅, by (5). Hence N = A ∪ B,
and since Mc0 6= ∅ and Mc0 ∩ N = ∅ for every c0 ∈ C0, it follows that C0 = ∅. We claim that z is
strongly complete to C; for let c3 ∈ C. Then Mc3 is different from one of Mc1 ,Mc2 , say Mc1 , and so
there exists v ∈ Mc3 \ Mc1, by (5). Since {c1, c3, z, v} is not a claw, it follows that z, c3 are strongly
adjacent. This proves that Z is strongly complete to C. Hence each set Ci is a homogeneous set,
and so each |Ci| ≤ 1. Moreover, (P,A0) and (Q,B0) are nondominating homogeneous pairs, and so
P,Q,A0, B0 each have cardinality at most one.

By (5) there are now three cases, n = 2, n = 1 and n = 0. Suppose first that n = 2. By (5),
C1 ∪ C2 = C, and so |C| = 2; and then G ∈ S2. Next, suppose that n = 1. Then by (5), one of
A0, B0 is empty, say B0, and C = C1 ∪ P . Since there exists c ∈ C with Nc 6= {a1, b1}, it follows
that P,A0 6= ∅, and so |P | = |A0| = 1. But then again G ∈ S2. Finally, suppose that n = 0. Thus
C = P ∪ Q, and so P,Q,A0, B0 all have cardinality one; and again G ∈ S2. This proves (6).

Henceforth we therefore may assume that Z = ∅. Consequently each Ci is a homogeneous set,
and so |Ci| ≤ 1 for 1 ≤ i ≤ n. Now again (P,A0) is a nondominating homogeneous pair, and so
|P |, |A0| ≤ 1, and similarly |Q|, |B0| ≤ 1. We claim there is at most one value of i ∈ {1, . . . , n}
with Ci = ∅; for if there were two, say i = 1, 2, then ({a1, a2}, {b1, b2}) would be a nondominating
homogeneous pair, contrary to 4.3. Thus we may assume that C1, . . . , Cn−1 are all nonempty. For
1 ≤ i ≤ n, since {d1, ai, bi} ∪Ci includes no claw, it follows that either ai, bi are strongly adjacent or
Ci = ∅ (and hence i = n). Moreover, if C is strongly complete to B then G is the hex-join of G|{d3}
and G \ {d3}, which is impossible; so C is not strongly complete to B, and similarly not to A. But
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then G ∈ S5. This proves 14.1.

Before the main result of this section, we prove another lemma.

14.2 Let H be a graph with seven vertices v1, . . . , v7, where v1- · · · -v5-v1 is a cycle of length 5, v6

has three neighbours in this cycle, and v7 has two. Then some subgraph of H is a theta with seven
vertices.

Proof. By deleting one (appropriately chosen) edge incident with v6, we obtain a subgraph consisting
of the cycle v1- · · · -v5-v1, a vertex with two consecutive neighbours (say v1, v2) in this cycle, and a
second vertex with two nonconsecutive neighbours in the cycle. Delete the edge v1v2 from this
subgraph; the result is a 7-vertex theta. This proves 14.2.

The main result of this section is the following, which will have a number of consequences.

14.3 Let G be a claw-free trigraph, containing no hole of length > 6 or long prism. If some 5-hole
in G is not dominating, then either G is decomposable or G ∈ S0 ∪ S2 ∪ S4 ∪ S5.

Proof. We assume that G is not decomposable. Let C0 be a 5-hole, and let c1- · · · -c5-c1 be a
5-numbering of it. Let Z be the set of all vertices that are strongly V (C0)-anticomplete, and assume
that Z is nonempty. Let z ∈ Z, and let Y be the set of vertices in V (G) \ Z that have a neighbour
in the component of Z containing z.

(1) Z is strongly stable, and Y is a strong clique, and Y is the set of neighbours of z. More-
over, every member of Y is a strong hat relative to c1- · · · -c5-c1.

For let Z0 be the component of Z containing z, and let y ∈ Y . Then y has a neighbour in Z0,
say z0, and has a neighbour in {c1, . . . , c5} from the maximality of Z0. For any two of its neighbours
x1, x2 ∈ {c1, . . . , c5}, {y, z0, x1, x2} is not a claw, and so x1, x2 are strongly adjacent. Hence y is
a strong hat. To see that Y is a clique, let y1, y2 ∈ Y , and suppose that they are antiadjacent.
Both y1, y2 are strong hats relative to c1- · · · -c5-c1, and are not in the same position, since they are
antiadjacent and G is claw-free; let P be a path between y1, y2 with interior in Z0. If y1, y2 share
a neighbour in {c1, . . . , c5}, say c5, then G|({c1, . . . , c4} ∪ V (P )) is a hole of length > 6, a contra-
diction. If y1, y2 share no neighbour in {c1, . . . , c5}, then G|({c1, . . . , c5} ∪ V (P )) is a long prism, a
contradiction. Consequently Y is a strong clique. Since Y is not an internal clique cutset, it follows
that |Z0| = 1, and therefore Z0 = {z}. In particular, Y is the set of neighbours of z, and z has no
neighbours in Z. Since the latter holds for all choices of z, it follows that Z is strongly stable. This
proves (1).

For 1 ≤ i ≤ 5, let Yi be the set of all members of Y that are strong hats in position i+21

2
relative

to c1- · · · -c5-c1. Thus Y = Y1 ∪ · · · ∪ Y5.

(2) Let v ∈ V (G) \ (Y ∪ {z}). Then for 1 ≤ i ≤ 5, v is either strongly complete or strongly
anticomplete to Yi. Moreover, if v is a hat relative to c1- · · · -c5-c1, then v is complete to Yi if and
only if v is in position i + 21

2
.

For suppose that v has a neighbour y1 and an antineighbour y2, both in Yi. Since v /∈ Y ∪ {z},
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it follows that v is antiadjacent to z. Now y1, y2 are hats in position i + 21

2
. By 5.4 applied to

ci+2-y1-z, it follows that v is adjacent to ci+2 and similarly to ci+3. By 5.4 applied to y2-ci+2-ci+1,
we deduce that v is adjacent to ci+1 and similarly to ci−1. But then {v, y1, ci+1, ci−1} is a claw, a
contradiction. This proves the first claim of (2). For the second claim, suppose that v is a hat, in
position j + 21

2
say. Since v /∈ Y , it follows that v, z are antiadjacent. If j = i then v is Yi-complete

by 5.5. If j 6= i, choose a ∈ {ci+2, ci−2} antiadjacent to v; then for y ∈ Yi, {y, z, a, v} is not a claw,
and so v is antiadjacent to y, and hence to Yi. This proves (2).

(3) We may assume that Yi 6= ∅ for at least three values of i ∈ {1, . . . , 5}. Also, every hat anti-
adjacent to z is strongly antiadjacent to every other hat except those in the same position relative to
c1- · · · -c5-c1.

For if all the sets Yi are empty except possibly for say Y1, then G is decomposable, by (2) and
4.2 applied to Y1, {z}, a contradiction. If exactly two of the sets are nonempty, say Yi, Yj, then
(Yi, {z}, Yj) is a generalized breaker by (2), and the result follows from 14.1. This proves the first
assertion of (3). For the second, let h be a hat antiadjacent to z, and let h′ be some other hat in
a different position. Suppose that h, h′ are adjacent. By (2), h, h′ are strongly antiadjacent to z.
Choose three hats adjacent to z, all in different positions, say y1, y2, y3. Then, since (1) implies that
y1, y2, y3 are pairwise strongly adjacent, it follows that G|{c1, . . . , c5, y1, y2, y3, h, h′} is a line trigraph
of a graph satisfying the hypotheses of 14.2; and so by 14.2, G contains a long prism, a contradiction.
This proves (3).

(4) |Z| = 1.

For choose y1, y2, y3 ∈ Y , all hats in different positions relative to c1- · · · -c5-c1. Suppose that z′ ∈ Z
is different from z; then similarly there are vertices y′1, y

′

2, y
′

3, all hats in different positions, and all
adjacent to z′. If say y′1 is adjacent to z, then {y′1, z, z′, a} is a claw, where a ∈ {c1, . . . , c5} is adjacent
to y′1. Thus y′1, y

′

2, y
′

3 are antiadjacent to z, and yet they are adjacent to each other by (1), contrary
to (3). This proves (4).

Let C be the proximity component containing c1- · · · -c5-c1, and for 1 ≤ i ≤ 5 let Ai = Ai(C).

(5) z has no neighbours in A1 ∪ · · · ∪ A5. Moreover, for 1 ≤ i ≤ 5 and each y ∈ Yi, if a1- · · · -a5-a1

belongs to C then y is a strong hat in position i + 21

2
relative to a1- · · · -a5-a1.

For let a1- · · · -a5-a1 and a′1- · · · -a
′

5-a
′

1 be proximate, with a′j 6= aj say. Suppose first that z is strongly
antiadjacent to a1, . . . , a5; then since {a′j , aj−1, aj+1, z} is not a claw, it follows that z is strongly
antiadjacent to a′j. Consequently z has no neighbours in A1 ∪ · · · ∪ A5. Now, with a1- · · · -a5-a1 and

a′1- · · · -a
′

5-a
′

1 as before, suppose that y ∈ Y is a strong hat in position i+21

2
relative to a1- · · · -a5-a1.

If j = i + 2, then by 9.2, a′j is strongly adjacent to y and therefore y is a strong hat in position

i + 21

2
relative to a′1- · · · -a

′

5-a
′

1. If j = i, then by 9.2, a′j is strongly antiadjacent to y, and again y

is a strong hat in position i + 21

2
relative to a′1- · · · -a

′

5-a
′

1. Thus from the symmetry we may assume
that j = i− 1. Since {y, a′j , z, ai+2} is not a claw, it follows that y, a′j are strongly antiadjacent, and
again the claim holds. This proves (5).
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From (3) we may assume that there exist y3 ∈ Y3, and y5 ∈ Y5.

(6) A1, . . . , A5 are pairwise disjoint; A4 is strongly anticomplete to A1, A2; A1 is strongly anti-
complete to A3; A2 is strongly anticomplete to A5; and A1 ∪ A5, A2 ∪ A3, A4 are strong cliques.

For by (5), y3 is strongly complete to A5 ∪ A1 and strongly anticomplete to A2 ∪ A3 ∪ A4, and
y5 is strongly complete to A2 ∪ A3 and strongly anticomplete to A1 ∪ A4 ∪ A5. Consequently
A5 ∪ A1, A2 ∪ A3, A4 are pairwise disjoint. Let H be the bipartite subgraph of G with vertex set
A1 ∪ A2 and edges all pairs (x, y) with x ∈ A1 and y ∈ A2 such that x, y are adjacent in G. Since
C is a proximity component, it follows that H is connected. Let a4 ∈ A4, and assume that a4 has
a neighbour in A1 ∪ A2. Since it also has an antineighbour in A1 ∪ A2 (because a4 belongs to some
member of C), it follows that for some edge of H, a4 is adjacent to one of its ends and antiadjacent to
the other; say a1 ∈ A1 and a2 ∈ A2 are adjacent, and a4 is adjacent to a1 and antiadjacent to a2. But
then {a1, a2, a4, y3} is a claw, a contradiction. This proves that a4 is strongly A1 ∪A2-anticomplete,
and so A4 is strongly A1 ∪ A2-anticomplete. Since no vertex of A3 is strongly A4-anticomplete, it
follows that A2 ∩ A3 = ∅, and similarly A1 ∩ A5 = ∅. Thus A1, . . . , A5 are pairwise disjoint. Let
a1 ∈ A1 and a3 ∈ A3, and let a4 ∈ A4 be adjacent to a3. Since {a3, a1, y5, a4} is not a claw, it
follows that a1, a3 are strongly antiadjacent. So A1 is strongly anticomplete to A3, and similarly A2

is strongly anticomplete to A5. Next, let u, v ∈ A1∪A5; since {y3, z, u, v} is not a claw it follows that
u, v are strongly adjacent. Consequently A1 ∪ A5 and similarly A2 ∪ A3 are strong cliques. Finally,
suppose that u, v ∈ A4 are antiadjacent. Choose a1- · · · -a5-a1 ∈ C with a4 = u. Since A4 is strongly
anticomplete to A1 ∪A2, it follows that v is strongly antiadjacent to a1, a2, a4, and therefore also to
a3, a5, since there is no claw. But then by (5), with v, z exchanged, it follows that v has no neighbour
in any member of C, a contradiction. Thus A4 is a strong clique. This proves (6).

Let W = A1 ∪ · · · ∪ A5.

(7) For every vertex v ∈ V (G) \ W , let N,N∗ be the sets of neighbours and strong neighbours of
v in W , respectively. Then either

• N = N∗ = ∅ and v = z, or

• for some i ∈ {1, . . . , 5}, N = N∗ = Ai+2 ∪ Ai−2 (let Hi be the set of all such v), or

• for some i ∈ {1, . . . , 5}, N = N∗ = W \ Ai (let Si be the set of all such v), or

• N∗ contains at least four of a1, . . . , a5 for every a1- · · · -a5-a1 ∈ C, and N contains all five
vertices for some choice of a1- · · · -a5-a1 (let T be the set of all such v).

For we may assume that v 6= z. From the maximality of C, it follows that for every a1- · · · -a5-a1 ∈
C, either N,N∗ both contain exactly two of a1, . . . , a5, or N∗ contains at least four of a1, . . . , a5; and
since C is connected by proximity, the claim follows. This proves (7).

(8) The sets Hi and Si are strong cliques, for 1 ≤ i ≤ 5, and so is T . For 1 ≤ i, j ≤ 5, Hi is
strongly complete to Sj if j = i + 1 or i − 1, and otherwise Hi is strongly anticomplete to Sj. Also,
T is strongly anticomplete to Hi for 1 ≤ i ≤ 5.
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For Hi and Si are strong cliques by 5.5, and the adjacency between the sets Hi and the sets Sj

is forced by 9.2. Let t ∈ T ; if t is adjacent to some h ∈ Hi, then {t, h, ai+1, ai−1} is a claw (where
a1- · · · -a5-a1 ∈ C is chosen so that t is adjacent to all of a1, . . . , a5), a contradiction. Thus T is
strongly anticomplete to all the sets Hi. Let t1, t2 ∈ T . Since they are both adjacent to at least four
of c1, . . . , c5, they have at least three common neighbours in {c1, . . . , c5}; and consequently one of
these common neighbours, say a, is adjacent to one of y3, y5, say to y3. Since {a, y3, t1, t2} is not a
claw, it follows that t1, t2 are strongly adjacent, and so T is a strong clique. This proves (8).

(9) For 1 ≤ i ≤ 5, if Hi 6= ∅, then T is strongly complete to Ai−1 and to Ai+1.

For let t ∈ T and h ∈ Hi. By (8), t, h are strongly antiadjacent. Let a1- · · · -a5-a1 ∈ C. Since
t, h are strongly antiadjacent and t has at least four strong neighbours in the hole a1- · · · -a5-a1, 9.2
implies that t, ai−1 are strongly adjacent. This proves (9).

(10) For 1 ≤ i ≤ 5, if T is not strongly complete to Ai, then i ∈ {3, 5}, |Ai| = |T | = 1 and the
vertices in Ai and in T are semiadjacent, Yi−2, Yi+2, Yi are nonempty, and Hi−1,Hi+1 = ∅.

For by (9), T is strongly complete to A1 ∪ A2 ∪ A4, and so i ∈ {3, 5}. By (9), H4 = ∅. From
the symmetry we may assume that i = 3. By (9), H2 = ∅ (and so Hi−1,Hi+1 = ∅ as claimed). By
(3), there exists y1 ∈ Y1, and so T is strongly complete to A5 by (9). By (6) with y5, y1 exchanged,
A3 is strongly complete to A4 and strongly anticomplete to A5. Let v ∈ V (G) \ (T ∪ A3); we claim
that v is either strongly T -complete or strongly T -anticomplete. If v ∈ W then v is strongly T -
complete, and if v ∈ Hi for some i then v is strongly T -anticomplete by (8). So we may assume
that v ∈ S1 ∪ · · · ∪ S5. If v ∈ S1 then v is strongly T -complete, since for t ∈ T , {c5, v, t, y3} is not
a claw. Similarly v is strongly T -complete if v ∈ S5. If v ∈ S2 then v is strongly T -complete, since
for t ∈ T , {a3, v, t, y5} is not a claw, where a3 ∈ A3 is adjacent to t; and similarly v is strongly
T -complete if v ∈ S4. If v ∈ S3 then v is strongly T -complete, since for t ∈ T , {c4, v, t, y1} is not
a claw. This proves the claim. But every such v is also strongly complete or strongly anticomplete
to A3, and so (A3, T ) is a homogeneous pair, nondominating since Z 6= ∅; and therefore 4.3 implies
that |A3| = |T | = 1, and therefore the members of A3, T are semiadjacent. This proves (10).

(11) The following hold:

• For 1 ≤ i ≤ 5, Si is strongly complete to Si+2

• For 1 ≤ i ≤ 5, if Hi 6= ∅ then Si is strongly anticomplete to Si+1, Si−1

• T is strongly complete to S1, . . . , S5.

For suppose first that s ∈ Si and s′ ∈ Si+2 are antiadjacent. If there exists h ∈ Hi, then
{ci−2, s, h, s′} is a claw, a contradiction. Thus Hi = ∅, and similarly Hi+2 = ∅. By (3), there exists
yi+1 ∈ Yi+1; but then {yi+1, s, s

′, z} is a claw, again a contradiction. This proves the first claim.
For the second, if h ∈ Hi and s ∈ Si and s′ ∈ Si+1 are adjacent, then {s′, h, s, ci} is a claw, a
contradiction. This proves the second claim. For the third, suppose that t ∈ T and sj ∈ Sj are
antiadjacent, for some j with 1 ≤ j ≤ 5. Now one of Hj,Hj+2,Hj−2 is nonempty, and both t, sj are
anticomplete to these three sets; so there is a hat h antiadjacent to both t, sj. But one of c1, . . . , c5 is
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adjacent to all of t, sj, h, and hence these four vertices form a claw, a contradiction. This proves (11).

(12) We may assume that A1, . . . , A5 all have cardinality 1; and for 1 ≤ i ≤ 5, Ai is strongly
complete to Ai+1 and strongly anticomplete to Ai+2.

For by (10), T is strongly complete to A1∪A2, and so (A1, A2) is a homogeneous pair, nondominating
since Z 6= ∅; and hence |A1| = |A2| = 1. Suppose that there exists y1 ∈ Y1. Then from the symmetry
between A2 and A4 (fixing A3), it follows that |A4| = |A5| = 1 and A3 is strongly anticomplete to A5

and so the third claim holds. If |A3| > 1 then by (10) all members of A3 are twins, a contradiction,
and so |A3| = 1, and the first claim holds. Moreover, T is complete to W ; and since T ∪W includes
no claw, the second claim holds. Hence (12) holds if Y1 6= ∅.

Thus we may assume that Y1 is empty, and similarly Y2 = ∅. By (10), T is strongly complete to
W ; and by (3) there exists y4 ∈ Y4. Since {y4, z}∪A1∪A2 includes no claw, A1 is strongly complete to
A2. Suppose that A4 is not strongly complete to A5, and choose a4 ∈ A4 and a5 ∈ A5, antiadjacent.
If there exists t ∈ S1 ∪ S3 ∪ T then {t, a4, a5, c2} is a claw, and so T, S1, S3 = ∅. Suppose that there
exists h ∈ H2, necessarily antiadjacent to z; then by (2) it is strongly antiadjacent to y3, y4. Let
a3 ∈ A3 be adjacent to a4. Since {a3, a4, a5, y5} is not a claw, a3 is antiadjacent to a5; but then
c2-a3-a4-h-a5-y3-y4-c2 is a 7-hole, a contradiction. Thus H2 is empty. Suppose that also A4 is not
strongly complete to A3; then similarly S2, S5,H1 = ∅. But then (A3, A4, A5) is a breaker, contrary
to 4.4. Thus A4 is strongly complete to A3. Let A′

5 be the set of vertices in A5 with an antineighbour
in A4, and let A′′

5 be the set of vertices in A5 with a neighbour in A3. If there exists a′5 ∈ A′

5 ∩ A′′

5 ,
then {a′3, a

′

4, a
′

5, y5} is a claw, where a′3 ∈ A3 is a neighbour of a′5 and a′4 ∈ A4 is an antineighbour of
a′5. Also, both (A5 \A′′

5, A4) and (A5 \A′

5, A3) are nondominating homogeneous pairs, and hence by
4.3, |A3| = |A4| = 1 and |A5 \ A′′

5|, |A5 \ A′

5| ≤ 1. Suppose that |A5| > 1; then A5 = {a′5, a
′′

5}, where
A′

5 = {a′5} and A′′

5 = {a′′5}. By (11), S2 is strongly complete to S4; and S5 = ∅ since {c3, y5, a
′′

5} ∪ S5

includes no claw. But then (A3, A4 ∪ H1, A5 ∪ S2) is a breaker, contrary to 4.4. Thus |A5| = 1; but
then G ∈ S0.

This proves that the claim holds if A4 is not strongly complete to A5, so we may assume that
A4 is strongly complete to A5 and similarly to A3. Hence (A3, A5) is a nondominating homogeneous
pair, and so A3, A5 both have cardinality 1; and all members of A4 are twins, so |A4| = 1. Let
Ai = {ai} for 1 ≤ i ≤ 5. Since T is a homogeneous set it follows that |T | ≤ 1. Suppose that
a3, a5 are semiadjacent. Since {a3, a5, y5}∪S5 includes no claw, it follows that S5 = ∅, and similarly
S3 = ∅. Since {a3, a5, y5}∪H1 includes no claw, we deduce that H1 = ∅, and similarly H2 = ∅. Since
({a3} ∪ S1, {a5} ∪ S2) is a nondominating homogeneous pair, it follows that S1 = S2 = ∅. If T = ∅
then ({a3}, {a4}, {a5}) is a breaker, a contradiction; so T 6= ∅ and so |T | = 1, T = {t} say. Since
{a1, t, y4}∪H3 includes no claw, H3 = Y3, and similarly H5 = Y5; and since {a1, t, y3}∪H4, includes
no claw, H4 = Y4. Since Y3, Y4, Y5 are all homogeneous sets, they each have cardinality one. But
then G ∈ S4. Thus we may assume that a3 is strongly antiadjacent to a5. This proves (12).

(13) Let 1 ≤ i ≤ 5. Then Si is strongly anticomplete to Si+1.

For suppose that Si, Si+1 are not strongly anticomplete. By (11), Hi,Hi+1 are both empty, and
since H3,H5 are nonempty, it follows that i = 1, and Y4 is nonempty. By (10), T is strongly com-
plete to W . Choose s1 ∈ S1 and s2 ∈ S2, adjacent. If there exists s3 ∈ S3, then by (11) s3 is adjacent
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to s1 and antiadjacent to s2 (since H3 6= ∅), and so {s1, s3, s2, y5} is a claw, a contradiction. Thus S3

is empty, and similarly S5 is empty. But then (S2 ∪ A5, S1 ∪ A3) is a nondominating homogeneous
pair, and |S2 ∪ A5| ≥ 2, contrary to 4.3. This proves (13).

Now (11) and (13) imply that |Si| ≤ 1 for each i; by (12), |Ai| = 1 for each i; and by (8) and (3),
|Hi \Yi|, |Yi| ≤ 1 for each i. From (8), (10) and (11) it follows that |T | ≤ 1. If T = ∅ then G ∈ S0, so
we may assume that T = {t} say. If T is strongly complete to W and Hj = Yj for 1 ≤ j ≤ 5, then
G ∈ S4. Thus we may assume that for some j ∈ {1, . . . , 5}, either there exists h ∈ Hj \ Yj or t is
semiadjacent to aj . Suppose that there exists h′ ∈ Hj−1. Then by (10), t is strongly adjacent to aj ,
so h ∈ Hj \Yj and {cj+2, h, h′, t} is a claw by (3), a contradiction. Thus Hj−1 and similarly Hj+1 are
empty. Since Y3, Y5 are nonempty, it follows that j ∈ {3, 5} and from the symmetry we may assume
that j = 3. Thus H2,H4 are empty, and therefore there exists y1 ∈ Y1. Moreover j is unique, and
so Hi = Yi for i = 1, 5. Suppose that there exists s ∈ S2. If h ∈ H3 \ Y3 then {s, h, t, y1} is a claw,
while if t is semiadjacent to a3 then {s, t, a3, y3} is a claw, in either case a contradiction; so S2 = ∅,
and similarly S4 = ∅. If S3 6= ∅, then (S3 ∪ T,A3) is a nondominating homogeneous pair, contrary
to 4.3; and so S3 = ∅. But then G ∈ S2. (To see this, let v1, . . . , v13 in the definition of S2 be

c5, c1, c2, y5, y1, c4, h, z, t, c3, s1, s5, y3

respectively, where v11 = s1 is the unique member of S1 if S1 6= ∅ and v11 is undefined otherwise,
and similarly either v12 ∈ S5 or is undefined, and either v7 ∈ H3 \ Y3 or is undefined.) This proves
14.3.

15 6-holes with hubs and hats

In this section we handle 6-holes that have both a hub and a hat.

15.1 Let G be a claw-free trigraph, containing no long prism and no hole of length > 6, and such
that every hole of length 5 or 6 is dominating. If there is a 6-hole in G relative to which some vertex
is a hub and some vertex is a hat, then either G ∈ S0 ∪ S3 ∪ S6, or G is decomposable.

Proof. For a contradiction, we assume that G is not decomposable. Let C0 be the 6-hole, and let its
vertices be a1

2, a
1
3, a

2
3, a

2
1, a

3
1, a

3
2 in order. Define Ai

j = {ai
j} for 1 ≤ i, j ≤ 3 with i 6= j. For 1 ≤ i ≤ 3

let Ai
i be the set of all hubs that are antiadjacent to aj

k, a
k
j , where {i, j, k} = {1, 2, 3}. By hypothesis,

at least one of the sets Ai
i is nonempty. By 13.2, |Ai

i| ≤ 1 for 1 ≤ i ≤ 3, since G is not decomposable;
if Ai

i is nonempty, let ai
i be its unique member. Let W be the union of the nine sets Ai

j.

For 1 ≤ i ≤ 3, define Ai = Ai
1 ∪ Ai

2 ∪ Ai
3, and for 1 ≤ j ≤ 3 define Aj = A1

j ∪ A2
j ∪ A3

j . For

1 ≤ i ≤ 3, let H i,Hi, S
i, Si be four subsets of V (G) \ W , defined as follows. For v ∈ V (G) \ W , let

N,N∗ denote the set of neighbours and strong neighbours, respectively, of v in W ; then

• v ∈ H i if N = N∗ = Ai

• v ∈ Hi if N = N∗ = Ai

• v ∈ Si if N = N∗ = W \ Ai
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• v ∈ Si if N = N∗ = W \ Ai.

(1) The twelve sets H i,Hi, S
i, Si (1 ≤ i ≤ 3) are pairwise disjoint strong cliques, and they have union

V (G) \ W , and at least one of H1,H2,H3,H1,H2,H3 is nonempty.

For clearly they are pairwise disjoint, and they are all strong cliques by 5.5. Let v ∈ V (G) \W , and
let N,N∗ be as before. If v is a hub relative to C0, then v belongs to one of the sets Ai

i, and therefore
belongs to W , a contradiction. Since C0 is dominating, it follows from 9.1 that 2 ≤ |N∗| ≤ |N | ≤ 4
and the members of N are consecutive in C0. If |N | = 3 or |N∗| = 3 then v is a clone relative to C0,
which we may assume is false by 13.6 since G is not decomposable. Thus either |N | = 4 or |N∗| = 2;
and since |N |− |N∗| ≤ 1, it follows that |N | = |N∗|. Hence v belongs to one of the twelve sets. Thus
the twelve sets have union V (G) \ W . The final assertion follows since by hypothesis there is a hat
relative to C0. This proves (1).

(2) The sets A1, A2, A3, A
1, A2, A3 are strong cliques. Moreover, if A1

1 6= ∅ and x, y ∈ W are adja-
cent, then either {x, y} is a subset of one of these cliques, or x, y ∈ A1

2 ∪A3
1, or x, y ∈ A1

3 ∪A2
1. The

analogous statements hold for A2
2, A

3
3.

The first claim follows from 13.6 and 9.1. For the second, let x ∈ Ai
j and y ∈ Ai′

j′ say. We may
assume that none of the six cliques includes {x, y}, and so i 6= i′ and j 6= j′. If i = j, then x is
a hub and 9.1 implies that y ∈ Ai ∪ Ai, a contradiction. Thus i 6= j and similarly i′ 6= j′, and so
x, y ∈ V (C0). If x, y are opposite vertices of C0 (that is, if i = j′ and j = i′), then there is a claw
with members x, y and the two vertices of C0 consecutive with x, a contradiction. In particular,
at least one of x, y is adjacent to a1

1; so from the symmetry we may assume that i = 1, j = 2, and
so (i′, j′) is one of (2, 3), (3, 1). In the first case {x, y, a1

1, a
3
2} is a claw, a contradiction, and in the

second case the claim holds. This proves (2).

(3) The six sets H1,H2,H3,H1,H2,H3 are pairwise strongly anticomplete. Moreover, for 1 ≤ i, j ≤
3, H i is strongly anticomplete to Sj; and H i is strongly complete to Sj if j 6= i, and strongly anti-
complete to Si. Analogous statements hold for Hi.

For the members of distinct sets H1,H2,H3,H1,H2,H3 are hats in different positions relative to
C0; if some two are adjacent, then either G contains a hole of length > 6 or a long prism, in either
case a contradiction. This proves the first assertion. The second follows from 9.2. This proves (3).

(4) For 1 ≤ i ≤ 3 one of H i, Si is empty, and one of Hi, S
i is empty.

For suppose that h1 ∈ H1 and s1 ∈ S1 say. Then s1-a
2
3-a

2
1-a

3
1-a

3
2-s1 is a 5-hole that does not

dominate h1, a contradiction.

(5) For 1 ≤ i ≤ 3, Si is strongly anticomplete to Si.

For suppose that s1 ∈ S1 and s1 ∈ S1 are adjacent, say. By (4), H1,H1 = ∅, and so from the
symmetry we may assume that there exists h2 ∈ H2. Then {s1, s1, h

2, a3
1} is a claw, a contradiction.

This proves (5).
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(6) For 1 ≤ i ≤ 3, if Si 6= ∅ and H1 ∪ H2 ∪ H3 6= ∅ then Ai
i = ∅.

For suppose that, say, s1 ∈ S1 and h ∈ H1 ∪ H2 ∪ H3, and A1
1 = {a1

1}. By (4), h /∈ H1, and
so we may assume that h ∈ H2. But then s1-a3

1-a
1
1-a

1
3-a

2
3-s

1 is a 5-hole not dominating h, a contra-
diction. This proves (6).

(7) If H1 ∪ H2 ∪ H3 6= ∅ then S1, S2, S3 are pairwise strongly complete.

For suppose that s1 ∈ S1 is antiadjacent to s2 ∈ S2 say, and let h ∈ H1 ∪ H2 ∪ H3. By (4),
h ∈ H3. By (6), A1

1 = A2
2 = ∅, and so A3

3 = {a3
3}. But then {a3

3, s
1, s2, h} is a claw, a contradiction.

This proves (7).

(8) We may assume that S1 ∪ S2 ∪ S3 is not strongly anticomplete to S1 ∪ S2 ∪ S3.

For suppose it is. If also S1, S2, S3 are pairwise strongly complete and S1, S2, S3 are pairwise strongly
complete then G is a line trigraph by (1),(3), so we may assume that, say, S1, S2 are not strongly com-
plete. By (7), H1,H2,H3 = ∅. Suppose that there exists sj ∈ Sj for some j with 1 ≤ j ≤ 3. Choose
s1 ∈ S1 and s2 ∈ S2, antiadjacent. One of a3

1, a
3
2 is adjacent to sj, say x; and then {x, sj, s

1, s2} is a
claw, a contradiction. Thus S1, S2, S3 = ∅. Now each of the three strong cliques S1, S2, S3 is strongly
complete to two of the three strong cliques A1 ∪H1, A2 ∪H2, A3 ∪H3 and strongly anticomplete to
the third, and so G is the hex-join of G|(W ∪H1 ∪H2 ∪H3) and G|(S1 ∪ S2 ∪ S3), a contradiction.
This proves (8).

(9) For 1 ≤ i ≤ 3, at least one of H i,Hi is empty.

For suppose that h1 ∈ H1 and h1 ∈ H1 say. By (4), S1 = S1 = ∅. By (7), S2 is strongly complete
to S3, and S2 is strongly complete to S3. By (5), Si is strongly anticomplete to Si for i = 2, 3. By
(8) we may assume from the symmetry that there exist s3 ∈ S3 and s2 ∈ S2, adjacent. From (6),
A2

2 = A3
3 = ∅, and so A1

1 = {a1
1}. By (4), H3 = H2 = ∅. Then (A1

3 ∪ S3, A2
1 ∪ S2) is a homogeneous

pair by (2), nondominating since A3
2 is nonempty, a contradiction. This proves (9).

(10) At least one of H1 ∪ H2 ∪ H3, H1 ∪ H2 ∪ H3 is empty.

For suppose they are both nonempty; then by (9), we may assume from the symmetry that there
exist h1 ∈ H1 and h2 ∈ H2. By (4), S1, S2 = ∅, and by (9), H1,H2 = ∅. By (7), S1 is strongly
complete to S3 and S2 is strongly complete to S3. By (5), S3 is strongly anticomplete to S3. Suppose
first that S2 = ∅. From (8), there exist s3 ∈ S3 and s1 ∈ S1, adjacent. From (6), A1

1, A
3
3 = ∅. Then

by (2) and (3), (A1
2 ∪ S1, A

2
3 ∪ S3) is a homogeneous pair, nondominating since A3

1 6= ∅, a contradic-
tion. Hence S2 6= ∅, and similarly S1 6= ∅. From (6), A1

1 = A2
2 = ∅, and therefore A3

3 = {a3
3}. By

(6) again, S3 = S3 = ∅. But now (A3
1,H1∪H2∪A2

1, A
2
3) is a breaker, contrary to 4.4. This proves (10).

(11) Exactly one of H1,H2,H3,H1,H2,H3 is nonempty.
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For by hypothesis, at least one is nonempty, say H1. By (10), H1,H2,H3 = ∅. Suppose that
H2 6= ∅. By (4), S1, S2 = ∅, and by (8), S3 is nonempty. From (4), H3 = ∅, and from (6), A3

3 = ∅.
Since {a1

2, a
3
1, a

1
3, h2} is not a claw, a1

2 is strongly antiadjacent to a3
1, and similarly a3

2 is strongly
antiadjacent to a2

1. Since one of A1
1, A

2
2 6= ∅, (2) implies that (H1 ∪ A3

1,H2 ∪ A3
2) is a homogeneous

pair, nondominating since A1
3 6= ∅, a contradiction. This proves (11).

In view of (11) we assume henceforth that H3 is nonempty, and therefore H1,H2,H3,H1,H2 are
empty. Choose h3 ∈ H3. By (4), S3 = ∅.

(12) Either S1 is nonempty or a3
1 is semiadjacent to a2

3; and either S2 is nonempty, or a3
2 is semi-

adjacent to a1
3. Consequently A1

1 = A2
2 = ∅, and A3

3 = {a3
3}.

For suppose that S2 = ∅, say. From (8), S1 6= ∅. From (6), A1
1 = ∅. Since (H3 ∪ A1

3, A
1
2) is

not a homogeneous pair, (nondominating since A2
1 6= ∅), it follows that some vertex of C0 is semi-

adjacent to one of a1
3, a

1
2. By (2), one of the pairs a2

1a
1
3, a

3
2a

1
3, a

2
3a

1
2, a

3
1a

1
2 is semiadjacent. The first is

impossible since {a1
3, a

2
1, a

1
2, h3} is not a claw; the second is the desired result; the third is impossible

since {a2
3, a

1
2, a

2
1, h3} is not a claw. Suppose that the fourth holds, that is, a3

1 is semiadjacent to a1
2.

By (2) A2
2 = A3

3 = ∅, and so A1
1 6= ∅, a contradiction. This proves that either S2 is nonempty, or a3

2

is semiadjacent to a1
3. Similarly either S1 is nonempty or a3

1 is semiadjacent to a2
3. If S1 6= ∅ then

(6) implies that A1
1 = ∅, and if a3

1 is semiadjacent to a2
3 then (2) implies that A1

1 = ∅; so in either
case A1

1 = ∅ and similarly A2
2 = ∅, and so A3

3 = {a3
3}. This proves (12).

(13) S3 is strongly complete to S1 ∪ S2.

For suppose not; then from the symmetry we may assume that there exist s3 ∈ S3 and s2 ∈ S2,
antiadjacent. If S1 6= ∅, choose s1 ∈ S1, and otherwise let s1 = a3

1; then in either case, s1 is adjacent
to a2

3 by (12). By (7) if s1 ∈ S1, and by definition otherwise, s1, s2 are adjacent. If s3, s
1 are antiad-

jacent, then s3-a
1
2-s

2-s1-a2
1-s3 is a 5-hole, not dominating H3, a contradiction. If s3, s

1 are adjacent,
then {s1, s3, s

2, a2
3} is a claw, a contradiction. This proves (13).

Let S′

1 be the set of vertices in S1 with an antineighbour in S2, and let S′

2 be the set of vertices
in S2 with an antineighbour in S1.

(14) S′

1∪S′

2 is strongly anticomplete to S3, S′

1 is strongly complete to S2, and S′

2 is strongly complete
to S1.

For suppose that some vertex s1 ∈ S′

1 say has a neighbour s3 ∈ S3. Let s2 ∈ S2 be an antineighbour
of s1. Then by (13), {s3, s1, s

2, a2
1} is a claw, a contradiction. Thus S3 is strongly anticomplete to

S′

1, and similarly to S′

2. Now suppose that some s1 ∈ S′

1 has an antineighbour s2 ∈ S2. Let s2 ∈ S2

be an antineighbour of s1; then by (5), {a3
3, s2, s1, s

2} is a claw, a contradiction. Hence S′

1 is strongly
complete to S2. Similarly S′

2 is strongly complete to S1. This proves (14).

But now the following six sets are strong cliques: S1 \ S′

1; S2 \ S′

2; S3; S1 ∪ A1; S2 ∪ A2;H3 ∪
A3 ∪S′

1 ∪S′

2. Every vertex belongs to exactly one of these cliques; and each of the first three cliques
is strongly complete to two of the last three, and strongly anticomplete to the other, in the manner
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required for a hex-join. Consequently G is expressible as a hex-join, a contradiction. This proves
15.1.

There is an (easy) analogue of 15.1 for 6-holes with a star-diagonal and a hat, the following.

15.2 Let G be a claw-free trigraph, containing no long prism and no hole of length > 6, and such
that every hole of length 5 or 6 is dominating. If there is a 6-hole in G with a star-diagonal, relative
to which some vertex is either a hat or a clone, then either G ∈ S0 ∪ S3 ∪ S6, or G is decomposable.

Proof. Let C0 be the 6-hole, with vertices c1, . . . , c6-c1. Let b1, b2 be adjacent stars, in positions
11

2
,−11

2
respectively. Let h be either a hat or clone relative to C0. If it is a clone, the result follows

from 13.7. We assume then that h is a strong hat. From the symmetry we may assume that it is in
position 1

2
or 11

2
. If it is in position 1

2
, then by 9.2 h is adjacent to b1 and antiadjacent to b2, and then

{b1, h, b2, c3} is a claw, a contradiction. If it is in position 11

2
, then it is strongly antiadjacent to b1

by 9.2, and then b1-c4-c5-c6-c1-b1 is a nondominating 5-hole, a contradiction. This proves 15.2.

16 Star-triangles.

We recall that, if c1- · · · -c6-c1 is a 6-hole, and there are three pairwise adjacent stars in positions
11

2
, 31

2
, 51

2
respectively, we call the set of these three stars a star-triangle for the 6-hole. Our next

goal is to prove an analogue of 13.7 for star-triangles. We need the following lemma.

16.1 Let G be claw-free, and let B1, B2, B3 be strong cliques in G. Let B = B1 ∪B2 ∪B3. Suppose
that:

• B 6= V (G),

• there are two triads T1, T2 ⊆ B with |T1 ∩ T2| = 2, and

• there is no triad T in G with |T ∩ B| = 2.

Then either

• there exists V ⊆ B with T1, T2 ⊆ V such that V is a union of triads, and G is a hex-join of
G|V and G|(V (G)\V ), where (V ∩B1, V ∩B2, V ∩B3) is the corresponding partition of V into
strong cliques, or

• there is a homogeneous set with at least two members, included in one of B1, B2, B3, such that
all its members are in triads, or

• there is a nondominating homogeneous pair (V1, V2) with max(|V1|, |V2|) ≥ 2, such that V1 is a
subset of one of B1, B2, B3 and V2 is a subset of another.

In particular, G is decomposable.

Proof. Since |T1 ∩ T2| = 2, it follows that there are distinct u1, . . . , ut ∈ B with t ≥ 4, such that
T1 ∪ T2 = {u1, u2, u3, u4}, and for 3 ≤ s ≤ t, {u1, . . . , us} is expressible as a union of triads. Choose
such a sequence with t maximum, and let U = {u1, . . . , ut}. Since every triad included in B contains
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only one vertex of B1, B2, B3, each vertex of such a triad belongs to only one of B1, B2, B3; and
hence U ∩ B1, U ∩ B2, U ∩ B3 are disjoint.

(1) Every vertex not in U is strongly complete to two of U ∩ B1, U ∩ B2, U ∩ B3 and strongly anti-
complete to the third.

For let v ∈ V (G) \ U . We claim that there is no triad T with T \ U = {v}. For if v ∈ B, this
holds from the maximality of t (for otherwise we could set ut+1 = v), and if v /∈ B it follows from a
hypothesis of the theorem. On the other hand, v is not complete to any triad, since G is claw-free;
and so for every triad T ⊆ U , v is strongly adjacent to two members of T and strongly antiadjacent
to the third. In particular, since {u1, u2, u3} is a triad, we may assume that v is strongly antiadjacent
to u1 and strongly adjacent to u2, u3, and ui ∈ Bi for i = 1, 2, 3. We claim that for 1 ≤ s ≤ t, v
is strongly adjacent to us if s ∈ B2 ∪ B3, and strongly antiadjacent to us if us ∈ B1; and we prove
this by induction on s. The claim holds when s ≤ 3, so let 4 ≤ s ≤ t; we shall prove that the claim
holds for s assuming that it holds for s − 1. There is a triad T with us ∈ T ⊆ {u1, . . . , us}; let
T = {t1, t2, t3} say, where ti ∈ Bi for i = 1, 2, 3. As we saw, v is strongly adjacent to exactly two
of t1, t2, t3 and strongly antiadjacent to the third. If u = t1, then t2, t3 ∈ {u1, . . . , us−1}, and from
the inductive hypothesis v is strongly adjacent to them both, and therefore strongly antiadjacent
to t1 = u. If u = t2, then t1, t3 ∈ {u1, . . . , us−1}, and from the inductive hypothesis v is strongly
adjacent to t3 and strongly antiadjacent to t1; and therefore strongly adjacent to t2 = u. Similarly
if u = t3 then v is strongly adjacent to u. This completes the inductive proof, and therefore proves
(1).

Let Xi = U ∩ Bi for i = 1, 2, 3, and let Yi be the set of vertices in V (G) \ U that are strongly
complete to U \Xi and strongly anticomplete to Xi. By hypothesis, U 6= V (G) since B 6= V (G). As
in the proof of 4.5, if Y1, Y2, Y3 are strong cliques then the result holds, so we assume that Y3 is not
a strong clique say. Hence X3 is strongly anticomplete to X1 ∪X2; and so X3 is a homogeneous set,
and (X1,X2) is a homogeneous pair, and since one of X1,X2,X3 has at least two members (because
t ≥ 4), again the result holds. This proves 16.1.

16.2 Let G be a claw-free trigraph, and let A = {a1, a2, a3} be a dominating triangle. Suppose that
there are distinct vertices u1, u2, u3, u4 ∈ V (G) \ A such that:

• u1, . . . , u4 each have at least two neighbours in A, and at least one antineighbour in A, and

• at most one pair of u1, . . . , u4 are strongly adjacent.

Then G is decomposable.

Proof. For i = 1, 2, 3, let Bi be the set of all vertices in V (G) \ A that are antiadjacent to ai and
adjacent to the other two members of A. From 5.5 it follows that B1, B2, B3 are strong cliques. Let
B = B1 ∪ B2 ∪ B3. Thus u1, . . . , u4 ∈ B, and from the hypothesis, there are two triads included in
B that have two vertices in common, and so the first two hypotheses of 16.1 hold. For the third, let
v ∈ V (G) \B, and suppose that there is a triad {v, b1, b2}, where b1 ∈ B1 and b2 ∈ B2. By 5.4 (with
b1-a3-b2) it follows that v is strongly antiadjacent to a3. Since v /∈ B3, it is strongly antiadjacent to
at least one of a1, a2, and from the symmetry we may assume that v is strongly antiadjacent to a2.
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From 5.4 (with a2-a1-b2) it follows that v is strongly antiadjacent to a1, contrary to the hypothesis
that A is dominating. Thus all the hypotheses of 16.1 hold, and the result follows. This proves
16.2.

16.3 Let G be a claw-free trigraph, such that every 5- and 6-hole in G is dominating, and no 6-hole
in G has a hub. Let C0 be a 6-hole in G, with a star-triangle. If some vertex of V (G) \ V (C0) is a
hat or a clone with respect to C0, then G is decomposable.

Proof. Let C0 have vertices c1- · · · -c6-c1, and let A = {a1, a3, a5} be a star-triangle, where a1, a3, a5

are in positions 11

2
, 31

2
, 51

2
respectively.

(1) There is no hat in position 11

2
, 31

2
, or 51

2
relative to c1- · · · -c6-c1.

For suppose that h is a hat in position 11

2
say. Then h is strongly antiadjacent to a1, by 9.2; h

is strongly antiadjacent to c3, since {c3, h, a1, c4} is not a claw; and similarly h is strongly antiadja-
cent to c6. Consequently the 5-hole a1-c3-c4-c5-c6-a1 is not dominating, a contradiction. This proves
(1).

(2) A is dominating.

For suppose that v ∈ V (G) \ A, with no neighbour in A. Then v /∈ V (C0), and so, since there
is no hub for C0, it follows that v is a hat, clone or star relative to C0. By (1) and 9.2, v is not a
hat; and by 9.2 it is not a clone, and not a star in position 11

2
, 31

2
or 51

2
. Thus we may assume v is a

star in position 21

2
say; but then v-c3-a2-c5-c6-c1-v is a 6-hole, and a1 is a hub for it, a contradiction.

This proves (2).

By hypothesis, some vertex v ∈ V (G) \ V (C0) is either a hat or a clone with respect to C0, say
either a hat in position 1

2
or a clone in position 1 without loss of generality. By 9.2, v is adjacent to

a1 and antiadjacent to a3. Since {a1, v, a5, c3} is not a claw, v is adjacent to a5. But then c1, c3, c5, v
each have at least two neighbours and at least one antineighbour in A, and only one pair of them is
strongly adjacent (namely vc1) and so the result follows from (1) and 16.2. This proves 16.3.

16.4 Let G be a claw-free trigraph, such that every 5-hole in G is dominating, and there is no 6-hole
with a hub or with a star-diagonal. Suppose that some 6-hole has a crown. Then G is decomposable.

Proof. Let C be a 6-hole with vertices c1- · · · -c6-c1 in order, and let s1, s2 be antiadjacent stars in
positions 21

2
, 31

2
respectively. By 9.2, s1 is strongly adjacent to c2, c3, and s2 is strongly adjacent to

c3, c4; and by four applications of 5.3, ci is strongly adjacent to ci+1 for i = 1, 2, 3, 4. Also, by 5.4 (with
s2-c4-c5), s2 is strongly adjacent to c5, and similarly s1 is strongly adjacent to c1. Since {c2, c6, s1, s2}
is not a claw, c2 is strongly antiadjacent to c6, and similarly c4, c6 are strongly antiadjacent. Thus
the strip ({s1, c2}, ∅, {s2, c4}) is step-connected and parallel to the strip ({c1}, {c6}, {c5}). Choose
a step-connected strip (A, ∅, B) with s1, c2 ∈ A and s2, c4 ∈ B, with A ∪ B maximal such that c3

is strongly A ∪ B-complete and the strips (A, ∅, B), ({c1}, {c6}, {c5}) are parallel. Suppose that
v ∈ V (G)\ (A∪B), and v has both a neighbour and an antineighbour in A. Then v /∈ {c1, c3, c5, c6}.
Let N = NG(v), N∗ = N∗

G(v). Choose a step a1-a2-b2-b1-a1 in the strip (A, ∅, B) such that a1 ∈ N
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and a2 /∈ N∗. By 5.4, b1 ∈ N∗. Suppose that b2 ∈ N . Then 5.4 implies that c5 ∈ N∗; 5.3 implies
that c6 /∈ N ; 5.4 implies that c1 /∈ N ; 5.4 implies that B ⊆ N∗ and c3 ∈ N∗; and then v can be
added to B, contrary to the maximality of A ∪ B. Thus b2 /∈ N , and so 5.4 implies that a1 ∈ N∗,
and from the symmetry it follows that a2 /∈ N . Since c1-c6-c5-b2-a2-c1 is dominating, we may assume
from the symmetry that c1, c6 ∈ N . If c5 /∈ N , then v-c6-c5-b2-a2-a1-v is a 6-hole, and b1 is a hub for
it, a contradiction. Thus c5 ∈ N ; but then 5.3 implies that c3 /∈ N , and so c1-c6-c5-b1-c3-a2-c1 is a
6-hole, with a star-diagonal {a1, v}, again a contradiction. So there is no such vertex v. We deduce
from the symmetry that (A,B) is a homogeneous pair, nondominating because of c6, and so by 4.3,
G is decomposable. This proves 16.4.

17 6-holes in non-antiprismatic trigraphs

The next lemma, a consequence of 10.4, is complementary to the last few results.

17.1 Let G be a claw-free trigraph, containing no hole of length > 6 or long prism, and such that
every hole of length 5 or 6 is dominating. Suppose that G contains a 6-hole, but there is no 6-hole
in G with a hub, a star-diagonal, or a star-triangle. Then either G ∈ S3, or G is decomposable.

Proof. Since every 5-hole is dominating, no 6-hole has a coronet; by hypothesis, no 6-hole has a
hub, star-diagonal or star-triangle; by 16.4, we may assume that none has a crown; and none has a
hat-diagonal since G contains no long prism. By 10.4, this proves 17.1.

We recall that G is antiprismatic if for every X ⊆ V (G) with |X| = 4, X is not a claw and
there are at least two pairs of members of X that are strongly adjacent. We combine 17.1 with the
previous results, to prove the next theorem, which has been the goal of the last several sections.

17.2 Let G be a claw-free trigraph with a hole of length ≥ 6. Then either G ∈ S0 ∪ · · · ∪ S7, or G
is decomposable.

Proof. By 8.7, 10.1, 10.3 and 14.3, we may assume that G has no hole of length > 6 or long prism,
and every hole of length 5 or 6 is dominating.

(1) We may assume that there is a 6-hole C in G such that no vertex of G is a hat or clone relative
to C, and every two consecutive vertices of C are strongly adjacent.

For by hypothesis there is a hole of length ≥ 6, and therefore of length 6. If there is no 6-hole
in G with a hub, a star-diagonal, or a star-triangle, then either G ∈ S3, or G is decomposable, by
17.1. Thus we may assume that there is a 6-hole C with either a hub, a star-diagonal, or a star-
triangle, choosing C with a hub if possible. Suppose first that C has a hub. By 13.6 we may assume
that no vertex is a clone relative to C, and no two consecutive vertices of C are semiadjacent; and by
15.1 we may assume that no vertex is a hat with respect to C, as claimed. Thus we may assume that
C has no hub, and therefore no 6-hole has a hub. Next suppose that C has a star-diagonal. By 13.7,
we may assume that no vertex is a clone, and no two consecutive vertices of C are semiadjacent; and
by 15.2, no vertex is a hat, as claimed. Finally, suppose that C has a star-triangle. By 16.3, again
we may assume that no vertex is a hat or clone with respect to C. It remains to show that no two

77



consecutive vertices of C are semiadjacent. We have shown that every vertex not in V (C) is a strong
star relative to C. Let C have vertices c1- · · · -c6-c1 in order, and let s1, s3, s5 be pairwise adjacent
stars in positions 11

2
, 31

2
, 51

2
respectively. Since {s1, c6, c2, c3} is not a claw, c2 is strongly adjacent

to c3, and similarly the pairs c4c5 and c6c1 are strongly adjacent. We assume therefore that c1, c2

are semiadjacent. It follows that there are no stars in positions 1

2
, 21

2
. We claim that the triangle

{s1, s3, s5} is dominating. For certainly it dominates all vertices in C, and all stars in positions
11

2
, 31

2
, 51

2
, by 9.2, so suppose that there is a star s4 in position 41

2
that is strongly antiadjacent to all

of s1, s3, s5. But then c1-c2-c3-s4-c5-s5-c1 is a 6-hole, and s3 is a hub relative to it, a contradiction.
This proves that {s1, s3, s5} is dominating. But c1, c2, c4, c6 each have at least two neighbours and
at least one antineighbour in this triangle, and only one pair of c1, c2, c4, c6 are strongly adjacent,
and the result holds by 16.2. We may therefore assume that no two consecutive vertices of C are
semiadjacent. This proves (1).

(2) There do not exist four pairwise antiadjacent vertices in G.

For suppose that a1, . . . , a4 are pairwise antiadjacent. Not all of a1, . . . , a4 belong to C; and each
ai that does not belong to C has exactly four strong neighbours in C, since C is dominating and
no vertex is a clone or hat relative to C. We may assume that a1 /∈ V (C). Since it has four strong
neighbours in C and is antiadjacent to a2, a3, a4, at most two of a2, a3, a4 belong to C, and we may
assume that a2 /∈ V (C). By 5.5, a1, a2 do not have exactly the same four neighbours in C, and
so at most one vertex of C is antiadjacent to both a1, a2; and so not both a3, a4 ∈ V (C), and we
may assume that a3 /∈ V (C). Then a1, a2, a3 each have four strong neighbours in C. But they have
no common neighbour, and therefore every vertex of C is strongly adjacent to exactly two of them.
Consequently a4 /∈ V (C), and therefore a4 also has four strong neighbours in C; and so some three
of a1, . . . , a4 have a common neighbour in V (C), a contradiction. This proves (2).

Let C have vertices c1- · · · -c6-c1 in order.

(3) If there exist stars s1, s2, s3, each in position 11

2
or 21

2
, such that s3 is antiadjacent to both

s1, s2, then G is decomposable.

For suppose that such s1, s2, s3 exist. s1, s3 are in different positions, by 9.2, and so are s2, s3,
and therefore s1, s2 are in the same positions. Choose A,B with A ∪ B maximal such that:

• A is a set of stars in position 11

2

• B is a set of stars in position 21

2

• s1, s2, s3 ∈ A ∪ B

• let H be the graph with V (H) = A ∪ B, in which x, y are adjacent if and only if x, y are
antiadjacent in G and exactly one of x, y belongs to A; then H is connected.

Suppose that some v /∈ A∪B has a neighbour and an antineighbour in A say. Since H is connected,
we may choose a1, a2 ∈ A and b ∈ B such that v is adjacent to a1 and antiadjacent to a2, and b is
antiadjacent in G to both a1, a2. (Note that a1, a2 may be equal.) Since v has a neighbour and an
antineighbour in A, it follows that v /∈ V (C), and therefore v has exactly four strong neighbours in
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C. Since v has an antineighbour in A, it is not a star in position 11

2
or a hub in hub-position 2; and

from the maximality of A∪B, it is not a star in position 21

2
. Consequently v is adjacent to c5. Since

{v, a1, b, c5} is not a claw, v is antiadjacent to b. But v is adjacent to one of c1, c2, c3, say ci, and then
{ci, a2, b, v} is a claw, a contradiction. Thus there is no such vertex v; and similarly every vertex
not in A ∪ B is either strongly complete or strongly anticomplete to B. This proves that (A,B) is
a homogeneous pair, nondominating because of c5, and so G is decomposable, by 4.3. This proves (3).

(4) If there exist a hub t in hub-position 1, and stars s2, s3, s4, each in positions 21

2
or 51

2
, such

that s4 is antiadjacent to s2, s3, then G is decomposable.

For choose A,B with A ∪ B maximal such that:

• A is a set of stars in position 21

2

• B is a set of stars in position 51

2

• s2, s3, s4 ∈ A ∪ B

• let H be the graph with V (H) = A ∪ B, in which x, y are adjacent if and only if x, y are
antiadjacent in G and exactly one of x, y belongs to A; then H is connected.

We claim that (A,B) is a homogeneous pair. For let v ∈ V (G)\A∪B, and suppose it has a neighbour
and an antineighbour in A say. Thus v /∈ V (C). Since H is connected, we may choose a1, a2 ∈ A
(not necessarily distinct) and b ∈ B such that v is adjacent to a1 and antiadjacent to a2, and b is
antiadjacent to both a1, a2. By 13.1, v is not a hub, and by 9.2 v is not a star in position 21

2
; and by

the maximality of A∪B, v is not a star in position 51

2
. Hence v is a star in some other position. Con-

sequently v is adjacent to t by 13.1, and v is adjacent to one of c1, c4, say c1. By 13.1, t is antiadjacent
to all of a1, a2, b. If v is antiadjacent to b, then {c1, v, a2, b} is a claw, while if v is adjacent to b, then
{v, a1, b, t} is a claw, in either case a contradiction. Thus (A,B) is a homogeneous pair. By 13.1, t has
no neighbours in A∪B, and so (A,B) is nondominating. By 4.3, G is decomposable. This proves (4).

(5) If there exist stars s1, . . . , s4, each in position 11

2
, 31

2
or 51

2
, and all pairwise antiadjacent except

for s3s4, then G is decomposable.

For let B1, B2, B3 be the set of all stars in positions 11

2
, 31

2
and 51

2
respectively. By 5.5, B1, B2, B3

are all strong cliques. Let B = B1 ∪ B2 ∪ B3. Because of s1, . . . , s4, there are two triads in B with
two vertices in common. Suppose that T is a triad with |T ∩B| = 2; say T = {v, b1, b2}, where v /∈ B
and b1 ∈ B1, b2 ∈ B2. Since every vertex of C is adjacent to one of b1, b2 it follows that v /∈ V (C),
and therefore v has four strong neighbours in C. Since {c2, v, b1, b2} is not a claw, v is antiadjacent
to c2 and similarly antiadjacent to c3; and so it is a star in position 51

2
, contradicting that v /∈ B.

Thus there is no such triad. By 16.1, it follows that G is decomposable. This proves (5).

We may assume that G is not antiprismatic. Therefore there are four vertices a1, . . . , a4, pairwise
antiadjacent except possibly for a3a4. By (2), a3, a4 are strongly adjacent. Suppose first that
a1, a2 ∈ V (C). Then, since no two consecutive vertices of C are semiadjacent, at least one of a3, a4

is not in V (C), say a3; and therefore a3 is strongly adjacent to every vertex of C except a1, a2. Since
a1, a2 are antiadjacent, it follows that a3 is a hub, and so we may assume that a1 = c1, a2 = c4. Then
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every other vertex of C is strongly adjacent to one of a1, a2, and so a4 /∈ V (C); and therefore a4 is
also a hub, in the same hub-position as c3. Then G is decomposable, by 13.2.

We may therefore assume that not both a1, a2 ∈ V (C), say a1 /∈ V (C). Consequently a1 has
four strong neighbours in V (C). Assume that a2, a3 ∈ V (C). Then since a1, a2, a3 are pairwise
antiadjacent, it follows that a1 is a hub, and we may assume that a2 = c1, a3 = c4. Since a4 is
adjacent to a3 and a4 /∈ V (C), it follows that a4 is a star in position 21

2
, 31

2
, 41

2
, or 51

2
, or a hub in

hub-position 2 or 3. Since a4 is antiadjacent to a2 = c1, we may assume from the symmetry that a4

is a star in position 21

2
; but then it is strongly adjacent to a1 by 13.1, a contradiction.

This proves that not both a2, a3 ∈ V (C). Assume that a2 ∈ V (C), say a2 = c1. Then a3 /∈ V (C),
and similarly a4 /∈ V (C). Each of a1, a3, a4 is strongly adjacent to four of c2, . . . , c6, and is therefore
either a star in position 31

2
or 41

2
, or a hub in hub-position 1. If any of them is a hub in hub-position

1, then it is adjacent to both the others by 13.1, a contradiction; and so all three are stars. But then
the result follows by (3). So we may assume that a2 /∈ V (C).

Since a1, a2 do not have exactly the same neighbours in C by 5.5, it follows that at least one
of a3, a4 /∈ V (C), say a3. Hence a1, a2, a3 each has four strong neighbours in V (C), and yet they
have no common neighbour. Consequently each vertex of C is strongly adjacent to exactly two of
a1, a2, a3, and therefore a4 /∈ V (C). Thus a4 also has exactly four strong neighbours in C, and no
vertex is adjacent to all of a1, a2, a4, and therefore a3, a4 have the same neighbours in C. By 13.2
we may assume that a3, a4 are not hubs, and so we may assume that they are both stars in position
21

2
say. Hence a1, a2 are both strongly adjacent to both c5, c6, and each of c1, c2, c3, c4 is adjacent

to exactly one of a1, a2. Thus either one of a1, a2 is a star in position 51

2
and the other is a hub in

hub-position 1, or one of a1, a2 is a star in position 41

2
and the other is a star in position 1

2
. In the

first case the result follows from (4), and in the second case from (5). This proves 17.2.

18 Stable sets of size 4

For a trigraph G, we recall that α(G) is the maximum cardinality of stable sets in G. In this section
we finish the case that α(G) ≥ 4. We have already (in 17.2) handled such graphs that have a hole of
length at least 6, so it suffices to prove the following.

18.1 Let G be a claw-free trigraph, such that G has no hole of length > 5, every 5-hole in G is
dominating, α(G) ≥ 4, and G is not decomposable. Then G is either a line trigraph or a long circular
interval trigraph.

The proof of 18.1 falls into several parts, as follows. Let G satisfy the hypotheses of 18.1. We
shall prove the following.

• (In 18.7) If some 5-hole has a coronet, then G is a line trigraph.

• (In 18.8) If G contains a (1, 1, 1)-prism, then G is a line trigraph.

• (In 18.9) If G has a 5-hole, but no 5-hole has a coronet, and G contains no (1, 1, 1)-prism, then
G is a long circular interval trigraph.

• (In 18.10) If G has a 4-hole but no 5-hole, then G is a line trigraph.

80



• (In 18.11) It is impossible that G has no holes at all.

We begin with a few lemmas.

18.2 Let B be a clique in a claw-free trigraph G, and let a1, a2 ∈ V (G)\B be antiadjacent. If a1, a2

are not strongly B-complete and not strongly B-anticomplete, then there is a path of length 3 between
a1, a2 with interior in B.

Proof. For i = 1, 2, let Ni, N
∗

i be the set of neighbours and strong neighbours of ai in B. By
hypothesis, Ni 6= ∅ and N∗

i 6= B. Suppose that N1 ⊆ N∗

2 . Since N1 6= ∅, there exists x ∈ N1; and
since N∗

2 6= B, there exists y ∈ B \ N∗

2 . But then {x, y, a1, a2} is a claw, a contradiction. Thus
N1 6⊆ N∗

2 , and similarly N2 6⊆ N∗

1 . Choose n1 ∈ N1 \ N∗

2 , and n2 ∈ N2 \ N∗

1 . Then a1-n1-n2-a2 is a
path. This proves 18.2.

18.3 Let G be a claw-free trigraph, with no hole of length > 5, not decomposable, and such that every
5-hole is dominating. Let the paths a1-b1, a2-b2 and a3-c3-b3 form a prism in G, where {a1, a2, a3}
and {b1, b2, b3} are strong triangles. Then there is a 5-hole in G with a strong centre, and every
neighbour of c3 that is antiadjacent to all of a1, b1, a2, b2 is strongly adjacent to both of a3, b3.

Proof. Choose a step-connected strip (A, ∅, B) with a1, a2 ∈ A and b1, b2 ∈ B, parallel to the strip
({a3}, {c3}, {b3}), and maximal with this property. Since c3 is strongly anticomplete to A∪B and G
is not decomposable, 4.3 implies that (A,B) is not a homogeneous pair. Thus we may assume that
there exists v ∈ V (G) \ (A ∪ B) with a neighbour and an antineighbour in A. Then v /∈ {a3, b3, c3}.
Choose a step a′1-a

′

2-b
′

2-b
′

1-a
′

1 such that v is adjacent to a′1 and antiadjacent to a′2. By 5.4, v is
strongly adjacent to b′1. If v is adjacent to b′2, then by 5.4 v is strongly adjacent to b3; by 5.3 v is
strongly antiadjacent to c3; and by 5.4 v is strongly antiadjacent to a3. But then v can be added to
B, contrary to the maximality of A ∪ B. Thus v is strongly antiadjacent to b′2. From the symmetry
between a′1 and b′1 it follows that v is strongly adjacent to a′1 and strongly antiadjacent to a′2. Since
the 5-hole a3-c3-b3-b

′

2-a
′

2-a3 is dominating, v has a neighbour in the path a3-c3-b3, and therefore is
adjacent to at least two consecutive vertices of this path. In particular, v is strongly adjacent to c3.
Since v-c3-b3-b

′

2-a
′

2-a
′

1-v is not a 6-hole, v is strongly adjacent to b3 and similarly to a3. Hence v is a
strong centre for the 5-hole a3-c3-b3-b

′

1-a
′

1-a3. Now suppose that d is a neighbour of c3, antiadjacent to
a1, b1, a2, b2. Hence d has an antineighbour in A. If d also has a neighbour in A, then by exchanging
v, d we deduce that d is strongly adjacent to both a3, b3 as required. Thus we may assume that d has
no neighbour in A, and similarly none in B. From the symmetry, we may assume that d is strongly
adjacent to a3. By 5.4 (with d-a3-a

′

2), v is adjacent to d; and by 5.3 (with {d, a′1, b3}) it follows that
d is strongly adjacent to b3 as required. This proves 18.3.

18.4 Let G be a claw-free trigraph, with no hole of length > 5, and such that every 5-hole is
dominating. Let C be a 4-hole. If there exist adjacent vertices of G \ V (C), both with no neighbour
in V (C), then G is decomposable.

Proof. Let C have vertices c1- · · · -c4-c1 in order. Let Z ⊆ V (G) \ V (C) be maximal such that Z is
connected and no vertex in Z has a neighbour in V (C), with |Z| > 1. Let Y be the set of vertices of
V (G) \Z with a neighbour in Z. Then from the maximality of Z, every vertex of Y has a neighbour
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in V (C); and since G is claw-free, it follows that every vertex in Y is a strong hat relative to C. Let
Y = Y1 ∪ · · · ∪ Y4, where for i = 1, . . . , 4, Yi is the set of vertices in Y that are adjacent to ci, ci+1

(reading subscripts modulo 4).

(1) Y1, . . . , Y4 are strong cliques; and for 1 ≤ i ≤ 4, Yi is strongly complete to Yi+1.

The first assertion follows from 5.5. For the second, suppose that y1 ∈ Y1 and y2 ∈ Y2 say are
antiadjacent, and let P be a path between y1, y2 with interior in Z. Then y1-c1-c4-c3-y2-P -y1 is a
hole of length ≥ 6, a contradiction. This proves (1).

(2) We may assume that if y, y′ ∈ Y are antiadjacent then every vertex in Z is strongly adja-
cent to both y, y′.

For let y ∈ Y1, y
′ ∈ Y3 say (without loss of generality, by (1)). Let P be a path between y, y′

with interior in Z. Since the hole y-c2-c3-y
′-P -y has length ≤ 5, it follows that P has length 2, and

the hole has length 5. Let z be the middle vertex of P . Since every 5-hole is dominating, every
vertex in Z \ {z} has a neighbour in P , and therefore is adjacent to z and to at least one of y, y′.
By 18.3, applied to the prism formed by the three paths c1-c2, c4-c3 and y-z-y′, it follows that every
member of Z is strongly adjacent to both y, y′. This proves (2).

(3) For 1 ≤ i < j ≤ 4, if yi ∈ Yi and yj ∈ Yj then yi, yj have the same neighbours in Z, and
no vertex in Z is semiadjacent to one of yi, yj.

For if yi, yj are antiadjacent this follows from (2). If they are strongly adjacent, suppose that
z ∈ Z is adjacent to yi and antiadjacent to yj , and choose c ∈ V (C) adjacent to yi and antiadjacent
to yj; then {yi, z, yj , c} is a claw, a contradiction. This proves (3).

If Y is a strong clique then Y is an internal clique cutset and the theorem holds. Thus by (1),
we may assume that Y1 is not strongly complete to Y3 (and therefore Y1, Y3 are nonempty). By (2)
and (3) it follows that Y is complete to Z, and therefore Z is a strong clique by 5.5; but then all
members of Z are twins. This proves 18.4.

18.5 Let G be a claw-free trigraph, let C be a dominating 5-hole in G, and let X ⊆ V (G) be stable
with |X| = 4. Then there is a 5-numbering c1- · · · -c5-c1 of C such that either

• there are three strong hats in X, in positions 11

2
, 21

2
and 31

2
, or

• X consists of two strong hats in positions 11

2
and 21

2
and two clones in positions 4, 5, or

• c4, c5 are semiadjacent, and X consists of c4, c5 and two strong hats in positions 11

2
and 21

2
, or

• X consists of three strong hats in positions 11

2
, 21

2
and 41

2
and a strong star in position 41

2
.

Proof. Let C have vertices c1- · · · -c5-c1 and let X = {v1, . . . , v4}. Each member of X \ V (C)
has at least two strong neighbours in V (C), consecutive in C, since C is dominating; and on the
other hand, every vertex of C is adjacent to at most two members of X, since G is claw-free. For
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1 ≤ i ≤ 5, not all of ci, ci+1, ci+2 ∈ X, since ci+1 is strongly adjacent to at least one of ci, ci+2; and
hence |X ∩ V (C)| ≤ 3. We may therefore assume that v1 /∈ V (C).

Suppose that v2, v3, v4 ∈ V (C). Now v1 has two strong neighbours in C, consecutive in C, say
c1, c2; and so X ∩ V (C) = {c3, c4, c5}, which is impossible as we already saw. Thus we may assume
that v1, v2 /∈ V (C).

Suppose that v3, v4 ∈ V (C). Since v1, v2 both have at least two strong neighbours in C, con-
secutive in C, and since v1, v2 are not hats in the same position by 5.5, it follows that v3, v4 are
consecutive in C and therefore semiadjacent; say v3 = c4, v4 = c5. Hence v1, v2 are strongly antiad-
jacent to c4, c5 (since F (G) is a matching); and so by 9.2 it follows that the third outcome of the
theorem holds. Thus we may assume that v1, v2, v3 /∈ V (C).

Suppose that v4 ∈ V (C), say v4 = c5. Then each of c1, c4 is adjacent to at most one of v1, v2, v3,
and each of c2, c3 is adjacent to at most two of v1, v2, v3. On the other hand, v1, v2, v3 each have at
least two strong neighbours in C. Hence equality holds, and therefore v1, v2, v3 are strong hats in
positions 11

2
, 21

2
, 31

2
, as required.

We may therefore assume that v4 /∈ V (C). Now c1, . . . , c5 are each adjacent to at most two of
members of X, and every member of X is strongly adjacent to at least two of c1, . . . , c5. Consequently
at least two members of X are strong hats, say v1, v2. Suppose that no two members of X are strong
hats in consecutive positions. Then we may assume that v1, v2 are in positions 11

2
, 31

2
, and v3, v4 are

not strong hats; and from counting the edges between V (C) and X, it follows that v3, v4 are clones,
in positions 1, 4. But since they are antiadjacent to v1, v2, this contradicts 9.2. Thus at least two
members of X are strong hats in consecutive positions, and so we may assume that v1, v2 are strong
hats in positions 11

2
, 21

2
respectively. If v3, v4 are not strong hats, then they are clones in positions

4, 5 and the theorem holds. Thus we may assume that v3 is a strong hat. If it is in position 31

2
or

1

2
then the theorem holds, so we may assume it is in position 41

2
. If v4 is a strong hat, then it is in

position 31

2
or 1

2
and the theorem holds; and by 9.2 is it not a clone. So we may assume it is a strong

star, and hence in position 41

2
; but then the theorem holds. This proves 18.5.

18.6 Let G be a claw-free trigraph, such that G has no hole of length > 5, every 5-hole in G is
dominating, and α(G) ≥ 4. Then no 5-hole in G has a centre; and G does not contain a (2, 1, 1)-
prism.

Proof. For suppose first that c1- · · · -c5-c1 is a 5-hole C, with a centre z. Since α(G) ≥ 4, we may
assume by 18.5 that there are antiadjacent hats h1, h2 in positions 11

2
, 21

2
say. Since {z, h1, c3, c5} is

not a claw, z is antiadjacent to h1, and similarly it is antiadjacent to h2. But then {c2, z, h1, h2} is a
claw, a contradiction. This proves that no 5-hole has a centre. The second assertion of the theorem
follows from 18.3. This proves 18.6.

The following completes the first step of the proof of 18.1.

18.7 Let G be a claw-free trigraph, such that G has no hole of length > 5, every 5-hole in G is
dominating, α(G) ≥ 4, and G is not decomposable. If some 5-hole has a coronet then G is a line
trigraph.

Proof. Let c1- · · · -c5-c1 be a 5-numbering of a 5-hole C, such that there is a hat h and a star s both
in position 11

2
. By 9.2, h and s are strongly antiadjacent, and h is a strong hat and s is a strong
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star. Let C be the proximity component of order 5 containing C.

(1) For every a1- · · · -a5-a1 in C, h is a strong hat and s is a strong star, both in position 11

2
.

For it suffices to show that if two 5-numberings are proximate, and the claim is true for one of
them, then it is true for the other. Thus, suppose that a1- · · · -a5-a1 is a 5-numbering and h is a
strong hat and s is a strong star, both in position 11

2
, relative to a1- · · · -a5-a1. Let 1 ≤ i ≤ 5, and

let a′i be a clone in position i relative to a1- · · · -a5-a1. We must show that ai and a′i have the same
neighbours in {h, s}. If i = 1, then a′1 is strongly adjacent to s, h by 9.1. If i = 4, then a′4 is strongly
antiadjacent to h by 9.1, and strongly antiadjacent to s by 18.6, since otherwise s would be a centre
for a1-a2-a3-a

′

4-a5-a1. Thus from the symmetry we may assume that i = 5. Since {a′5, h, s, a4} is
not a claw, it follows that a′5 is strongly antiadjacent to at least one of h, s. Since {a1, a

′

5, h, s} is
not a claw, a′5 is strongly adjacent to at least one of h, s. If a′5 is adjacent to h and not to s, then
the 5-hole h-a2-s-a5-a

′

5-h has a centre a1, contrary to 18.6. Thus a′5 is strongly adjacent to s and
strongly antiadjacent to h. This proves (1).

For 1 ≤ i ≤ 5, let Ai = Ai(C). From (1), A1 ∪ A2 is strongly complete to both h, s; A3 ∪ A5

is strongly complete to s and strongly anticomplete to h; and A4 is strongly anticomplete to both
h, s. Let W = A1 ∪ · · · ∪ A5. For each v ∈ V (G) \ {h, s}, let P (v) be the set of all k such that v is
in position k relative to some member of C. (Note that since every 5-hole is dominating, and none
has a centre, it follows that v has a position relative to each member of C.) If two 5-numberings are
proximate, then the positions of v relative to them differ by at most 1

2
, and it follows that P (v) is a

set of consecutive 1

2
-integers modulo 5, that is, P (v) is an “interval”.

(2) The sets A1, . . . , A5 are pairwise disjoint; and every vertex in V (G)\W is either strongly complete
to four of A1, . . . , A5 and strongly anticomplete to the fifth, or strongly complete to two consecutive
of A1, . . . , A5 and strongly anticomplete to the other three.

For certainly the sets A1 ∪ A2, A3 ∪ A5 and A4 are pairwise disjoint. Suppose that there exists
v ∈ A1 ∩ A2. Then 1, 2 ∈ P (v), and v is strongly adjacent to h, s. Hence 3, 4, 5 /∈ P (v), by (1), and
since P (v) is an interval, it follows that 11

2
∈ P (v). So relative to some member of C, v is a hat

or star in position 11

2
. But by 9.2, a hat in position 11

2
is antiadjacent to s, and a star in position

11

2
is antiadjacent to h, in either case a contradiction. This proves that A1 ∩ A2 = ∅. Now assume

that there exists v ∈ A3 ∩ A5. Thus 3, 5 ∈ P (v), and by (1) v is strongly adjacent to s and strongly
antiadjacent to h. By (1) 1, 2, 4 /∈ P (v), contradicting that P (v) is an interval. This proves that
A1, . . . , A5 are pairwise disjoint. Now if v ∈ V (G) \ W , it follows that P (v) contains no integer,
and so P (v) has only one member, since it is an interval; and the final assertion of (2) follows. This
proves (2).

For 1 ≤ i ≤ 5, let Hi be the set of all vertices in V (G) \ W that are strongly complete to
Ai+2 ∪ Ai+3 and strongly anticomplete to Ai−1, Ai, Ai+1, and let Si be the set of all vertices in
V (G) \ W that are strongly complete to W \ Ai and strongly anticomplete to Ai. By (2), V (G) is
the union of W,H1, . . . ,H5 and S1, . . . , S5. Moreover, h ∈ H4 and s ∈ S4. From 5.5, each Hi and
each Si is a strong clique.
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(3) A1 ∪ A2 is strongly anticomplete to A4; A1 is strongly anticomplete to A3, and A2 to A5; A5 is
strongly complete to A1, and A1 to A2, and A2 to A3; and Ai = {ci} for i = 1, 2.

For if a1 ∈ A1 and a4 ∈ A4, then since {a1, a4, h, s} is not a claw it follows that a1, a4 are strongly
antiadjacent. Thus A1 ∪ A2 is strongly anticomplete to A4. Let a1- · · · -a5-a1 be in C, and suppose
that some v ∈ A1 is adjacent to a3. Since v is strongly anticomplete to A4 as we saw, it follows that
v is strongly adjacent to a2; by 9.2 v is strongly antiadjacent to c5, since it is adjacent to h, and so v
is strongly adjacent to a1, since otherwise v-a3-a4-a5-a1-h-v would be a 6-hole. Hence v is in position
2 relative to a1- · · · -a5-a1, and so v ∈ A1 ∩ A2, contrary to (2). This proves that A1 is strongly
anticomplete to A3, and similarly A2 is strongly anticomplete to A5. Now let a1- · · · -a5-a1 be in C,
and suppose that some a′1 ∈ A1 is antiadjacent to a5. Then {s, a′1, a5, a3} is a claw, a contradiction.
Consequently A1 is strongly complete to A5, and similarly A2 to A3. Moreover, if a1, a

′

1 ∈ A1 are
antiadjacent then {s, a1, a

′

1, c3} is a claw, a contradiction, and so A1 is a strong clique, and similarly
so is A2. Since every vertex in V (G) \ W is either complete or anticomplete to Ai for i = 1, 2, it
follows that (A1, A2) is a homogeneous pair, nondominating since A4 6= ∅; and so by 4.3, A1, A2 both
have cardinality 1, since G is not decomposable. Thus Ai = {ci} for i = 1, 2. If c1, c2 are antiadjacent
then h-c2-c3-c4-c5-c1-h is a 6-hole, a contradiction. Thus c1, c2 are strongly adjacent. This proves (3).

(4) A3, A4, A5 are strong cliques.

For if a3, a
′

3 ∈ A3 then they are strongly adjacent since {s, a3, a
′

3, c1} is not a claw, and so A3 is
a strong clique, and similarly so is A5. Now let a1- · · · -a5-a1 be in C, and let a′4 ∈ A4 be different
from a4. Since A4 is disjoint from A3, A5, it follows that 3, 5 /∈ P (a′4); and since 4 ∈ P (a′4) and
P (a′4) is an interval, it follows that P (a′4) ⊆ {31

2
, 4, 41

2
}. In particular, relative to a1- · · · -a5-a1, a′4

has position one of 31

2
, 4, 41

2
, and therefore is strongly adjacent to a4. This proves that A4 is a strong

clique, and therefore proves (4).

For i = 3, 5, let A′

i be the set of members of Ai with an antineighbour in A4.

(5) A′

3 is strongly complete to A′

5; A′

3 is strongly anticomplete to A5 \ A′

5; and A3 \ A′

3 is strongly
anticomplete to A′

5.

For suppose that a3 ∈ A′

3 and a5 ∈ A′

5 are antiadjacent. Each of them is not strongly A4-complete
and not strongly A4-anticomplete, and therefore by 18.2, there is a path between them of length 3
with interior in A4. But also a5-c1-c2-a3 is a path, and the union of these two paths is a 6-hole, con-
trary to hypothesis. This proves the first assertion of (5). Now suppose that a3 ∈ A′

3 and a5 ∈ A5\A′

5

are adjacent. Choose a4 ∈ A4 antiadjacent to a3. Since a5 /∈ A′

5, it follows that a4, a5 are adjacent;
but then {a5, a3, a4, c1} is a claw, a contradiction. Thus A′

3 is strongly anticomplete to A5 \A′

5, and
the third assertion of (5) follows by symmetry. This proves (5).

(6) One of A′

3, A
′

5 is empty.

For suppose they are both nonempty. Choose a′3 ∈ A′

3 and a′5 ∈ A′

5. Choose a4, a
′

4 ∈ A4 (pos-
sibly equal) with a4 adjacent to a′3 and a′4 antiadjacent to a′3. Since {a′5, a

′

3, a
′

4, c1} is not a claw, a′4
is strongly antiadjacent to a′5, and since {a′3, a

′

5, a4, c2} is not a claw, a4 is strongly adjacent to a′5.
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Thus a4 6= a′4. Let G be the complement of G. Since C is connected by proximity, it follows that
G|(A3 ∪ A5) is connected, and so A′

3 ∪ (A5 \ A′

5) is not strongly complete to A′

5 ∪ (A3 \ A′

3). Hence
by (4) and (5), there exist a3 ∈ A3 \ A′

3 and a5 ∈ A5 \ A′

5, antiadjacent. But then a3-a
′

4-a5-a
′

5-a
′

3-a3

is a 5-hole with a centre a4, contrary to 18.6. This proves (6).

(7) Ai = {ci} for 1 ≤ i ≤ 5.

For from (6) we may assume that A′

5 = ∅. Then (A′

3, A4) and (A3 \ A′

3, A5) are both homogeneous
pairs, by (3) and (5), and they are both nondominating because of h, and so by 4.3, A′

3, A4, A3\A
′

3, A5

all have cardinality at most 1. In particular A4 = {c4} and A5 = {c5}. Thus we may assume that
|A3| > 1, and so |A′

3| = |A3 \ A′

3| = 1. Let A′

3 = {a′3} and A3 \ A′

3 = {a′′3}. Since a′3 has a
neighbour in A4, it follows that a′3, c4 are semiadjacent. If a′′3 is strongly antiadjacent to c5 then
(A3, A4) is a nondominating homogeneous pair, a contradiction; so a′′3 is semiadjacent to c5. If there
exists h1 ∈ H1, then h1-c4-c5-c1-c2-a

′

3-h1 is a 6-hole, a contradiction; so H1 = ∅. If there exists
h2 ∈ H2, then {c5, h2, a

′′

3 , c1} is a claw, a contradiction; so H2 = ∅. If there exists s′ ∈ S2 ∪ S5,
then {s′, c4, a

′

3, c1} is a claw, a contradiction; so S2 = S5 = ∅. Since α(G) ≥ 4, and every stable set
contains at most two neighbours of c2 (since G is claw-free), there are two antiadjacent vertices that
are both strictly antiadjacent to c2; and they therefore both belong to H3 ∪ {c4, c5}. Hence there
exists h3 ∈ H3. If there exists s3 ∈ S3, then {c5, h3, s3, a

′′

3} is a claw, a contradiction; so S3 = ∅. If
there exist s1 ∈ S1 and s4 ∈ S4 that are antiadjacent then {c2, s1, s4, h} is a claw, a contradiction;
so S1 is strongly complete to S4. Hence (H3 ∪ {c1},H4,H5 ∪ {c2}) is a breaker, and 4.4 implies that
G is decomposable, a contradiction. This proves (7).

(8) The following hold:

• For 1 ≤ i, j ≤ 5, Hi is strongly complete to Sj if j = i + 1 or j = i − 1, and otherwise Hi is
strongly anticomplete to Sj

• For 1 ≤ i < j ≤ 5, Hi is strongly anticomplete to Hj

• For 1 ≤ i ≤ 5, if Hi 6= ∅ then Si is strongly anticomplete to Si−1, Si+1

• For 1 ≤ i ≤ 5, if Hi 6= ∅ then Si is strongly complete to Si−2, Si+2

• For 1 ≤ i ≤ 5, if Hi, Si 6= ∅ then Si−1 is strongly complete to Si+1.

For the first claim follows from 9.2. No two hats in consecutive positions are adjacent, since oth-
erwise G would contains a 6-hole, and no two hats in distinct nonconsecutive positions are adjacent,
by 18.6, since the union of two such adjacent hats with C would be a (2, 1, 1)-prism. Hence the
second claim holds. The other three claims are trivial if Si = ∅, so we may assume that Si,Hi are
both nonempty; and therefore, since S4,H4 are nonempty by hypothesis, we may assume that i = 4.
Since S3 ∪ S4 ∪ {h, c4} includes no claw, S3 is strongly anticomplete to S4, and similarly S4 to S5,
and so the third claim holds. Since {c1, h} ∪ S2 ∪ S4 includes no claw, S2 is strongly complete to S4

and similarly S1 is strongly complete to S4, and therefore the fourth holds. Finally, the fifth holds
since {c1, s} ∪ S3 ∪ S5 includes no claw. This proves (8).

(9) If S2 is strongly complete to S5 and c4, c5 are semiadjacent then G is a line trigraph.
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For if there exists h2 ∈ H2, then h2-c5-c1-c2-c3-c4-h2 is a 6-hole, a contradiction; so H2 = ∅. If
there exists s′ ∈ S1 ∪ S3 then {s′, c4, c5, c2} is a claw, a contradiction; so S1 = S3 = ∅. But then G
is a line trigraph, by (8). This proves (9)

(10) If

• Si is strongly anticomplete to Si+1 for all i ∈ {1, 2, 5}, and

• Si is strongly complete to Si+2 for all i ∈ {1, 5}, and

• c3, c5 are strongly antiadjacent,

then G is a line trigraph.

For suppose these conditions hold. By (9) we may assume that c4 is strongly adjacent to c5 and
similarly to c3. But then G is a line trigraph, by (3) and (8). This proves (10).

(11) If one of H1,H2 is nonempty then G is a line trigraph.

For suppose that there exists h1 ∈ H1 say. Since S2 ∪ S3 ∪ {s, h1} includes no claw, S2 is strongly
anticomplete to S3. By (8), S1 is strongly anticomplete to S5, S2 and strongly complete to S3. Since
{c3, c5, h1, c2} is not a claw, c3 is strongly antiadjacent to c5. By (10), we may assume that there exist
s2 ∈ S2 and s5 ∈ S5, antiadjacent. Then s-c2-s5-c4-c5-s is a 5-hole; and relative to this 5-numbering,
c3, h are a star and a hat both in position 21

2
, and s2 is a clone in position 5, contrary to (7) applied

to this 5-hole. This proves (11).

(12) If H3,H5 are both nonempty then G is a line trigraph.

For then (8) implies that S3 is strongly complete to S1 and strongly anticomplete to S2; and S5

is strongly complete to S2 and strongly anticomplete to S1. By (10), we may assume that either
S1 is not strongly anticomplete to S2, or c3 is semiadjacent to c5. In the first case, when S1 is not
strongly anticomplete to S2, it follows that S3 = ∅ since S1 ∪ S2 ∪ S3 ∪ H5 includes no claw, and
similarly S5 = ∅. In the second case, when c3 is semiadjacent to c5, it follows that S3 = ∅ since
{c5, c3} ∪ S3 ∪ H3 includes no claw, and similarly S5 = ∅. Thus in both cases S3 = S5 = ∅. By
(11) we may assume that H1,H2 are empty. But then (S1 ∪ {c3}, S2 ∪ {c5}) is a homogeneous pair,
nondominating because of h, and so 4.3 implies that S1 = S2 = ∅. But then G is a line trigraph.
This proves (12).

By (7), there are no clones relative to c1- · · · -c5-c1, and so by 18.5 and (11), (12), it follows that
the third case of 18.5 holds, and therefore we may assume that H5 6= ∅ and c4, c5 are semiadjacent.
But then (8) implies that S2 is strongly complete to S5, and so G is a line trigraph by (9). This
proves 18.7.

Let the paths ai-bi (i = 1, 2, 3) form a (1, 1, 1)-prism. For 1 ≤ i ≤ 3, a hat on ai-bi means a vertex
strongly adjacent to ai, bi and strongly antiadjacent to the other four vertices in {a1, a2, a3, b1, b2, b3}.
The following completes the second step of the proof of 18.1.
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18.8 Let G be a claw-free trigraph, such that G has no hole of length > 5, every 5-hole in G is
dominating, α(G) ≥ 4, and G is not decomposable. If G contains a (1, 1, 1)-prism then G is a line
trigraph.

Proof. Since G is not decomposable and α(G) ≥ 4, 4.3 implies that G does not admit a coherent
W-join. By 18.7, we may assume that no 5-hole has a coronet.

(1) G contains a (1, 1, 1)-prism with a hat.

For let the paths ai-bi (i = 1, 2, 3) form a (1, 1, 1)-prism, where A = {a1, a2, a3} and B = {b1, b2, b3}
are triangles. Suppose first that A ∪ B is dominating. By hypothesis, α(G) ≥ 4, and so there exist
pairwise antiadjacent vertices v1, . . . , v4. For 1 ≤ i ≤ 4, let Ni be the set of neighbours of vi in A∪B,
together with vi itself if vi ∈ A ∪ B. Thus each |Ni| ≥ 2 by 5.4, and if |Ni| = 2 then vi is a hat, so
we may assume that |Ni| ≥ 3 for each i. If |Ni| = 3, then vi /∈ A ∪ B and Ni = A or B; and so by
5.5, |Ni| = 3 for at most two values of i. Consequently |N1|+ |N2|+ |N3|+ |N4| ≥ 14, and therefore
we may assume that a1 belongs to Ni for at least three values of i. Hence a1 is strongly adjacent to
at least one of v1, . . . , v4, and so a1 /∈ {v1, . . . , v4}; but then G contains a claw, a contradiction. So
if A ∪ B is dominating then (1) holds.

Now assume that A ∪ B is not dominating. Let z ∈ V (G) have no neighbours in A ∪ B, and let
Y be the set of neighbours of z. For y ∈ Y , let N(y) be the set of neighbours of y in A∪B. By 18.4,
N(y) is nonempty; and since G is claw-free, N(y) is a strong clique. We claim we may assume that
either N(y) = A or N(y) = B. For we may assume that a1 ∈ N(y). If b1 ∈ N(y) then since N(y)
is a strong clique, it follows that y is a hat as required. We assume then that b1 /∈ N(y). By 5.4,
a2, a3 ∈ N(y), and since N(y) is a strong clique, we deduce that N(y) = A. Thus for every y ∈ Y ,
N(y) = A or N(y) = B. Suppose there exist y1, y2 ∈ Y with N(y1) = A and N(y2) = B. If y1, y2

are antiadjacent, then the paths y1-z-y2, a1-b1 and a2-b2 form a (2, 1, 1)-prism, contrary to 18.6. If
y1, y2 are adjacent, then the paths y1-y2, a1-b1, a2-b2 form a (1, 1, 1)-prism with a hat z on y1-y2, as
required. Thus we may assume that N(y) = A for all y ∈ Y . By 5.5, Y is a strong clique.

Let X be the set of all vertices in V (G) \ (Y ∪ {z}) with a neighbour in Y . We claim that X is
a strong clique. For suppose that x1, x2 ∈ X are antiadjacent. For i = 1, 2, choose yi ∈ Y adjacent
to xi. Since A is a strong clique, not both x1, x2 ∈ A, say x1 /∈ A. Since y1 is adjacent to x1 and to
z, 5.4 implies that x1 is strongly complete to A, and therefore x2 /∈ A. If y1 is adjacent to x2 then
{y1, z, x1, x2} is a claw, a contradiction. Thus x2 is strongly antiadjacent to y1, and similarly x1 is
strongly antiadjacent to x2, and in particular y1 6= y2. Since {ai, y2, x1, bi} is not a claw, it follows
that x1 is adjacent to bi for 1 ≤ i ≤ 3 and similarly x2 is complete to B. Hence b1-x1-y1-y2-x2-b1

is a 5-hole with a centre a1, contrary to 18.6. Thus X is a strong clique, and therefore X is an
internal clique cutset (unless Y = ∅, when G is expressible as a 0-join). Hence G is decomposable, a
contradiction. This proves (1).

(2) G contains a (1, 1, 1)-prism with hats on two different paths.

For by (1) we may choose paths ai-bi (i = 1, 2, 3) forming a (1, 1, 1)-prism, where A = {a1, a2, a3}
and {b1, b2, b3} are triangles, such that there is a hat h on a3-b3. Choose a step-connected strip
(A, ∅, B) with a1, a2 ∈ A and b1, b2 ∈ B, parallel to ({a3}, {h}, {b3}), and with A ∪ B maximal with
this property. Since (A,B) is not a nondominating homogeneous pair, by 4.3, we may assume there is
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a vertex v /∈ A∪B with a neighbour and an antineighbour in A. Let N,N∗ be the set of neighbours
and strong neighbours of v, and let a′1-a

′

2-b
′

2-b
′

1-a
′

1 be a step with a′1 ∈ N and a′2 /∈ N∗. By 5.4,
b′1 ∈ N∗. If b′2 ∈ N , then by 5.4, b3 ∈ N∗; by 5.3, h /∈ N ; by 5.4, B ⊆ N∗; by 5.4, a3 /∈ N ; and then
v can be added to B, contrary to the maximality of A ∪ B. Thus b′2 /∈ N . From the symmetry it
follows that a′1 ∈ N∗ and a′2 /∈ N . Suppose that h ∈ N . Since v-h-a3-a

′

2-b
′

2-b
′

1-v is not a 6-hole, it
follows that a3 ∈ N∗, and similarly b3 ∈ N∗. But then v-a3-a

′

2-b
′

2-b
′

1-v is a 5-hole, and {a′1, h} is a
coronet for it, a contradiction. Thus h /∈ N . From 5.4, a3, b3 /∈ N ; and so h, v are both hats for the
prism formed by a′1-b

′

1, a′2-b
′

2 and a3-b3, on different paths. This proves (2).

From (2), we may choose k ≥ 3, and disjoint strong cliques A1, . . . , Ak, B1, . . . , Bk and C1, . . . , Ck

with the following properties (let A = A1 ∪ · · · ∪ Ak, B = B1 ∪ · · · ∪ Bk and C = C1 ∪ · · · ∪ Ck):

• A1, . . . , Ak−1, B1, . . . , Bk−1 and C1, . . . , Ck−1 are all nonempty; and if k = 3 then A3, B3 are
both nonempty

• A and B are strong cliques

• for 1 ≤ i, j ≤ k with i 6= j, Ai is strongly anticomplete to Bj

• for 1 ≤ i ≤ k − 1, Ai is strongly complete to Bi

• every vertex in Ak has a neighbour in Bk, and every vertex in Bk has a neighbour in Ak; and
if Ck is nonempty then Ak, Bk are both nonempty and are strongly complete to each other

• for 1 ≤ i ≤ k, Ci is strongly complete to Ai∪Bi, and strongly anticomplete to A∪B \ (Ai ∪Bi)

• A ∪ B ∪ C is maximal with these properties.

Note that if Ck is nonempty then there is symmetry between Ck and C1, . . . , Ck−1 (this will be used
in the case analysis below).

(3) C1, . . . , Ck are pairwise strongly anticomplete.

For suppose not; then from the symmetry we may assume that c1 ∈ C1 is adjacent to c2 ∈ C2.
Choose ai ∈ Ai and bi ∈ Bi for i = 1, 2, 3, such that a3, b3 are adjacent (this is possible even if
k = 3). Then c1-c2-b2-b3-a3-a1-c1 is a 6-hole, a contradiction. This proves (3).

(4) For every v ∈ V (G) \ (A ∪ B ∪ C), let N,N∗ be the set of neighbours and strong neighbours
of v in A ∪ B ∪ C; then N = N∗ = ∅, A,B or A ∪ B.

For suppose first that N ∩ C 6= ∅; there exists c1 ∈ N ∩ C1, say. Suppose that N meets both
A \ A1 and B \B1. By 5.3, N ∩ (A \ A1) is strongly complete to N ∩ (B \B1), and so there exists i
with 2 ≤ i ≤ k such that N ∩A ⊆ A1∪Ai and N ∩B ⊆ B1∪Bi. Choose ai ∈ N ∩Ai and bi ∈ N ∩Bi,
necessarily adjacent. Choose j 6= i with 2 ≤ j ≤ k, and choose aj ∈ Aj and bj ∈ Bj , adjacent. For
a1 ∈ A1, v-c1-a1-aj-bj-bi-v is not a 6-hole, and so a1 ∈ N . But then v-a1-aj-bj-bi-v is a 5-hole, and
{ai, c1} is a coronet for it, a contradiction. Hence N does not have nonempty intersection with both
A \ A1 and B \ B1. Suppose next that N meets A \ A1 (and therefore does not meet B \ B1). If
A \ A1 6⊆ N∗, we may choose distinct i, j with 2 ≤ i, j ≤ k, such that ai ∈ N and aj /∈ N∗; but then
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{ai, aj , v} ∪ Bi includes a claw, a contradiction. Thus A \ A1 ⊆ N∗. 5.4 (with A1-A2-B2) implies
that A1 ⊆ N∗. 5.3 (with C1, C2, A3) implies that N ∩ C2 = ∅, and similarly N ∩ C ⊆ C1. If b1 ∈ B1

is antiadjacent to v, then v-c1-b1-b3-a3-v is a 5-hole (where a3 ∈ A3 and b3 ∈ B3 are adjacent), and
it does not dominate the vertices in C2, a contradiction. Thus B1 ⊆ N∗. By 5.4 (with C1-B1-B2),
C1 ⊆ N∗; but then v can be added to A1, a contradiction. Finally, if N meets neither of A \A1 and
B \ B1, then A2 ∪ A3 ∪ B2 ∪ B3 includes a 4-hole that does not dominate either of v, c1, contrary to
18.4. This proves that N ∩ C = ∅.

Next assume that N ∩ A1 6= ∅. 5.4 (with C1-A1-Ai) implies that A \ A1 ⊆ N∗. In particular,
N ∩ A2 6= ∅, and so 5.4 (with C2-A2-A1) implies that A ⊆ N∗. If N intersects B \ Bk, then the
same argument implies that B ⊆ N∗ and the claim holds. We assume then that N ∩ B ⊆ Bk. If
N ∩ Bk = ∅ then again the theorem holds; and otherwise v can be added to Ak, a contradiction.

Thus we may assume that N ∩A ⊆ Ak and N ∩B ⊆ Bk; and since we may assume that N 6= ∅, it
follows that Ck = ∅. By 5.4 (with A1-(N∩Ak)-Bk\N), it follows that N∩Ak is strongly anticomplete
to Bk \N , and similarly N ∩Bk is strongly anticomplete to Ak \N . Also, N ∩Ak is strongly complete
to N ∩Bk, for otherwise G contains a (2, 1, 1)-prism, contrary to 18.6. Let C ′

k = {v}, A′

k = Ak ∩N ,
B′

k = Bk ∩ N , A′

k+1
= Ak \ N , and B′

k+1
= Bk \ N (and set A′

i = Ai and so on, for 1 ≤ i < k); then
this contradicts the maximality of A ∪ B ∪ C. This proves (4).

Let A0, B0,M,Z be the sets of vertices v ∈ V (G)\(A∪B∪C) whose set of neighbours in A∪B∪C
is A,B,A ∪ B and ∅ respectively. By 5.5, A0, B0,M are strong cliques. Suppose that there exist
adjacent a ∈ A0 and b ∈ B0. If Ck = ∅, we can add a to Ak and b to Bk, and if Ck 6= ∅, we can define
Ak+1 = {a} and Bk+1 = {b}, in either case contradicting the maximality of A ∪ B ∪ C. Thus A0 is
strongly anticomplete to B0. Since A1 ∪C1 ∪A0∪M includes no claw, M is strongly complete to A0

and similarly to B0. Suppose that there exists z ∈ Z, and let N be the set of neighbours of z. Then
by 18.4, N ⊆ A0∪B0∪M , and N ∩M = ∅ since M ∩A1∪B2∪{z} includes no claw. If N meets both
A0 and B0, then G contains a (2, 1, 1)-prism, contrary to 18.6, so we may assume that N ⊆ A0. Since
G is claw-free and Z is stable by 18.4, no other member of Z has a neighbour in N . Hence every
vertex in V (G) \ (N ∪ {z}) is strongly {z}-anticomplete, and either strongly complete or strongly
anticomplete to N . By 4.2, applied to N, {z}, it follows that G is decomposable, a contradiction.
This proves that Z = ∅. Moreover, (Ak, Bk) is a homogeneous pair, nondominating since C1 6= ∅,
and so Ak, Bk both have cardinality ≤ 1. Also each of the sets Ai, Bi, Ci (1 ≤ i ≤ k − 1) is a
homogeneous set, and so they all have cardinality 1; and also the sets A0, B0,M are homogeneous
sets and therefore have cardinality ≤ 1. But then G is a line trigraph. This proves 18.8.

The following completes the third step of the proof of 18.1.

18.9 Let G be a claw-free trigraph, such that G has a 5-hole, G has no hole of length > 5, every
5-hole in G is dominating, α(G) ≥ 4, and G is not decomposable. If no 5-hole has a coronet, and G
contains no (1, 1, 1)-prism, then G is a long circular interval trigraph.

Proof. By 10.4 it suffices to show that no 5-hole has a coronet, crown, hat-diagonal, star-diagonal
or centre. Let C be a 5-hole. By hypothesis, C has no coronet. Also, if {s1, s2} is a crown for C, then
G|(V (C) ∪ {s1, s2}) contains a (1, 1, 1)-prism (delete the middle of the three common neighbours of
s1, s2 in C), a contradiction. C has no hat-diagonal since by 18.6, G contains no (2, 1, 1)-prism. By
18.6, C has no centre; so it remains to prove that C has no star-diagonal.
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Suppose that it does; let C have vertices c1- · · · -c5-c1 in order, and let s1, s2 be adjacent stars,
adjacent respectively to c1, . . . , c4 and to c3, c4, c5, c1. Since {s1, c1, c3, c4} is not a claw, c3 is strongly
adjacent to c4; since C has no coronet, there are no hats in positions 21

2
, 41

2
; and there is not both

a hat and a star in position 31

2
. Consequently, the first, third and fourth outcomes of 18.5 are

impossible, and so 18.5 implies that there is a stable set X with |X| = 4, consisting of two hats
x1, x2 in positions 1

2
and 11

2
respectively, and two clones x3, x4 in positions 3, 4 respectively. By 9.2,

s1 is adjacent to x2, x3 and antiadjacent to x1, and s2 is adjacent to x1, x4 and antiadjacent to x2. If
x3 is adjacent to s2 then {s2, x1, x3, x4} is a claw, while if x3 is antiadjacent to s2 then {s1, s2, x2, x3}
is a claw, in either case a contradiction. Hence C has no star-diagonal, and 10.4 implies that G is a
long circular interval trigraph. This proves 18.9.

For the fourth step of the proof of 18.1, we use the following.

18.10 Let G be a claw-free trigraph, such that G has a hole of length 4, G has no hole of length
> 4, α(G) ≥ 4, and G is not decomposable. Then G is a line trigraph.

Proof. By 18.8, we may assume that G contains no (1, 1, 1)-prism. Let c1- · · · -c4-c1 be a 4-hole. It is
dominating, by 10.3, since G contains no (1, 1, 1)-prism. By hypothesis, there is a stable set X with
|X| = 4. Thus each member of X either belongs to {c1, . . . , c4} or has at least two strong neighbours
in this set, by 10.2. If c1, c2 ∈ X, and so c1, c2 are semiadjacent, then the other two members of X
are not in V (C), and are both adjacent to c3, c4 and antiadjacent to c1, c2, and therefore are strongly
adjacent to each other by 5.5, a contradiction. Thus |X ∩V (C)| ≤ 1. If c1 ∈ X, then c2, c4 /∈ X, and
each is adjacent to at most one member of X \ {c1}, which is impossible. Thus c1, . . . , c4 /∈ X. Also,
c1, . . . , c4 each are adjacent to at most two members of X, and so equality holds, and therefore each
member of X is a strong hat relative to c1- · · · -c4-c1, all in different positions. Let X = {x1, . . . , x4},
where xi is a strong hat adjacent to ci, ci+1.

Consequently there are four nonempty strong cliques A1, . . . , A4, pairwise disjoint, such that:

• Ai is strongly complete to Ai+1 and strongly anticomplete to Ai+2 for 1 ≤ i ≤ 4 (reading
subscripts modulo 4)

• xi is strongly complete to Ai, Ai+1 and strongly anticomplete to Ai+2, Ai+3, for 1 ≤ i ≤ 4.

Choose A1, . . . , A4 with maximal union W . Let B be the set of all vertices v ∈ V (G) \ W that are
strongly W -complete. For i = 1, 2, 3, 4, let Hi be the set of all v ∈ V (G) \W such that v is strongly
complete to Ai ∪ Ai+1 and strongly anticomplete to Ai+2 ∪ Ai+3. Thus xi ∈ Hi (1 ≤ i ≤ 4).

(1) V (G) = W ∪ B ∪ H1 ∪ H2 ∪ H3 ∪ H4.

For suppose that v ∈ V (G) \ W . We claim that v ∈ B ∪ H1 ∪ H2 ∪ H3 ∪ H4. For let N,N∗ be
the sets of neighbours and strong neighbours of v respectively. Since every 4-hole is dominating, we
may assume that A1 ⊆ N∗. 5.4 (with A4-A1-A2) implies that N∗ includes one of A4, A2, and from
the symmetry we may assume that A2 ⊆ N∗. Suppose that N ∩ A3 6= ∅ and A3 6⊆ N∗. Choose
a3, a

′

3 ∈ A3 (possibly equal) such that a3 ∈ N and a′3 /∈ N∗. Then 5.4 (with x1-A2-a
′

3) implies
that x1 ∈ N∗; 5.3 implies that x4 /∈ N ; 5.4 (with a′3-A4-x4) implies that N ∩ A4 = ∅; 5.4 (with
x2-a3-A4) implies that x2 ∈ N∗; and then v-x2-a

′

3-a4-a1-v is a 5-hole (where a1 ∈ A1 and a4 ∈ A4),
a contradiction. Thus either A3 ⊆ N∗ or A3 ∩ N = ∅, and the same holds for A4. If N is disjoint
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from both A3, A4 then v ∈ H1 as claimed, and if N∗ includes both A3, A4 then v ∈ B as claimed.
We assume therefore that N∗ includes just one of them, say A3, and N is disjoint from A4. By 5.4,
x1, x2 ∈ N∗, and by 5.3, x3, x4 /∈ N , and so v can be added to A2, contrary to the maximality of W .
This proves (1).

It follows from (1) that for 1 ≤ i ≤ 4, all members of Ai are twins, and therefore |Ai| = 1, and
so Ai = {ci}. For 1 ≤ i ≤ 4, Hi is strongly anticomplete to Hi+1, since G has no 5-hole, and Hi

is strongly anticomplete to Hi+2 since G contains no (1, 1, 1)-prism. Thus H1, . . . ,H4 are pairwise
strongly anticomplete. By 5.5, each Hi is a strong clique. Let B1 be the set of all v ∈ B that are
strongly complete to H1 ∪ H3 and strongly anticomplete to H2 ∪ H4, and let B2 be those that are
strongly complete to H2 ∪ H4 and strongly anticomplete to H1 ∪ H3. We claim that B = B1 ∪ B2.
For let b ∈ B, and let N,N∗ be the sets of its neighbours and strong neighbours. 5.4 (with H1-c2-H2)
implies that N∗ includes one of H1,H2, say H1. By 5.3, N is disjoint from at least two of H2,H3,H4.
By 5.4 (with H2-c3-H3 and H3-c3-H4), H3 ⊆ N∗, and so N ∩ (H2 ∪ H4) = ∅. Thus v ∈ B1. This
proves that B = B1∪B2. Consequently all members of Hi are twins, and so Hi = {xi} for 1 ≤ i ≤ 4.
Now if b1 ∈ B1 and b2 ∈ B2 then {b1, b2, x1, x3} is not a claw, and so b1, b2 are strongly antiadjacent.
Thus B1 is strongly anticomplete to B2. By 5.5, B1, B2 are strong cliques, and so for i = 1, 2, all
members of Bi are twins. Hence |B1|, |B2| ≤ 1. But then G is a line trigraph. This proves 18.10.

Finally, we handle graphs without any holes at all, in the following.

18.11 Let G be a claw-free trigraph, such that G has no holes and α(G) ≥ 4. Then G is decompos-
able.

Proof. For a contradiction, suppose that G is not decomposable.

(1) There do not exist distinct x1, . . . , x4 ∈ V (G) such that x1 is adjacent to x2, and x3 is adja-
cent to x4, and {x1, x2} is strongly anticomplete to {x3, x4}.

For suppose that such x1, . . . , x4 exist. Choose connected sets A1, A2 with A1 ∪ A2 maximal such
that x1, x2 ∈ A1, x3, x4 ∈ A2, A1 ∩A2 = ∅, and A1 is strongly anticomplete to A2. Let X be the set
of vertices in V (G) \ (A1 ∪A2) with a neighbour in A1 ∪A2. We claim that X is a strong clique; for
let u, v ∈ X. By the maximality of A1 ∪ A2, both u, v have neighbours in both A1 and A2; and so
for i = 1, 2, there is a path Pi between u, v with interior in Ai. If u, v are antiadjacent, P1 ∪ P2 is
a hole, a contradiction. This proves that X is a strong clique, and therefore it is an internal clique
cutset, since |A1|, |A2| > 1, a contradiction. This proves (1).

Say a subset Y ⊆ V (G) is split if |Y | ≥ 4 and every connected subset C ⊆ Y satisfies |C| ≤ |Y |−2.
Since α(G) ≥ 4, there is a split subset Y ⊆ V (G). Choose Y maximal, and let the components of
G|Y be C1, . . . , Ck. Let V (G) \ Y = X. For each x ∈ X, we observe that x has neighbours in at
most two of C1, . . . , Ck, since G is claw-free; and if it has neighbours in at most one of C1, . . . , Ck,
then Y ∪{x} is split, a contradiction. Thus each x ∈ X has neighbours in exactly two of C1, . . . , Ck.
By (1) we may assume that |Ci| = 1 for 1 ≤ i ≤ k − 1.

(2) k = 3, and |Ck| > 1, and every x ∈ X has a neighbour in Ck.
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For since Y is split and |Ci| = 1 for 1 ≤ i < k, it follows that k ≥ 3. Since G is not decom-
posable, it does not admit a 0-join, and so X 6= ∅. Choose x0 ∈ X, with neighbours in Ci, Cj say.
Since Y ∪ {x0} is not split, it follows that |Y \ (Ci ∪ Cj)| ≤ 1, and so k = 3. Since |Ci| = 1 for
1 ≤ i < k, and |Y | ≥ 4, it follows that |Ck| ≥ 2. Every x ∈ X therefore has a neighbour in Ck, since
Y ∪ {x} is not split. This proves (2).

For i = 1, 2 let Xi be the set of vertices in X with a neighbour in Ci. Thus X = X1 ∪ X2. If
x ∈ X1 ∩ X2 then since x has a neighbour in C3 it follows that G contains a claw, a contradiction.
Thus X1 ∩ X2 = ∅. Let xi ∈ Xi (i = 1, 2). Since xi, ci are adjacent for i = 1, 2, it follows from (1)
that x1, x2 are adjacent. Moreover, if c ∈ C3 is adjacent to x1, then since {x1, c, c1, x2} is not a claw,
it follows that c is strongly adjacent to x2; and so every vertex in C3 is either strongly adjacent to
both x1, x2 or strongly antiadjacent to both. Since X1,X2 6= ∅ (because G does not admit a 0-join)
and the same holds for all choices of x1, x2, we deduce that C3 = M ∪N , where N,M are the sets of
vertices in C3 that are strongly complete and strongly anticomplete to X respectively. If n1, n2 ∈ N
are antiadjacent then {x1, n1, n2, c1} is a claw, where x1 ∈ X1; so N is a strong clique. By 4.2 it
follows that G is decomposable. This proves 18.11, and therefore completes the proof of 18.1.

19 Non-antiprismatic trigraphs

In view of 18.1 and 17.2, to complete the proof of 3.1 it remains to study non-antiprismatic trigraphs
G with α(G) ≤ 3 and with no hole of length > 5, and that is the topic of this section. We need a
number of lemmas before the main theorem.

19.1 Let G be a claw-free trigraph with α(G) ≤ 3, and let x, y ∈ V (G) be semiadjacent, such that
no vertex is strongly adjacent to both x, y. Then either G ∈ S0 ∪ S3 ∪ S6 or G is decomposable.

Proof. Let C be the set of vertices of G that are antiadjacent to both x, y. Then C is a strong
clique since α(G) ≤ 3, and the result follows from 11.1.

19.2 Let G be a claw-free trigraph, such that there is no hole in G of length > 5, every hole of
length 5 is dominating, and α(G) ≤ 3. Let C be a 5-hole in G with vertices c1- · · · -c5-c1, and let
there be hats in positions 11

2
, 21

2
respectively. Then G is decomposable.

Proof. For i = 1, . . . , 5, let Ci be the set of all clones in position i, and let Hi+ 1

2

, Si+ 1

2

be the set

of all hats and stars in position i + 1

2
respectively. (These sets are not necessarily disjoint.) Since G

has no 6-hole, Hi− 1

2

is strongly anticomplete to Hi+ 1

2

for i = 1, . . . , 5. By hypothesis, we may choose

h1 ∈ H
1

1

2

and h2 ∈ H
2

1

2

.

(1) There is no centre for C.

For suppose that z is a centre for C. Since {z, h1, c3, c5} is not a claw, z is antiadjacent to h1,
and similarly z is antiadjacent to h2. But then {c2, h1, h2, z} is a claw, a contradiction. This proves
(1).

(2) The following hold:
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• C1 ∪ {c1} is strongly antiadjacent to H
2

1

2

, and C3 ∪ {c3} is strongly antiadjacent to H
1

1

2

, and

in particular C2 ∩ (H
1

1

2

∪ H
2

1

2

) = ∅

• H 1

2

,H
3

1

2

are empty;

• at least one of H
4

1

2

, S
4

1

2

is empty; and

• C4 ∪ {c4} is strongly complete to C5 ∪ {c5}.

For let c′1 ∈ C1 ∪ {c1}. Then c′1 is adjacent to h1, c5, and since {c′1, h1, c5, h} is not a claw, it
follows that c′1, h are strongly antiadjacent for all h ∈ H

2
1

2

. Thus C1 ∪ {c1} is strongly antiadjacent

to H
2

1

2

, and in particular C2 ∩ H
2

1

2

= ∅. Similarly C3 ∪ {c3} is strongly antiadjacent to H
1

1

2

, and

C2∩H
1

1

2

= ∅. This proves the first assertion. For the second, suppose that there exists h3 ∈ H
3

1

2

say.

Since H
2

1

2

is strongly anticomplete to H
3

1

2

, it follows that h2, h3 are strongly antiadjacent. But h2 is

strongly antiadjacent to c1, as we saw, and similarly to c4, and so since every 5-hole is dominating,
h1-h3-c4-c5-c1-h1 is not a 5-hole (because h2 has no neighbours in it). Hence h1, h3 are antiadjacent.
But then {h1, h2, h3, c5} is stable, contradicting that α(G) ≤ 3. This proves the second assertion.
Next, suppose that h ∈ H

4
1

2

and s ∈ S
4

1

2

. By 9.2, s is strongly antiadjacent to h, h1, h2. If h is

antiadjacent to both h1, h2 then {s, h, h1, h2} is stable, a contradiction; if h is adjacent to say h1 and
strongly antiadjacent to h2 then s-c4-h-h1-c1-s is a 5-hole and h2 has at most one neighbour in it,
a contradiction; while if h is adjacent to both h1, h2 then {h, h1, h2, c4} is a claw, a contradiction.
Thus not both H

4
1

2

, S
4

1

2

are nonempty, and this proves the third assertion of (2). For the fourth

assertion, suppose that x ∈ C4 ∪ {c4} and y ∈ C5 ∪ {c5} are antiadjacent. By 9.2, x is antiadjacent
to h1 and y is antiadjacent to h2. Since {x, y, h1, h2} is not stable, we may assume that x is strongly
adjacent to h2, and so x 6= c4; but then x-c4-y-c1-c2-h2-x is a 6-hole, a contradiction. This proves
(2).

Let

B1 = H
1

1

2

∪ C1 ∪ {c1} ∪ S 1

2

∪ S
2

1

2

B2 = H
2

1

2

∪ C3 ∪ {c3} ∪ S
3

1

2

∪ S
1

1

2

B3 = C4 ∪ C5 ∪ {c4, c5} ∪ S
4

1

2

∪ H
4

1

2

B = B1 ∪ B2 ∪ B3.

(3) B1, B2, B3 are strong cliques.

First we show that B1 is a strong clique. By 9.2, H
1

1

2

∪C1∪{c1}∪S 1

2

is a strong clique, and S
2

1

2

is a

strong clique. We must show that every s ∈ S
2

1

2

is strongly adjacent to every t ∈ H
1

1

2

∪C1∪{c1}∪S 1

2

.

But every such t is adjacent to c2, and antiadjacent to h2 by (2), and since {c2, h2, s, t} is not a claw,
it follows that s, t are strongly adjacent. This proves that B1 is a strong clique, and similarly so
is B2. By 5.5, the sets C4 ∪ {c4}, C5 ∪ {c5}, S4

1

2

,H
4

1

2

are strong cliques; by (2), it follows that

C4∪C5∪{c4, c5} and S
4

1

2

∪H
4

1

2

are strong cliques; and by 9.2, C4∪C5∪{c4, c5} is strongly complete
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to S
4

1

2

∪ H
4

1

2

, and therefore B3 is a strong clique. This proves (3).

(4) There is no triad T with |T ∩ B| = 2.

For suppose that {x, y, z} is a triad, where x, y ∈ B and z /∈ B. Since C is dominating and
has no centre, and H 1

2

,H
3

1

2

are empty, it follows that z ∈ C2 ∪ {c2}. By 9.2, z is strongly complete

to all of H
1

1

2

, H
2

1

2

, S
1

1

2

, S
2

1

2

, and so x, y /∈ H
1

1

2

∪ H
2

1

2

∪ S
1

1

2

∪ S
2

1

2

. If x ∈ C1 ∪ {c1}, then x is

adjacent to h1 by 9.2, and so x-h1-z-c3-c4-c5-x is a 6-hole, a contradiction. Thus x /∈ C1 ∪ {c1}, and
similarly x, y /∈ C1 ∪ C3 ∪ {c1, c3}.

Since B is the union of the three cliques B1, B2, B3, and there is symmetry between B1, B2, we
may assume that x ∈ B1, and therefore x ∈ S 1

2

. Moreover, y ∈ B2 ∪ B3, and so

y ∈ C4 ∪ C5 ∪ {c4, c5} ∪ S
3

1

2

∪ S
4

1

2

∪ H
4

1

2

.

Since x ∈ S 1

2

, it follows that z 6= c2, and so z ∈ C2; and y 6= c4, c5. By 9.2, y /∈ C5∪H
4

1

2

. Since x, y, z

have no common neighbour (since G is claw-free) it follows that y is strongly antiadjacent to c1, c2,
and so y /∈ S

3
1

2

∪ S
4

1

2

. We deduce that y ∈ C4. By 9.2, x is adjacent to h1, and y is antiadjacent to

h1; but then x-h1-z-c3-y-c5-x is a 6-hole, a contradiction. This proves (4).

Now {h1, h2, c4} and {h1, h2, c5} are triads, both contained in B and sharing two vertices. From
16.1, we deduce that G is decomposable. This proves 19.2.

Let G be a trigraph. We say a triple (A1, A2, A3) is a spread in G if

• A1, A2, A3 are nonempty strong cliques, pairwise disjoint and pairwise anticomplete

• |A1| + |A2| + |A3| ≥ 4

• every vertex in V (G) \ (A1 ∪ A2 ∪ A3) is anticomplete to at most one of A1, A2, A3.

If (A1, A2, A3) is a spread, no vertex has neighbours in all three of A1, A2, A3 since G is claw-free.
For 1 ≤ i, j ≤ 3 with i 6= j, let Mi,j be the set of all vertices in V (G) \ (A1 ∪ A2 ∪ A3) that are
strongly complete to Ai ∪Aj , and let Ni,j be the set of all vertices in V (G) \ (A1 ∪A2 ∪A3) that are
strongly complete to Ai and have both a neighbour and an antineighbour in Aj . Thus Mi,j = Mj,i

but Ni,j and Nj,i are disjoint. If {i, j, k} = {1, 2, 3}, then Mi,j,Ni,j are both strongly anticomplete
to Ak, since no vertex has neighbours in all three of A1, A2, A3.

19.3 Let G be claw-free, with α(G) ≤ 3, with no hole of length > 5, and such that every 5-hole in
G is dominating; and let (A1, A2, A3) be a spread. Then

• the sets A1, A2, A3, Mi,j (1 ≤ i < j ≤ 3) and Ni,j (1 ≤ i 6= j ≤ 3) are pairwise disjoint and
have union V (G)

• if i, j, k ∈ {1, 2, 3} are distinct, then Ni,j is strongly anticomplete to Mj,k ∪ Nj,k

• if i, j ∈ {1, 2, 3} are distinct, then Ni,j is a strong clique

• if i, j, k ∈ {1, 2, 3} are distinct, and Mj,k ∪ Nj,k ∪ Nk,j 6= ∅, then Ni,j is strongly complete to
Ni,k
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• if i, j, k ∈ {1, 2, 3} are distinct, and Mj,k ∪Nj,k ∪Nk,j 6= ∅, then either Nj,i is strongly complete
to Nk,i or G is decomposable

• if i, j, k ∈ {1, 2, 3} are distinct, and some x ∈ Mi,j ∪Nj,i has an antineighbour y ∈ Ni,k, and G
is not decomposable, then Nk,j = Mj,k = ∅, and x, y are strongly complete to Nj,k.

Proof. For the first claim, clearly these sets are pairwise disjoint. Let v ∈ V (G)\ (A1 ∪A2∪A3); we
must show that v belongs to one of the given sets. Since no vertex has neighbours in all of A1, A2, A3,
we may assume that v has no neighbour in A3. If it has both an antineighbour a1 ∈ A1 and an
antineighbour a2 ∈ A2, then {v, a1, a2, a3} is a stable set of size 4 (for any a3 ∈ A3), contradicting
that α(G) ≤ 3. Thus we may assume that v is strongly A1-complete. From the third condition in
the definition of a spread, v has a neighbour in A2. If v is strongly A2-complete then v ∈ M1,2, and
otherwise v ∈ N1,2, and in either case the theorem holds. This proves the first claim of the theorem.

For the second claim, suppose that x ∈ Ni,j is adjacent to y ∈ Mj,k ∪ Nj,k. Choose aj ∈ Aj

antiadjacent to x, and choose ak ∈ Ak adjacent to y. Then {y, x, aj , ak} is a claw, a contradiction.
This proves the second statement.

For the third, let i, j, k ∈ {1, 2, 3} be distinct, and suppose that x, y ∈ Ni,j are antiadjacent. Let
ai ∈ Ai and ak ∈ Ak. By 18.2, there is a path x-p-q-y with p, q ∈ Aj. Then x-p-q-y-ai-x is a 5-hole,
and ak has no strong neighbour in it, and therefore has no neighbour in it since G is claw-free, a
contradiction. This proves the third claim.

For the fourth claim, suppose that x ∈ Ni,j is antiadjacent to y ∈ Ni,k, and there exists z ∈
Mj,k ∪ Nj,k ∪ Nk,j. There is a path between x, z with interior in Aj , and a path between z, y with
interior in Ak; let P be the path formed by the union of these two paths. Let ai ∈ Ai; then P can be
completed to a hole C via y-ai-x. Since G has no hole of length > 5, C has length ≤ 5, and so P has
length ≤ 3. Since z belongs to P , we may assume that no vertex of Aj is in P . Let aj ∈ Aj be an
antineighbour of x. Then aj has at most one strong neighbour in C, and therefore it has no neighbour
in C at all; and since every 5-hole is dominating, it follows that C has length 4. Consequently P is
x-z-y. Now z is strongly complete to one of Aj, Ak, say Aj ; and so z ∈ Mj,k ∪Nj,k, and yet x ∈ Ni,j

and x, z are adjacent, contrary to the second assertion above. This proves the fourth claim.
For the fifth claim, suppose that x ∈ Ni,k is antiadjacent to some y ∈ Nj,k. By hypothesis there

exist ai ∈ Ai and aj ∈ Aj , and a vertex z ∈ Mj,k ∪ Nj,k ∪ Nk,j adjacent to ai, aj . Hence there is a
path P between x, y with interior in {ai, aj , z}, using z. Since x, y are both not strongly complete
and not strongly anticomplete to Ak, it follows from 18.2 that there is a path Q of length 3 between
x, y with interior in Ak. The union of P,Q is a hole, and since G has no hole of length > 5 it follows
that P has length 2, and therefore x, y are adjacent to z. Relative to this 5-hole, ai, aj are hats in
consecutive positions, and therefore G is decomposable by 19.2. This proves the fifth claim.

For the sixth claim, suppose that x ∈ Mi,j ∪ Nj,i and y ∈ Ni,k are antiadjacent. Choose ai ∈ Ai

adjacent to x. Choose z ∈ Mj,k ∪Nj,k ∪Nk,j (if there is no such z then the claim is vacuously true).
Suppose first that z is antiadjacent to x. Let aj ∈ Aj be adjacent to z, and take a path P between
y, z with interior in Ak. Then x-ai-y-P -z-aj-x is a hole, and since every hole has length at most five,
it follows that P has length 1, and so y, z are adjacent. But in that case the hole has length five,
and since every 5-hole is dominating, 10.2 implies that every vertex in Ak has two consecutive strong
neighbours in the hole, and in particular, every vertex in Ak is strongly complete to y, contradicting
that y ∈ Ni,k. This proves that x is strongly adjacent to z. Suppose that y, z are antiadjacent. If z
is not strongly complete to Ak, there is a three-edge path between y, z with interior in Ak, by 18.2,
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and it can be completed via z-x-ai-y to a 6-hole, a contradiction. Hence z is strongly complete to Ak.
Choose ak ∈ Ak strongly adjacent to y (this exists since y is anticomplete to only one of A1, A2, A3,
namely Aj), and a′k ∈ Ak antiadjacent to y. Thus ak, a

′

k are distinct, and x-ai-y-ak-z-x is a 5-hole,
and a′k, aj are hats in consecutive positions, (where aj ∈ Aj), and the result follows from 19.2. We
may therefore assume that y, z are strongly adjacent. By the second claim above, Ni,k is strongly
anticomplete to Mj,k ∪ Nk,j, and so z ∈ Nj,k. This proves that Nk,j = Mj,k = ∅, and that x, y are
strongly complete to Nj,k, and therefore proves 19.3.

With notation as before, a spread (A1, A2, A3) is poor if M1,2 = N1,2 = N2,1 = ∅.

19.4 Let G be claw-free, with α(G) ≤ 3, with no hole of length > 5 and such that every 5-hole in G
is dominating. If G has a poor spread then either G ∈ S0 ∪ S3 ∪ S6 or G is decomposable.

Proof. We assume that G is not decomposable. Choose a poor spread (A1, A2, A3) with |A3| max-
imum, and define Mi,j etc. as before. If some vertex in A1 is semiadjacent to some vertex in A2,
then they have no common neighbours, and the result follows from 19.1. Thus we may assume that
A1, A2 are strongly anticomplete.

(1) N3,1, N3,2 are both empty.

For suppose that N3,1 is nonempty, and choose x ∈ N3,1 with as few strong neighbours in A1 as
possible. Let Y be the set of vertices in A1 strongly adjacent to x. Let X be the set of all ver-
tices in N3,1 that are strongly complete to Y and anticomplete to A1 \ Y ; thus, x ∈ X. Define
A′

3 = A3 ∪ X, A′

1 = A1 \ Y , and A′

2 = A2. We claim that (A′

1, A
′

2, A
′

3) is a poor spread. For cer-
tainly A′

1, A
′

2 are strong cliques, and so is A′

3 from the third statement of 19.3; and since Y 6= A1, it
follows that A′

1, A
′

2, A
′

3 are all nonempty. Moreover, A′

1, A
′

2, A
′

3 are pairwise anticomplete. Suppose
that v ∈ V (G) \ (A′

1 ∪ A′

2 ∪ A′

3), and is anticomplete to two of A′

1, A
′

2, A
′

3 (and therefore strongly
complete to the third, since α(G) ≤ 3; let the third be A′

i say). Consequently v /∈ A1 \ Y,A2, A3.
Moreover, every vertex in Y is strongly adjacent to x and to each vertex in A′

1, and so v /∈ Y . Hence
v /∈ A1, A2, A3, and therefore v has strong neighbours in two of A1, A2, A3 since (A1, A2, A3) is a
spread. Since this spread is poor, v has a strong neighbour in A3 and in A1 ∪ A2. Hence v has a
strong neighbour in A′

3, and so i = 3 and v is strongly complete to A′

3 and anticomplete to A′

1, A
′

2.
Since A′

2 = A2, v has no strong neighbour in A2, and therefore it has a strong neighbour in A1; and
since it has none in A′

1, it follows that v ∈ N3,1, and every strong neighbour of v in A1 belongs to
Y . From the choice of x, v is strongly complete to Y , and so v ∈ X, contradicting that v /∈ A′

1.
This proves that (A′

1, A
′

2, A
′

3) is a spread. Since (A1, A2, A3) is poor, M1,2 = N1,2 = N2,1 = ∅. Since
also A1, A2 are stronly anticomplete, it follows that no vertex of G has neighbours in both A′

1, A
′

2,
and therefore the spread (A′

1, A
′

2, A
′

3) is poor. But this contradicts the maximality of |A3|. Hence
N3,1 = ∅, and similarly N3,2 = ∅. This proves (1).

Choose ai ∈ Ai for i = 1, 2. For i = 1, 2, let Pi be the set of members of Mi,3 with an antineigh-
bour in Ni,3, and let Qi be the set of members of Ni,3 with an antineighbour in Mi,3. Note that, by
the second assertion of 19.3, N1,3 is strongly anticomplete to M2,3, and N2,3 is strongly anticomplete
to M1,3.

(2) P1 is strongly complete to M2,3, and P2 is strongly complete to M1,3. Moreover, Q1 is strongly
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complete to N2,3, and Q2 is strongly complete to N1,3.

For if p1 ∈ P1 has an antineighbour x ∈ M2,3, choose q1 ∈ Q1 antiadjacent to p1, and let a3 ∈ A3

be adjacent to q1. Then {a3, p1, q1, x} is a claw, a contradiction. This proves the first assertion, and
the second follows by symmetry. For the third, suppose that q1 ∈ Q1 has an antineighbour x ∈ N2,3;
let p1 ∈ P1 be antiadjacent to q1, and let a3 ∈ A3 be adjacent to q1. Then a1-p1-a3-q1-a1 is a 4-hole,
and since x, a2 are adjacent and a2 has no strong neighbour in this 4-hole, it follows that x has two
strong neighbours in this 4-hole, by 18.4 and 10.2. But x is antiadjacent to q1, p1, a1, a contradiction.
This proves the third claim, and the fourth follows by symmetry. This proves (2).

(3) Either M1,3 is strongly complete to N1,3 or M2,3 is strongly complete to N2,3.

For suppose not; then P1, Q1, P2, Q2 are all nonempty. For i = 1, 2 choose pi ∈ Pi and qi ∈ Qi,
antiadjacent. By (2), p1 is adjacent to p2 and q1 to q2. But then a1-p1-p2-a2-q2-q1-a1 is a 6-hole, a
contradiction. This proves (3).

(4) We may assume that N1,3, N2,3 are both nonempty, and M1,3,M2,3 are both strong cliques.

For suppose that, say, N2,3 = ∅. If also M2,3 = ∅, then since G admits no 0-join, it follows that there
exist vertices in A2, A3 that are semiadjacent; but these two vertices have no common neighbours,
and the theorem holds by 19.1. Thus we may assume that there exists m ∈ M2,3. Let S, T be the
set of all v ∈ M1,3 ∪N1,3 ∪ A1 ∪ A3 that are strongly M2,3-complete and strongly M2,3-anticomplete
respectively. Thus A3 ⊆ S and A1 ∪ N1,3 ⊆ T . We claim that (S, T ) is a homogeneous pair. First
let us see that S, T are strong cliques. If s1, s2 ∈ S are antiadjacent, then {m, s1, s2, a2} is a claw, a
contradiction; so S is a strong clique. If t1, t2 ∈ T are antiadjacent, then since A1 ∪ N1,3 is a strong
clique, it follows that at least one of t1, t2 ∈ M1,3, and therefore t1, t2 have a common neighbour in
A3, say a3; but then {a3, t1, t2,m} is a claw, a contradiction. This proves that S, T are both strong
cliques. Now suppose that v ∈ V (G) \ (S ∪ T ). We claim that v is either strongly S-complete or
strongly S-anticomplete, and either strongly T -complete or strongly T -anticomplete. Since v /∈ S∪T
it follows that v /∈ A3 ∪ A1 ∪ N1,3, and if v ∈ A2 ∪ M2,3 the claim holds, so we may assume that
v ∈ M1,3. Since v /∈ T , it has a neighbour x ∈ M2,3 say; and since every s ∈ S is adjacent to x,
and {x, s, v, a2} is not a claw, it follows that v is strongly complete to S. Since v /∈ S, it has an
antineighbour y ∈ M2,3. If t ∈ T is antiadjacent to v, then t /∈ A1, and so t has a neighbour a3 ∈ A3;
then {a3, v, t, y} is a claw, a contradiction. Thus v is strongly T -complete. This proves that (S, T )
is a homogeneous pair, nondominating because A2 6= ∅. By 4.3, it follows that |S|, |T | ≤ 1. Hence
|A1| = |A3| = 1 and N1,3 = ∅. By exchanging A1, A2, we deduce that |A2| = 1, contradicting the
definition of a spread.

This proves that N1,3, N2,3 are both nonempty. If there exist x, y ∈ M1,3, antiadjacent, choose
z ∈ N2,3, let a3 ∈ A3 be a neighbour of z, and then {a3, x, y, z} is a claw, a contradiction. Thus M1,3

is a strong clique, and similarly M2,3 is a strong clique. This proves (4).

(5) Mi,3 ⊆ Pi for i = 1, 2.

For by (3) and the symmetry, we may assume that M2,3 is strongly complete to N2,3. Define

98



V1 = (M1,3 \P1)∪M2,3, and V2 = V (G) \V1. If V1 = ∅ then the claim holds, so we may assume that
V1 6= ∅; and clearly V2 6= ∅. We claim that G is the hex-join of G|V1 and G|V2. For V1 is the union of
the two strong cliques M1,3 \ P1 and M2,3, and V2 is the union of the three strong cliques N2,3 ∪A2,
N1,3 ∪ A1 and P1 ∪ A3. Since M1,3 \ P1 is strongly anticomplete to N2,3 ∪ A2 and strongly complete
to N1,3 ∪ A1 and P1 ∪ A3, and M2,3 is strongly anticomplete to N1,3 ∪ A1 and strongly complete to
N2,3 ∪ A2 and P1 ∪ A3, it follows that G is a hex-join and therefore decomposable, a contradiction.
This proves (5).

(6) M1,3 = M2,3 = ∅.

For from (3) we may assume that P2 = ∅, and therefore from (5) M2,3 = ∅. Suppose that M1,3 6= ∅.
By (5), P1 6= ∅, and therefore Q1 6= ∅. Choose p1 ∈ P1 and q1 ∈ Q1, antiadjacent. If x ∈ N1,3 and
y ∈ N2,3 are adjacent, and a3 ∈ A3, then since {x, a1, a3, y} and {y, a3, a2, x} are not claws, it follows
that a3 is either strongly complete or strongly anticomplete to {x, y}. Consequently x, y have the
same neighbours in A3, for every such adjacent pair x, y. Let Z be the set of neighbours of q1 in A3

(so Z 6= ∅ since q1 ∈ N1,3). By (2), q1 is strongly complete to N2,3, and therefore every vertex in N2,3

is strongly complete to Z and strongly anticomplete to A3 \ Z. In particular, every vertex in A3 is
either strongly complete or strongly anticomplete to N2,3. We claim that every vertex x ∈ V (G)\N2,3

is either strongly complete or strongly anticomplete to N2,3. For suppose not; then x ∈ N1,3 \ Q1.
Since x has a neighbour in N2,3, it follows as before that x is strongly complete to Z and strongly
anticomplete to A3 \ Z. Let y ∈ N2,3 be antiadjacent to x. Choose z ∈ Z, and a3 ∈ A3 antiadjacent
to x (such a vertex a3 exists since x ∈ N1,3.) Thus a3 /∈ Z, and so y is antiadjacent to a3; but then
{z, a3, x, y} is a claw, a contradiction. This proves our claim that every vertex in V (G) \ N2,3 is
either strongly complete or strongly anticomplete to N2,3. Hence every vertex in V (G) \ (N2,3 ∪A2)
is either strongly complete or strongly anticomplete to N2,3, and anticomplete to A2. Suppose that
there exist a′2 ∈ A2 and a′3 ∈ A3 that are semiadjacent. If a′3 ∈ Z, then a′3 is adjacent to q1, and
so {a′3, p1, q1, a

′

2} is a claw, a contradiction. If a′3 /∈ Z, then a′2, a
′

3 have no common neighbours and
the result follows from 19.1. Thus we may assume that A2 is strongly anticomplete to A3. By 4.2 it
follows that G is decomposable, a contradiction. Hence M1,3 = ∅. This proves (6).

(7) If A1, A2 are strongly anticomplete to A3 then the result holds.

For then A1, A2 are both homogeneous sets, and so have cardinality one; and for i = 1, 2, the
set of neighbours of ai is Ni,3, which is a strong clique. Moreover, the set of vertices antiadjacent to
both a1, a2 is A3, which is also a strong clique, and the result follows from 11.2.

In view of (7) we may assume that a1 ∈ A1 is semiadjacent to some a3 ∈ A3. Now if a3 is adjacent
to some v ∈ N2,3 (and hence a3, v are strongly adjacent since F (G) is a matching) choose u ∈ A3

antiadjacent to v (this exists, since v ∈ N2,3, and is different from a3 since v is strongly adjacent
to a3); then {a3, u, v, a1} is a claw, a contradiction. Hence a3 is strongly anticomplete to N2,3. Let
S be the set of neighbours of a3 in N1,3. Since S ∪ N2,3 ∪ {a3, a1} includes no claw, it follows that
S is strongly anticomplete to N2,3. Since we may assume that A3 is not an internal clique cutset,
by 4.1, it follows that S 6= N1,3. Let n1 ∈ N1,3 \ S, and let Z be the set of neighbours of n1 in A3.
Thus a3 /∈ Z 6= ∅. For each z ∈ Z, a1-n1-z-a3-a1 is a 4-hole, and by 18.4 and 10.2, applied to the
pair n2a2, it follows that every n2 ∈ N2,3 has two strong neighbours in this 4-hole, and therefore is

99



strongly adjacent to n1, z. Hence N2,3 is strongly complete to N1,3 \ S. If x ∈ N1,3 \ S and y ∈ N2,3,
and a′3 ∈ A3, then since {x, a1, a

′

3, y} and {y, a′3, a2, x} are not claws, it follows that a′3 is either
strongly complete or strongly anticomplete to {x, y}. Consequently x, y have the same neighbours
and the same strong neighbours in A3, for every such pair x, y. Hence N1,3 \S,N2,3 are both strongly
complete to Z and strongly anticomplete to A3 \ Z. But then (N1,3 \ S) ∪ Z is an internal clique
cutset and the result follows from 4.1. This proves 19.4.

Now we can prove the main result of this section.

19.5 Let G be a claw-free trigraph, with α(G) ≤ 3, with no hole of length > 5 and such that every
5-hole in G is dominating. Then either G ∈ S0 ∪ S3 ∪ S6 ∪ S7, or G is decomposable.

Proof. We assume that G is not decomposable and not antiprismatic. We claim that G contains a
spread. For since G is not antiprismatic, and α(G) ≤ 3, it follows that there are three strong cliques
A1, A2, A3, all nonempty and pairwise disjoint and anticomplete, such that |A1 ∪ A2 ∪ A3| ≥ 4.
Choose three such cliques with |A3| maximum (thus |A3| ≥ 2), and subject to that with A1∪A2∪A3

maximal. Since α(G) ≤ 3, every vertex v /∈ A1 ∪ A2 ∪ A3 is strongly complete to at least one of
A1, A2, A3, and therefore from the maximality of A1 ∪ A2 ∪ A3, v has strong neighbours in two of
A1, A2, A3. Consequently (A1, A2, A3) is a spread. Define the sets Mi,j ,Ni,j as before. By 19.4, we
may assume that the spreads (A1, A2, A3), (A2, A3, A1), (A3, A1, A2) are not poor.

(1) N1,2 ∪ N2,1 ∪ M1,2 is a strong clique.

For suppose that there are two antiadjacent vertices in this set, say x, y. Since x, y both have
neighbours in A1, and both have neighbours in A2, there is a hole C containing x, y with V (C) ⊆
A1 ∪ A2 ∪ {x, y}. No vertex of A3 has a strong neighbour in C, and since G has no hole of length
> 5 and every 5-hole is dominating, it follows that C has length 4. But this contradicts 18.4 and
10.2 (applied to two vertices in A3). This proves (1).

(2) N3,1 = N3,2 = ∅; N1,2 is strongly complete to M1,3; and N2,1 is strongly complete to M2,3.

For suppose that there exists x ∈ N3,1. Choose a1 ∈ A1 antiadjacent to x. Then the strong
cliques {a1}, A2, and A3 ∪ {x} are pairwise disjoint, and pairwise anticomplete, contradicting the
maximality of |A3|. Hence N3,1 = N3,2 = ∅. Now suppose that x ∈ N1,2 has an antineighbour
y ∈ M1,3. Let a2 ∈ A2 be an antineighbour of x. Then the three strong cliques {x}, {a2} and
A3 ∪ {y} again contradict the choice of A1, A2, A3. This proves (2).

(3) Either M1,3 is strongly complete to N1,3, or M2,3 is strongly complete to N2,3.

For suppose that for i = 1, 2 there exist mi ∈ Mi,3 and ni ∈ Ni,3, antiadjacent, and choose
ai ∈ Ai for i = 1, 2. Now n1, n2 are adjacent, by the fifth assertion of 19.3. If m1,m2 are adja-
cent, then m1-a1-n1-n2-a2-m2-m1 is a 6-hole, a contradiction. Thus m1,m2 are antiadjacent, and
so m1-a1-n1-n2-a2-m2 is a path P of length 5. Choose a3 ∈ A3 antiadjacent to n1. Then since
{n2, n1, a3, a2} is not a claw, a3 is antiadjacent to n2; and so P can be completed to a 7-hole via
m2-a3-m1, a contradiction. This proves (3).
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For i = 1, 2, let Xi be the set of all vertices in M1,2 with an antineighbour in Ni,3. Let
X0 = M1,2 \ (X1 ∪ X2).

(4) X1 ∩ X2 = ∅, and one of X1,M2,3 = ∅, and one of X2,M1,3 = ∅.

For if x ∈ X1, then by the sixth claim of 19.3, M2,3 = ∅, and x is strongly complete to N2,3;
and therefore x /∈ X2. This proves (4).

(5) At least one of M1,3,M2,3 is nonempty.

For suppose not. Since N1,3 ∪N2,3 is a strong clique, by the third and fifth claims of 19.3, and since
G is not decomposable, it follows from 4.1 that N1,3 ∪ N2,3 is not an internal clique cutset. Hence
some vertex in A3 is semiadjacent to some vertex in A1∪A2, say a3 ∈ A3 is semiadjacent to a1 ∈ A1.
By 19.1, there exists n1 ∈ N1,3 adjacent to both a1, a3. Choose n2 ∈ N2,3 (and therefore adjacent to
n1), and choose a′3 ∈ A3 antiadjacent to n2. If n2, a3 are antiadjacent then {n1, a1, a3, n2} is a claw,
and if n2, a3 are adjacent then {a3, n2, a

′

3, a1} is a claw, in either case a contradiction. This proves (5).

(6) It is not the case that M1,3 is strongly complete to N1,3 and M2,3 is strongly complete to N2,3.

For let B1 = A1 ∪ N1,2 ∪ N1,3 ∪ X2, B2 = A2 ∪ N2,1 ∪ N2,3 ∪ X1, and B3 = A3. Then B1, B2, B3 are
disjoint strong cliques, by 19.3 and (4), and their union is not V (G), by (5); and since {a1, a2, a3} is
a triad for each choice of ai ∈ Ai (i = 1, 2, 3), and there are at least two such vertices a3, it follows
from 16.1 that there is a triad {t1, t2, t3} with t1, t2 ∈ B1 ∪ B2 ∪ B3 and t3 /∈ B1 ∪ B2 ∪ B3 (and
therefore t3 ∈ M1,3 ∪ M2,3 ∪ X0). Not both t1, t2 ∈ B3, so we may assume from the symmetry that
t1 ∈ B1. Since X0 is strongly complete to B1, it follows that t3 /∈ X0, and so t3 is strongly complete
to A3, and therefore t2 /∈ A3. Hence t2 ∈ B2, and t3 ∈ M1,3 ∪ M2,3, and from the symmetry we may
assume that t3 ∈ M1,3. By (4), X2 = ∅, and since M1,3 is strongly complete to N1,3 ∪ A1, it follows
that t1 ∈ N1,2. Since t3 ∈ M1,3, we deduce that N1,2 is not strongly complete to M1,3, contrary to
(2). This proves (6).

In view of (3) and (6), we may assume that M1,3 is strongly complete to N1,3 and M2,3 is not
strongly complete to N2,3. In particular, M2,3 6= ∅, and so X1 = ∅ by (4).

(7) |A1| = 1 and N1,2 = N2,1 = ∅.

For choose n2 ∈ N2,3 and m2 ∈ M2,3, antiadjacent; let a3 ∈ A3 be adjacent to n2, and choose
a2 ∈ A2. Then a2-m2-a3-n2-a2 is a 4-hole; no member of A1 has a strong neighbour in it, and no
member of N1,2 has two strong members in it, by the second assertion of 19.3; and so by 18.4 and
10.2 it follows that |A1| = 1 and N1,2 = ∅. Since every member of N2,1 has a strong neighbour in A1

and an antineighbour in A1, it follows that N2,1 = ∅. This proves (7).

Let A1 = {a1}, and let Y be the set of all vertices in M2,3 with an antineighbour in N2,3.

(8) Y is strongly complete to M1,3; Y is strongly anticomplete to X0; and Y is a strong clique.
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For let y ∈ Y , and choose x ∈ N2,3 antiadjacent to y. If y is antiadjacent to some m ∈ M1,3,
choose a3 ∈ A3 adjacent to x; then {a3, x, y,m} is a claw, a contradiction. Thus Y is strongly
complete to M1,3. If y is adjacent to some m ∈ X0, then {m,x, y, a1} is a claw, a contradiction. Now
suppose that there exist antiadjacent y1, y2 ∈ Y . Since the spread (A3, A1, A2) is not poor, one of
M1,3, N1,3 is nonempty. If there exists n ∈ N1,3, let a3 ∈ A3 be adjacent to n; then {a3, n, y1, y2} is
a claw, a contradiction. Thus there exists m ∈ M1,3, adjacent to y1, y2 since Y is complete to M1,3.
But then {m,a1, y1, y2} is a claw, a contradiction. Thus Y is a strong clique. This proves (8).

Let B1 = A1 ∪ N1,3 ∪ X2, B2 = A2 ∪ N2,3 and B3 = A3 ∪ Y . By (1), (2), (4), (8) and 19.3, these
three sets are all strong cliques.

(9) B1 ∪ B2 ∪ B3 = V (G).

For suppose not. Since {a1, a2, a3} is a triad for all ai ∈ Ai (i = 2, 3), 16.1 implies that there is a triad
{t1, t2, t3} with t1, t2 ∈ B1∪B2∪B3 and t3 /∈ B1∪B2∪B3. It follows that t3 ∈ X0∪M1,3∪(M2,3\Y ).
Now X0 is strongly complete to B1 ∪ B2, and M1,3 is strongly complete to B1 ∪ B3, by (4) and (8);
and therefore t3 ∈ M2,3 \Y . Hence t3 is strongly complete to B2, and so we may assume that t1 ∈ B1

and t2 ∈ B3. Since t3 is strongly complete to A3, it follows that t2 ∈ Y . If there exists n ∈ N1,3,
let a3 ∈ A3 be adjacent to n, and then {a3, n, t2, t3} is a claw, a contradiction. Thus N1,3 = ∅.
Since (A3, A1, A2) is not poor, there exists m1 ∈ M1,3. By (4), X2 = ∅, and so X0 = M1,2. For
a ∈ A2 ∪ A3, since {a, a1, t2, t3} is not a claw, it follows that a1, a are strongly antiadjacent; and so
a1 is strongly anticomplete to A2, A3. Choose m2 ∈ M1,2. Let Z = A2 ∪ A3 ∪ M2,3 ∪ N2,3; thus, A1

is strongly anticomplete to Z. Let P be the set of all vertices in Z strongly complete to M1,2 and
strongly anticomplete to M1,3, and let Q be the set of all vertices in Z that are strongly complete to
M1,3 and strongly anticomplete to M1,2. Since m1,m2 exist, it follows that P ∩ Q = ∅. Moreover,
A2∪N2,3 ⊆ P , and A3∪Y ⊆ Q, by (8). If p1, p2 ∈ P are antiadjacent, then {m2, a1, p1, p2} is a claw,
while if q1, q2 ∈ Q are antiadjacent then {m1, a1, q1, q2} is a claw, in either case a contradiction; thus,
P,Q are strong cliques. We claim that (P,Q) is a homogeneous pair. For let v ∈ V (G)\ (P ∪Q). We
claim that v is either strongly complete or strongly anticomplete to P , and either strongly complete
or strongly anticomplete to Q. This is true if v /∈ Z, so we assume that v ∈ Z, and consequently
v ∈ Z \ (P ∪ Q) ⊆ M2,3 \ Y . Suppose first that v has an antineighbour p ∈ P . Since v is strongly
complete to A2 ∪A3 ∪N2,3, it follows that p ∈ M2,3. If v has a neighbour x ∈ M1,2, then {x, a1, p, v}
is a claw, while if v has an antineighbour x ∈ M1,3 then {a3, x, p, v} is a claw, in either case a
contradiction; and otherwise v is strongly complete to M1,3 and strongly anticomplete to M1,2, and
therefore belongs to Q, a contradiction. Thus v is strongly complete to P . Suppose that v has an
antineighbour q ∈ Q. Since v is strongly complete to A2 ∪ A3 ∪ N2,3, it follows that q ∈ M2,3. If v
has a neighbour x ∈ M1,3 then {x, a1, v, q} is a claw, and if v has an antineighbour x ∈ M1,2 then
{a2, x, v, q} is a claw, in either case a contradiction; and otherwise v is strongly anticomplete to M1,3

and strongly complete to M1,2, and therefore belongs to P , a contradiction. This proves that (P,Q)
is a homogeneous pair, nondominating since A1 6= ∅. Since A3 ⊆ Q and |A3| ≥ 2, 4.3 implies that G
is decomposable, a contradiction. This proves (9).

From (9) it follows that X0 = M1,3 = ∅ and Y = M2,3. Since (A3, A1, A2) is not poor, N1,3 is
nonempty; and we have already seen that M2,3 is not strongly complete to N2,3, and therefore both
Y and N2,3 are nonempty. If x ∈ N1,3 and y ∈ N2,3, then x, y are adjacent by the fifth claim of
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19.3; and if a3 ∈ A3, then since {x, a1, a3, y} and {y, a2, a3, x} are not claws, it follows that a3 is
adjacent to both or neither of x, y. Consequently x, y have the same neighbours in A3, and they
are both strongly adjacent to all their neighbours in A3. Since this holds for all choices of x, y, and
since N1,3, N2,3 are both nonempty, it follows that there exists Z ⊆ A3 such that every vertex in
N1,3 ∪N2,3 is strongly complete to Z and strongly anticomplete to A3 \Z. Since every vertex in N1,3

has a neighbour and an antineighbour in A3, it follows that ∅ 6= Z 6= A3. If a3 ∈ A3 \ Z, then no
vertex is strongly adjacent to both a1, a3, and so a1, a3 are not semiadjacent by 19.1; and a3, a2 are
not semiadjacent where a2 ∈ A2 since {a2, a3, x2, n2} is not a claw, where x2 ∈ X2 and n2 ∈ N2,3

are antiadjacent. Thus A3 \Z is strongly anticomplete to A1 ∪A2, and so all members of A3 \Z are
twins; and therefore |A3 \ Z| = 1. Let A3 \ Z = {a3} say. We claim that all neighbours of a3 are
strongly adjacent to a3 and to each other. For the set of neighbours of a3 is Z ∪Y , and Z ∪Y ∪{a3}
is indeed a strong clique. Moreover, all neighbours of a1 are strongly adjacent to a1 and to each
other; for a1 is strongly antiadjacent to all a2 ∈ A2 (since {a2, a1, x, y} is not a claw, where y ∈ Y
and x ∈ N2,3 are antiadjacent), and so the set of neighbours of a1 is N1,3 ∪X2, and N1,3 ∪X2 ∪ {a1}
is indeed a strong clique. But then the hypotheses of 11.2 are satisfied by the pair a1, a3, and the
result follows from 11.2. This proves 19.5.

Finally, let us explicitly prove the main theorem.

Proof of 3.1. If some hole has length ≥ 6, the result follows from 17.2, so we assume that every
hole has length at most 5, and in particular, G contains no long prism. By 14.3, we may assume
that every 5-hole is dominating. If α(G) ≥ 4, the result follows from 18.1, and otherwise it follows
from 19.5. This proves 3.1.
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