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Abstract

A graph is claw-free if no vertex has three pairwise nonadjacent neighbours. In earlier papers of this
series we proved that every claw-free graph either belongs to one of several basic classes that we
described explicitly, or admits one of a few kinds of decomposition. In this paper we convert this
“decomposition” theorem into a theorem describing the global structure of claw-free graphs.



1 Introduction

The main goal of this series of papers is to prove a theorem describing how to build the “most
general” claw-free graph. In earlier papers, particularly in [4], we proved that every claw-free graph
either belongs to one of a few basic classes that were we able to describe explicitly, or it admits
one of a few kinds of decomposition. The decompositions all have inverses that are constructions
producing larger claw-free graphs from smaller ones, so one might think we were done; the most
general claw-free graph can be built by iterating these constructions, starting from graphs in our
basic classes. But with care we can obtain a much more informative result. For instance, one of our
constructions does not need to be iterated; it can be performed just in one round. A second only
applies to very restricted classes of graphs, and for such graphs it is essentially the only construction
needed. A third does need to be iterated, but the graphs that result from this process have a sort
of generalized line graph structure and are better viewed in that light. Some of the constructions
cannot be applied to graphs in some basic classes at all. The goal of this paper is to sort out all
these issues.

2 Trigraphs

All graphs in this paper are finite and simple, that is, have no loops or parallel edges. As in earlier
papers, it is helpful to work with “trigraphs” rather than with graphs. A trigraph G consists of a
finite set V (G) of vertices, and a map θG : V (G)2 → {1, 0,−1}, satisfying:

• for all v ∈ V (G), θG(v, v) = 0

• for all distinct u, v ∈ V (G), θG(u, v) = θG(v, u)

• for all distinct u, v, w ∈ V (G), at most one of θG(u, v), θG(u,w) = 0.

We call θG the adjacency function of G. For distinct u, v in V (G), we say that u, v are strongly
adjacent if θG(u, v) = 1, strongly antiadjacent if θG(u, v) = −1, and semiadjacent if θG(u, v) = 0. We
say that u, v are adjacent if they are either strongly adjacent or semiadjacent, and antiadjacent if they
are either strongly antiadjacent or semiadjacent. Also, we say u is adjacent to v and u is a neighbour
of v if u, v are adjacent (and a strong neighbour if u, v are strongly adjacent); u is antiadjacent to v
and u is an antineighbour of v if u, v are antiadjacent. We denote by F (G) the set of all pairs {u, v}
such that u, v ∈ V (G) are distinct and semiadjacent. Thus a trigraph G is a graph if F (G) = ∅.

For a vertex a and a set B ⊆ V (G) \ {a}, we say that a is complete to B or B-complete if a
is adjacent to every vertex in B; and that a is anticomplete to B or B-anticomplete if a has no
neighbour in B. For two disjoint subsets A and B of V (G) we say that A is complete, respectively
anticomplete, to B, if every vertex in A is complete, respectively anticomplete, to B. (We sometimes
say A is B-complete, or the pair (A,B) is complete, meaning that A is complete to B.) Similarly,
we say that a is strongly complete to B if a is strongly adjacent to every member of B, and so on.

Let G be a trigraph. A clique in G is a subset X ⊆ V (G) such that every two members of X are
adjacent, and a strong clique is a subset such that every two of its members are strongly adjacent.
A clique with cardinality three is a triangle. A set X ⊆ V (G) is stable if every two of its members
are antiadjacent, and strongly stable if every two of its members are strongly antiadjacent. A triad
in a trigraph G means a stable set with cardinality three.
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We say a trigraph H is a thickening of a trigraph G if for every v ∈ V (G) there is a nonempty
subset Xv ⊆ V (H), all pairwise disjoint and with union V (H), satisfying the following:

• for each v ∈ V (G), Xv is a strong clique of H

• if u, v ∈ V (G) are strongly adjacent in G then Xu is strongly complete to Xv in H

• if u, v ∈ V (G) are strongly antiadjacent in G then Xu is strongly anticomplete to Xv in H

• if u, v ∈ V (G) are semiadjacent in G then Xu is neither strongly complete nor strongly anti-
complete to Xv in H.

If X ⊆ V (G), we define the trigraph G|X induced on X as follows. Its vertex set is X, and its
adjacency function is the restriction of θG to X2. We define G \ X = G|(V (G) \ X). Isomorphism
for trigraphs is defined in the natural way, and if G,H are trigraphs, we say that G contains H and
H is an induced subtrigraph of G if there exists X ⊆ V (G) such that H is isomorphic to G|X.

A claw is a trigraph with four vertices a0, a1, a2, a3, such that {a1, a2, a3} is stable and a0 is
complete to {a1, a2, a3}. If X ⊆ V (G) and G|X is a claw, we often loosely say that X is a claw; and
if no induced subtrigraph of G is a claw, we say that G is claw-free. It is easy to check that if H is
a thickening of a claw-free trigraph G, then H is also claw-free.

Let us say a trigraph G is connected if there is no partition (V1, V2) of V (G) such that V1, V2 6= ∅
and V1 is strongly anticomplete to V2. To understand all claw-free trigraphs, it evidently suffices to
understand those that are connected, because the others can be built from the connected ones by
taking disjoint unions in the natural way. We find that connected claw-free trigraphs fall naturally
into three classes:

• those that admit a partition of their vertex set into three strong cliques

• those that admit a “nontrivial strip-structure” (defined later), and

• those for which neither of the above holds.

We shall see that for each of the three classes, the trigraphs in that class can be built starting
from certain basic trigraphs and piecing them together by means of certain operations; but the basic
trigraphs and the operations are different for the three classes, and it is most convenient to treat the
three classes separately. Our characterization for the first class is given in 4.1, and for the second and
third in 7.2, but let us state rudimentary versions of those results now. What follows is somewhat
vague, because we are postponing a number of important definitions, but we hope that it will give
the reader a better idea of the goal of this paper. Here is a construction.

• Start with a trigraph G0 that is a disjoint union of strong cliques. Take a partition of V (G0)
into strongly stable sets X1, . . . , Xk, such that each Xi satisfies 1 ≤ |Xi| ≤ 2.

• For 1 ≤ i ≤ k, take a trigraph Gi (where G0, G1, . . . , Gk are pairwise vertex-disjoint) and a
subset Yi ⊆ V (Gi) with |Yi| = |Xi|. (When we apply this, the pairs (Gi, Yi) will be taken from
an explicit list of allowed pairs. In particular, Gi is claw-free, Yi is strongly stable in Gi, and
for each vertex in Yi, its neighbour set in Gi is a strong clique.) Take the disjoint union of
G0, . . . , Gk.
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• For 1 ≤ i ≤ k, take a bijection between Xi and Yi; and for each x ∈ Xi and its mate y ∈ Yi,
make the neighbour set of x strongly complete to the neighbour set of y, and then delete x, y.
(The order of these operations does not affect the final outcome.)

Then we can state the essentials of our main theorems as follows. (We leave the reader to check
that this follows from the full versions 7.2 and 4.1.)

2.1 For every connected claw-free trigraph G, one of the following holds:

• G can be constructed as above, where all the pairs (Gi, Yi) are taken from an explicit list
described later in the paper (either Gi is a three-vertex path and Yi consists of its two ends, or
(Gi, Yi) is a so-called thickening of a member of one of Z1, . . . ,Z15)

• G belongs to one of three classes (the thickenings of members of S1,S3,S7) described explicitly
later

• the vertex set of G can be partitioned into three strong cliques. If so, then G can be expressed
as a sequence of disjoint pieces, where the adjacency between pieces is specified by a rule given
later, and each piece belongs to one of five classes (the thickenings of permutations of members
of T C1, . . . , T C5) described explicitly later.

3 Some trigraphs

Here are some types of trigraphs that will be important for us. These constitute most of the building
blocks that we need for the results just mentioned (it is convenient to collect them in one place,
although we shall not need them all immediately.)

• Line trigraphs. Let H be a graph, and let G be a trigraph with V (G) = E(H). We say that
G is a line trigraph of H if for all distinct e, f ∈ E(H):

– if e, f have a common end in H then they are adjacent in G, and if they have a common
end of degree at least three in H, then they are strongly adjacent in G

– if e, f have no common end in H then they are strongly antiadjacent in G.

We say that G ∈ S0 if G is isomorphic to a line trigraph of some graph. It is easy to check
that any line trigraph is claw-free.

• Trigraphs from the icosahedron. The icosahedron is the unique planar graph with twelve
vertices all of degree five. Let it have vertices v0, v1, . . . , v11, where for 1 ≤ i ≤ 10, vi is adjacent
to vi+1, vi+2 (reading subscripts modulo 10), and v0 is adjacent to v1, v3, v5, v7, v9, and v11 is
adjacent to v2, v4, v6, v8, v10. Let this graph be G0, regarded as a trigraph (so no pairs are
semiadjacent in G0). Let G1 be obtained from G0 by deleting v11. Let G2 be obtained from
G1 by deleting v10, and possibly making v1 semiadjacent to v4 or making v6 semiadjacent to
v9 (or both). All these trigraphs (G0, G1 and the several possibilities for G2 are claw-free); let
S1 be the class of all such trigraphs.
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• The trigraphs S2. Let H be the trigraph with vertex set {v1, . . . , v13}, with adjacency as
follows. v1- · · · -v6-v1 is a hole in G of length 6. Next, v7 is adjacent to v1, v2; v8 is adjacent to
v4, v5 and possibly to v7; v9 is adjacent to v6, v1, v2, v3; v10 is adjacent to v3, v4, v5, v6, v9; v11

is adjacent to v3, v4, v6, v1, v9, v10; v12 is adjacent to v2, v3, v5, v6, v9, v10; and v13 is adjacent to
v1, v2, v4, v5, v7, v8. No other pairs are adjacent, and all adjacent pairs are strongly adjacent
except possibly for v7, v8 and v9, v10. (Thus the pair v7v8 may be strongly adjacent, semiadja-
cent or strongly antiadjacent; the pair v9v10 is either strongly adjacent or semiadjacent.) We
say G ∈ S2 if G is isomorphic to H \ X, where X ⊆ {v7, v11, v12, v13}.

• Long circular interval trigraphs. Let Σ be a circle, and let F1, . . . , Fk ⊆ Σ be homeomorphic
to the interval [0, 1], such that no two of F1, . . . , Fk share an end-point, and no three of them
have union Σ. Now let V ⊆ Σ be finite, and let G be a trigraph with vertex set V in which,
for distinct u, v ∈ V ,

– if u, v ∈ Fi for some i then u, v are adjacent, and if also at least one of u, v belongs to the
interior of Fi then u, v are strongly adjacent

– if there is no i such that u, v ∈ Fi then u, v are strongly antiadjacent.

Such a trigraph G is called a long circular interval trigraph. We write G ∈ S3 if G is a long
circular interval trigraph.

• Modifications of L(K6). Let H be a graph with seven vertices h1, . . . , h7, in which h7 is
adjacent to h6 and to no other vertex, h6 is adjacent to at least three of h1, . . . , h5, and there
is a cycle with vertices h1-h2- · · · -h5-h1 in order. Let J(H) be the graph obtained from the line
graph of H by adding one new vertex, adjacent precisely to those members of E(H) that are
not incident with h6 in H. Then J(H) is a claw-free graph. Let G be either J(H) (regarded
as a trigraph), or (in the case when h4, h5 both have degree two in H), the trigraph obtained
from J(H) by making the vertices h3h4, h1h5 ∈ V (J(H)) semiadjacent. Let S4 be the class of
all such trigraphs G.

• The trigraphs S5. Let n ≥ 2. Construct a trigraph G as follows. Its vertex set is the
disjoint union of four sets A,B,C and {d1, . . . , d5}, where |A| = |B| = |C| = n, say A =
{a1, . . . , an}, B = {b1, . . . , bn} and C = {c1, . . . , cn}. Let X ⊆ A ∪ B ∪ C with |X ∩ A|, |X ∩
B|, |X ∩ C| ≤ 1. Adjacency is as follows: A,B,C are strong cliques; for 1 ≤ i, j ≤ n, ai, bj are
adjacent if and only if i = j, and ci is strongly adjacent to aj if and only if i 6= j, and ci is
strongly adjacent to bj if and only if i 6= j. Moreover

– ai is semiadjacent to ci for at most one value of i ∈ {1, . . . , n}, and if so then bi ∈ X

– bi is semiadjacent to ci for at most one value of i ∈ {1, . . . , n}, and if so then ai ∈ X

– ai is semiadjacent to bi for at most one value of i ∈ {1, . . . , n}, and if so then ci ∈ X

– no two of A \ X, B \ X, C \ X are strongly complete to each other.

Also, d1 is strongly A∪B∪C-complete; d2 is strongly complete to A∪B, and either semiadjacent
or strongly adjacent to d1; d3 is strongly complete to A ∪ {d2}; d4 is strongly complete to
B∪{d2, d3}; d5 is strongly adjacent to d3, d4; and all other pairs are strongly antiadjacent. Let
the trigraph just constructed be G, and let H = G|(V (G) \X). Then H is claw-free; let S5 be
the class of all such trigraphs H.
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• Near-antiprismatic trigraphs. Let n ≥ 2. Construct a trigraph H as follows. Its vertex
set is the disjoint union of three sets A,B,C, where |A| = |B| = n + 1 and |C| = n, say
A = {a0, a1, . . . , an}, B = {b0, b1, . . . , bn} and C = {c1, . . . , cn}. Adjacency is as follows.
A,B,C are strong cliques. For 0 ≤ i, j ≤ n with (i, j) 6= (0, 0), let ai, bj be adjacent if and only
if i = j, and for 1 ≤ i ≤ n and 0 ≤ j ≤ n let ci be adjacent to aj , bj if and only if i 6= j 6= 0.
a0, b0 may be semiadjacent or strongly antiadjacent. All other pairs not specified so far are
strongly antiadjacent. Now let X ⊆ A ∪ B ∪ C \ {a0, b0} with |C \ X| ≥ 2. Let all adjacent
pairs be strongly adjacent except:

– ai is semiadjacent to ci for at most one value of i ∈ {1, . . . , n}, and if so then bi ∈ X

– bi is semiadjacent to ci for at most one value of i ∈ {1, . . . , n}, and if so then ai ∈ X

– ai is semiadjacent to bi for at most one value of i ∈ {1, . . . , n}, and if so then ci ∈ X

Let the trigraph just constructed be H, and let G = H \X. Then G is claw-free; let S6 be the
class of all such trigraphs G. We call such a trigraph G near-antiprismatic.

• Antiprismatic trigraphs. Let us say a trigraph is antiprismatic if for every X ⊆ V (G) with
|X| = 4, X is not a claw and there are at least two pairs of vertices in X that are strongly
adjacent. If G is a trigraph, let H be the graph with vertex set V (G) in which vertices are
adjacent in H if and only if they are antiadjacent in G; then G is antiprismatic if and only if
H is what we called a “prismatic” graph in [1, 2] and every semiadjacent pair of vertices of G
is what we called a “changeable” edge of H. (See those papers for a definition of “prismatic”
and “changeable”.) In these two papers we listed all prismatic graphs and all ways in which an
edge of such a graph can be changeable, and so that provides a description of all antiprismatic
trigraphs. Let S7 be the class of all antiprismatic trigraphs.

4 Three strong cliques

As we said, we plan to tackle the three classes of connected claw-free trigraphs separately; and first we
handle the trigraphs G such that V (G) can be partitioned into three strong cliques. A three-cliqued
trigraph (G,A,B,C) consists of a trigraph G and three strong cliques A,B,C of G, pairwise disjoint
and with union V (G). If G is also claw-free we say that (G,A,B,C) is a three-cliqued claw-free
trigraph.

If (G,A,B,C) is a three-cliqued trigraph, and H is a thickening of G, let Xv (v ∈ V (G)) be
the corresponding strong cliques of H; then ∪v∈AXv is a strong clique A′ say of H, and if we define
B′, C ′ from B,C similarly, then (H,A′, B′, C ′) is a three-cliqued trigraph, that we say is a thickening
of (G,A,B,C).

Let n ≥ 0, and for 1 ≤ i ≤ n, let (Gi, Ai, Bi, Ci) be a three-cliqued trigraph, where V (G1), . . . , V (Gn)
are all nonempty and pairwise vertex-disjoint. Let A = A1 ∪ · · · ∪ An, B = B1 ∪ · · · ∪ Bn, and
C = C1∪ · · ·∪Cn, and let G be the trigraph with vertex set V (G1)∪ · · ·∪V (Gn) and with adjacency
as follows:

• for 1 ≤ i ≤ n, G|V (Gi) = Gi;

• for 1 ≤ i < j ≤ n, Ai is strongly complete to V (Gj)\Bj ; Bi is strongly complete to V (Gj)\Cj ;
and Ci is strongly complete to V (Gj) \ Aj ; and
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• for 1 ≤ i < j ≤ n, if u ∈ Ai and v ∈ Bj are adjacent then u, v are both in no triads; and the
same applies if u ∈ Bi and v ∈ Cj, and if u ∈ Ci and v ∈ Aj.

In particular, A,B,C are strong cliques, and so (G,A,B,C) is a three-cliqued trigraph; we call the
sequence (Gi, Ai, Bi, Ci) (i = 1, . . . , n) a worn hex-chain for (G,A,B,C). When n = 2 we say that
(G,A,B,C) is a worn hex-join of (G1, A1, B1, C1) and (G2, A2, B2, C2). Note also that every triad
of G is a triad of one of G1, . . . , Gn, and if each Gi is claw-free then so is G. If we replace the third
condition above by the strengthening

• for 1 ≤ i < j ≤ n, the pairs (Ai, Bj), (Bi, Cj) and (Ci, Aj) are strongly anticomplete

we call the sequence a hex-chain for (G,A,B,C); and if n = 2, (G,A,B,C) is a hex-join of
(G1, A1, B1, C1) and (G2, A2, B2, C2).

Here are some examples of three-cliqued claw-free trigraphs.

• A type of line trigraph. Let v1, v2, v3 be distinct nonadjacent vertices of a graph H, such
that every edge of H is incident with one of v1, v2, v3. Let v1, v2, v3 all have degree at least three,
and let all other vertices of H have degree at least one. Moreover, for all distinct i, j ∈ {1, 2, 3},
let there be at most one vertex different from v1, v2, v3 that is adjacent to vi and not to vj in
H. Let A,B,C be the sets of edges of H incident with v1, v2, v3 respectively, and let G be a
line trigraph of H. Then (G,A,B,C) is a three-cliqued claw-free trigraph; let T C 1 be the class
of all such three-cliqued trigraphs such that every vertex is in a triad.

• Long circular interval trigraphs. Let G be a long circular interval trigraph, and let Σ
be a circle with V (G) ⊆ Σ, and F1, . . . , Fk ⊆ Σ, as in the definition of long circular interval
trigraph. By a line we mean either a subset X ⊆ V (G) with |X| ≤ 1 , or a subset of some
Fi homeomorphic to the closed unit interval, with both end-points in V (G). Let L1, L2, L3 be
pairwise disjoint lines with V (G) ⊆ L1 ∪L2 ∪L3; then (G,V (G)∩L1, V (G)∩L2, V (G)∩L3) is
a three-cliqued claw-free trigraph. We denote by T C2 the class of such three-cliqued trigraphs
with the additional property that every vertex is in a triad.

• Near-antiprismatic trigraphs. Let H be a near-antiprismatic trigraph, and let A,B,C,X
be as in the definition of near-antiprismatic trigraph. Let A′ = A \ X and define B ′, C ′

similarly; then (H,A′, B′, C ′) is a three-cliqued claw-free trigraph. We denote by T C3 the class
of all three-cliqued trigraphs with the additional property that every vertex is in a triad.

• Antiprismatic trigraphs. Let G be an antiprismatic trigraph and let A,B,C be a partition
of V (G) into three strong cliques; then (G,A,B,C) is a three-cliqued claw-free trigraph. We
denote the class of all such three-cliqued trigraphs by T C4. (In [1] we described explicitly all
three-cliqued antiprismatic graphs, and their “changeable” edges; and this therefore provides
a description of the three-cliqued antiprismatic trigraphs.) Note that in this case there may be
vertices that are in no triads.

• Sporadic exceptions.

– Let H be the trigraph with vertex set {v1, . . . , v8} and adjacency as follows: vi, vj are
strongly adjacent for 1 ≤ i < j ≤ 6 with j − i ≤ 2; the pairs v1v5 and v2v6 are

6



strongly antiadjacent; v1, v6, v7 are pairwise strongly adjacent, and v7 is strongly anti-
adjacent to v2, v3, v4, v5; v7, v8 are strongly adjacent, and v8 is strongly antiadjacent to
v1, . . . , v6; the pairs v1v4 and v3v6 are semiadjacent, and v2 is antiadjacent to v5. Let
A = {v1, v2, v3}, B = {v4, v5, v6} and C = {v7, v8}. Let X ⊆ {v3, v4}; then (H \ X,A \
X,B \ X,C) is a three-cliqued claw-free trigraph, and all its vertices are in triads.

– Let H be the trigraph with vertex set {v1, . . . , v9}, and adjacency as follows: the sets A =
{v1, v2}, B = {v3, v4, v5, v6, v9} and C = {v7, v8} are strong cliques; v9 is strongly adja-
cent to v1, v8 and strongly antiadjacent to v2, v7; v1 is strongly antiadjacent to v4, v5, v6, v7,
semiadjacent to v3 and strongly adjacent to v8; v2 is strongly antiadjacent to v5, v6, v7, v8

and strongly adjacent to v3; v3, v4 are strongly antiadjacent to v7, v8; v5 is strongly an-
tiadjacent to v8; v6 is semiadjacent to v8 and strongly adjacent to v7; and the adjacency
between the pairs v2v4 and v5v7 is arbitrary. Let X ⊆ {v3, v4, v5, v6}, such that

∗ v2 is not strongly anticomplete to {v3, v4} \ X

∗ v7 is not strongly anticomplete to {v5, v6} \ X

∗ if v4, v5 /∈ X then v2 is adjacent to v4 and v5 is adjacent to v7.

Then (H \ X,A,B \ X,C) is a three-cliqued claw-free trigraph.

We denote by T C5 the class of such three-cliqued trigraphs (given by one of these two con-
structions) with the additional property that every vertex is in a triad.

If (G,A,B,C) is a three-cliqued trigraph, and {A′, B′, C ′} = {A,B,C}, then (G,A′, B′, C ′) is
also a three-cliqued trigraph, that we say is a permutation of (G,A,B,C). Now we can state our
theorem about three-cliqued claw-free trigraphs.

4.1 Every three-cliqued claw-free trigraph admits a worn hex-chain into terms each of which is a
thickening of a permutation of a member of one of T C1, . . . , T C5.

5 Decompositions

Our next goal is the proof of 4.1, in the section following this. The main part of the proof is an
application of the decomposition theorem of [4], and before we can apply that we need to state it
precisely, and in particular to describe the decompositions that it uses; and that is the purpose of
this section.

Two strongly adjacent vertices of a trigraph G are called twins if (apart from each other) they
have the same neighbours in G, and the same antineighbours, and if there are two such vertices, we
say “G admits twins”. If X ⊆ V (G) is a strong clique and every vertex in V (G)\X is either strongly
complete or strongly anticomplete to X, we call X a homogeneous set. Thus, G admits twins if and
only if some homogeneous set has more than one member.

Let A,B be disjoint subsets of V (G). The pair (A,B) is called a homogeneous pair in G if A,B
are strong cliques, and for every vertex v ∈ V (G) \ (A ∪ B), v is either strongly A-complete or
strongly A-anticomplete and either strongly B-complete or strongly B-anticomplete. Let (A,B) be
a homogeneous pair, such that A is neither strongly complete nor strongly anticomplete to B, and
at least one of A,B has at least two members. In these circumstances we call (A,B) a W-join.
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Next, suppose that V1, V2 is a partition of V (G) such that V1, V2 are nonempty and V1 is strongly
anticomplete to V2. We call the pair (V1, V2) a 0-join in G. Thus, G admits a 0-join if and only if it
is not connected.

Next, suppose that V1, V2 is a partition V (G), and for i = 1, 2 there is a subset Ai ⊆ Vi such that:

• Ai, Vi \ Ai 6= ∅ for i = 1, 2

• A1 ∪ A2 is a strong clique, and

• V1 \ A1 is strongly anticomplete to V2, and V1 is strongly anticomplete to V2 \ A2.

In these circumstances, we say that (V1, V2) is a 1-join.
Next, suppose that V0, V1, V2 are disjoint subsets with union V (G), and for i = 1, 2 there are

subsets Ai, Bi of Vi satisfying the following:

• V0∪A1∪A2 and V0∪B1∪B2 are strong cliques, and V0 is strongly anticomplete to Vi\(Ai∪Bi)
for i = 1, 2;

• for i = 1, 2, Ai ∩ Bi = ∅ and Ai, Bi and Vi \ (Ai ∪ Bi) are all nonempty; and

• for all v1 ∈ V1 and v2 ∈ V2, either v1 is strongly antiadjacent to v2, or v1 ∈ A1 and v2 ∈ A2, or
v1 ∈ B1 and v2 ∈ B2.

We call the triple (V0, V1, V2) a generalized 2-join, and if V0 = ∅ we call the pair (V1, V2) a 2-join.
Finally, we say that G admits a hex-join if there are three strong cliques A,B,C such that

(G,A,B,C) is a three-cliqued trigraph that is expressible as a hex-join. Let us say that a trigraph
G is indecomposable if it does not admit twins, a W-join, a 0-join, a 1-join, a generalized 2-join,
or a hex-join. (In [4] we were careful only to use “nondominating” W-joins, but now it no longer
matters.) The main theorem of [4] is the following.

5.1 Every indecomposable claw-free trigraph belongs to S0 ∪ · · · ∪ S7.

We shall also need the following theorem of [4].

5.2 Let G be claw-free, and let B1, B2, B3 be strong cliques in G. Let B = B1 ∪ B2 ∪ B3. Suppose
that:

• B 6= V (G),

• there are two triads T1, T2 ⊆ B with |T1 ∩ T2| = 2, and

• there is no triad T in G with |T ∩ B| = 2.

Then either

• there exists V ⊆ B with T1, T2 ⊆ V such that V is a union of triads, and G is a hex-join of
G|V and G|(V (G)\V ), where (V ∩B1, V ∩B2, V ∩B3) is the corresponding partition of V into
strong cliques, or

• there is a homogeneous set with at least two members, included in one of B1, B2, B3, such that
all its members are in triads, or

• there is a homogeneous pair (V1, V2) with max(|V1|, |V2|) ≥ 2, such that V1 is a subset of one of
B1, B2, B3 and V2 is a subset of another.
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6 Proof of the three-cliques result

We need several lemmas. First, we observe:

6.1 Let G be a trigraph.

• Let u, v ∈ V (G) be twins. If G\{u} is a thickening of a trigraph H, then G is also a thickening
of H. If (G,A,B,C) is a three-cliqued graph and u, v belong to the same member of A,B,C,
say A, and (G\{u}, A\{u}, B,C) is a thickening of a three-cliqued trigraph, then (G,A,B,C)
is a thickening of the same three-cliqued trigraph.

• Let (P,Q) be a W-join, let p ∈ P and q ∈ Q, and let G′ be obtained from G by deleting
(P \ {p}) ∪ (Q \ {q}) and making p, q semiadjacent. If G′ is a thickening of some trigraph H,
then G is also a thickening of H. If (G,A,B,C) is a three-cliqued trigraph and P ⊆ A and
Q ⊆ B, and (G′, A \ (P \ {p}), B \ (Q \ {q}), C) is a thickening of a three-cliqued trigraph, then
(G,A,B,C) is a thickening of the same three-cliqued trigraph.

• If (G,A,B,C) is a three-cliqued trigraph expressible as a worn hex-join of (Gi, Ai, Bi, Ci) for
i = 1, 2, and for i = 1, 2, (Gi, Ai, Bi, Ci) admits a worn hex-chain with all terms in some class
C, then (G,A,B,C) also admits a worn hex-chain with all terms in C.

Proof. For the first statement, note that since u, v are twins, it follows that no vertex is semiadjacent
to v. Now suppose that G \ {u} is a thickening of H, and let Xw (w ∈ V (H)) be the corresponding
partition of V (G \ {u}) into strong cliques. Let v ∈ Xw say. Then Xw ∪ {u} is a strong clique of G,
and if we replace Xw by Xw ∪ {u}, the partition of V (G) we obtain shows that G is a thickening of
H. The statement for three-cliqued trigraphs follows similarly.

For the second statement, G′ is a thickening of H; let Xw (w ∈ V (H)) be the corresponding
partition of V (G′). Since p, q are semiadjacent in G′, they do not belong to the same clique; say
p ∈ Xu and q ∈ Xv. Since Xu, Xv are neither strongly complete nor strongly anticomplete, it follows
that u, v are semiadjacent in H. If we replace Xu, Xv by (Xu\{p})∪P and (Xv\{q})∪Q respectively,
the partition of V (G) we obtain shows that G is a thickening of H. The statement for three-cliqued
trigraphs follows similarly.

For the third statement, by hypothesis for i = 1, 2 (Gi, Ai, Bi, Ci) admits a worn hex-chain with
all terms in C; and the concatenation of the two corresponding sequences is a worn hex-chain of
(G,A,B,C) with all terms in C. This proves 6.1.

6.2 Let (G,A,B,C) be a three-cliqued claw-free trigraph, and suppose that G admits a 0-, 1- or
generalized 2-join, and does not admit a hex-join, and every vertex of G belongs to a triad. Then
(G,A,B,C) is a permutation of a thickening of a member of T C1 ∪ T C2 ∪ T C3 ∪ T C5.

Proof. Suppose G admits a 0-join (V1, V2) say. Thus V1, V2 6= ∅, V1 ∩ V2 = ∅, V1 ∪ V2 = V (G), and
V1 is strongly anticomplete to V2. Since each of A,B,C is a strong clique, each is a subset of one
of V1, V2, so we may assume that V1 = A ∪ B and V2 = C. If A,B 6= ∅, G is a thickening of the
trigraph H with three vertices a, b, c, in which a, b are antiadjacent and c is strongly antiadjacent to
both a, b. Since (H, {a}, {b}, {c}) ∈ T C2, in this case the claim holds. If say B = ∅, then A = V1 is a
nonempty strong clique, and now G is a thickening of a two-vertex trigraph, and again the theorem
holds.
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Next, suppose that G admits a 1-join and no 0-join, and let V (G) be the union of the four disjoint
nonempty sets Y1, Y2, Z1, Z2, where Z1 ∪ Z2 is a strong clique, and Y1 is strongly anticomplete
to Y2 ∪ Z2, and Y2 is strongly anticomplete to Y1 ∪ Z1. Since Y1, Y2 6= ∅, we may assume that
A ∩ Y1, C ∩ Y2 6= ∅, and so A ⊆ Y1 ∪ Z1 and C ⊆ Y2 ∪ Z2. Suppose that B ∩ Y1 6= ∅. Then also
B ⊆ Y1∪Z1, and so Y2∪Z2 = C. Let A′ be the set of vertices in A∩Y1 with a neighbour in B∩Z1, and
let B′ be the set of vertices in B ∩Y1 with a neighbour in A∩Z1. Since (A∩Z1)∪Z2 ∪A′ ∪ (B∩Y1)
includes no claw, it follows that A′ is strongly complete to B ∩ Y1, and similarly B ′ is strongly
complete to A∩ Y1. If A∩Z1 = ∅, then B ′ = ∅ and (G,A,B,C) is a thickening of a member of T C2

with at most six vertices, so we may assume that A ∩ Z1 and similarly B ∩ Z1 are nonempty. Since
the members of Z2 belong to triads, it follows that A ∩ Y1 is not strongly complete to B ∩ Y1. But
then (G,A,B,C) is a thickening of a member of T C5. This completes the argument when B∩Y1 6= ∅,
and so we may assume that B ⊆ Z1∪Z2. Hence Y1 ⊆ A and Y2 ⊆ C; and (G,A,B,C) is a thickening
of a member of T C2 with at most six vertices.

Now suppose that G admits a generalized 2-join and no 0- or 1-join. Let V0, V1, V2 be disjoint
subsets with union V (G) as in the definition of 2-join, choosing them with V0 nonempty if possible.
For i = 1, 2, let Vi be the union of the three disjoint nonempty sets Xi, Yi, Zi, where X1 is strongly
complete to X2, and Y1 to Y2, and otherwise V1 is strongly anticomplete to V2. Let V0 be strongly
complete to X1, X2, Y1, Y2 and strongly anticomplete to Z1, Z2.

Suppose first that A ∩ V2, B ∩ V2 = ∅. Then V2 ⊆ C, and since Z2 6= ∅ it follows that C = V2.
Suppose that A∩Z1 is strongly anticomplete to B \Z1, and B∩Z1 is strongly anticomplete to A\Z1.
Since Z1 6= ∅, we may assume that A ∩ Z1 6= ∅. Since

(Y1 ∩ A) ∪ (Z1 ∩ A) ∪ (X1 ∩ B) ∪ Y2

includes no claw, it follows that Y1 ∩ A is strongly anticomplete to X1 ∩ B, and similarly X1 ∩ A is
strongly anticomplete to Y1 ∩ B. Since A ∩ Z1 6= ∅ it follows that A ∩ V0 = ∅, and so V0 ⊆ B. If
V0 6= ∅, then B ∩ Z1 = ∅, and Z1 ⊆ A, and so (G,A,C,B) is a thickening of a member of T C3. On
the other hand, if V0 = ∅, then (G,A,B,C) is a thickening of a member of T C1.

Thus we may assume that there exist a ∈ A ∩ X1 and b ∈ B ∩ Z1, adjacent. Thus B ∩ V0 = ∅,
and so V0 ⊆ A. Since {a, b} ∪ X2 ∪ (A \ X1) includes no claw, it follows that b is strongly complete
to A ∩ (V1 \ X1). If A ∩ Y1 6= ∅, then similarly b is strongly complete to A ∩ (V1 \ Y1), and therefore
to A \ V0; and since b is in a triad, it follows that V0 6= ∅, and so A∩Z1 = ∅. Let P,Q be the sets of
vertices in B∩Z1 that are strongly complete and strongly anticomplete to A∩(X1∪Y1), respectively.
Thus P ∩ Q = ∅ (since A ∩ X1 6= ∅), and we have shown that P ∪ Q = ∩Z1, and P 6= ∅. Since the
vertices of X2 are in triads, it follows that B ∩ Z1 is not strongly complete to A ∩ Y1, and so Q 6= ∅.
Since (B∩X1)∪Q∪ (A∩Y1)∪X2 includes no claw, it follows that B∩X1 is strongly anticomplete to
A∩Y1, and similarly A∩X1 is strongly anticomplete to B∩Y1. But then (G,B,C,A) is a thickening
of a member of T C3.

Thus we may assume that A ∩ Y1 = ∅. Since Y1 6= ∅, it follows that B ∩ Y1 6= ∅, and so by the
same argument with A,B exchanged, we may assume that A∩Z1 is strongly anticomplete to B∩X1.
Since X2 6= ∅ and vertices in X2 belong to triads, it follows that X2 is not strongly complete to A,
and so A ∩ Z1 6= ∅; and therefore V0 = ∅. Suppose that also A ∩ Z1 is not strongly anticomplete
to B ∩ Y1. Then the same argument shows that we may assume that B ∩ X1 = ∅. Every member
of B ∩ Z1 with a neighbour in A ∩ X1 is strongly complete to A ∩ Z1; and every member of A ∩ Z1

with a neighbour in B ∩ Y1 is strongly complete to B ∩ Z1. But then (G,A,B,C) is a thickening
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of a member of T C2. Thus we may assume that A ∩ Z1 is strongly anticomplete to B ∩ Y1. Since
A ∩ Z1 6= ∅, and

(A ∩ X1) ∪ (A ∩ Z1) ∪ (B ∩ Y1) ∪ X2

includes no claw, it follows that A∩X1 is strongly anticomplete to B ∩Y1. Hence (B ∩X1, A∪ (B ∩
Z1), C ∪ (B ∩ Y1)) is a generalized 2-join, and so B ∩ X1 = ∅, from the choice of V0, V1, V2. Since
every vertex in B ∩ Z1 is either strongly anticomplete to A ∩ X1 or strongly complete to A ∩ Z1, it
follows that (G,A,B,C) is a thickening of a member of T C2.

Thus we may assume that not both A∩V2, B∩V2 are empty; so we may assume that Z1 ⊆ A,Z2 ⊆
C, and B intersects both of V1, V2. It follows that B is a subset of one of X1 ∪X2 ∪ V0, Y1 ∪ Y2 ∪ V0,
and we may assume the first from the symmetry. Hence every vertex in X1 is strongly complete
to B, and since every vertex is in a triad it follows that X1 ⊆ B, and similarly X2 ⊆ B. Hence
A = Y1 ∪ Z1, and B = X1 ∪ X2 ∪ V0, and C = Y2 ∪ Z2. For i = 1, 2, every vertex in Xi with a
neighbour in Yi is strongly complete to Zi. Moreover, Z1 is not strongly anticomplete to X1 since G
does not admit a 1-join; and similarly Z2 is not strongly anticomplete to X2. For i = 1, 2, no vertex
in Xi is strongly complete to Yi since every vertex in Xi is in a triad. Consequently if V0 = ∅ then
(G,A,B,C) is a thickening of a member of T C2, and if V0 6= ∅ then (G,A,B,C) is a thickening of a
member of T C5. This completes the proof of 6.2.

Next we need the following.

6.3 Let (G,A,B,C) be a three-cliqued claw-free graph, such that G belongs to one of the classes
S0, . . . ,S7, and G does not admit a hex-join, and every vertex of G is in a triad. Then (G,A,B,C)
is a permutation of a thickening of a member of T C1 ∪ · · · ∪ T C5.

Proof. First suppose that G ∈ S0; let G be a line trigraph of some graph H. Since A is a strong
clique, either there is a vertex a ∈ V (H) such that every edge in A is incident with a, or there is a
set of three vertices of H such that every edge in A joins two of these vertices. The same holds for
B,C. Suppose that there exist a, b, c ∈ V (H) such that a is incident with every edge in A, and b
with B, and c with C. Let X be the set of edges of H with both ends in {a, b, c}. If X = ∅, then
a, b, c are pairwise nonadjacent in H, and (G,A,B,C) is a thickening of a permutation of a member
of T C1 ∪ · · · ∪ T C4. (To see this, let us temporarily omit the condition that a, b, c have degree at
least three, in the definition of T C1, and let T C ′

1 be the class of trigraphs that we thereby define. It
is easy to see that (G,A,B,C) is a thickening of a a member of T C ′

1; but any member of T C ′

1 not in
T C1 is a permutation of a member of T C2 ∪T C3 ∪T C4, as can easily be verified using 6.2.) Thus we
may assume that X 6= ∅. If no edge in X is semiadjacent in G to any member of E(H) \ X, then G
admits a hex-join (take the cliques A \ X,B \ X,C \ X together with the singleton subsets of X), a
contradiction. Thus we may assume that e = ab ∈ X say is semiadjacent in G to f = ad ∈ E(H)\X.
Since H is a line trigraph, it follows that a has degree two in H, and d 6= a, b, c. If e /∈ B, then
since e is strongly complete to B, it follows that e is in no triad, a contradiction; so e ∈ B. Hence
A = {f}, and so every vertex of G is in a triad with a. Consequently d has degree one in H. But
then (G,A,B,C) is a permutation of a thickening of a member of T C2.

Next suppose that a ∈ V (H) is incident with all edges in A, and b ∈ V (H) is incident with all
edges in B, and |C| = 3 and the three edges in C form a triangle with vertex set Z say. For each
z ∈ Z, the edges of H incident with z are pairwise strongly adjacent in G; for if z has degree at least
three, this is true since G is a line trigraph, and if z has degree two then it is true since C is a strong
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clique. Since every edge of C is in a triad, it follows that a, b /∈ Z. Suppose that e ∈ A is incident
with a, b in H. Since e is in a triad, it is antiadjacent to some f ∈ B, and since e, f are both incident
with b in H it follows that b has degree two in H and e, f are semiadjacent in G. Consequently
B = {f}, and so every edge of H different from f is antiadjacent to f in G. Let f be incident with
b, c say. Since the edges of C are antiadjacent to f , we deduce that c /∈ Z, and so c has degree one in
H. But then (G,A,B,C) is a permutation of a thickening of a member of T C2. We may therefore
assume that a, b are not adjacent in H. Consequently A is the set of all edges of H incident with a,
and similarly for B, b. Since the edges of C belong to triads, there is an edge of H incident with no
vertex in Z and incident with exactly one of a, b, say with a. If also there is such an edge incident
with b, then (G,A,B,C) is a thickening of a member of T C3 ∪ T C4; so we may assume that every
edge of H incident with b is incident with a vertex in Z. Then no edge of A incident with a vertex
in Z belongs to a triad of G, and so H is disconnected, and (G,A,B,C) is a thickening of a member
of T C2.

Next suppose that a ∈ V (H) is incident with all edges in A, and the edges in B and in C both
form triangles of H. Let Y ⊆ V (H) with |Y | = 3 so that the three members of B each join two
vertices of Y , and define Z similarly for C. Since every member of B is in a triad of G, it follows
that a /∈ Y , and |Y ∩ Z| ≤ 1, and similarly a /∈ Z. If Y ∩ Z = ∅ then (G,A,B,C) is a thickening of
a member of T C2, so we may assume that Y ∩ Z = {y} say. But then (V0, V1, V2) is a generalized
2-join, where V0 is the set of (at most one) edge of H between a, y, and V1 is the set of edges of H
with an end in Y \ {y}, and V2 = V (G) \ (V0 ∪ V1). From 6.2 the claim follows.

Finally, suppose that all three of A,B,C consist of three edges forming a triangle of H; and so
|E(H)| = 9. Let the vertex sets of these three triangles of H be X,Y,Z respectively. Since every
edge of H is in a triad of G, it follows that |X ∩ Y | ≤ 1, and similarly |X ∩ Z|, |Y ∩ Z| ≤ 1. If at
most vertex of X belongs to Y ∪ Z, then G admits a 0- or 1-join and the result follows from 6.2;
so we may assume that X ∩ Y = {z} and Y ∩ Z = {x} and X ∩ Z = {y} say, where x, y, z are all
distinct. But then the edge of C incident with x, y in H belongs to no triad of G, a contradiction.
This completes the proof when G ∈ S0.

No trigraph in S1 ∪ S2 has a vertex set that can be partitioned into three cliques, so next we
assume that G ∈ S3. Let Σ be a circle, and let V, F1, . . . , Fk ⊆ Σ be as in the definition of long
circular interval trigraph, where V (G) = V . Define “line” as before; we claim that there is a line L
with L∩V (G) = A. For this is trivial if |A| ≤ 1, so we assume |A| ≥ 2, and since every two members
of A are adjacent and therefore both belong to some one of F1, . . . , Fk, there is a line L with both
endpoints in A. Choose such a line with L ∩ V (G) maximal. We claim that L ∩ V (G) = A. For
first, suppose that there exists a ∈ A with a /∈ L. Let L have endpoints a1, a2 say, and let L ⊆ F1

say. From the maximality of L, a /∈ F1, and since a, a1 are adjacent, there exists i with a, a1 ∈ Fi;
i = 2 say. From the maximality of L and since F1 ∪ F2 6= Σ, it follows that a2 /∈ F2. Similarly,
since a, a2 are adjacent, we may assume that a, a2 ∈ F3 and a1 /∈ F1. But then F1 ∪ F2 ∪ F3 = Σ, a
contradiction. This proves that A ⊆ L. Now suppose that there exists b ∈ L∩ V (G) with b /∈ A, say
b ∈ B. Then b is strongly adjacent to all members of A, since A ⊆ F1 and b is in the interior of F1;
and so b is in no triad, a contradiction. Thus L∩ V (G) = A. Similarly there are lines for B,C; they
are pairwise disjoint and have union V (G), and so (G,A,B,C) ∈ T C 2.

No trigraph in S4 has a vertex set that is the union of three cliques, so next we assume that
G ∈ S5. Let d1, . . . , d5 be as in the definition of S5; let P,Q,R be the sets of vertices different
from {d1, . . . , d5} adjacent to d3 and not d4, d4 and not d3, and neither of d3, d4, respectively (that
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is, the sets called A,B,C in the definition of S4). Since d1 is in a triad, it follows that d1, d2 are
semiadjacent. We may assume that d5 ∈ A, and so A ⊆ {d3, d4, d5}; and so d2 /∈ A; we may assume
that d2 ∈ B. Hence R ⊆ C, since d2, d5 are both anticomplete to R. Let P1 be the set of vertices
in P with an antineighbour in R, and define Q1 ⊆ Q similarly. Then P1 ∪ Q1 ⊆ B, and so is
a strong clique. On the other hand, since d3 is in a triad, it follows that Q1 6= ∅, and similarly
P1 6= ∅; and since every vertex in P has at most one neighbour in Q and vice versa, we deduce that
|P1| = |Q1| = 1. Let P1 = {p1} and Q1 = {q1}. Hence B = {p1, q1, d2}; so A = {d3, d4, d5} and
C = {d1} ∪ (P \ P1) ∪ (Q \ Q1) ∪ R. Let R1 be the set of vertices in R with an antineighbour in
P ∪ Q, necessarily in {p1, q1}. From the definition of S4 it follows that R1 is strongly anticomplete
to both P1, Q1, and |R1| ≤ 1; and R1 6= ∅ since P1, Q1 6= ∅. Let R1 = {r1} say. Then A \ {d5} is the
set of neighbours of d5, and C \ {r1} is the set of neighbours of r1; and since ({d2}, {d1} ∪ (R \ R1))
is a homogeneous pair, it follows that (G,A,B,C) is a permutation of a thickening of a member of
T C3 (taking d5, r1 as the vertices called a0, b0 in the definition of T C3).

Next, we assume that G ∈ S6. Let a0, b0 be as in the definition of S6. Since they are antiadjacent,
we may assume that a0 ∈ A and b0 ∈ B. (Note that A,B,C here refer to the three cliques of our
three-cliqued graph, and may be different from the sets called A,B,C in the definition of S6.) Hence
every vertex adjacent to a0 except b0 is strongly complete to A, and since every vertex is in a triad,
it follows that every such vertex belongs to A. So in fact the sets called A,B,C here are the same
as the sets called A,B,C in the definition of S6, and therefore (G,A,B,C) ∈ T C3.

Finally, we assume that G ∈ S7. Then (G,A,B,C) ∈ T C4 from the definition of T C4. This
proves 6.3.

Proof of 4.1.
Let (G,A,B,C) be a three-cliqued claw-free graph; we prove that the result holds for (G,A,B,C)

by induction on |V (G)|. By 6.1, we may assume that

(1) No two members of the same set A,B,C are twins; and there is no W-join (X,Y ) with X a
subset of one of A,B,C and Y a subset of another; and (G,A,B,C) is not expressible as a worn
hex-join.

(2) There is no choice of cliques P,Q,R with the following properties: (G,P,Q,R) is a three-cliqued
trigraph, expressible as a hex-join of two three-cliqued trigraphs (G1, P1, Q1, R1) and (G2, P2, Q2, R2),
and P1 ⊆ A,Q1 ⊆ B, R1 ⊆ C, and V (G1) iis a union of triads.

For suppose that such P,Q,R exist. Now P2 ∩ C is strongly complete to R1 since R1 ⊆ C and
C is a strong clique; and yet P2 is strongly anticomplete to R1 from the definition of a hex-join.
Since R1 is nonempty (because V (G1) is a nonempty union of triads) it follows that P2 ∩C = ∅, and
similarly Q2 ∩ A and R2 ∩ B are empty. Let Y = V (G1) and let

X = (A ∩ R2) ∪ (B ∩ P2) ∪ (C ∩ Q2).

Let Z = V (G2) \ X. Suppose that X 6= ∅; we claim that (G,A,B,C) is a worn hex-join of
(G|X,X ∩ A,X ∩ B,X ∩ C) and (G \ X,A \ X,B \ X,C \ X). To see this, we observe that both
of these are three-cliqued trigraphs; and certainly X ∩ A is strongly complete to A \ X since A is
a strong clique. We must therefore check that X ∩ A is complete to C \ X, and that if u ∈ X ∩ A
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and v ∈ B \ X are adjacent then u, v are both not in triads. (Also we must check similar state-
ments with A replaced by B,C, which follow from the symmetry.) Since P2 ∩ C = ∅, it follows that
(X ∩A)∪ (Z∩C) ⊆ R2, and since R2 is a strong clique we deduce that X ∩A is strongly complete to
Z∩C; and from definition of a hex-join, X ∩A is strongly complete to Y ∩C. Thus X∩A is strongly
complete to C \ X. Now suppose that u ∈ X ∩ A and v ∈ B \ X are adjacent. Then v /∈ Y ∩ B
from the definition of a hex-join, and so v ∈ B ∩ Z. Suppose that u ∈ T for some triad T . Since
T ∩ C 6= ∅, and u is strongly complete to C \ X, it follows that there exists c ∈ T ∩ X ∩ C; since c
is strongly complete to B \ X (by the argument above, with A,B,C replaced by B,C,A), it follows
that T ⊆ X; and then {v} ∪ T is a claw, a contradiction. Thus u is in no triad, and similarly v is in
no triad. This proves our claim; but that is contradictory to (1). Hence X = ∅, and similarly Z = ∅,
a contradiction since V (G2) 6= ∅. Thus there do not exist such P,Q,R. This proves (2).

(3) We may assume that G admits no hex-join, and every vertex of G is in a triad.

For if G is antiprismatic then the theorem holds. We assume then that there are two triads T1, T2

with |T1 ∩ T2| = 2. Suppose that some vertex v is in no triad, with v ∈ A say. Then (1) and (2)
contradict 5.2 applied to the three cliques A\{v}, B,C. Thus every vertex is in a triad. Suppose that
G admits a hex-join (V1, V2); then every triad is a subset of one of V1, V2, and we may assume that
T1, T2 ⊆ V1, and again (1) and (2) contradict 5.2 applied to the three cliques A ∩ V1, B ∩ V1, C ∩ V1.
This proves (3).

If G admits a 0, 1- or generalized 2-join, the result holds by 6.2; so we may assume that G is
indecomposable. By 5.1, G ∈ S0∪· · ·∪S7. But then the result follows from 6.3. This proves 4.1.

7 Statement of the main theorem

We have completed the description of the claw-free trigraphs G such that V (G) is the union of three
strong cliques, and now we begin the study of the others. Our goal in this section is to state the
counterpart of 4.1.

A vertex v of a trigraph is simplicial if N ∪ {v} is a strong clique, where N is the set of all
neighbours of v. Let us say (G,Z) is a stripe if G is a claw-free trigraph, and Z ⊆ V (G) is a set of
simplicial vertices, such that Z is strongly stable and no vertex has two neighbours in Z.

Let (G′, Z ′) be a stripe, and let G be a thickening of G′, with sets Xv (v ∈ V (G′)), such that
|Xz| = 1 for each z ∈ Z ′. Let Z = ∪z∈Z′Xz . Then (G,Z) is also a stripe, and we say it is a thickening
of (G′, Z ′).

Let (G,A,B,C) be a three-cliqued claw-free trigraph, and let z ∈ A such that z is strongly
anticomplete to B∪C. Let V1, V2, V3 be three disjoint sets of new vertices, and let G′ be the trigraph
obtained by adding V1, V2, V3 to G with the following adjacencies:

• V1 and V2 ∪ V3 are strong cliques

• V1 is strongly complete to B ∪ C and strongly anticomplete to A

• V2 is strongly complete to C ∪ A and strongly anticomplete to B

• V3 is strongly complete to A ∪ B and strongly anticomplete to C.

14



(The adjacency between V1 and V2∪V3 is unspecified.) It follows that G′ is a claw-free trigraph, and
z is a simplicial vertex of it. In this case we say that (G′, z) is a hex-expansion of (G,A,B,C).

Here are some types of stripes. We call the corresponding sets of pairs (G,Z) Z1–Z15, and we
define Z0 to be the set of all members of Z1–Z15 that are not thickenings of members of Z1–Z15 with
fewer vertices.

Z1: Let G be a trigraph with vertex set {v1, . . . , vn}, such that for 1 ≤ i < j < k ≤ n, if vi, vk

are adjacent then vj is strongly adjacent to both vi, vk. We call G a linear interval trigraph.
(Every linear interval trigraph is also a long circular interval trigraph.) Also, let n ≥ 2, let
v1, vn be strongly antiadjacent, and let there be no vertex adjacent to both v1, vn, and no vertex
semiadjacent to either v1 or vn. Let Z = {v1, vn}.

Z2: Let G ∈ S6, let a0, b0 etc. be as in the definition of S6, with a0, b0 strongly antiadjacent, and
let Z = {a0, b0}.

Z3: Let H be a graph, and let h1-h2-h3-h4-h5 be the vertices of a path of H in order, such that
h1, h5 both have degree one in H, and every edge of H is incident with one of h2, h3, h4. Let
G be obtained from a line trigraph of H by making the edges h2h3 and h3h4 of H (vertices of
G) either semiadjacent or strongly antiadjacent to each other in G. Let Z = {h1h2, h4h5}.

Z4: Let G be the trigraph with vertex set {a0, a1, a2, b0, b1, b2, b3, c1, c2} and adjacency as follows:
{a0, a1, a2}, {b0, b1, b2, b3}, {a2, c1, c2} and {a1, b1, c2} are strong cliques; b2, c1 are strongly ad-
jacent; b2, c2 are semiadjacent; b3, c1 are semiadjacent; and all other pairs are strongly antiad-
jacent. Let Z = {a0, b0}.

Z5: Let G ∈ S2, and let v1, . . . , v13, X,H be as in the definition of S2, where G = H \ X; let v7, v8

be strongly antiadjacent in H, and let Z = {v7, v8} \ X.

Z6: Let G be a long circular interval trigraph, and let Σ, F1, . . . , Fk be as in the corresponding
definition. Let z ∈ V (G) belong to at most one of F1, . . . , Fk, and not be an endpoint of any
of F1, . . . , Fk. Then z is a simplicial vertex of G; let Z = {z}.

Z7: Let G ∈ S4, let H,h1, . . . , h7 be as in the definition of S4, let e be the edge h6h7 of H, and let
Z = {e}.

Z8: Let G ∈ S5, let d1, . . . , d5, A,B,C be as in the definition of S5, and let Z = {d5}.

Z9: Let G have vertex set partitioned into five sets {z}, A,B,C,D, with |A| = |B| > 0, say
A = {a1, . . . , an} and B = {b1, . . . , bn} where n ≥ 1, such that

• {z} ∪ D is a strong clique and z is strongly antiadjacent to A ∪ B ∪ C,

• A ∪ C and B ∪ C are strong cliques,

• for 1 ≤ i ≤ n, ai, bi are antiadjacent, and every vertex in D is strongly adjacent to exactly
one of ai, bi and strongly antiadjacent to the other, and

• for 1 ≤ i < j ≤ n, {ai, bi} is strongly complete to {aj , bj}.

(The adjacency between C and D is arbitrary.) Every such trigraph G is antiprismatic. Let
Z = {z}.
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Z10: Let G′ be the trigraph with vertex set {a0, a1, a2, b0, b1, b2, b3, c1, c2, d} and adjacency as follows:
A = {a0, a1, a2, d}, B = {b0, b1, b2, b3}, C = {c1, c2} and {a1, b1, c2} are strong cliques; a2 is
strongly adjacent to b0 and semiadjacent to b1; b2, c2 are semiadjacent; b2, c1 are strongly
adjacent; b3, c1 are either semiadjacent or strongly adjacent; b0, d are either semiadjacent or
strongly adjacent; and all other pairs are strongly antiadjacent. Then (G ′, A,B,C) is a three-
cliqued trigraph (not clawfree) and a0 is a simplicial vertex of G′. Let X ⊆ {a2, b2, b3, d}
such that either a2 ∈ X or {b2, b3} ⊆ X, let Z = {a0}, and let (G,Z) be a hex-expansion of
(G′ \ X,A \ X,B \ X,C).

Z11: Let G1 ∈ S6, and let a0, b0, A,B,C,A′, B′, C ′ be as in the definition of S6, with a0, b0 semi-
adjacent. Let G2 be obtained from G1 by adding a new vertex z strongly complete to A and
strongly anticomplete to B∪C, and possibly making a0, b0 strongly adjacent, and let Y ⊆ {a0};
then (G2\Y, (A\Y )∪{z}, B,C) is a three-cliqued trigraph and z is a simplicial vertex of G2\Y .
Let Z = {z}, and let (G,Z) be a hex-expansion of (G2 \ Y, (A \ Y ) ∪ Z,B,C).

Z12: Let H, v1, . . . , v9, X be as in the second construction of T C5, where v2, v4 are adjacent. Add a
new vertex z to H, strongly adjacent to v3, v4, v5, v6, v9, forming H2 say. Then

(H2 \ X, {v3, v4, v5, v6, v9, z} \ X, {v7, v8}, {v1, v2})

is a three-cliqued trigraph and z is a simplicial vertex of H2 \ X. Let Z = {z}, and let (G,Z)
be a hex-expansion of this three-cliqued trigraph.

Z13: Let (H,V (H)∩L1, V (H)∩L2, V (H)∩L3) ∈ T C2, where Σ, F1, . . . , Fk, L1, L2, L3 are as in the
corresponding definition. Let z ∈ L1 belong to exactly one of F1, . . . , Fk, say F1; thus L1 ⊆ F1.
Let z belong to the interior of F1. Thus z is a simplicial vertex of H. Let Z = {z}, and let
(G,Z) be a hex-expansion of (H,V (H) ∩ L1, V (H) ∩ L2, V (H) ∩ L3).

Z14: Let v0, v1, v2, v3 be distinct vertices of a graph H, such that: v1 is the only neighbour of v0

in H; every vertex of H different from v0, v1, v2, v3 is adjacent to both v2, v3, and at most one
of them is nonadjacent to v1; and v1, v2, v3 are pairwise nonadjacent, and each has degree at
least three. For i = 1, 2, 3, let Ai be the set of edges of H incident with vi, and let z be the
edge v0v1. Let G1 be a line trigraph of H; thus (G1, A1, A2, A3) is a three-cliqued claw-free
trigraph, and z is a simplicial vertex of G1. Let Z = {z}, and let (G,Z) be a hex-expansion of
(G1, A1, A2, A3).

Z15: Let v1, . . . , v8,H,A,B,C,X be as in the first construction of T C5. Then (H,A,B,C) is a
three-cliqued trigraph and v8 is a simplicial vertex of H; let Z = {v8}, and let (G,Z) be a
hex-expansion of (H,A,B,C).

These, and thickenings of them, will be the building blocks of our theorem describing how to
construct all the connected claw-free trigraphs that admit a strip-structure. Now we explain how
these building blocks fit together.

A hypergraph H consists of a finite set V (H), a finite set E(H), and an incidence relation between
V (H) and E(H) (that is, a subset of V (H) × E(H)). For the statement of the main theorem, we
only need hypergraphs such that every member of E(H) is incident with either one or two members
of V (H) (thus, these hypergraphs are graphs if we permit “graphs” to have loops and parallel edges),
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but it is helpful for the proof, later, to permit general hypergraphs. If F ∈ E(H) we write F to
denote the set of all h ∈ V (H) incident with F .

Let G be a trigraph. A strip-structure (H, η) of G consists of a hypergraph H with E(H) 6= ∅,
and a function η mapping each F ∈ E(H) to a subset η(F ) of V (G), and mapping each pair (F, h)
with F ∈ E(H) and h ∈ F to a subset η(F, h) of η(F ), satisfying the following conditions.

(SD1) The sets η(F ) (F ∈ E(H)) are nonempty and pairwise disjoint and have union V (G).

(SD2) For each h ∈ V (H), the union of the sets η(F, h) for all F ∈ E(H) with h ∈ F is a strong
clique of G.

(SD3) For all distinct F1, F2 ∈ E(H), if v1 ∈ η(F1) and v2 ∈ η(F2) are adjacent in G, then there exists
h ∈ F1 ∩ F2 such that v1 ∈ η(F1, h) and v2 ∈ η(F2, h).

(SD4) For each F ∈ E(H), the family η(F, h) (h ∈ F ) is a circus in F .

(We postpone the definition of a “circus” to the next section, and the reader should ignore condition
(SD4) through the remainer of this section.)

Let (H, η) be a strip-structure of a trigraph G, and let F ∈ E(H), where F = {h1, . . . , hk}. Let
v1, . . . , vk be new vertices, and let J be the trigraph obtained from G|η(F ) by adding v1, . . . , vk,
where vi is strongly complete to η(F, hi) and strongly anticomplete to all other vertices of J . We call
(J, {v1, . . . , vk}) the strip of (H, η) at F . (Thus, it is uniquely defined except for the choice of the
new vertices v1, . . . , vk, and we speak of “the” strip at F without serious ambiguity.) These strips
are not necessarily stripes; but soon we will only need to consider strip-structures in which every
strip is either a stripe or is very simple.

This provides a way to piece together claw-free trigraphs to make larger claw-free trigraphs,
because of the following.

7.1 Let (H, η) be a strip-structure of a trigraph G. If J is claw-free for every strip (J, Z) of this
strip-structure, then G is claw-free.

Proof. Suppose that {a, b, c, d} is a claw in G, where a is adjacent to b, c, d and {b, c, d} is stable.
By (SD1), we may choose F ∈ E(H) with a ∈ η(F ). Let F = {h1, . . . , hk}, and let J be the strip
at F , with new vertices v1, . . . , vk. We shall show that J contains a claw. If b, c, d ∈ η(F ) then
{a, b, c, d} is a claw of J , so we may assume that b /∈ η(F ). Choose F1 ∈ E(H) with b ∈ η(F1); thus
F1 6= F . Since a, b are adjacent, we may assume by (SD3) that h1 ∈ F ∩ F1 and a ∈ η(F, h1) and
b ∈ η(F1, h1). Neither of c, d belongs to η(F, h1) by (SD2) since they are antiadjacent to b; and if
they are both in η(F ) \ η(F, h1) then {a, v1, c, d} is a claw of J , so we may assume that c /∈ η(F ).
Choose F2 ∈ E(H) with c ∈ η(F2). Then F2 6= F , and there exists h ∈ F ∩ F2 with a ∈ η(F, h)
and c ∈ η(F2, h). Since b, c are antiadjacent, it follows that c /∈ η(F1, h1), and so h 6= h1 and we
may assume that h = h2. If d ∈ η(F ) \ (η(F, h1) ∪ η(F, h2)), then {a, v1, v2, d} is a claw in J , so we
assume not; and certainly d /∈ η(F, h1)∪ η(F, h2) since it is antiadjacent to b, c. Hence d /∈ η(F ), and
we deduce that there exists F3 ∈ E(H) \ {F} and h3 ∈ F ∩ F3 with a ∈ η(F, h3) and d ∈ η(F3, h3).
Also by the same argument, h3 6= h1, h2; but then {a, v1, v2, v3} is a claw in J . This proves 7.1.

We say a strip-structure (H, η) is nontrivial if |E(H)| ≥ 2. Now we can at least state the
counterpart of 4.1, which together with 4.1 has been the goal of this series of papers, although we
are not ready to prove it yet.
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7.2 Let G be a connected claw-free trigraph, such that V (G) is not the union of three strong cliques.
Then either

• G is a thickening of a member of S1 ∪ S3 ∪ S7, or

• G admits a nontrivial strip-structure such that for each strip (J, Z), 1 ≤ |Z| ≤ 2, and either

– |V (J)| = 3 and |Z| = 2, or

– (J, Z) is a thickening of a member of Z0.

8 Optimal strip-structures

We have not yet explained condition (SD4); let us do so now. Let G be a trigraph, let Y ⊆ V (G),
and let Xi (1 ≤ i ≤ k) be a family of subsets of Y . We say that this family is a circus in Y if

(CS1) For 1 ≤ i ≤ k and all x ∈ Xi, the set of all neighbours of x in V (G) \ Xi is a strong clique.

(CS2) For 1 ≤ i < j ≤ k, Xi ∩ Xj is strongly anticomplete to V (G) \ (Xi ∪ Xj).

(CS3) For 1 ≤ h < i < j ≤ k, Xh ∩ Xi ∩ Xj = ∅.

It is easy to see that condition (SD4) is equivalent (assuming that G is claw-free) to assuming
that all the strips are claw-free; and since in the statement of 7.2, all the strips are claw-free anyway,
deleting (SD4) from the definition of a strip-structure would have no effect on the meaning of 7.2.
The reason for retaining (SD4) is to facilitate the proof of 7.2; because our proof method is to choose
a nontrivial strip-structure (H, η) (with all strips claw-free), that cannot be “refined” any further,
and prove that it has the properties we require. And the reason for using “circus” instead of just
saying that the strips are claw-free is because we thereby avoid having to refer to the extra vertices
v1, . . . , vk.

If (H, η) is a strip-structure, its nullity is the number of pairs (F, h) with F ∈ E(H) and h ∈ F
such that η(F, h) = ∅. For a fixed trigraph G, a strip-structure (H, η) of G is said to be optimal if
there is no strip-structure (H ′, η′) of G with |E(H ′)| ≥ |E(H)|, such that either |E(H ′)| > |E(H)|, or
the nullity of (H ′, η′) is strictly smaller than that of (H, η). Every strip-structure (H, η) of G satisfies
|E(H)| ≤ |V (G)| (since the sets η(F ) (F ∈ E(H)) are nonempty and pairwise disjoint), and every
trigraph admits a strip-structure (H, η) where H is a hypergraph with |V (H)| = 0 and |E(H)| = 1,
and so every trigraph admits an optimal strip-structure. As we shall see, optimal strip-structures
have a number of attractive properties.

If a strip-structure (H, η) also satisfies the following condition, we call the strip-structure purified:

• for each F ∈ E(H), either all the sets η(F, h) (h ∈ F ) are pairwise disjoint, or |F | = 2 and
|η(F )| = 1 and η(F, h1) = η(F, h2) = η(F ) where F = {h1, h2}.

In other words, all the corresponding strips are either stripes or spots, where a spot is a pair (J, Z)
such that J has three vertices say v, z1, z2, and v is strongly adjacent to z1, z2, and z1, z2 are strongly
antiadjacent, and Z = {z1, z2}.

8.1 Let G be a claw-free trigraph. Then every optimal strip-structure of G has nullity zero and is
purified.
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Proof. Let (H, η) be an optimal strip-structure of G. Let F ∈ E(H), and let F = {h1, . . . , hk}.
Suppose first that η(F, h1) = ∅. Let H ′ be the hypergraph obtained from H by making F not
incident with h1, and leaving the incidence of all other pairs unchanged. For each F0 ∈ E(H) let
η′(F0) = η(F0), and for each h incident with F0 in H ′, let η′(F0, h) = η(F0, h). Then (H ′, η′) is a
strip-structure of G, and E(H ′) = E(H), and its nullity is smaller than that of (H, η), contrary to
the optimality of (H, η). This proves that (H, η) has nullity zero.

Now again let F ∈ E(H) with F = {h1, . . . , hk}, and suppose that k ≥ 2 and η(F, h1)∩η(F, h2) 6=
∅. Write W = η(F, h1)∩η(F, h2). Define (H ′, η′) as follows. Let F ′ /∈ V (H)∪E(H) be a new element.
Then

• V (H ′) = V (H), and E(H ′) = E(H) ∪ {F ′}

• for each F0 ∈ E(H) and h ∈ V (H), F0 is incident with h in H ′ if and only if they are incident
in H;

• F ′ is incident in H ′ with h1, h2 and with no other member of V (H);

• for each F0 ∈ E(H) \ {F}, η′(F0) = η(F0) and η′(F0, h) = η(F0, h) for all h ∈ F0;

• η′(F ) = η(F ) \ W ;

• for i = 1, 2, η′(F, hi) = η(F, hi) \ W , and for 3 ≤ i ≤ k, η′(F, hi) = η(F, hi);

• η′(F ′) = η′(F ′, h1) = η′(F ′, h2) = W .

We see that for 3 ≤ i ≤ k, η′(F, hi) ⊆ η′(F ), since no vertex belongs both to W and to some η(F, hi)
with i ≥ 3 from (CS3). Also, from (CS2), W is strongly anticomplete to η(F )\(η(F, h1)∪η(F, h2)),
and so (H ′, η′) satisfies (SD3). But from the optimality of (H, η), (H ′, η′) cannot be a strip-structure
of G, and therefore does not satisfy (SD1); and so η ′(F ) = ∅, that is, η(F, h1) = η(F, h2) = η(F ),
and in particular, η(F ) is a strong clique. Since (H, η) has zero nullity, it follows that k = 2.

Suppose that |η(F )| > 1, and choose a partition (X1, X2) of η(F ) with X1, X2 6= ∅. Define
(H ′, η′) as follows. Let F ′ /∈ V (H) ∪ E(H) be a new element. Then

• V (H ′) = V (H), and E(H ′) = E(H) ∪ {F ′}

• for each F0 ∈ E(H) and h ∈ V (H), F0 is incident with h in H ′ if and only if they are incident
in H;

• F ′ is incident in H ′ with h1, h2 and with no other member of V (H);

• for each F0 ∈ E(H) \ {F}, η′(F0) = η(F0) and η′(F0, h) = η(F0, h) for all h ∈ F0;

• η′(F ) = η′(F, h1) = η′(F, h2) = X1 and η′(F ′) = η′(F ′, h1) = η′(F ′, h2) = X2.

Then (H ′, η′) is a strip-structure of G, contrary to the optimality of (H, η). Hence |η(F )| = 1, and
therefore (H, η) is purified. This proves 8.1.
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9 Unbreakable stripes

Let us say a trigraph G admits a pseudo-1-join if there is a partition V1, V2 of V (G), and for i = 1, 2
there is a subset Ai ⊆ Vi such that:

• for i = 1, 2, V1, V2 are not strongly stable

• A1 ∪ A2 is a strong clique, and

• V1 \ A1 is strongly anticomplete to V2, and V1 is strongly anticomplete to V2 \ A2.

It is easy to check that if G admits a 1-join and no 0-join, then it admits a pseudo-1-join, and the
converse is false.

Let us say that G admits a pseudo-2-join if there is a partition V0, V1, V2 of V (G) (where V0 may
be empty), and for i = 1, 2 there are disjoint subsets Ai, Bi of Vi satisfying the following:

• V0∪A1∪A2 and V0∪B1∪B2 are strong cliques, and V0 is strongly anticomplete to Vi\(Ai∪Bi)
for i = 1, 2;

• for i = 1, 2, Vi is not strongly stable; and

• for all v1 ∈ V1 and v2 ∈ V2, either v1 is strongly antiadjacent to v2, or v1 ∈ A1 and v2 ∈ A2, or
v1 ∈ B1 and v2 ∈ B2.

Again, if G admits a 2-join or generalized 2-join then it admits a pseudo-2-join, and the converse is
not true.

Finally, let us say G admits a biclique if there is a partition V1, V2, V3, V4 of V (G), and

• V1 6= ∅, and V1 ∪ V2, V1 ∪ V3 are strong cliques

• V1 is strongly anticomplete to V4

• either |V1| ≥ 2, or V2 ∪ V3 is not a strong clique

• V2 ∪ V3 ∪ V4 is not strongly stable

• if v2 ∈ V2 and v3 ∈ V3 are adjacent then they have the same neighbours in V4 and neither of
them is semiadjacent to any member of V4.

It is convenient to say that a stripe (J, Z) is a clique if V (J) is a strong clique. A stripe (J, Z) is
said to be unbreakable if

• J does not admit a 0-join, a pseudo-1-join, a pseudo-2-join or a biclique,

• there are no twins u, v ∈ V (J) \ Z,

• there is no W-join (A,B) in J such that Z ∩ A,Z ∩ B = ∅, and

• Z is the set of all vertices that are simplicial in J .

The reason for interest in this concept is the following.
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9.1 Every claw-free trigraph admits a strip-structure such that all its strips are either spots or
cliques or thickenings of unbreakable stripes.

Proof. Let G be a claw-free trigraph, and let (H, η) be an optimal strip-structure. Let F ∈ E(H),
and let (J, Z) be the corresponding strip. We claim that either (J, Z) is a spot or a clique or a
thickening of an unbreakable stripe. We may assume that (J, Z) is not a spot; so by 8.1 (J, Z) is a
stripe; and we may assume it is not a clique. Let F = {h1, . . . , hk}, and let Z = {v1, . . . , vk} as usual.

(1) J does not admit a 0-join.

For suppose that J admits a 0-join (V1, V2). For j = 1, 2, let Qj = Z ∩ Vj, and

Pj = {hi : 1 ≤ i ≤ k and vi ∈ Vj}.

Since (V1, V2) is a 0-join, it follows that P1 ∩ P2 = ∅ and P1 ∪ P2 = {h1, . . . , hk}. If V1 = Q1, then
since V1 6= ∅, we may assume that v1 ∈ Q1; and since (H, η) has nullity zero, v1 has a neighbour
in J , which is necessarily in V1 and not in Q1, a contradiction. Thus V1 \ Q1 6= ∅, and similarly
V2 \ Q2 6= ∅.

Let (H ′, η′) be defined as follows. Let F ′

1, F
′

2 be new elements not in V (H) ∪ E(H). Then

• V (H ′) = V (H) and E(H ′) = (E(H) \ {F}) ∪ {F ′

1, F
′

2};

• for each F0 ∈ E(H) \ {F} and h ∈ V (H), F0 is incident with h in H ′ if and only if they are
incident in H;

• for j = 1, 2 and h ∈ V (H), F ′

j is incident with h in H ′ if and only if h ∈ Pj ;

• for all F0 ∈ E(H) \ {F}, η′(F0) = η(F0) and η′(F0, h) = η(F0, h) for all h ∈ F0;

• for j = 1, 2, η′(F ′

j) = Vj \ Qj ; and

• for j = 1, 2 and h ∈ Pj , η′(F ′

j , h) = η(F, h).

Then (H ′, η′) is a strip-structure of G, contradicting the optimality of (H, η). This proves (1).

(2) J does not admit a pseudo-1-join.

For suppose that it does; then there is a partition (V1, V2) of V (J), and for i = 1, 2, a subset
Ai ⊆ Vi, such that:

• for i = 1, 2, Vi is not strongly stable

• A1 ∪ A2 is a strong clique, and

• V1 \ A1 is strongly anticomplete to V2, and V1 is strongly anticomplete to V2 \ A2.

Since J does not admit a 0-join, it follows that Ai 6= ∅ for i = 1, 2. For j = 1, 2, since Vj is not
strongly stable, there is a vertex of Vj that is not in Z. Suppose first that none of v1, . . . , vk belong
to A1 ∪ A2. For j = 1, 2, let Qj = Vj ∩ Z, and let

Pj = {hi : 1 ≤ i ≤ k and vi ∈ Vj}.
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It follows that P1 ∩ P2 = ∅ and P1 ∪ P2 = {h1, . . . , hk}, and Vj \ Qj 6= ∅ for j = 1, 2, as we already
saw. Let (H ′, η′) be defined as follows. Let F ′

1, F
′

2, h
′ be new elements not in V (H) ∪ E(H). Then

• V (H ′) = V (H) ∪ {h′} and E(H ′) = (E(H) \ {F}) ∪ {F ′

1, F
′

2};

• for each F0 ∈ E(H) \ {F} and h ∈ V (H), F0 is incident with h in H ′ if and only if they are
incident in H;

• no member of E(H) is incident with h′ in H ′;

• for j = 1, 2 and h ∈ V (H), F ′

j is incident with h in H ′ if and only if h ∈ Pj ;

• for j = 1, 2, F ′

j is incident with h′;

• for all F0 ∈ E(H) \ {F}, η′(F0) = η(F0) and η′(F0, h) = η(F0, h) for all h ∈ F0;

• for j = 1, 2, η′(F ′

j) = Vj \ Qj ;

• for j = 1, 2 and h ∈ Pj , η′(F ′

j , h) = η(F, h); and

• for j = 1, 2, η′(F ′

j , h
′) = Aj.

We claim that (H ′, η′) is a strip-structure of G. Certainly for each hi ∈ Pj , η′(F ′

j , hi) = η(F, hi) ⊆
Vj \ Qj = η′(F ′

j) since vi /∈ Aj . Also, (SD1),(SD2),(SD3) are clear (note that since (V1, V2) is a
pseudo-1-join, (SD2) and (SD3) are satisfied for pairs of vertices both in η(F )); let us check (SD4).
It suffices to check that the family η′(F ′

1, h) (h ∈ P1 ∪ {h′}) is a circus in η′(F ′

1). Choose a2 ∈ A2;
then a2 is strongly anticomplete to η′(F ′

1) \ η′(F ′

1, h
′). Let v ∈ η′(F ′

1, h
′); since η(F, h) (h ∈ Z) is a

circus in η(F ), it suffices to check that

• the set of neighbours of v in η′(F ′

1) \ η′(F ′

1, h
′) is a strong clique

• if v ∈ η′(F ′

1, h) for some h ∈ P1, then every neighbour of v in η′(F ′

1) belongs to η′(F ′

1, h) ∪
η′(F ′

1, h
′)

• v belongs to η′(F ′

1, h) for at most one h ∈ P1.

The first assertion holds since v is adjacent to a2, and G is claw-free. The second holds since v is
adjacent to a2 and the family η(F, h) : (h ∈ F ) satisfies (CS1); and the third holds since (H, η) is
purified. Consequently, (H ′, η′) is a strip-structure of G, contradicting the optimality of (H, η).

Next, suppose that one of v1, . . . , vk belong to A1 ∪ A2, v1 ∈ A1 say. Since A1 ∪ A2 is a strong
clique, and v1, . . . , vk are pairwise antiadjacent and no two of them have a common neighbour (since
(H, η) is purified), it follows that v2, . . . , vk /∈ A1∪A2 and are strongly anticomplete to A1∪A2. Also,
v1 is strongly anticomplete to (V1∪V2)\(A1∪A2), since every vertex in this set has an antineighbour
in A1 ∪ A2 and v1 is simplicial. For j = 1, 2, let Qj = Z ∩ Vj and let

Pj = {hi : 2 ≤ i ≤ k and vi ∈ Vj}.

Then P1 ∩ P2 = ∅ and P1 ∪ P2 = {h2, . . . , hk}. As we already saw, V1 \ (Q1 ∪ {v1}), V2 \ Q2 6= ∅.
Define (H ′, η′) as follows. Let F ′

1, F
′

2 be two new elements not in V (H) ∪ E(H). Then

• V (H ′) = V (H) and E(H ′) = (E(H) \ {F}) ∪ {F ′

1, F
′

2};
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• for each F0 ∈ E(H) \ {F} and h ∈ V (H), F0 is incident with h in H ′ if and only if they are
incident in H;

• for j = 1, 2 and h ∈ V (H), F ′

j is incident with h in H ′ if and only if h ∈ Pj ∪ {h1};

• for all F0 ∈ E(H) \ {F}, η′(F0) = η(F0) and η′(F0, h) = η(F0, h) for all h ∈ F0;

• η′(F ′

1) = V1 \ (Q1 ∪ {v1}) and η′(F ′

2) = V2 \ Q2;

• for j = 1, 2 and h ∈ Pj , η′(F ′

j , h) = η(F, h); and

• η′(F ′

1, h1) = A1 \ {v1} and η′(F ′

2, h1) = A2.

Note that A1 \ {v1}, A2 6= ∅ since J does not admit a 0-join; so we can prove as before that (H ′, η′)
is a strip-structure of G, contradicting the optimality of (H, η). This proves (2).

(3) J does not admit a pseudo-2-join.

For suppose that it does. The previous case divided into two subcases depending whether one of
v1, . . . , vk belongs to A1∪A2 or not, and the same happens for pseudo-2-joins, except there are more
subcases. Let us therefore handle them all simultaneously. We have three sets V0, V1, V2 as in the
definition of a pseudo-2-join, where V0 may be empty. Also, for i = 1, 2 we will have subsets Ai, Bi of
Vi as in the definition of pseudo-2-join. We may assume that J does not admit a pseudo-1-join, and
so A1, A2, B1, B2 are all nonempty. Possibly one vertex in A1 ∪ A2 belongs to Z (at most one since
{v1, . . . , vk} is stable), and if say v1 ∈ Z∩ (A1∪A2) then v1 has no neighbours in (V1∪V2)\ (A1∪A2)
since A1, A2 are nonempty and v1 is simplicial. The same applies to B1, B2. Also none of v1, . . . , vk

belong to V0 since V0 is complete to A1 and to B2, and A1 is not complete to B2. For i = 1, 2, since
Vi is not strongly stable, at least one vertex of Vi does not belong to {v1, . . . , vk}.

For i = 1, 2, let Qi = Z ∩ (Vi \ (Ai ∪ Bi)); and let Q3 = Z ∩ (A1 ∪ A2) and Q4 = Z ∩ (B1 ∪ B2).
For i = 1, 2, let Ci = Ai \ Q3, let Di = Bi \ Q4, and let Wi = Vi \ Z. In summary, then, we have
a partition V0,W1,W2, Q3, Q4 of V (J), and for i = 1, 2 there are subsets Ci, Di, Qi of Wi satisfying
the following:

• Q1 ∪ Q2 ∪ Q3 ∪ Q4 = Z, and |Q3|, |Q4| ≤ 1

• V0 ∪ C1 ∪ C2 ∪ Q3 and V0 ∪ D1 ∪ D2 ∪ Q4 are strong cliques, and V0 is strongly anticomplete
to Wi \ (Ci ∪ Di) for i = 1, 2;

• for i = 1, 2, the sets Ci, Di, Qi are pairwise disjoint, and Wi \ Qi 6= ∅;

• for all w1 ∈ W1 and w2 ∈ W2, either w1 is strongly antiadjacent to w2, or w1 ∈ C1 and w2 ∈ C2,
or w1 ∈ D1 and w2 ∈ D2;

• Q3 is strongly anticomplete to W1 ∪ W2 \ (C1 ∪ C2), and Q4 is strongly anticomplete to W1 ∪
W2 \ (D1 ∪ D2).

Since J does not admit a pseudo-1-join, it follows that C1, C2, D1, D2 are all nonempty. Define
(H ′, η′) as follows. Let F ′

1, F
′

2 be two new elements. If Q3 = ∅ let h′

1 be another new element, and
otherwise let h′

1 = hi where Q3 = {vi}. If Q4 = ∅ let h′

2 be another new element, and otherwise let
h′

2 = hi where Q4 = {vi}. If V0 6= ∅ let F ′

3 be another new element. Then
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• V (H ′) = V (H)∪{h′

1, h
′

2}, and E(H ′) = (E(H)\{F})∪{F ′

1 , F ′

2, F
′

3} if F ′

3 exists, and otherwise
E(H ′) = (E(H) \ {F}) ∪ {F ′

1, F
′

2};

• for F0 ∈ E(H) \ {F} and each h ∈ V (H), F0 is incident with h in H ′ if and only if they are
incident in H;

• for F0 ∈ E(H) \ {F}, F0 is not incident with any of h′

1, h
′

2 that are not in V (H);

• for j = 1, 2, F ′

j is incident with h ∈ V (H ′) if and only if h ∈ Qj ∪ {h′

1, h
′

2};

• if F ′

3 exists, F ′

3 is incident with h′

1, h
′

2 and with no other member of V (H ′);

• for all F0 ∈ E(H) \ {F}, η′(F0) = η(F0) and η′(F0, h) = η(F0, h) for all h ∈ F0;

• for j = 1, 2, η′(F ′

j) = Wj \ Qj;

• for j = 1, 2 and h ∈ Pj , η′(F ′

j , h) = η(F, h);

• for j = 1, 2, η′(F ′

j , h
′

1) = Cj, and η′(F ′

j , h
′

2) = Dj; and

• if F ′

3 exists, η′(F ′

3) = η′(F ′

3, h
′

1) = η′(F ′

3, h
′

2) = V0.

Since C1, C2, D1, D2 are all nonempty, we can prove as before that (H ′, η′) is a strip-structure of G,
contradicting the maximality of (H, η). This proves (3).

(4) J does not admit a biclique.

For suppose it does; then there is a partition V1, V2, V3, V4 of V (J), such that

• V1 6= ∅, and V1 ∪ V2, V1 ∪ V3 are strong cliques

• V1 is strongly anticomplete to V4

• either |V1| ≥ 2, or V2 ∪ V3 is not a strong clique

• V2 ∪ V3 ∪ V4 is not strongly stable

• if v2 ∈ V2 and v3 ∈ V3 are adjacent then they have the same neighbours in V4 and the same
antineighbours in V4.

Choose such V1, . . . , V4 with V1 maximal. Suppose first that V2∪V3 is a strong clique. Then |V1| ≥ 2
by hypothesis, and so J admits a pseudo-1-join, since V1 and V2∪V3∪V4 are both not strongly stable,
a contradiction. Thus V2 ∪ V3 is not a strong clique, and in particular, V2, V3 are both nonempty.

For i = 1, . . . , 4, let Qi = Vi ∩ Z. Hence Q1 = ∅. Morover, not both Q2, Q3 are nonempty, since
(H, η) is purified; and so we may assume that Q3 = ∅. Also |Q2| ≤ 1 since Z is stable. Define (H ′, η′)
as follows. Let F ′, h′

1 be new elements. If Q2 = ∅ let h′

2 be another new element, and otherwise let
h′

2 = hi where Q2 = {vi}. Then

• E(H ′) = E(H) ∪ {F ′} and V (H ′) = V (H) ∪ {h′

1, h
′

2};

• for F0 ∈ E(H) and each h ∈ V (H), F0 is incident with h in H ′ if and only if they are incident
in H;
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• for F0 ∈ E(H) \ {F}, F0 is not incident with h′

1, and not with h′

2 if h′

2 /∈ V (H);

• F is incident with h′

1, h
′

2; and F ′ is incident with h′

1, h
′

2 and with no other member of V (H ′);

• for all F0 ∈ E(H) \ {F}, η′(F0) = η(F0) and η′(F0, h) = η(F0, h) for all h ∈ F0;

• η′(F ) = (V2 ∪ V3 ∪ V4) \ (Q2 ∪ Q4), and η(F ′) = V1;

• η′(F, h′

1) = V3, η′(F, h′

2) = V2 \ Q2, and for all other h ∈ V (H ′) incident with F , η′(F, h) =
η(F, h);

• η′(F ′, h′

1) = η′(F ′, h′

2) = V1.

We claim that (H ′, η′) is a strip-structure of G, and since η ′(F ′) 6= ∅ and η′(F ) 6= ∅ (since V2∪V3∪V4

is not strongly stable), it suffices to show that the family

(η′(F, h) : h is incident with F in H ′)

is a circus in G|η′(F ). Since (η(F, h) : h ∈ F ) is a circus in η(F ) (where F denotes the set of vertices
of H incident with F in H), and η′(F, h′

1) ∩ η′(F, h′

2) = ∅, it suffices to check that:

• for j = 1, 2 and x ∈ η′(F, h′

j), the neighbours of x in η′(F ) \ η′(F, h′

j) are a strong clique

• for j = 1, 2 and h ∈ F \ {h′

1, h
′

2}, if x ∈ η′(F, h) ∩ η′(F, h′

j) then x is strongly anticomplete to
η′(F ) \ (η′(F, h) ∪ η′(F, h′

j))

• for j = 1, 2, if x ∈ η′(F, h′

j) then x belongs to η′(F, h) for at most one h ∈ F \ {h′

1, h
′

2}.

The third assertion is clear since (H, η) is purified. For the first assertion, let x ∈ η ′(F, h′

j) where
j ∈ {1, 2}. Then x has a neighbour in V1, and this neighbour is anticomplete to V4, and so the set
of neighbours of x in V4 is a strong clique. Let {j, k} = {1, 2}. If y ∈ Vk is adjacent to x, then x, y
have the same neighbours in V4, from the definition of a biclique, and so the set of neighbours of x
in Vk ∪ V4 is a strong clique. This proves the first assertion.

Now let us check the second assertion. First let j = 1; then x ∈ V3∩η(F, h) where h ∈ F \{h′

1, h
′

2};
h = h1 say. Then v1 ∈ V4, and x is adjacent in J to v1, and v1 is anticomplete to V1. Since x has a
neighbour in V1, and its neighbours in η(F ) \ η(F, h) are a strong clique, it follows that every neigh-
bour of x in V4 is in η(F, h). From the final condition in the definition of a biclique, all neighbours
of x in V2 are adjacent in J to v1, and therefore belong to η(F, h). Thus the second assertion holds
when j = 1. Now let j = 2. If h′

2 /∈ V (H), then the same proof applies, exchanging h′

1, h
′

2; so we
assume that h′

2 ∈ V (H). But then x is strongly anticomplete to η(F ) \ (η(F, h) ∪ η(F, h′

2)), since
(η(F, h) : h ∈ F ) is a circus in η(F ), and again the second assertion holds. Hence (H ′, η′) is a
strip-structure of G, contradicting the maximality of (H, η). This proves (4).

(5) Z is the set of all simplicial vertices of J .

For suppose that some v ∈ V (J) \ Z is simplicial. Suppose first that v is adjacent in J to one of
v1, . . . , vk, say to v1. Since v1, v are both simplicial in J , they are twins; let N be the set of vertices of
J different from v, v1 and adjacent to v. Then {v, v1} and N are strong cliques, and {v, v1} is strongly
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complete to N and strongly anticomplete to V (J)\(N∪{v, v1}). Since ({v, v1}, V (J)\{v, v1}) is not a
pseudo-1-join by (2), it follows that V (J)\{v, v1} is strongly stable; in particular, {v, v1}∪N = V (J),
since any vertex not in {v, v1} ∪ N would have no neighbours and J would admit a 0-join; and so
V (J) is a strong clique, a contradiction.

This proves that v is antiadjacent to v1, . . . , vk. Let N be the set of neighbours of v in J . Define
(H ′, η′) as follows. Let F ′, h′ be new elements; then

• V (H ′) = V (H) ∪ {h′} and E(H ′) = E(H) ∪ {F ′};

• for F0 ∈ E(H) and each h ∈ V (H), F0 is incident with h in H ′ if and only if they are incident
in H;

• F ′ is incident with h′ and with no other vertex of H ′;

• for F0 ∈ E(H), F0 is incident with h′ if and only if F0 = F ;

• for all F0 ∈ E(H) \ {F}, η′(F0) = η(F0) and η′(F0, h) = η(F0, h) for all h ∈ F0;

• η′(F ) = η(F ) \ {v}, and η(F ′) = {v};

• η′(F, h′) = N , and for all other h ∈ V (H ′) incident with F , η′(F, h) = η(F, h);

• η′(F ′, h′) = {v}.

Note that η(F ) 6= {v} since V (J) is not a strong clique, and so η ′(F ) 6= ∅. It follows that (H ′, η′) is
a strip-structure of G, contrary to the optimality of (H, η). This proves (5).

Choose a stripe (J ′, Z ′) with |V (J ′)| minimum such that (J, Z) is a thickening of (J ′, Z ′), and let
Xv (v ∈ V (J ′)) be the corresponding subsets. Hence no two vertices in V (J ′) \ Z ′ are twins in J ′,
and there is no W-join (A,B) in J ′ with Z ′ ∩ A,Z ′ ∩ B = ∅. Moreover, by (1) – (4) it follows that
J ′ does not admit a 0-join, a pseudo-1-join, a pseudo-2-join, or a biclique, since J does not. If v is a
simplicial vertex of J ′ with v /∈ Z ′, then every vertex in Xv is simplicial in J , contrary to (5). Thus
Z ′ is the set of all simplicial vertices of J ′. This proves that (J, Z) is a thickening of an unbreakable
stripe, and so completes the proof of 9.1.

Thus, in order to prove 7.2 it would suffice to identify all the unbreakable stripes and check that
they are consistent with 7.2, and that is the goal of the remainder of the paper.

10 Preliminaries on unbreakable stripes

We begin with some useful lemmas about unbreakable stripes. First, we have

10.1 If (G,Z) is an unbreakable stripe, then G does not admit twins.

Proof. Suppose that u, v are twins of G; then one of u, v ∈ Z since (G,Z) is unbreakable. Let u ∈ Z
say; thus u is simplicial. Since u, v are twins it follows that v is simplicial, and therefore v ∈ Z since
Z is the set of all simplicial vertices of G. But then Z is not stable, a contradiction. This proves
10.1.

26



Second, we observe:

10.2 Let (G,Z) be an unbreakable stripe with |V (G)| > 2, such that V (G) is the union of two strong
cliques. Then |V (G)| ≤ 4 and (G,Z) ∈ Z1 ∪Z6.

Proof. By 10.1, G does not admit twins. Let A,B be strong cliques in G with A ∪ B = V (G),
chosen with A∩B maximal. Then A,B 6= V (G) since G does not admit twins. Since (A,B \A) is a
homogeneous pair, and one of |A|, |B \A| > 1, and (G,Z) is unbreakable, it follows that Z 6= ∅. Any
two members of A ∩ B are twins, so |A ∩ B| ≤ 1. From the maximality of A ∩ B, every member of
A \B has an antineighbour in B \A, and vice versa. Therefore no vertex in A∩B is simplicial, and
so Z ⊆ V (G) \ (A ∩B). Suppose that A ∩B 6= ∅. Then since the four sets A ∩B,A \ B,B \ A, ∅ do
not form a biclique, it follows that (A \ B) ∪ (B \ A) is strongly stable. Since A is a strong clique,
it follows that |A \ B| = 1, and similarly |B \ A| = 1. Then |V (G)| = 3, and |Z| = 1 (since no two
members of Z have a common neighbour), and (G,Z) ∈ Z6. Thus we may assume that A ∩ B = ∅.
Let a ∈ Z, say a ∈ A. If a has a neighbour b ∈ B, then since a is simplicial, it follows that b is
strongly complete to A, contrary to the maximality of A ∩ B. So a is strongly anticomplete to B,
and so (A \ {a}, B) is a homogeneous pair. If Z = {a} then since (G,Z) is unbreakable, it follows
that |A| ≤ 2 and |B| = 1 and again (G,Z) ∈ Z6. We may therefore assume that there exists b ∈ Z
with b 6= a. Since Z is strongly stable, it follows that b ∈ B, and as before b is strongly anticomplete
to A, and |Z| = 2. Since (A \ {a}, B \ {b}) is a homogeneous pair, it follows that |A|, |B| ≤ 2, and
(G,Z) ∈ Z1. This proves 10.2.

And third, we have:

10.3 Let (G,Z) be an unbreakable stripe with |V (G)| > 2. If G is a thickening of a line trigraph
then V (G) is the union of two strong cliques and therefore (G,Z) ∈ Z1 ∪ Z6.

Proof. Let G′ be a line trigraph of some graph H say, and let G be a thickening of G′; let
Xv (v ∈ V (G′) be the corresponding subsets of V (G). Since G admits no 0-join, it follows that H is
connected. Suppose first that some vertex h of H has degree two; let e = hx and f = hy be the two
edges of H incident with h. In particular, if some two vertices of G′ are semiadjacent, choose h such
that e, f are semiadjacent in G′. Let P be the set of all edges of H incident with x and with neither
of h, y, and similarly let Q be the set of all edges of H incident with y and with neither of h, x. Write
A1 = Xe, B1 = Xf , A2 =

⋃
p∈P Xp, and B2 =

⋃
q∈Q Xq. Let V1 = A1 ∪ B1, and V0 = Xt if there

is an edge t of H incident with x, y, and otherwise V0 = ∅. Let V2 = V (G) \ (V1 ∪ V0). We claim
that A1 ∪ A2 ∪ V0 is a strong clique. Suppose not; then x has degree two in H (from the definitions
of a line trigraph and thickening), and e is semiadjacent in G′ to some edge of H incident with x.
Consequently e is not semiadjacent to f in G′, since F (G′) is a matching, contrary to our choice of
h. This proves that A1 ∪ A2 ∪ V0 and similarly B1 ∪ B2 ∪ V0 are strong cliques. Since e, f are both
incident with x in H, it follows that e, f are adjacent in G′, and therefore A ∪ B is not strongly
stable in G. Since G does not admit a pseudo-2-join, it follows that V2 is strongly stable. Thus V2 is
strongly stable; but then V2 = A2 ∪ B2, since G does not admit a 0-join, and therefore V (G) is the
union of two strong cliques and the result follows from 10.2.

We may assume therefore that no vertex of H has degree two; and so no pair of vertices of G ′ are
semiadjacent. Consequently no pair of vertices of G are semiadjacent. If every edge of H is incident
with a vertex of degree one, then since H is connected, it follows that some vertex of H is incident
with every edge of H, and so G′ and hence G is a strong clique and the result follows from 10.2.
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Thus we may assume that there is an edge e = uv of H such that u, v both have degree at least
three in H. Let P,Q be the sets of edges of H incident with u and not v, and with v and not u,
respectively. Let V1 = Xe, V2 =

⋃
p∈P Xp, V3 =

⋃
q∈Q Xq, and V4 = V (G) \ (V1 ∪ V2 ∪ V3). Then

V1 6= ∅, and V1 ∪ V2, V1 ∪ V3 are strong cliques; V1 is strongly anticomplete to V4; since |P | ≥ 2, V2

is not strongly stable; if v2 ∈ V2 and v3 ∈ V3 are adjacent then they belong to sets Xp, Xq where
p ∈ P and q ∈ Q share an end in H, and therefore v2, v3 have the same neighbours in V4; and since
there exist p ∈ P and q ∈ Q with no common end in H, it follows that V2 ∪V3 is not a strong clique.
Consequently G admits a biclique, a contradiction. This proves 10.3.

We also need the following observation:

10.4 For every claw-free trigraph G, if G does not admit a 0-join, 1-join or generalized 2-join, then
either G is a thickening of an indecomposable member of S0 ∪ · · · ∪ S7, or G admits a hex-join.

Proof. We proceed by induction on |V (G)|. Suppose first that G contains twins u, v, and let
G′ = G \ {v}. Then G′ is claw-free, and does not admit a 0-join, 1-join or generalized 2-join (for
adding a twin to a trigraph that admits a 0-,1- or generalized 2-join produces a trigraph that still
admits the same decomposition). From the inductive hypothesis, either G′ is a thickening of a
member of ∈ S0 ∪ · · · ∪ S7 (and therefore so is G, by 6.1), or G′ admits a hex-join (and therefore so
does G). Therefore we may assume that G does not admit twins.

Suppose that G admits a W-join (A,B). Choose a ∈ A and b ∈ B, and let G′ be obtained from
G by deleting (A \ {a}) ∪ (B \ {b}) and making a, b semiadjacent. Then G′ is claw-free and does
not admit a 0-join, 1-join or generalized 2-join, (for if say G′ admits a generalized 2-join (V0, V1, V2),
then since a, b are semiadjacent, they do not belong to V0, and belong to the same one of V1, V2, and
restoring A,B in place of a, b yields a generalized 2-join in G, a contradiction). From the inductive
hypothesis, either G′ is a thickening of a member of S0∪· · ·∪S7 (and therefore so is G, by 6.1), or G′

admits a hex-join (and therefore so does G). Consequently we may assume that G does not admit a
W-join, and hence is indecomposable. But then the result holds by 5.1. This proves 10.4.

Our approach to 7.2 is via the following.

10.5 Let (G,Z) be an unbreakable stripe. Then either

• |V (G)| ≤ 4 and V (G) is the union of two strong cliques, or

• G is a thickening of an indecomposable member of Si for some i ∈ {1, . . . , 7}, or

• G admits a hex-join.

Proof. Choose a trigraph G′ with |V (G′)| minimum such that G is a thickening of G′. Suppose
first that G′ is indecomposable. By 5.1, G′ ∈ Si for some i ∈ {0, . . . , 7}. If i ≥ 1 then the theorem
holds, so we may assume that i = 0. By 10.2 and 10.3, |V (G)| ≤ 4 and V (G) is the union of two
strong cliques, and the theorem holds.

Thus we may assume that G′ is not indecomposable. Since (G,Z) is unbreakable, G does not
admit a 0-join, 1-join or generalized 2-join, and hence neither does G′. From the minimality of
|V (G′)| and 6.1, G′ does not admit twins or a W-join. Thus G′ admits a hex-join, and therefore so
does G. This proves 10.5.
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11 Simplicial vertices in indecomposable trigraphs

We need to study the simplicial vertices of indecomposable trigraphs in Si where 1 ≤ i ≤ 7; and it
is convenient to study which vertices are “near-simplicial”, at the same time. Let us say a vertex of
a trigraph G is near-simplicial if v is semiadjacent to some vertex, and N ∗ is a strong clique, where
N∗ is the set of strong neighbours of v. The following answers the question above, except for S3,
which will be handled in a different way later.

11.1 Let G ∈ Si for some i ∈ {1, 2, 4, 5, 6, 7}, and suppose that G is indecomposable, and V (G) is
not expressible as the union of two strong cliques.

• If z ∈ V (G) is a simplicial vertex, let Z be the set of all simplicial vertices of G; then |Z| ≤ 2
and (G,Z) ∈ Zj for some j ∈ {2, 5, 7, 8, 9}.

• If z ∈ V (G) is a near-simplicial vertex semiadjacent to z ′, let Z = {z, z′}; then (G′, Z) ∈
Z2 ∪ Z5, where G′ is the trigraph obtained from G by making z, z ′ strongly antiadjacent.

Proof. First, let v0, . . . , v11 and G0, G1, G2 be as in the definition of S1. Then no vertex of G0, G1

is simplicial or near-simplicial. Moreover, each of v0, . . . , v9 has two strong neighbours in G (and
therefore in G2) different from v10, v11, that are antiadjacent; and consequently no vertex of G2 is
simplicial or near-simplicial. Hence G /∈ S1.

Next, suppose that G ∈ S2, and let H, v1, . . . , v13 and X ⊆ {v7, v11, v12, v13} be as in the definition
of S2 (where G = H \X). From the hole v1- · · · -v6-v1, it follows that no vertex is simplicial or near-
simplicial except possibly v7 or v8. Thus Z ⊆ {v7, v8}. If z is simplicial then (G,Z) ∈ Z5, and if say
z = v8 ∈ Z is near-simplicial then z ′ = v7 /∈ X and v7, v8 are semiadjacent, and (G′, {v7, v8}) ∈ Z5,
where G′ is obtained by making v7, v8 strongly antiadjacent.

Next suppose that G ∈ S4. Let H,J(H) and h1, . . . , h7 be as in the definition of S4, and let w
be the vertex of G that is not an edge of H. The edges of the cycle h1- · · · -h5-h1 of H form a hole
in G, and so w is not simplicial or near-simplicial in G, and nor is any edge of H with both ends
in {h1, . . . , h5}. The edge hih6 (where 1 ≤ i ≤ 5) is strongly adjacent in G to the edges h6h7 and
hihi+1, and so is not simplicial or near-simplicial in G. Thus z is the edge h6h7, and z is simplicial
and Z = {z}, and (G,Z) ∈ Z7.

Next suppose that G ∈ S5. Let n,A,B,C,D,X etc. be as in the definition of S5. We may assume
(by decreasing n) that X contains at most two of ai, bi, ci for 1 ≤ i ≤ n. Since d1, d3 are antiadjacent,
it follows that no vertex in A is simplicial or near-simplicial, and similarly none in B. Since A \ X
is not strongly complete to B \ X, it follows that d1, d2 are not simplicial or near-simplicial; and
since d2, d5 are antiadjacent it follows that d3, d4 are not simplicial or near-simplicial. Suppose that
c1 is simplicial or near-simplicial in G, and in particular c1 /∈ X. Since c1 is strongly complete to
(A \ {a1}) ∩ X and to (B \ {b1}) ∩ X, and A \ X is not complete to B \ X, we may assume that
a1, b2 /∈ X. Since c2, b2 are antiadjacent, c2 ∈ X. If n ≥ 3 then a3 ∈ X (since a3, b2 are antiadjacent),
so a2 /∈ X (since |A ∩ X| ≤ 1), and hence b3 ∈ X (since b3, a2 are antiadjacent), and so c3 /∈ X
(since X contains at most two of a3, b3, c3), and therefore ({d2}, {d1, c3}) is a homogeneous pair, a
contradiction. Thus n = 2 and C \ X = {c1}. Since C \ X is not strongly complete to B \ X, it
follows that b1 /∈ X, and so c1 is strongly antiadjacent to a1, b1. Hence c1 is simplicial, and no vertex
of G is near-simplicial, and therefore Z = {c1, d5}; but then (G,Z) ∈ Z2. Thus we may assume that
no member of C is simplicial or near-simplicial, and so Z = {d5} and (G,Z) ∈ Z8.
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Next suppose that G ∈ S6, and let H, a0, b0, A,B,C,X etc. be as in the definition of S6. Thus
G = H \X. Since |C \X| ≥ 2 and every member of A \ {a0} has at most one antineighbour in C, it
follows that no member of A \ {a0} is simplicial or near-simplicial in G, and similarly for B \ {b0}.
Suppose that c1 ∈ C \ X is simplicial or near-simplicial in G. Since |C \ X| ≥ 2, we may assume
that c2 ∈ C \ X. Since c1 is strongly adjacent in H to c2, a2, b2, and the strong neighbours of c1

in G are a strong clique, it follows that a2, b2 ∈ X. Hence any two members of C \ (X ∪ {c1}) are
twins in G, and so |C \ X| = {c1, c2}, since G is indecomposable. Let A′ = A \ (X ∪ {a0, a1}), and
B′ = B \ (X ∪ {b0, b1}). Since G does not admits a 1-join, it follows that A′ ∪ B′ 6= ∅. But

{a0, a1} \ X, {b0, b1} \ X, {c1, c2}, A
′, B′, ∅

are pairwise disjoint strong cliques, with union V (G), and since A′ is strongly complete to {a0, a1}\X
and to {c1, c2}, and strongly anticomplete to {b0, b1} \ X, and similarly for B ′, it follows that G is
the hex-join of G|(A′ ∪B′) and G \ (A′ ∪B′), a contradiction. Thus no member of C \X is simplicial
or near-simplicial in G, and so z ∈ {a0, b0}. If z is simplicial then a0, b0 are strongly antiadjacent,
and Z = {a0, b0}, and (G,Z) ∈ Z2; and if z is near-simplicial, then a0, b0 are semiadjacent, and
(G′, {a0, b0}) ∈ Z2, where G′ is obtained from G by making a0, b0 strongly antiadjacent.

Finally, suppose that G ∈ S7. Let z ∈ Z, and let D,D∗ be the sets of neighbours and strong
neighbours of z respectively; then D∗ is a strong clique. Since G is antiprismatic, every vertex in
V (G)\(D∪{z}) has at most one antineighbour in the same set; let V (G)\(D∪{z}) = A∪B∪C, where
A,B,C are disjoint, A = {a1, . . . , an}, B = {b1, . . . , bn}, and for 1 ≤ i ≤ n ai, bi are antiadjacent,
and otherwise every two members of A ∪ B ∪ C are strongly adjacent. Suppose first that z is near-
simplicial, semiadjacent to z ′ say; then Z = {z, z′} and D∗ \D = {z′}. If n > 0 then {z, z′, a1, b1} is
a claw; so n = 0. Let N be the set of all neighbours of z ′ different from z. Then the following sets
are six strong cliques, pairwise disjoint and with union V (G):

{z}, {z′}, C \ N,C ∩ N,D \ N,D ∩ N.

Moreover z is strongly complete to D \N,D ∩N and strongly anticomplete to C ∩N ; z ′ is strongly
complete to C ∩ N,D ∩ N and strongly anticomplete to D \ N ; and C \ N is strongly complete
to C ∩ N,D \ N (the latter since G is antiprismatic) and strongly anticomplete to D ∩ N (since
{z, z′} ∪ (C \ N) ∪ (D ∩ N) includes no claw). Since G does not admit a hex-join, we deduce that
C ∩ N,D \ N,D ∩ N are all empty. Since G does not admit a 0-join, it follows that C \ N = ∅, and
so V (G) = {z, z′} and V (G) is the union of two strong cliques, a contradiction. This proves that z
is simplicial, and so D = D∗. Since V (G) is not the union of the two strong cliques C,D ∪ {v}, it
follows that n > 0. For 1 ≤ i ≤ n and each d ∈ D, since {d, z, ai, bi} is not a claw it follows that
d is strongly antiadjacent to one of ai, bi, and strongly adjacent to the other and to z since G is
antiprismatic. Moreover D = D∗ (since n > 0 and G is antiprismatic). Thus (G, {z}) ∈ Z9. Every
vertex in D is strongly adjacent to z and to one of a1, b1, and so is not simplicial or near-simplicial.
No vertex in C is simplicial or near-simplicial since every such vertex is strongly adjacent to a1, b1

and they are antiadjacent. Suppose that say a1 is simplicial or near-simplicial. Then n = 1, since if
n > 1 then a1 would be strongly adjacent to both a2, b2. Let P be the set of vertices in D adjacent
to a1, and Q = D \ P ; then D 6= ∅ (since G does not admit a 0-join), and the six cliques

P,Q,C, {b1}, {a1}, {z}

show that G is expressible as a hex-join of G|{z, a1, b1} and G|(C ∪ D), a contradiction. Thus no
vertex except z is simplicial or near-simplicial, so Z = {z} and (G,Z) ∈ Z9. This proves 11.1.
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12 Unbreakable thickenings of basic trigraphs

Our current objective is to catalogue all the unbreakable stripes (G,Z) where G is a thickening of a
member of one of S1, . . . ,S7. We begin with:

12.1 Let (G,Z) be an unbreakable stripe, such that Z 6= ∅. If G is a thickening of a long circular
interval trigraph then (G,Z) ∈ Z1 ∪ Z6.

Proof. Let G be a thickening of a long circular interval trigraph G′, and let Xv (v ∈ V (G′)) be the
corresponding subsets of V (G). By 10.1, G does not admit twins. By theorem 2.1 of [3], we may
choose G′ such that:

(1) For every semiadjacent pair u, v of vertices of G′, every vertex in Xu has a neighbour and
an antineighbour in Xv and vice versa.

Let Z = {z1, . . . , zt}, and for 1 ≤ i ≤ t let z′i ∈ V (G′) such that zi ∈ Xz′
i
. The vertices z′1, . . . , z

′

t are
all distinct since Z is stable in G; let Z ′ = {z′1, . . . , z

′

t}.

(2) |Xv | = 1 for all v ∈ V (G′).

For suppose that |Xv | > 1 for some v ∈ V (G′). Since G does not admit twins, it follows that
some vertex in V (G) \Xv is neither strongly complete nor strongly anticomplete to Xv; and hence v
is semiadjacent in G′ to some u ∈ V (G′). If there exists z ∈ Z ∩ Xu, then by (1) z has a neighbour
y ∈ Xv, and by (1) again y has an antineighbour x ∈ Xu; but then x, y are both adjacent to z,
and antiadjacent to each other, contradicting that z is simplicial. Thus Z ∩ Xu = ∅, and similarly
Z ∩ Xv = ∅. But (Xu, Xv) is a W-join in G, contradicting that (G,Z) is unbreakable. This proves
(2).

From (2), it follows that G is isomorphic to G′, and in particular, G is a long circular interval
trigraph; let Σ and F1, . . . , Fk be as in the definition of S3. Let the vertex set of G is v1, . . . , vn in
cyclic order in Σ. We may assume that |Z| ≥ 2, for otherwise (G,Z) ∈ Z6 and the theorem holds.
Thus we may assume that v1, vi ∈ Z, where 2 ≤ i ≤ n. Suppose first that v1, vn are antiadjacent,
and therefore strongly antiadjacent (since v1 ∈ Z). Then G is a linear interval trigraph with vertices
v1, . . . , vn in order. If |Z| = 2 and i = n then (G,Z) ∈ Z1, so we may assume that i < n. For
2 ≤ j ≤ n, since G does not admit a 0-join it follows that {v1, . . . , vj−1} is not strongly anticomplete
to {vj , . . . , vn}, and so vj−1, vj are adjacent for 2 ≤ j ≤ n. In particular v1, v2 are adjacent, and so
i ≥ 3. Choose h, j with 1 ≤ h < i < j ≤ n minimum and maximum such that vi is adjacent to vh, vj .
Thus {v1, . . . , vh−1} is strongly anticomplete to {vi, . . . , vn} (since vh−1 is strongly antiadjacent to vi),
and similarly {vh, . . . , vi−1} is strongly anticomplete to {vj+1, . . . , vn}, and {vh, . . . , vj} is a strong
clique (since vi is simplicial). Hence G admits a pseudo-1-join, a contradiction. Thus if v1, vn are
antiadjacent then the theorem holds. We may assume therefore that v1, vn are strongly adjacent,
and similarly v1, v2 are strongly adjacent (and so 3 ≤ i ≤ n − 1), and vi is strongly adjacent to
vi−1, vi+1. Choose g with 1 < g < i maximum such that v1, vg are adjacent, and m with i < m ≤ n
minimum such that v1, vm are adjacent. Choose h, j with 1 < h < i < j ≤ n minimum and maximum
such that vi is adjacent to vh, vj . Since no vertex of G′ is adjacent to both v1, vi, it follows that
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g < h and similarly j < m. Let V1 = {v1, . . . , vi−1} and V2 = {vi, . . . , vn}. Since v1, v2 are adjacent,
V1 is not strongly stable, and similarly V2 is not strongly stable. For x1 ∈ V1 and x2 ∈ V2, x1, x2

are strongly adjacent if either x1 ∈ {v1, . . . , vg} and x2 ∈ {vm, . . . , vn}, or x1 ∈ {vh, . . . , vi−1} and
x2 ∈ {vi, . . . , vj}, and otherwise x1, x2 are strongly antiadjacent. Hence G admits a pseudo-2-join, a
contradiction. This proves 12.1.

Now we can prove the main result of this section, the following.

12.2 Let (G,Z) be an unbreakable stripe with Z 6= ∅. Suppose that G is a thickening of an inde-
composable member of Si, where i ∈ {1, . . . , 7}. Then (G,Z) ∈ Z0.

Proof. Let G be a thickening of G′, where G′ ∈ Si is indecomposable, and let the corresponding
subsets of V (G) be Xv (v ∈ V (G′)). If V (G′) is the union of two strong cliques, then the same is
true for G and the theorem holds by 10.2. We assume that V (G′) is not so expressible. By 12.1, we
may assume that i 6= 3.

(1) |Xv | = 1 for all v ∈ V (G′).

For suppose not; then since G does not admit twins, we may choose u, v ∈ V (G′), semiadjacent
in G′, such that (Xu, Xv) is a W-join in G′. Since (G,Z) is unbreakable we may assume that there
exists z ∈ Z ∩ Xu, and so u is near-simplicial in G′. Since G′ is indecomposable, 11.1 implies
that u, v are both near-simplicial in G′, and no vertex of G′ is adjacent to both u, v. Since setting
V1 = Xu∪Xv, V0 = ∅, and V2 = V (G)\V1 does not define a pseudo-2-join in G, and V1 is not strongly
stable in G (from the definition of “thickening”, since u, v are semiadjacent in G ′), it follows that
V2 is strongly stable in G. Since G does not admit a 0-join, it follows that every vertex in V2 has a
neighbour in V1. But then V (G) is the union of two strong cliques, a contradiction. This proves (1).

From (1), G′ is isomorphic to G, and so G ∈ Si. By 11.1 applied to (G,Z), it follows that (G,Z)
belongs to Zj for some j ∈ {2, 5, 7, 8, 9}. This proves 12.2.

13 Unbreakable stripes with hex-joins

It remains to catalogue the unbreakable stripes (G,Z) such that G admits a hex-join. We begin
with:

13.1 Let (G,Z) be an unbreakable stripe such that G admits a hex-join. Then |Z| ≤ 2.

Proof. Suppose that |Z| ≥ 3, and let z1, z2, z3 ∈ Z be distinct. Let G be a hex-join of G|V1

and G|V2. From the symmetry we may assume that at least two of z1, z2, z3 belong to V1. Since
{z1, z2, z3} is a triad and every triad is a subset of one of V1, V2, it follows that z3 ∈ V1. Let v ∈ V2.
Then v is antiadjacent to at least two of z1, z2, z3, since (G,Z) is a stripe; and so v therefore belongs
to a triad that contains two of z1, z2, z3, and consequently contains a vertex of V1. Hence this triad
is not a subset of either of V1, V2, a contradiction. This proves 13.1.
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13.2 Let (G,Z) be an unbreakable stripe with |Z| = 2, such that V (G) is the union of three strong
cliques. Then (G,Z) ∈ Z1 ∪ Z2 ∪ Z3 ∪Z4.

Proof. We may assume that V (G) is not the union of two strong cliques, for otherwise the result
follows from 10.2. ((G,Z) /∈ Z6 since |Z| = 2.) Let Z = {z1, z2}.

(1) The set of vertices in G antiadjacent to both z1, z2 is a strong clique of G.

For there are three strong cliques with union V (G), and since z1, z2 are antiadjacent, only one
of these three cliques does not contain either of z1, z2; and this clique contains all vertices antiadja-
cent to them both. This proves (1).

(2) There is no W-join (X,Y ) in G with z1 ∈ X and z2 ∈ Y .

For suppose that (A1, B1) is a W-join with z1 ∈ A1 and z2 ∈ B1. Let V1 = A1∪B1 and V2 = V (G)\V1.
Let A2, B2 be the sets of vertices in V2 strongly complete to A1 and strongly complete to B1 respec-
tively. Since no vertex is adjacent to both z1, z2, it follows that A2∩B2 = ∅. Every vertex in V2 with
a neighbour in A1 belongs to A2, and similarly for B1; and A1 ∪A2, B1 ∪B2 are strong cliques since
z1, z2 are simplicial. Since (A1, B1) is a W-join and G does not admit a pseudo-2-join, it follows that
V2 is strongly stable, and so V2 = A2 ∪ B2 since G admits no 0-join. But then V (G) is the union of
two strong cliques, a contradiction. This proves (2).

Let G′ be the trigraph obtained from G by making z1, z2 semiadjacent. Since z1, z2 are simplicial
in G, it follows that G′ is claw-free. If (X,Y ) is a W-join of G′, then since z1, z2 are semiadjacent,
it follows that z1 ∈ X if and only if z2 ∈ Y , and so by (2), and since (G,Z) is unbreakable, G′

does not admit a W-join. By theorem 11.1 of [4] applied to G′, z1, z2, we deduce that one of the six
outcomes of that theorem hold. The first is contrary to what we just showed; the second implies that
(G,Z) ∈ Z1; the third contradicts 10.3; the fourth implies that (G,Z) ∈ Z3; since G′ does not admit
a generalized 2-join, the fifth implies that (G,Z) ∈ Z4; and the sixth implies that (G,Z) ∈ Z2. This
proves 13.2.

13.3 Let (G,Z) be an unbreakable stripe with |Z| = 1, such that V (G) is the union of three strong
cliques. Then (G,Z) ∈ Z0.

Proof. We proceed by induction on |V (G)|. Let Z = {z}, and let N be the set of neighbours of Z.
Thus, N ∪ {z} is a strong clique. Let R = V (G) \ (N ∪ {z}). We may assume that R is not a strong
clique, for otherwise the result follows from 10.2. Hence |V (G)| ≥ 4.

(1) Every vertex in N has a neighbour in R.

For by 10.1, no vertex in N is a twin of z. This proves (1).

An anticomponent of R means a maximal subset of R that cannot be partitioned into two
nonempty subsets that are strongly complete to each other. Let D1, . . . , Dk be the anticompo-
nents of R; then D1, . . . , Dk are pairwise disjoint and have union R, and are all strongly complete to
each other. Since R is not a strong clique, at least one of D1, . . . , Dk has more than one vertex.
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Now V (G) is the union of three strong cliques. Since one of these cliques contains z and therefore
is a subset of N ∪ {z}, it follows that R can be partitioned into two strong cliques, say L,M . Thus
V (G) is partitioned into three strong cliques L,M,N ∪ {z}.

Let T be the union of all triads of G, and S = V (G) \ T . Thus z ∈ T , and T ∩ R is the union of
all the sets D1, . . . , Dk that have more than one member.

(2) If n ∈ N ∩ S, then for all i with 1 ≤ i ≤ k such that |Di| > 1, n is strongly complete to
one of L ∩ Di,M ∩ Di and strongly anticomplete to the other. Moreover, R \ T is strongly anticom-
plete to N ∩ T .

For let x, y ∈ Di be antiadjacent. Now n is not adjacent to both x, y (since {n, z, x, y} is not a
claw) and n is not antiadjacent to both x, y (since {n, x, y} is not a triad, because n ∈ S). Hence n is
strongly adjacent to one of x, y and strongly antiadjacent to the other. In particular, if x ′ ∈ Di and
x′, y are antiadjacent, then n is either strongly complete or strongly anticomplete to {x, x ′}. This
proves the first assertion of (2). For the second, let n ∈ N ∩ T and r ∈ R \ T . Then n is in a triad
with two members of T ∩R, and r is adjacent to these two members of T ∩R and therefore strongly
antiadjacent to n (since G is claw-free). This proves (2).

(3) We may assume that N ∩ T 6= ∅.

For suppose not. Thus N ⊆ S, and by (2), for all i with 1 ≤ i ≤ k such that |Di| > 1, every
vertex in N is either strongly complete to Di ∩L and strongly anticomplete to Di ∩M , or vice versa.
Thus if |Di| > 1 then (L ∩ Di,M ∩ Di) is a homogeneous pair, and so |L ∩ Di|, |M ∩ Di| = 1 since
(G,Z) is unbreakable. It follows that (G,Z) ∈ Z9, and the theorem holds. This proves (3).

(4) There is exactly one value of i with 1 ≤ i ≤ k such that |Di| > 1.

For there is at least one such value, since R is not a strong clique; suppose there are two. By
(3), there exists n ∈ N with two antineighbours x1, y1 ∈ R, that are antiadjacent to each other. We
may assume that x1, y1 ∈ D1. Let x2 ∈ R \ D1; then x2 is adjacent to x1, y1, and therefore strongly
antiadjacent to n since {x2, n, x1, y1} is not a claw. So n is strongly anticomplete to R \ D1. We
may assume that |D2| > 1, and so n has two antineighbours in D2 that are antiadjacent; and so by
exchanging D1 and D2, it follows that n is strongly anticomplete to R \D2, and therefore to R. But
this is contrary to (1), and so proves (4).

In view of (4), we may assume that |D1| > 1, and |Di| = 1 for 2 ≤ i ≤ k. Thus T ∩ R = D1.

(5) G|T does not admit twins. If (P,Q) is a W-join in G|T , then z ∈ P ∪ Q, say z ∈ P . Moreover,
|P | = 2, say P = {z, p}, and |Q| = 1, say Q = {q}; and q ∈ R ∩ T belongs to one of L ∩ T,M ∩ T
and is strongly anticomplete to the other; and q is the unique neighbour of p in R.

For suppose that u, v are twins in G|T . If u, v ∈ N ∪ {z}, then by (2) they are also twins in
G, contrary to (1). Thus we may assume that v ∈ R. Since u, v are adjacent, u 6= z; and since z is
therefore strongly complete or strongly anticomplete to both u, v, we deduce that u ∈ R. We may
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assume that u ∈ L. Since D1 is anticonnected, u has an antineighbour m ∈ M ∩ T ; and therefore
m 6= v, and m is strongly antiadjacent to both u, v. Consequently v /∈ M , and so u, v ∈ L. But then
u, v are twins in G, by (2), contrary to 10.1. This proves the first assertion.

Now suppose that (P,Q) is a W-join in G|T , and suppose first that P,Q ⊆ R. Since (P,Q)
is not a W-join in G, and since R \ T is strongly complete to P ∪ Q, we may assume that some
vertex of N \ T is neither strongly complete nor strongly anticomplete to Q. By (2) it follows that
Q∩L,Q∩M are both nonempty. Since every vertex in (L∩ T ) \ (P ∪Q) has a neighbour in Q∩L,
it follows that (L∩T ) \ (P ∪Q) is strongly complete to Q, and similarly (R∩T ) \ (P ∪Q) is strongly
complete to Q. Now every vertex in Q∩L belongs to a triad, and therefore has an antineighbour in
M ∩ T , which consequently belongs to P . So no vertex in Q∩L is strongly complete to P ∩M , and
similarly no vertex in Q∩M is strongly complete to P ∩L; and in particular, P ∩L,P ∩M are both
nonempty. By exchanging P,Q we deduce that (R ∩ T ) \ (P ∪ Q) is strongly complete to P ; and so
(R ∩ T ) \ (P ∪Q) is strongly complete to P ∪Q. Moreover, (P ∩L) ∪ (Q ∩ M) is strongly complete
to (P ∩ M) ∪ (Q ∩ L), since P,Q,L,M are all strong cliques. But this is impossible since D1 is an
anticomponent.

Consequently not both P,Q are subsets of R. Since P is not strongly complete to Q, not both
P,Q are subsets of N ∪ {z}; and since P,Q are both nonempty, we may assume that P ∩ (N ∪ {z})
and Q ∩ R are both nonempty. In particular, z /∈ Q, since Q is a strong clique. We claim that
P ⊆ N ∪ {z}; for if z ∈ P then P ⊆ N ∪ {z} since P is a strong clique, and if z /∈ P then since z has
a neighbour in P , it follows that z is strongly complete to P , and again P ⊆ N ∪ {z}.

We may assume that there exists q ∈ Q ∩ M . Since D1 is anticonnected, q has an antineighbour
q′ ∈ L; and hence q′ /∈ Q, since Q is a strong clique. Consequently q ′ is strongly anticomplete to Q,
and in particular to Q ∩ L; and since L is a strong clique and q ′ ∈ L, we deduce that Q ∩ L = ∅.

Suppose that z /∈ P . Since z has an antineighbour in Q, it follows that z is strongly anticomplete
to Q, and so Q ⊆ R, and therefore Q ⊆ M . But then (P,Q) is a W-join in G, contrary to (1). This
proves that z ∈ P .

Every vertex in (M ∩ T ) \ Q has a neighbour in Q ∩ M and is therefore strongly complete to Q;
and so M ∩ T is strongly complete to Q ∩ N . But every vertex in Q ∩ N belongs to a triad, and
therefore has an antineighbour in M ∩ T . Consequently Q ∩ N = ∅, and so Q ⊆ M . If P = {z},
then |Q| > 1 and Q is a homogeneous set in G|T and hence in G, a contradiction. Thus |P | > 1.

By (2), it follows that (P \ {z}, Q) is a homogeneous pair in G, and so |P | = 2 and |Q| = 1;
let P = {z, p} and Q = {q} say. Since (P,Q) is a W-join in G|T , every vertex in R \ Q is strongly
anticomplete to P (since every such vertex is antiadjacent to z ∈ P ), and so q is the only neighbour
of p in R. We claim that L ∩ T is strongly anticomplete to q; for suppose that some y ∈ L ∩ T is
adjacent to q. Since y belongs to a triad, it has an antineighbour y ′ ∈ M ∩T ; but then {q, p, y, y′} is
a claw, a contradiction. This proves that L∩T is strongly anticomplete to q, and therefore proves (5).

(6) There exist j with 1 ≤ j ≤ 5 and (G′, A′, B′, C ′) ∈ T Cj such that one of the following holds:

• G′ = G|T and {A′, B′, C ′} = {(N ∩ T ) ∪ {z}, L ∩ D1,M ∩ D1};

• some p ∈ N ∩T has a unique neighbour q ∈ R; q belongs to one of L∩T,M ∩T and is strongly
anticomplete to the other; G′ is the trigraph obtained from G|T by deleting z and making p, q
semiadjacent; and {A′, B′, C ′} = {N ∩ T,L ∩ D1,M ∩ D1}.
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For by (2), there is a partition (S1, S2) of N ∩S such that S1 is strongly complete to L∩D1 and
strongly anticomplete to M ∩D1, and S2 is strongly complete to M ∩D1 and strongly anticomplete
to L∩D1. Now (G|T, (N ∩T )∪{z}, L∩D1,M ∩D1) is a three-cliqued claw-free trigraph, and it does
not admit a hex-join since every vertex in D1 is in a triad containing z, and every vertex in N ∩T is
in a triad meeting D1. Moreover, each of its vertices is in a triad, and so it does not admit a worn
hex-join. Hence, by 4.1, (G|T, (N ∩ T ) ∪ {z}, L ∩ D1,M ∩ D1) is a permutation of a thickening of
a member (G′, A′, B′, C ′) of T Cj for some j ∈ {1, . . . , 5}. Let Xv (v ∈ V (G′)) be the corresponding
subsets, where z ∈ Xz′ say; then z′ is either simplicial or near-simplicial in G′. If z′ is simplicial
in G′, then |Xv| = 1 for every v ∈ V (G′) by (5), and so (G|T, (N ∩ T ) ∪ {z}, L ∩ D1,M ∩ D1) is a
permutation of (G′, A′, B′, C ′) and the claim holds. If z ′ is near-simplicial in G′, then by (5), |Xv| = 1
for each v ∈ V (G′) \ {z′}; Xz′ = {z, p} where p ∈ N ∩ T has a unique neighbour q ∈ R∩ T as in (5),
and again the claim holds. This proves (6).

Let j and (G′, A′, B′, C ′) be as in (6). If the first case of (6) holds, let p = z, and otherwise let p
be as in the second case of (6).

(7) If j = 1 then the theorem holds.

For suppose that j = 1. Let H, v1, v2, v3, A,B,C be as in the definition of T C1, where G′ is a
line trigraph of H, and A = (N ∩ T ) or (N ∩ T ) ∪ {z}, and B = L ∩ D1, and C = M ∩ D1. Then
p ∈ A and so p is incident with v1 in H. Let the ends of p in H be v1, v0 say; then v0 6= v2, v3.
Moreover, since p is simplicial or near-simplicial in G′, it follows that every edge of H incident with
v0 different from p shares an end with every edge incident with v1. Since there are at least three edges
incident with v1, it follows that p is the only edge of H incident with v0, and therefore p is simplicial
in G′, and so the first case of (6) holds. But then (G,Z) ∈ Z14 and the theorem holds. This proves (7).

(8) If j = 2 then the theorem holds.

For let j = 2. It is easy to see that for any trigraph J and y ∈ V (J), if y is a simplicial ver-
tex of J and (J,X, Y, Z) ∈ T C2, then (J, {y}) ∈ Z13. In particular, if the first case of (6) holds, then
(G,Z) ∈ Z13; so we may assume that the second case holds, and so p is near-simplicial in G ′. Let
q be as in (6). Then (G′, N ∩ T,L ∩ D1,M ∩ D1) ∈ T C2; let Σ be a circle with V (G′) ⊆ Σ, and
let F1, . . . , Fk ⊆ Σ, as in the definition of long circular interval trigraph. Let L1, L2, L3 be pairwise
disjoint lines with V (G′) ⊆ L1 ∪ L2 ∪ L3, and with

V (G′) ∩ L1 = N ∩ T, V (G′) ∩ L2 = L ∩ D1, V (G′) ∩ L3 = M ∩ D1.

Since p, q are semiadjacent in G′, we may assume they are both ends of F1 say, and no other Fi

contains both p, q. But then (G|T, (N ∩ T ) ∪ {z}, L ∩ D1,M ∩ D1) ∈ T C2, as we see by inserting z
into Σ consecutive with p and not in F1; and so again (G,Z) ∈ Z13. This proves (8).

(9) If j = 3 then the theorem holds.

For let j = 3. Then G′ is a near-antiprismatic trigraph; let H,A,B,C,X, a0, b0 be as in the definition
of near-antiprismatic trigraph, such that G′ = H \ X, and A′ = A \ X and similarly for B ′, C ′. As
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in the proof of 11.1, it follows that a0, b0 are the only simplicial or near-simplicial vertices of G′, so
we may assume that p = a0. If the first case of (6) holds, then p is simplicial in G′, and a0, b0 are
strongly antiadjacent in G′, and G′ = G|T ; so A = N , and {B,C} = {L ∩ D1,M ∩ D1}. But then
(G, {z}) ∈ Z11 and the theorem holds. We may therefore assume that the second case of (6) holds,
and so p is near-simplicial in G′; so a0, b0 are semiadjacent in G′, and q = b0, where q is as in (6).
But then (G, {z}) ∈ Z11 and the theorem holds. This proves (9).

(10) If j = 4 then the theorem holds.

For suppose that G′ is antiprismatic. Suppose first that G′ = G|T . By (3), there exists n ∈ N ∩ T ,
and it belongs to a triad {n, x, y}, where x, y ∈ R. But then only one pair of vertices in {n, x, y, z}
is strongly adjacent, contradicting that G′ is antiprismatic. Thus the second case of (6) holds, and
V (G′) = T \{z}. Let p, q be as in (6). Then p, q are semiadjacent in G′, and p is strongly adjacent in
G′ to only one vertex of each triad of G′ that does not contain p, and since G′ is antiprismatic, there
is no such triad, that is, N ∩T = {p}. We may assume that q ∈ M ∩T and q is strongly anticomplete
to L ∩ T . If there exists x ∈ M ∩ T different from q, then x has an antineighbour y ∈ L, and only
one pair of vertices in {p, q, x, y} are strongly adjacent in G′, contradicting that G′ is antiprismatic.
Hence M ∩ T = {q}. If x, y ∈ L ∩ T are distinct, then only one pair of vertices in {p, q, x, y} are
strongly adjacent, again a contradiction; so |L ∩ T | = 1. But then (G, {z}) ∈ Z13. This proves (10).

(11) If j = 5 then the theorem holds.

For let H,X, v1, . . . , v8, A,B,C be as in the first case of the definition of T C5, where

(H \ X,A,B \ X,C) = (G′, A′, B′, C ′).

Thus X ⊆ {v3, v4}. Hence v1, v3, v4, v6, v7 are not simplicial or near-simplicial in G′, so p is one
of v2, v5, v8. Suppose that p = v2. Since v1, v4 are semiadjacent in H, it follows that v4 ∈ X. If
v2 is simplicial in G′, then v2, v5 are strongly antiadjacent, and G′ = G|T , and so (G, {z}) ∈ Z11

and the theorem holds. If v2 is not simplicial in G′, then v2, v5 are semiadjacent in G′, and G|T is
obtained from G′ by adding z strongly adjacent to {v1, v2, v3} \ X and strongly antiadjacent to all
other vertices of G′, and possibly making v2, v5 strongly adjacent. But then (G, {z}) ∈ Z10 and the
theorem holds. Hence we may assume that p 6= v2, and similarly p 6= v5, and therefore p = v8. Hence
p is not semiadjacent to any vertex in G′, and so G′ = G|T . Consequently (G, {z}) ∈ Z15, and the
theorem holds.

Now let H,X, v1, . . . , v9, A,B,C be as in the second case of the definition of T C5, where

(H \ X,A,B \ X,C) = (G′, A′, B′, C ′).

Thus X ⊆ {v3, v4, v5, v6} and contains at most one of v3, v4 and at most one of v5, v6. Moreover, v2

is adjacent in G′ to one of v3, v4, and v7 is adjacent to one of v5, v6. Hence none of v1, v3, v6, v8, v9

are simplicial or near-simplicial in G′, so from the symmetry we may assume that p is one of v2, v4.
Suppose first that p = v2. One of A,B \X,C consists of {p} together with all strong neighbours of p
in G′, and this must be A since p ∈ A; so v3 ∈ X (because otherwise v3 is a strong neighbour of p in G′

that is not in A), and v2 is semiadjacent to v4, and so q = v4 and the second case of (6) holds. Then
G|T is obtained from G′ by adding a vertex z strongly adjacent to v1, v2 and strongly antiadjacent
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to all other vertices of G′, and possibly making v2, v4 strongly adjacent. But then (G,Z) ∈ Z10 and
the theorem holds.

We may therefore assume that p = v4, and in particular, v4 /∈ X. Since v4 is simplicial or
near-simplicial in G′, it follows that v2, v4 are antiadjacent. If they are strongly antiadjacent, then
G|T = G′ and (G,Z) ∈ Z12. If they are semiadjacent, then G|T is obtained from G′ by adding a
vertex z strongly adjacent to {v3, v4, v5, v6, v9} \ X and strongly antiadjacent to all other vertices of
G′, and possibly making v2, v4 strongly adjacent. But then again (G,Z) ∈ Z12. This proves (11).

From (6)–(11), this proves 13.3.

Proof of 7.2. Let G be a connected claw-free trigraph such that V (G) is not the union of three
strong cliques. By 9.1, there is a strip-structure (H, η) of G such that all its strips are either spots
or cliques or thickenings of unbreakable stripes. Suppose first that (H, η) is trivial. Then the unique
strip of the strip-structure is (G, ∅), and so this is either a spot or a clique or a thickening of an
unbreakable stripe. It is not a spot since |Z| = 2 for every spot (J, Z). If it is a clique then G is a
strong clique and hence a thickening of a one-vertex trigraph (which belongs to S3 for instance), and
the theorem holds. We assume then that (G, ∅) is an unbreakable stripe. But G does not admit a
hex-join, since V (G) is not the union of three cliques; and G does not admit twins, a W-join, a 0-join,
a 1-join or a generalized 2-join since (G, ∅) is an unbreakable stripe. Thus G is indecomposable. By
5.1, G ∈ Si for some i ∈ {0, . . . , 7}. If |V (G)| ≤ 2 then G ∈ S3 and the theorem holds, so we
assume that |V (G)| ≥ 3; and so by 10.3, i > 0. Moreover, G has no simplicial vertex, since (G, ∅)
is unbreakable, and so i 6= 4, 5. Suppose that i ∈ {2, 6}. Then there are two vertices a0, b0 of G,
either strongly antiadjacent to each other and both simplicial, or semiadjacent to each other and
both near-simplicial. The first is impossible since no vertices of G are simplicial. In the second case,
let V1 = {a0, b0} and V0 the set of all vertices in V (G) \ {a0, b0} that are strongly adjacent to both
a0, b0, and V2 = V (G) \ (V0 ∪ V1); since V1, V2 are not strongly stable, these define a pseudo-2-join,
a contradiction. Thus i ∈ {1, 3, 7} and the theorem holds.

Thus we may assume that (H, η) is nontrivial. Let (J, Z) be a strip of the strip-structure. We
must show that either (J, Z) is a spot, or (J, Z) is a thickening of a member of Z0. Suppose then
that (J, Z) is not a spot. Certainly Z 6= ∅ since G is connected and the strip-structure is nontrivial.
If (J, Z) is a clique, then |Z| = 1 and (J, Z) is a thickening of a member of Z6. We assume therefore
that (J, Z) is not a clique, and so |V (J)| > 2. It follows that (J, Z) is a thickening of an unbreakable
stripe (J ′, Z ′). If V (J ′) is the union of two strong cliques, then by 10.2 (J ′, Z ′) ∈ Z1∪Z6 as required,
so we may assume that V (J ′) is not the union of two strong cliques. By 10.5 either J ′ is a thickening
of an indecomposable member of Si for some i ∈ {1, . . . , 7}, or J ′ admits a hex-join. In the first
case, by 12.2 we deduce that (J ′, Z ′) ∈ Z0 as required. In the second case, 13.1 implies that |Z ′| = 1
or 2. If |Z ′| = 2 then 13.2 implies that (J ′, Z ′) ∈ Z0 as required. If |Z ′| = 1 then 13.3 implies that
(J ′, Z ′) ∈ Z0 again as required. This proves 7.2.
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