
Claw-Free Graphs With Strongly Perfect

Complements. Fractional and Integral Version.

Part I. Basic graphs

Maria Chudnovsky∗

Department of Industrial Engineering and Operations Research

Columbia University, New York, NY, U.S.A.

mchudnov@columbia.edu

Bernard Ries†

Université Paris Dauphine, Paris, France

bernard.ries@dauphine.fr

Yori Zwols‡

School of Computer Science

McGill University, Montreal, QC, Canada

yori.zwols@mcgill.ca

June 16, 2011

Abstract

Strongly perfect graphs have been studied by several authors (e.g. Berge and Duchet [1],

Ravindra [12], Wang [14]). In a series of two papers, the current paper being the first one,

we investigate a fractional relaxation of strong perfection. Motivated by a wireless networking

problem, we consider claw-free graphs that are fractionally strongly perfect in the complement.

We obtain a forbidden induced subgraph characterization and display graph-theoretic properties

of such graphs. It turns out that the forbidden induced subgraphs that characterize claw-free

that are fractionally strongly perfect in the complement are precisely the cycle of length 6, all

cycles of length at least 8, four particular graphs, and a collection of graphs that are constructed

by taking two graphs, each a copy of one of three particular graphs, and joining them in a certain

way by a path of arbitrary length. Wang [14] gave a characterization of strongly perfect claw-

free graphs. As a corollary of the results in this paper, we obtain a characterization of claw-free

graphs whose complements are strongly perfect.
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1 Introduction

All graphs in this paper are finite and simple. Let G be a graph. We denote by V (G) and E(G)

the set of vertices and edges, respectively, of G. We denote by Gc the complement of G. A clique

is a set of pairwise adjacent vertices and a stable set is a set of pairwise nonadjacent vertices. The

clique number ω(G) denotes the size of a maximum cardinality clique in G and the stability number

α(G) denotes the size of a maximum cardinality stable set in G. Let χ(G) denote the chromatic

number of G. G is said to be perfect if every induced subgraph G′ of G satisfies χ(G′) = ω(G′).

For another graph H, we say that G contains H as an induced subgraph if G has an induced

subgraph that is isomorphic to H. The claw is a graph with vertex set {a0, a1, a2, a3} and edge set

{a0a1, a0a2, a0a3}. We say that a graph G is claw-free if G does not contain the claw as an induced

subgraph. We say that G is connected if there exists a path between every two u, v ∈ V (G). A

connected component of G is a maximal connected subgraph of G. For disjoint sets A,B ∈ V (G)

we say that A is complete to B if every vertex in A is adjacent to every vertex in B, and a ∈ V (G)

is complete to B if {a} is complete to B.

A graph G is fractionally co-strongly perfect if and only if, for every induced subgraph H of G,

there exists a function w : V (H)→ [0, 1] such that∑
v∈S

w(v) = 1, for every inclusion-wise maximal stable set S of H. (1)

We call a function w that satisfies (1) a saturating vertex weighting for H. This paper investigates

graphs that are claw-free and that are fractionally co-strongly perfect. We will give a characteriza-

tion of such graphs in terms of forbidden induced subgraphs.

Motivation

The motivation for studying fractionally co-strongly perfect claw-free graphs is two-fold. Firstly,

the class of fractionally co-strongly perfect graphs shows up naturally in an application in wireless

networking (see Section 3.2). With this application in mind, the authors and three others char-

acterized in an earlier paper [2] all line graphs that are fractionally co-strongly perfect. Claw-free

graphs form a mathematically natural generalization of line graphs, not only because all line graphs

are claw-free, but – more importantly – because the structure of claw-free graphs closely resembles

that of line graphs. Since characterizing fractionally co-strongly perfect graphs in general seems

hard, considering the class of claw-free graphs is a natural step.

Secondly, there is a relationship between co-strongly perfect graphs and so-called strongly perfect

graphs, which were first studied by Berge and Duchet [1] in the 1980’s. A graph G is strongly

perfect if every induced subgraph H of G contains a stable set that meets every (inclusion-wise)

maximal clique of H. An equivalent definition of strong perfection is: a graph G is strongly perfect

if and only if for every induced subgraph H of G, there exists a function w : V (H) → {0, 1} such

that
∑

v∈K w(v) = 1 for every maximal clique K of H. Therefore, fractional strong perfection is,

as the name suggests, a fractional relaxation of strong perfection. (The ‘co-’ part in ‘fractional
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co-strong perfection’ refers to the fact that we are interested in this property in the complement.)

Strongly perfect graphs are of interest because they form a special class of perfect graphs in the

following sense: every perfect graph (and hence each of its induced subgraphs) contains a stable set

that meets every maximum cardinality clique (take one color class in an optimal vertex coloring).

Strongly perfect graphs satisfy the stronger property that they contain a stable set meeting every

inclusion-wise maximal clique. Although a characterization of perfect graphs in terms of excluded

induced subgraphs is known [5], no such characterization is known yet for strongly perfect graphs.

Wang [14] gave a characterization of claw-free graphs that are strongly perfect. As a corollary of

our main theorem, we obtain a characterization of claw-free graphs that are strongly perfect in the

complement; see Section 3.1.

Statement of the main results

Before stating our main theorem, we define the following three classes of graphs:

• F1 = {Ck | k = 6 or k ≥ 8}, where Ck is a cycle of length k;

• F2 = {G1,G2,G3,G4}, where the Gi’s are the graphs drawn in Figure 1(a);

• Let H = {H1(k),H2(k),H3(k)
∣∣ k ≥ 0}, where Hi(k) is the graph Hi drawn in Figure 1(b) but

whose ‘wiggly’ edge joining z and x is replaced by an induced k-edge-path. For i ∈ {1, 2, 3},
we call Hi(k) a heft of type i with a rope of length k. We call x the end of the heft Hi(k).

Now let i1, i2 ∈ {1, 2, 3} and let k1, k2 ≥ 0 be integers. Let H1 = Hi1
(k1) and H2 = Hi2

(k2),

and let x1, x2 be the end of heft H1, H2, respectively. Construct H from the disjoint union of

H1 and H2 by deleting x1 and x2, and making the neighbors of x1 complete to the neighbors of

x2. Then H is called a skipping rope of type (i1, i2) of length k1 + k2. Let F3 be the collection

of skipping ropes. Figure 2 shows two examples of skipping ropes.

Let F = F1 ∪ F2 ∪ F3. A graph G is F-free if no induced subgraph of G is isomorphic to a graph

in F . We say that a clique K is a dominant clique in a graph G if every maximal (under inclusion)

stable set S in G satisfies S ∩ K 6= ∅. We say that a graph G is resolved if at least one of the

following is true:

(a) there exists x ∈ V (G) that is complete to V (G) \ {x}; or

(b) G has a dominant clique; or

(c) G is not perfect and every maximal stable set in G has the same size k ∈ {2, 3}.

We say that a graph G is perfectly resolved if every connected induced subgraph of G is resolved.

In a series of two papers (the current paper and [4]), we will prove the following theorem:

Theorem 1.1. Let G be a claw-free graph. Then the following statements are equivalent:

(i) G is fractionally co-strongly perfect;

(ii) G is F-free;

(iii) G is perfectly resolved.
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Figure 1: Forbidden induced subgraphs for fractionally co-strongly perfect graphs. (a) The graphs

G1, G2, G3, G4. (b) Hefts H that are combined to construct skipping ropes.

Figure 2: Two examples of skipping ropes. Left: the skipping rope of type (1, 3) of length 3. Right:

the skipping rope of type (3, 3) of length 0.

Wang [14] gave a characterization of claw-free graphs that are strongly perfect. Theorem 1.1

allows us to give a characterization of claw-free graphs that are strongly perfect in the complement.

Specifically, we obtain the following induced subgraph characterization of claw-free graphs that are

strongly perfect in the complement:

Theorem 1.2. Let G be a claw-free graph. Gc is strongly perfect if and only if G is perfect and no

induced subgraph of G is isomorphic to G4, an even hole of length at least six, or a skipping rope of

type (3, 3) of length k ≥ 0.

Chudnovsky and Seymour [7] proved a structure theorem for claw-free graphs. The theorem roughly

states that every claw-free graph is either of a certain ‘basic’ type or admits a so-called ‘strip-

structure’. In fact, [7] deals with slightly more general objects called ‘claw-free trigraphs’. What is

actually meant by ‘basic’ will be explained in Section 2. The definition of a ‘strip-structure’ is in

[7]. We do not repeat it here because we deal with them in the second paper [4]. The current paper

deals with the proof of Theorem 1.1 for the case when G is of the ‘basic’ type. To summarize, the

goal of this paper is to prove the following three results, the last of which is the reason why we are
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only able to partially prove Theorem 1.1 in this paper:

Theorem 1.3. If G is fractionally co-strongly perfect, then G is F-free.

Theorem 1.4. If G is perfectly resolved, then G is fractionally co-strongly perfect.

Theorem 1.5. Every F-free basic claw-free graph G is resolved.

Notice that in outcome (c) of the definition of a resolved graph, we could drop the requirement

that G be imperfect. This extra condition, however, facilitates the proof of Theorem 1.2 and, as it

turns out, it will take almost no effort to obtain the condition in the proof of Theorem 1.5.

Organization of this paper

This paper is structured as follows. In Section 2, we will introduce tools that we need throughout

the current paper. We suggest skipping Sections 2.2–2.5 at first reading and coming back to them

when definitions and results from these sections are needed (which will mainly be in Section 5).

In Section 3, we present two applications of Theorem 1.1. The first application is the proof of

Theorem 1.2 which gives a characterization of claw-free graphs that are strongly perfect in the

complement. The second application lies in wireless networking. We briefly sketch the application

and give references for details. Section 4 is devoted to proving Theorem 1.3 and Theorem 1.4.

Section 3 and Section 4 are mostly self-contained. The remainder of this paper consists of Section

5 in which we give the proof of Theorem 1.5.

2 Tools

In this section, we introduce definitions, notation and important lemmas that we use throughout

the paper. As in [7], it will be helpful to work with “trigraphs” rather than with graphs. We

would like to point out that the results in [7] can be stated in terms of graphs as well. Although

we originally tried to write this paper using the graph-versions of these results, we quickly realized

that whether a graph is resolved can – up to a few exceptions – easily be determined from the

underlying trigraph. Therefore, working with trigraphs rather than their graphic thickenings (see

Section 2.1) simplifies the analysis considerably.

The purpose of this section is to gather all the tools that are used throughout the current paper

and [4] in one place. At first reading, Sections 2.2–2.5 may be skipped. The definitions and results

from these sections will not be needed until Section 5.

2.1 Claw-free graphs and trigraphs

For an integer n ≥ 1, we denote by [n] the set {1, 2, . . . , n}. In this section we define terminology

for trigraphs. We use this terminology defined for trigraphs in this section for graphs as well. The
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definitions should be applied to graphs by regarding graphs as trigraphs.

A trigraph T consists of a finite set V (T ) of vertices, and a map θT : V (T ) × V (T ) → {1, 0,−1},
satisfying:

• θT (v, v) = 0, for all v ∈ V (T );

• θT (u, v) = θT (v, u), for all distinct u, v ∈ V (T );

• for all distinct u, v, w ∈ V (T ), at most one of θT (u, v), θT (u,w) equals zero.

We call θT the adjacency function of T . For distinct u, v ∈ V (T ), we say that u and v are

strongly adjacent if θT (u, v) = 1, strongly antiadjacent if θT (u, v) = −1, and semiadjacent if

θT (u, v) = 0. We say that u and v are adjacent if they are either strongly adjacent or semiadjacent,

and antiadjacent if they are either strongly antiadjacent or semiadjacent. We denote by F (T ) the

set of all pairs {u, v} such that u, v ∈ V (T ) are distinct and semiadjacent. Thus a trigraph T is a

graph if F (T ) = ∅.

We say that u is a (strong) neighbor of v if u and v are (strongly) adjacent; u is a (strong)

antineighbor of v if u and v are (strongly) antiadjacent. For distinct u, v ∈ V (T ) we say that

uv = {u, v} is an edge, a strong edge, an antiedge, a strong antiedge, or a semiedge if u and v

are adjacent, strongly adjacent, antiadjacent, strongly antiadjacent, or semiadjacent, respectively.

For disjoint sets A,B ⊆ V (T ), we say that A is (strongly) complete to B if every vertex in A is

(strongly) adjacent to every vertex in B, and that A is (strongly) anticomplete to B if every vertex

in A is (strongly) antiadjacent to every vertex in B. We say that A and B are linked if every

vertex in A has a neighbor in B and every vertex in B has a neighbor in A. For v ∈ V (T ), let

NT (v) denote the set of vertices adjacent to v, and let NT [v] = NT (v) ∪ {v}. Whenever it is clear

from the context what T is, we drop the subscript and write N(v) = NT (v) and N [v] = NT [v].

For X ⊆ V (T ), we write N(X) = (∪x∈XN(x)) \ X and N [X] = N(X) ∪ X. We say that a set

K ⊆ V (T ) is a (strong) clique if the vertices in K are pairwise (strongly) adjacent. We say that a

set S ⊆ V (T ) is a (strong) stable set if the vertices in S are pairwise (strongly) antiadjacent.

We say that a trigraph T ′ is a thickening of T if for every v ∈ V (T ) there is a nonempty subset

Xv ⊆ V (T ′), all pairwise disjoint and with union V (T ′), satisfying the following:

(i) for each v ∈ V (T ), Xv is a strong clique of T ′;

(ii) if u, v ∈ V (T ) are strongly adjacent in T , then Xu is strongly complete to Xv in T ′;

(iii) if u, v ∈ V (T ) are strongly antiadjacent in T , then Xu is strongly anticomplete to Xv in T ′;

(iv) if u, v ∈ V (T ) are semiadjacent in T , then Xu is neither strongly complete nor strongly

anticomplete to Xv in T ′.

When F (T ′) = ∅ then we call T ′ regarded as a graph a graphic thickening of T .

For X ⊆ V (T ), we define the trigraph T |X induced on X as follows. The vertex set of T |X is

X, and the adjacency function of T |X is the restriction of θT to X2. We call T |X an induced

subtrigraph of T . We define T \X = T |(V (T ) \X). We say that a graph G is a realization of T

if V (G) = V (T ) and for distinct u, v ∈ V (T ), u and v are adjacent in G if u and v are strongly
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Figure 3: An F-free trigraph T (left) and a graphic thickening of T that is not F-free (right). Here, Xvi = {xi} for

i = 1, 2, 5 and Xvi = {x1
i , x

2
i } for i = 3, 4.

adjacent in T , u and v are nonadjacent in G if u and v are strongly antiadjacent in T , and u and v

are either adjacent or nonadjacent in G if u and v are semiadjacent in T . We say that T contains

a graph H as a weakly induced subgraph if there exists a realization of T that contains H as an

induced subgraph. We mention the following easy lemma:

(2.1) Let T be a trigraph and let H be a graph. If T contains H as a weakly induced subgraph, then

every graphic thickening of T contains H as an induced subgraph.

Proof. Let G be a graphic thickening of T . Since T contains H as a weakly induced subgraph,

there exists a realization G′ of T that contains H as an induced subgraph. Because every graphic

thickening of T contains every realization of T as an induced subgraph, it follows that G contains

H as an induced subgraph. This proves (2.1). �

A stable set S is called a triad if |S| = 3. T is said to be claw-free if T does not contain the claw

as a weakly induced subgraph. We state the following trivial result without proof:

(2.2) Let T be a claw-free trigraph. Then no v ∈ V (T ) is complete to a triad in T .

A trigraph T is said to be F-free if it does not contain any graph in F as a weakly induced

subgraph. Notice that, by (2.1), if every graphic thickening of a trigraph T is F-free, then T is

F-free. The converse, however, is not true: if T is F-free, this does necessarily mean that every

graphic thickening of T is F-free. For an example, see Figure 3.

Let p1, p2, . . . , pk ∈ V (T ) be distinct vertices. We say that T |{p1, p2, . . . , pk} of T is a weakly induced

path (from p1 to pk) in T if, for i, j ∈ [k], i < j, pi and pj are adjacent if j = i+ 1 and antiadjacent

otherwise. Let {c1, c2, . . . , ck} ⊆ V (T ). We say that T |{c1, c2, . . . , ck} is a weakly induced cycle (of

length k) in T if for all distinct i, j ∈ [k], ci is adjacent to cj if |i− j| = 1 (mod k), and antiadjacent

otherwise. We say that T |{c1, c2, . . . , ck} is a semihole (of length k) in T if for all distinct i, j ∈ [k],

ci is adjacent to cj if |i − j| = 1 (mod k), and strongly antiadjacent otherwise. A vertex v in a

trigraph T is simplicial if N(v) is a strong clique. Notice that our definition of a simplicial vertex

differs slightly from the definition used in [7], because we allow v to be incident with a semiedge.

Finally, we say that a set X ⊆ V (T ) is a homogeneous set in T if |X| ≥ 2 and θT (x, v) = θT (x′, v)

for all x, x′ ∈ X and all v ∈ V (T ) \X. For two vertices x, y ∈ V (T ), we say that x is a clone of y
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if {x, y} is a homogeneous set in T . In that case we say that x and y are clones.

2.2 Resolved graphs and trigraphs; finding dominant cliques

We say that a claw-free trigraph T is resolved if every F-free graphic thickening of T is resolved.

Notice that, by this definition, every trigraph that is not F-free is resolved (because such a trigraph

has no F-free graphic thickening). Although this seems a bit counterintuitive, we do not particularly

care about it, because we are only interested in proving that every F-free trigraph is resolved. (See

(5.1)) Also recall that an F-free trigraph may have a graphic thickening that is not F-free (see

Figure 3). We state a number of useful lemmas for concluding that a trigraph is resolved. Let T be

a trigraph. For a vertex x ∈ V (T ), we say that a stable set S ⊆ V (T ) covers x if x has a neighbor

in S. For a strong clique K ⊆ V (T ), we say that a stable set S ⊆ V (T ) covers K if S covers every

vertex in K. We say that a strong clique K ⊆ V (T ) is a dominant clique if T contains no stable

set S ⊆ V (T ) \K such that S covers K. It is easy to see that this definition of a dominant clique,

when applied to a graph, coincides with our earlier definition of a dominant clique for a graph.

(2.3) Let T be a trigraph and suppose that K is a dominant clique in T . Then, T is resolved.

Proof. Let G be a graphic thickening of T . For v ∈ V (T ), let Xv denote the clique in G

corresponding to v. We claim that K ′ =
⋃

z∈K Xz is a dominant clique in G. For suppose not.

Then there exists a maximal stable set S′ ⊆ V (G) such that S′ ∩K ′ = ∅. Write S′ = {s′1, . . . , s′p},
where p = |S′|, and let si ∈ V (T ) be such that s′i ∈ Xsi

. Let S = {s1, . . . , sp}. We claim that S

covers K, contrary to the fact that K is a dominant clique in T . Since S′ is a stable set in G, it

follows that S is a stable set in T . Now let w ∈ K and let w′ ∈ Xw. Since S′ is maximal and

S′∩K ′ = ∅, it follows that w′ has a neighbor s′ ∈ S′. Let s ∈ V (T ) be such that s′ ∈ Xs. It follows

that w is adjacent to s. This proves that every w ∈ K has a neighbor in S and, hence, S covers

K, which proves (2.3). �

Notice that if G is a graphic thickening of some trigraph T and T has no dominant clique, then

this does not necessarily imply that G has no dominant clique (consider, for example, a two-vertex

trigraph where the two vertices are semiadjacent). The following lemma gives another way of

finding a dominant clique:

(2.4) Let T be a trigraph, let A and B be nonempty disjoint strong cliques in T and suppose that

A is strongly anticomplete to V (T ) \ (A ∪B). Then, T is resolved.

Proof. Let G be a graphic thickening of T . For v ∈ V (T ), let Xv be the corresponding clique in

G. Let Y =
⋃

a∈AXa and Z =
⋃

b∈BXb. Let Z ′ ⊆ Z be the set of vertices in Z that are complete

to Y . We claim that K = Y ∪Z ′ is a dominant clique in G. For suppose that S is a maximal stable

set in G such that S∩K = ∅. First notice that every y ∈ Y has a neighbor in (Z \Z ′)∩S, because,

if not, then we may add y to S and obtain a larger stable set. In particular, (Z \ Z ′) ∩ S 6= ∅ and,

since Z is a clique, |S ∩ (Z \ Z ′)| = 1. But now the unique vertex z in (Z \ Z ′) ∩ S is complete to
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Y , contrary to the fact that z 6∈ Z ′. This proves (2.4). �

By letting |A| = 1 in (2.4), we obtain the following immediate result that we will use often:

(2.5) Let T be a trigraph and let v ∈ V (T ) be a simplicial vertex. Then, T is resolved.

Next, we have a lemma that deals with trigraphs with no triads:

(2.6) Let T be a trigraph with no triad. Then, T is resolved.

Proof. Let G be a graphic thickening of T . Since T has no triad, it follows that α(G) ≤ 2. If some

vertex v ∈ V (G) is complete to V (G) \ {v}, then G is resolved. So we may assume that no such

vertex exists. It follows that there is no maximal stable set of size one and, hence, every maximal

stable set has size two. If G is imperfect, then G is resolved. So we may assume that G is perfect.

From this, since Gc has no triangles, it follows that Gc is bipartite and thus G is the union of two

cliques. But now, it follows from (2.4) that G has a dominant clique and, therefore, G is resolved.

This proves (2.6). �

Let T be a trigraph, and suppose that K1 and K2 are disjoint nonempty strong cliques. We say

that (K1,K2) is a homogeneous pair of cliques in T if, for i = 1, 2, every vertex in V (T )\ (K1∪K2)

is either strongly complete or strongly anticomplete to Ki. For notational convenience, for a weakly

induced path P = p1-p2- . . . -pk−1-pk, we define the interior P ∗ of P by P ∗ = p2-p3- · · · -pk−2-pk−1.

(2.7) Let T be an F-free claw-free trigraph. Let (K1,K2) be a homogeneous pair of cliques in T

such that K1 is not strongly complete and not strongly anticomplete to K2. For {i, j} = {1, 2},
let Ni = N(Ki) \ N [Kj ] and M = V (T ) \ (N [K1] ∪ N [K2]). If there exists a weakly induced path

P between antiadjacent v1 ∈ N1 and v2 ∈ N2 such that V (P ∗) ⊆ M and |V (P )| ≥ 3, then T is

resolved.

Proof. Let G be an F-free graphic thickening of T . For v ∈ V (T ), let Xv denote the corresponding

clique in G. Let K ′1 =
⋃

v∈K1
Xv and define K ′2, N

′
1, N

′
2, M

′ analogously. Let Z ′ = (N(K ′1) ∩
N(K ′2)) \ (K ′1 ∪K ′2). Since (K1,K2) is a homogeneous pair of cliques, it follows that, for {i, j} =

{1, 2}, N ′i is complete to K ′i and anticomplete to K ′j , and Z ′ is complete to K ′1 ∪K ′2. Hence, from

the fact that K ′1 is not anticomplete to K ′2 and the fact that G is claw-free, it follows that N ′1
and N ′2 are cliques. Z ′ is anticomplete to M ′, because if z ∈ Z ′ has a neighbor u ∈ M ′, then let

a ∈ K ′1, b ∈ K ′2 be nonadjacent and observe that z is complete to the triad {a, b, u}, contrary to

(2.2). We start with the following claim.

(i) Suppose that there exist a1, a2 ∈ K ′1, b ∈ K ′2 such that b is adjacent to a1 and nonadjacent

to a2. Let x1 ∈ N ′1, x2 ∈ N ′2 be nonadjacent such that there is an induced path Q between x1 and

x2 that satisfies V (Q∗) ⊆M ′. Then |V (Q)| ∈ {3, 5} and Z ′ is complete to N ′1.

Since b-a1-x1-Q
∗-x2-b is an induced cycle of length |V (Q)| + 2 and G contains no induced

cycle of length 6 or at least 8, it follows that |V (Q)| ∈ {3, 5}. We may assume that Z ′ 6= ∅,
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otherwise we are done. We first claim that Z ′ is complete to x1. For suppose that z ∈ Z ′

is nonadjacent to x1. If z is nonadjacent to x2, then z-a2-x1-Q
∗-x2-b-z is an induced cycle

of length |V (Q)| + 3 ∈ {6, 8}, a contradiction. Therefore, z is adjacent to x2. But now,

G|(V (Q)∪{a1, a2, b, z}) is isomorphic to G1 if |V (Q)| = 3 or G2 if |V (Q)| = 5, a contradiction.

This proves that Z ′ is complete to x1.

Now let p ∈ N ′1 and suppose that p is nonadjacent to some z ∈ Z ′. Let u ∈ V (Q) be

the unique neighbor of x1 in Q. Because x1 is complete to {p, u, z}, it follows from (2.2)

that {p, u, z} is not a triad and hence p is adjacent to u. If p is nonadjacent to x2, then

possibly by shortcutting Q, there is a path between nonadjacent p and x2, and it follows

from the previous argument that Z ′ is complete to p, a contradiction. It follows that p is

adjacent to x2. If |V (Q)| = 5, then u is nonadjacent to x2 and hence p is complete to the

triad {a1, x2, u}, contrary to (2.2). It follows that |V (Q)| = 3. Now, if z is nonadjacent to

x2, then G|{z, x1, p, x2, b, a2, u} is isomorphic to G1. Thus, z is adjacent to x2. But now,

G|{a1, b, x2, u, x1, p, z, a2} is isomorphic to G3. This proves (i). �

Let P = p1-p2- . . . -pk−1-pk be a weakly induced path between antiadjacent p1 ∈ N1 and p2 ∈ N2

such that V (P ∗) ⊆ M and |V (P )| ≥ 3. For i ∈ [k], let p′i ∈ Xpi
such that p′1- . . . -p

′
k is an induced

path in G. It follows that p′1 ∈ N ′1, p′k ∈ N ′2, and V ((P ′)∗) ⊆M ′. We claim the following:

(ii) Z ′ is a clique.

Because K ′1 is not complete and not anticomplete to K ′2, we may assume from the symmetry

that there exist a1, a2 ∈ K ′1 and b ∈ K ′2 such that b is adjacent to a1 and nonadjacent to a2.

It follows from (i) that Z ′ is complete to p′1. Let u ∈ V (P ′) be the unique neighbor of p′1
in P ′. If z1, z2 ∈ Z ′ are nonadjacent, then p′1 is complete to the triad {z1, z2, u}, contrary to

(2.2). This proves (ii). �

The last claim deals with an easy case:

(iii) If some vertex in K ′1 is complete to K ′2, then the lemma holds.

Suppose that a1 ∈ K ′1 is complete to K ′2. First observe that no vertex in K ′1 has both

a neighbor and a nonneighbor in K ′2, because if a2 ∈ K ′1 has a neighbor b1 ∈ K ′2 and a

nonneighbor b2 ∈ K ′2, then G|(V (P ′)∪ {a1, a2, b1, b2}) is isomorphic to G1 if |V (P ′)| = 3 and

to G2 if |V (P ′)| = 5. It follows that every vertex in K ′1 is either complete or anticomplete to

K ′2. Since K ′1 is not complete to K ′2, it follows that there exists a2 ∈ K ′1 that is is anticomplete

to K ′2. Now it follows from (i) that Z ′ is complete to N ′1. Thus, a2 is a simplicial vertex and

the lemma holds by (2.5). This proves (iii). �

It follows from (iii) and the symmetry that we may assume that, for {i, j} = {1, 2}, no vertex

in K ′i is complete to K ′j . Thus, it follows from (i) and the fact that K ′1 is not complete and not

anticomplete to K ′2 that Z ′ is complete to N ′1∪N ′2. We claim that K = K ′1∪Z ′∪N ′1 is a dominant

clique. For suppose not. Then there exists a maximal stable set S in G such that S ∩K = ∅. Let

a ∈ K ′1. Since N(a) ⊆ K ∪K ′2, it follows that a has a neighbor in S ∩K ′2, because otherwise we
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may add a to S and obtain a larger stable set. In particular, S ∩K ′2 6= ∅ and, since K ′2 is a clique,

|S ∩ K ′2| = 1. But now, the unique vertex v in S ∩ K ′2 is complete to K ′1, a contradiction. This

proves that K is a dominant clique, thus proving (2.7). �

We note the following special case of (2.7), in which the two strong cliques of the homogeneous pair

of cliques have cardinality one:

(2.8) Let T be an F-free claw-free trigraph and suppose that T contains a weakly induced cycle c1-

c2- . . . -ck-c1 with k ≥ 5 and such that c1c2 ∈ F (T ). Then, T is resolved.

Proof. Since c1c2 ∈ F (T ), it follows from the definition of a trigraph that, for i ∈ [2], every vertex

in V (T ) \ {c1, c2} is either strongly adjacent or strongly antiadjacent to ci. Thus, ({c1}, {c2}) is

a homogeneous pair of cliques in T . Moreover, c3- . . . -ck is a weakly induced path that meets the

conditions of (2.7). Thus, T is resolved by (2.7). This proves (2.8). �

The following lemma states that we may assume that trigraphs do not have strongly adjacent

clones.

(2.9) Let T be a trigraph and suppose that v, w ∈ V (T ) are strongly adjacent clones. If T \ v is

resolved, then T is resolved.

Proof. First notice that it follows from the definitions of trigraphs and clones that v and w only

have strong neighbors and strong antineighbors. Let G be an F-free graphic thickening of T , and

for all u ∈ V (T ) let Xu be the clique in G corresponding to u. Since T \ v is resolved, we have that

G \ Xv is resolved, and thus there are three possibilities. First, suppose that G \ Xv contains a

vertex z that is complete to V (G\Xv)\{z}. Since v and w are clones, it follows that z is complete

to Xv, and hence z is complete to V (G) \ {z}. Therefore, G is resolved. Next, suppose that G \Xv

has a dominant clique K. First notice that since K is a dominant clique, K is also an inclusion-wise

maximal clique in G \ Xv. Indeed, if K ( K ′ where K ′ is a clique in G \ Xv, then any maximal

stable set S in G \ Xv that contains a vertex from K ′ \ K satisfies S ∩ K = ∅, contrary to the

definition of a dominant clique. From this, it follows that either Xw ⊆ K or Xw ∩K = ∅. Let

K ′ = K∪{Xv} if Xw ⊆ K, and let K ′ = K otherwise. We claim that K ′ is a dominant clique in G.

For suppose there exists a maximal stable set S such that S ∩K ′ = ∅. If Xv ∩ S = ∅, then clearly,

S is a maximal stable set in G \ Xv with S ∩ K = ∅, contrary to the fact that K is a dominant

clique in G \Xv. Therefore, Xv ∩ S 6= ∅ and hence K ′ = K. Since v and w are clones in T , the set

S′ = (S \ {Xv}) ∪ {w′}, where w′ ∈ Xw, is a stable set in G \Xv. But now S′ is a maximal stable

set in G \Xv with S′ ∩K = ∅, contrary to the fact that K is a dominant clique in G \Xv. This

proves that K ′ is a dominant clique and therefore G is resolved. So we may assume that G \Xv is

not perfect and there exists k ∈ {2, 3} such that every maximal stable set in G \Xv has size k. It

follows that G is not perfect. Since G \Xv and G \Xw are isomorphic and every maximal stable

set in G is either contained in V (G \ Xv) or in V (G \ Xw), it follows that every maximal stable

set in G has size k, and therefore G is resolved. This proves that every graphic thickening of T is
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resolved and, thus, T is resolved, completing the proof of (2.9). �

2.3 Classes of trigraphs

Let us define some classes of trigraphs:

• Line trigraphs. Let H be a graph, and let T be a trigraph with V (T ) = E(H). We say that

T is a line trigraph of H if for all distinct e, f ∈ E(H):

– if e, f have a common end in H then they are adjacent in T , and if they have a common

end of degree at least three in H, then they are strongly adjacent in T ;

– if e, f have no common end in H then they are strongly antiadjacent in T .

• Trigraphs from the icosahedron. The icosahedron is the unique planar graph with twelve

vertices all of degree five. Let it have vertices v0, v1, . . . , v11 where for 1 ≤ i ≤ 10, vi is adjacent

to vi+1, vi+2 (reading subscripts modulo 10), and v0 is adjacent to v1, v3, v5, v7, v9, and v11 is

adjacent to v2, v4, v6, v8, v10. Let this graph be T0, regarded as a trigraph. Let T1 be obtained

from T0 by deleting v11. Let T2 be obtained from T1 by deleting v10, and possibly by making

v1 semiadjacent to v4, or making v6 semiadjacent to v9, or both. Then each of T0, T1, and the

several possibilities for T2 is a trigraph from the icosahedron.

• Long circular interval trigraphs. Let Σ be a circle, and let F1, . . . , Fk ⊆ Σ be homeomor-

phic to the interval [0, 1], such that no two of F1, . . . , Fk share an endpoint, and no three of

them have union Σ. Now let V ⊆ Σ be finite, and let T be a trigraph with vertex set V in

which, for distinct u, v ∈ V ,

– if u, v ∈ Fi for some i then u, v are adjacent, and if also at least one of u, v belongs to the

interior of Fi then u, v are strongly adjacent;

– if there is no i such that u, v ∈ Fi then u, v are strongly antiadjacent.

Such a trigraph T is called a long circular interval trigraph. If, in addition,
⋃k

i=1 Fi 6= Σ, then

T is called a linear interval trigraph.

• Antiprismatic trigraphs. Let T be a trigraph such that for every X ⊆ V (T ) with |X| = 4,

T |X is not a claw and there are at least two pairs of vertices in X that are strongly adjacent

in T . In particular, it follows that, if u, v ∈ V (T ) are semiadjacent, then either

– neither of u, v is in a triad; or

– there exists w ∈ V (T ) such that {u, v, w} is a triad, but there is no other triad that

contains u or v.

Then, T is called an antiprismatic trigraph.

We will use the following structural result from [7]. We would like to point out that the current

paper deals only with the trigraphs mentioned in outcomes (a)-(d) of Theorem 2.10 and, thus, the

reader does not need to know what a nontrivial strip-structure is.
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Theorem 2.10. (7.2 in [7]) Let G be a connected claw-free graph. Then, either G admits a

nontrivial strip-structure, or G is the graphic thickening of one of the following trigraphs:

(a) a trigraph of the icosahedron, or

(b) an antiprismatic trigraph, or

(c) a long circular interval trigraph, or

(d) a trigraph that is the union of three strong cliques.

We say that a claw-free trigraph T is basic if T satisfies one of the outcomes (a)-(d) of Theorem

2.10. Analogously, a claw-free graph G is said to be basic if G is a graphic thickening of a basic

claw-free trigraph.

2.4 Three-cliqued claw-free trigraphs

Let T be a trigraph such that V (T ) = A∪B ∪C and A,B,C are strong cliques. Then (T,A,B,C)

is called a three-cliqued trigraph. We define the following types of three-cliqued claw-free trigraphs:

T C1: A type of line trigraph. Let v1, v2, v3 be distinct pairwise nonadjacent vertices of a graph

H, such that every edge of H is incident with (exactly) one of v1, v2, v3. Let v1, v2, v3 all have

degree at least three, and let all other vertices of H have degree at least one. Moreover, for

all distinct i, j ∈ [3], let there be at most one vertex different from v1, v2, v3 that is adjacent

to vi and not to vj in H. Let A,B,C be the sets of edges of H incident with v1, v2, v3
respectively, and let T be a line trigraph of H. Then (G,A,B,C) is a three-cliqued claw-free

trigraph. Let T C1 be the class of all such three-cliqued trigraphs such that every vertex is

in a triad.

T C2: Long circular interval trigraphs. Let T be a long circular interval trigraph, and let Σ

be a circle with V (T ) ⊆ Σ, and F1, . . . , Fk ⊆ Σ, as in the definition of long circular interval

trigraph. By a line we mean either a subset X ⊆ V (T ) with |X| = 1, or a subset of some Fi

homeomorphic to the closed unit interval, with both end-points in V (T ). Let L1, L2, L3 be

pairwise disjoint lines with V (T ) ⊆ L1∪L2∪L3. Then (T, V (T )∩L1, V (T )∩L2, V (T )∩L3) is

a three-cliqued claw-free trigraph. We denote by T C2 the class of such three-cliqued trigraphs

with the additional property that every vertex is in a triad.

T C3: Near-antiprismatic trigraphs . Let n ≥ 2. Construct a trigraph T as follows. Its vertex

set is the disjoint union of three sets A, B, C, where |A| = |B| = n + 1 and |C| = n, say

A = {a0, a1, . . . , an}, B = {b0, b1, . . . , bn} and C = {c1, . . . , cn}. Adjacency is as follows. A,

B, C are strong cliques. For 0 ≤ i, j ≤ n with (i, j) 6= (0, 0), let ai, bj be adjacent if and only

if i = j, and for 1 ≤ i ≤ n and 0 ≤ j ≤ n let ci be adjacent to aj , bj if and only if i 6= j 6= 0.

a0, b0 may be semiadjacent or strongly antiadjacent. All other pairs not specified so far are

strongly antiadjacent. Now let X ⊆ A ∪B ∪ C \ {a0, b0} with |C \X| ≥ 2. Let all adjacent

pairs be strongly adjacent except:

• ai is semiadjacent to ci for at most one value of i ∈ [n], and if so then bi ∈ X;

• bi is semiadjacent to ci for at most one value of i ∈ [n], and if so then ai ∈ X;
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Figure 4: Sporadic exceptions types 1 (left) and 2 (right). The curly lines represent semiedges, and the dashed lines

represent arbitrary adjacencies, except that v2 and v5 are not strongly adjacent in (a). Also, under some

restrictions, vertices from the sets X∗ may be deleted.

• ai is semiadjacent to bi for at most one value of i ∈ [n], and if so then ci ∈ X.

Let the trigraph just constructed be T . Then T ′ = T \X is a near-antiprismatic trigraph.

Let A′ = A \X and define B′, C ′ similarly; then (T ′, A′, B′, C ′) is a three-cliqued trigraph.

We denote by T C3 the class of all such three-cliqued trigraphs with the additional property

that every vertex is in a triad.

T C4: Antiprismatic trigraphs. Let T be an antiprismatic trigraph and let A,B,C be a partition

of V (T ) into three strong cliques; then (T,A,B,C) is a three-cliqued claw-free trigraph. We

denote the class of all such three-cliqued trigraphs by T C4. Note that in this case there may

be vertices that are in no triads.

T C5: Sporadic exceptions. There are two types of sporadic exceptions: (See Figure 4)

(1) Let T be the trigraph with vertex set {v1, . . . , v8} and adjacency as follows: vi, vj
are strongly adjacent for 1 ≤ i < j ≤ 6 with j − i ≤ 2; the pairs v1v5 and v2v6
are strongly antiadjacent; v1, v6, v7 are pairwise strongly adjacent, and v7 is strongly

antiadjacent to v2, v3, v4, v5; v7, v8 are strongly adjacent, and v8 is strongly antiadja-

cent to v1, . . . , v6; the pairs v1v4 and v3v6 are semiadjacent, and v2 is antiadjacent to

v5. Let A = {v1, v2, v3}, B = {v4, v5, v6} and C = {v7, v8}. Let X ⊆ {v3, v4}; then

(T \X,A \X,B \X,C) is a three-cliqued trigraph, and all its vertices are in triads.

(2) Let T be the trigraph with vertex set {v1, . . . , v9}, and adjacency as follows: the sets

A = {v1, v2}, B = {v3, v4, v5, v6, v9} and C = {v7, v8} are strong cliques; v9 is strongly

adjacent to v1, v8 and strongly antiadjacent to v2, v7; v1 is strongly antiadjacent to

v4, v5, v6, v7, semiadjacent to v3 and strongly adjacent to v8; v2 is strongly antiadjacent

to v5, v6, v7, v8 and strongly adjacent to v3; v3, v4 are strongly antiadjacent to v7, v8; v5
is strongly antiadjacent to v8; v6 is semiadjacent to v8 and strongly adjacent to v7; and

the adjacency between the pairs v2v4 and v5v7 is arbitrary. Let X ⊆ {v3, v4, v5, v6},
such that

• v2 is not strongly anticomplete to {v3, v4} \X;

• v7 is not strongly anticomplete to {v5, v6} \X;

• if v4, v5 6∈ X then v2 is adjacent to v4 and v5 is adjacent to v7.
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Then (T \X,A,B \X,C) is a three-cliqued trigraph.

We denote by T C5 the class of such three-cliqued trigraphs (given by one of these two

constructions) with the additional property that every vertex is in a triad.

We say that a three-cliqued trigraph (T,A,B,C) is basic if (T,A,B,C) ∈
⋃5

i=1 T Ci. If (T,A,B,

C) is a three-cliqued trigraph, and {A′, B′, C ′} = {A,B,C}, then (T,A′, B′, C ′) is also a three-

cliqued trigraph, that we say is a permutation of (T,A,B,C). Let n ≥ 0, and for 1 ≤ i ≤ n, let

(Ti, Ai, Bi, Ci) be a three-cliqued trigraph, where V (T1), . . . , V (Tn) are all nonempty and pairwise

vertex-disjoint. Let A = A1 ∪ · · · ∪An, B = B1 ∪ · · · ∪Bn, and C = C1 ∪ · · · ∪Cn, and let T be the

trigraph with vertex set V (T1) ∪ · · · ∪ V (Tn) and with adjacency as follows:

• for 1 ≤ i ≤ n, T |V (Ti) = Ti;

• for 1 ≤ i < j ≤ n, Ai is strongly complete to V (Tj)\Bj ; Bi is strongly complete to V (Tj)\Cj ;

and Ci is strongly complete to V (Tj) \Aj ; and

• for 1 ≤ i < j ≤ n, if u ∈ Ai and v ∈ Bj are adjacent then u, v are both in no triads; and the

same applies if u ∈ Bi and v ∈ Cj , and if u ∈ Ci and v ∈ Aj .

In particular, A, B, C are strong cliques, and so (T,A,B,C) is a three-cliqued trigraph; we call

the sequence (Ti, Ai, Bi, Ci), i ∈ [n], a worn hex-chain for (T,A,B,C). When n = 2, we say that

(T,A,B,C) is a worn hex-join of (T1, A1, B1, C1) and (T2, A2, B2, C2). Note also that every triad

of T is a triad of one of T1, . . . , Tn, and if each Ti is claw-free then so is T . If we replace the third

condition above by the strengthening

• for 1 ≤ i < j ≤ n, the pairs (Ai, Bj), (Bi, Cj) and (Ci, Aj) are strongly anticomplete,

then we call the sequence a hex-chain for (T,A,B,C). When n = 2, (T,A,B,C) is a hex-join of

(T1, A1, B1, C1) and (T2, A2, B2, C2). We will use the following theorem, which is a corollary of 4.1

in [7].

Theorem 2.11. Every claw-free graph that is a graphic thickening of a three-cliqued trigraph is

a graphic thickening of a trigraph that admits a worn hex-chain into terms, each of which is a

permutation of a basic three-cliqued trigraph.

2.5 Properties of linear interval trigraphs and long circular interval trigraphs

A graph G is said to be a long circular interval graph if G, regarded as a trigraph, is a long circular

interval trigraph. We use a characterization of long circular interval graphs that was given by

1.1 in [6]. We need some more definitions. A net is a graph with six vertices a1, a2, a3, b1, b2, b3,

such that {a1, a2, a3} is a clique and ai, bi are adjacent for i = 1, 2, 3, and all other pairs are

nonadjacent. An antinet is the complement graph of a net. A (1, 1, 1)-prism is a graph with six

vertices a1, a2, a3, b1, b2, b3, such that {a1, a2, a3} and {b1, b2, b3} are cliques, and ai, bi are adjacent

for i = 1, 2, 3, and all other pairs are nonadjacent. Let T be a trigraph. A center for a weakly

induced cycle C is a vertex in V (T ) \V (C) that is complete to V (C) and a weakly induced cycle C
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is dominating in T if every vertex in V (T ) \ V (C) has a neighbor in V (C). Since every realization

of a long circular interval trigraph is a long circular interval graph, the following lemma is a

straightforward corollary of 1.1 in [6].

(2.12) Let T be a long circular interval trigraph. Then, T does not contain a claw, net, antinet or

(1, 1, 1)-prism as a weakly induced subgraph, and every weakly induced cycle of length at least four

is dominating and has no center.

(Notice that, although 1.1 in [6] gives necessary and sufficient conditions, the reverse implication

of (2.12) is not true.) Recall that a linear interval trigraph is a special case of a circular interval

trigraph. The following lemma gives a necessary and sufficient condition for a long circular interval

graph to be a linear interval trigraph:

(2.13) Let T be a long circular interval trigraph. Then T is a linear interval graph if and only if

T has no semihole of length at least four.

Proof. To prove the ‘only if’ direction, let T be a linear interval trigraph and suppose that T

contains a semihole C with k = |V (C)| ≥ 4. It follows from the definition of a linear interval

trigraph that there exists a linear ordering (≤, V (T )) such that, for all distinct x, y, z ∈ V (T ), it

holds that if x and y are adjacent and x < z < y, then z is strongly adjacent to x and y. Let

c1, c2, . . . , ck be the vertices of C in order. It follows from the totality of the order that, for all

distinct ci, cj ∈ V (C), we have either ci < cj or ci > cj . Clearly, we cannot have ci > ci+1 for all

i ∈ [k] or ci < ci+1 for all i ∈ [k] (where subscript arithmetic is modulo k). Hence, there exists

i ∈ [k] such that either ci+1 > ci > ci+2 or ci+1 > ci+2 > ci. But, since ci+1 is adjacent to ci and

ci+2, this implies that ci is strongly adjacent to ci+2, a contradiction.

For the ‘if’ direction, let T be a long circular interval trigraph and suppose that T is not a linear

interval trigraph. We will show that T has a semihole of length at least four. Let Σ, F1, . . . , Fk be

as in the definition of T . Notice that the choice of k and {Fi} is not unique. Choose k minimal

and choose {Fi} such that the length of Fi (i ∈ [k]) is minimal. This implies that |Fi ∩ V (T )| ≥ 2

for all i ∈ [k]. Let v1, . . . , vn be the vertices of T in clockwise order on Σ. Let vi, vj ∈ Fl, i 6= j. We

say that vi is a clockwise neighbor of vj if vj+1, . . . , vi−1 ∈ Fl (subscripts are taken modulo n). Let

N+(vi) denote the set of clockwise neighbors of vi, for all i ∈ {1, . . . , n}. We first claim that:

(∗) For every vi ∈ V (T ), |N+(vi)| ≥ 1.

Suppose that there exists vj ∈ V (T ) that has no clockwise neighbor. Now consider the

interval I = (vj , vj+1) ⊆ Σ. We claim that Fi ∩ I = ∅ for all i ∈ [k]. For suppose that there

exists i ∈ [k] such that Fi ∩ I 6= ∅. If vj ∈ Fi, then vj+1 6∈ Fi and hence, we can replace Fi

by Fi \ I without changing the graph, contrary to the assumption that Fi is chosen minimal.

Thus, vj 6∈ Fi and, similarly, vj+1 6∈ Fi. Since Fi ∩ I 6= ∅ and Fi is homeomorphic to the

interval [0, 1], this implies that V (T ) ∩ Fi = ∅, contradicting the minimality of k. Thus,

I ∩
⋃k

i=1 Fi = ∅, contrary to our assumption that T is not a linear interval trigraph. This

proves (∗). �
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Now let C be the set of cycles C = c1-c2- . . . -cp-c1 in T such that ci+1 ∈ N+(ci) for all i ∈ [p].

It follows from (∗) that C 6= ∅. Let C ∈ C and let F ′1, . . . , F
′
|V (C)| ∈ {F1, . . . , Fk} be such that

{ci, ci+1} ⊂ F ′i for all i ∈ [k]. Clearly, Σ =
⋃|V (C)|

j=1 F ′i . Therefore, by the definition of a long circular

interval graph, we have |V (C)| ≥ 4 for all C ∈ C. Now choose C∗ ∈ C with |V (C∗)| minimum.

Since |V (C∗)| is minimum, C∗ is a semihole. Moreover, |V (C∗)| ≥ 4. This proves (2.13). �

3 Applications

In this section, we give two applications of Theorem 1.1, assuming its validity.

3.1 Claw-free graphs that are strongly perfect in the complement

Wang [14] gave a characterization of claw-free graphs that are strongly perfect. Theorem 1.1 allows

us to give a characterization of claw-free graphs whose complement is strongly perfect:

Theorem 1.2. Let G be a claw-free graph. Gc is strongly perfect if and only if G is perfect and no

induced subgraph of G is isomorphic to G4, an even hole of length at least six, or a skipping rope of

type (3, 3) of length k ≥ 0.

Proof of Theorem 1.2. For the ‘only-if’ direction, let G be a claw-free graph such that Gc

is strongly perfect. Since Gc is strongly perfect, G is fractionally co-strongly perfect. Therefore,

it follows from Theorem 1.1 that G is F-free and, in particular, no induced subgraph of G is

isomorphic to G4, an even cycle of length at least six, or a skipping rope of type (3, 3) of length

k ≥ 0. Moreover, it follows from Theorem 5 of [1] applied to Gc that G is perfect. This proves the

‘only-if’ direction.

For the ‘if’ direction, let G be a perfect claw-free graph such that no induced subgraph of G is

isomorphic to G4, an even cycle of length at least six, or a skipping rope of type (3, 3) of length

k ≥ 0. Since G is perfect, by the strong perfect graph theorem [5], G has no odd hole or odd

antihole of length at least five as an induced subgraph. Because all graphs in F other than G4, the

even holes and the skipping ropes of type (3, 3) contain an induced cycle of length five or length

seven, it follows that G is F-free and hence, by Theorem 1.1, G is perfectly resolved. Now recall

that a graph Gc is strongly perfect if and only if every induced subgraph of G has a dominant

clique. We note that every disconnected induced subgraph of G has a dominant clique if and only

if one of its components has a dominant clique. Therefore, it suffices to show that every connected

induced subgraph of G has a dominant clique. So suppose to the contrary that G has a minimal

connected induced subgraph H such that H has no dominant clique. Since G is perfectly resolved,

it follows that H is resolved. Since H is perfect and H has no dominant clique, it follows that H

has a vertex x that is complete to V (H) \ {x}. Since H is minimal, H − x has a dominant clique

K. But this implies that K ∪{x} is a dominant clique in H, a contradiction. This proves Theorem

1.2. �
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Theorem 1.2 states that if a claw-free graph is perfect and it is fractionally co-strongly perfect,

then it is integrally co-strongly perfect. We conjecture that this is true in general:

Conjecture 3.1. If G is perfect and fractionally strongly perfect, then G is strongly perfect.

3.2 Scheduling in Wireless Networking

Consider a wireless communication network H = (V,E), in which V is the set of nodes (i.e. trans-

mitters and receivers), and E ⊆ {ij : i, j ∈ V, i 6= j} is a set of connections representing pairs

of nodes between which data flow can occur. Next, consider a so-called interference graph G of

H, whose vertices are the edges of H and in which two edges e, e′ ∈ E are adjacent if they are

not allowed to send data simultaneously because of interference constraints. At each node of the

network packets are created over time and these packets must be transmitted to their destination

(i.e. an adjacent node).

Following the model of [3, 8, 10, 13], assume that time is slotted and that packets are of equal

size, each packet requiring one time slot of service across a link. A queue is associated with each

edge in the network, representing the packets waiting to be transmitted on this link. A scheduling

algorithm selects a set of edges to activate at each time slot, and transmits packets on those edges.

Since they must not interfere, the selected edges most form a stable set in the interference graph G.

A scheduling algorithm is called stable on G if, informally speaking, the sizes of the queues do not

grow to infinity under the algorithm. It was shown in [13] that the Maximum Weight Stable Set

algorithm (MWSS) that selects the stable set in the interference graph that corresponds to the links

in the network with the largest total queue sizes at each slot is stable for every interference graph G.

Although this MWSS algorithm is stable, it is not a tractable algorithm in many situations because

it needs centralized computing of an optimal solution. Hence, there has been an increasing interest

in simple and potentially distributed algorithms. One example of such an algorithm is known as

the Greedy Maximal Scheduling (GMS) algorithm [9, 11]. This algorithm greedily selects the set

of served links according to the queue lengths at these links (i.e. greedily selects a maximal weight

stable set in the interference graph). A drawback of using this algorithm is that, in general, the

resulting schedule is not necessarily optimal. However, [8] gave the following sufficient condition

on interference graphs on which the GMS algorithm is stable:

Theorem. (Dimakis and Walrand [8]) Let G be a fractionally co-strongly perfect graph. Then GMS

is stable on G.

In [2], the authors and three others characterized all line graphs that are fractionally co-strongly

perfect. Here we generalize this result to claw-free graphs. Thus, Theorem 1.1 describes all claw-free

graphs on which GMS is stable.

4 Proofs of Theorem 1.3 and Theorem 1.4

In this section, we give the proofs of Theorem 1.3 and Theorem 1.4.
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4.1 Fractionally co-strongly perfect graphs are F-free

We first prove a result on saturating vertex weightings in graphs that display a certain symmetry:

(4.1) Let G be a graph that has a saturating vertex weighting. Let φ : V (G) → V (G) be an

automorphism for G. Then there exists a saturating vertex weighting w̄ such that w̄(x) = w̄(φ(x))

for every x ∈ V (G).

Proof. Suppose that w is a saturating vertex weighting for G. Let φ1 = φ and for k ≥ 2, let

φk = φk−1 ◦ φ. Since a set S ⊆ V (G) is stable if and only if φk(S) is stable, it follows that w ◦ φk

is a saturating vertex weighting for G. Let K ≥ 1 be such that V (G) = φK(V (G)) and consider

the function w̄ = 1
K

∑K−1
i=0 w ◦ φi. Since w̄ is a convex combination of solutions to the system of

linear equations (1), it follows that w̄ is a solution to (1) and, therefore, w̄ is a saturating vertex

weighting. Now observe that w̄ = w̄ ◦ φ. This proves (4.1). �

Next, we need the following technical result. For a connected graph G, we say that X ⊆ V (G) is a

clique cutset if X is a clique and G \X is disconnected.

(4.2) Let G be a graph, let X be a clique cutset in G, let B be a connected component of G \ X
and let G′ = G \ V (B). Suppose that for every x ∈ X, G|(V (B) ∪ {x}) is a heft with end x and

N(x) ∩ V (B) = N(x′) ∩ V (B) for all x, x′ ∈ X. Suppose in addition that there exists a maximal

stable set in G′ that does not meet X. Then, every saturating vertex weighting w for G satisfies

w(v) = 0 for all v ∈ V (B).

Proof. Let x ∈ X, i ∈ [3], and k ≥ 0 be such that B′ = G|(V (B) ∪ {x}) is isomorphic to the heft

Hi(k). We prove the lemma for the case when i = 1 only, as the other two cases are analogous. Let

P = p1-p2- . . . -pk = x be the rope of B′ and let v1, v2, . . . , v5 be the other vertices of B′, labeled as

in Figure 1(b). We use induction on k. Let w be a saturating vertex weighting for G. By (4.1),

we may assume that w(v2) = w(v5) and w(v3) = w(v4). First suppose that k = 0. Let S be a

maximal stable set in G′ such that x ∈ S. Let S1 = S ∪ {v2, v5} and let S2 = S ∪ {v1}. Since w is

a saturating vertex weighting and S1 and S2 are maximal stable sets with S1 \ S2 = {v2, v5} and

S2 \ S1 = {v1}, it follows that w(v1) = w(v2) + w(v5) = 2w(v5). Now let S′ be a maximal stable

set in G such that v3 ∈ S. Clearly, either v1 ∈ S′ or v5 ∈ S′. Let S′1 = (S′ \ {v1}) ∪ {v5} and

S′2 = (S′ \ {v5})∪{v1}. Since w is a saturating vertex weighting and S′1 and S′2 are maximal stable

sets with S′1 \S′2 = {v5} and S′2 \S′1 = {v1}, it follows that w(v5) = w(v1). Combining this with the

equality found above, it follows that w(v1) = 2w(v1) and hence that w(v1) = w(v2) = w(v5) = 0.

Finally, let S′′ be a maximal stable set in G′ such that S′′ does not meet X. Let S′′1 = S′′ ∪{v3, v5}
and S′′2 = S′′ ∪ {v2, v5}. Since w is a saturating vertex weighting and S′′1 and S′′2 are maximal

stable sets with S′′1 \ S′′2 = {v3} and S′′2 \ S′′1 = {v2}, it follows that w(v3) = w(v2) = 0 and, hence,

w(v4) = 0. This proves the claim for k = 0.

Next, suppose that k ≥ 1 and let y be the unique neighbor of x in V (B). Since {y} is a clique

cutset, B is isomorphic to the heft H1(k − 1), and there clearly exists a maximal stable set in

G|(V (G′)∪{y}) that does not meet y. Now it follows from the induction hypothesis that w(v) = 0
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for all v ∈ V (B) \ {y} and therefore it suffices to show that w(y) = 0. Let S be a maximal stable

set in G′ such that S ∩X = ∅. Let S1 be a maximal stable set in B such that y ∈ S1 and let S2 be

a maximal stable set in B such that y 6∈ S2. Since S ∪ S1 and S ∪ S2 are maximal stable sets, it

follows that ∑
v∈S2

w(v) =
∑
v∈S1

w(v) = w(y) +
∑

v∈S1\{y}

w(v).

Now, since
∑

v∈S1\{y}w(v) =
∑

v∈S2
w(v) = 0, it follows that w(y) = 0. This proves (4.2). �

This puts us in a position to prove Theorem 1.3, the statement of which we repeat for clarity:

Theorem 1.3. Let G be a fractionally co-strongly perfect graph. Then G is F-free.

Proof. It suffices to show that no graph in F is fractionally co-strongly perfect. First, let H ∈ F1,

i.e. H is a cycle of length n = 2k, k ≥ 3 or of length n = 2k + 1, k ≥ 4. Suppose that there exists

a saturating vertex weighting w for H. It follows from (4.1) that there exists c ∈ [0, 1] such that

w : V (H) → [0, 1] with w(v) = c for every v ∈ V (H). Let v1, v2, . . . , vn be the vertices of H in

order. Since {v2, v4, . . . , v2k} is a maximal stable set of cardinality k, it follows that c = 1
k . Now

let S = {v1} ∪
⋃k−1

i=2 {v2i} if k is even and let S = {v1, v4} ∪
⋃k−1

i=3 {v2i+1} if k is odd. Then S is a

maximal stable set, but
∑

v∈S w(v) = |S|
k = k−1

k < 1, a contradiction.

Next, suppose that there exists a saturating vertex weighting w for G1. It follows from (4.1) and

the fact that the graph is symmetric along the vertical axis that we may assume that w(v2) =

w(v5), w(v3) = w(v4) and w(v6) = w(v7). Since {v2, v5} is a maximal stable set, it follows that

w(v2) = w(v5) = 1
2 . By considering the maximal stable sets {v2, v4} and {v2, v7}, it follows that

w(v4) = w(v7) = 1
2 and therefore w(v3) = w(v6) = 1

2 . By considering the maximal stable set {v1, v3}
we obtain w(v1) = 1

2 . But now, S = {v1, v6, v7} is a maximal stable set with
∑

v∈S w(v) = 3
2 6= 1,

a contradiction. This proves that G1 is not fractionally co-strongly perfect. The proofs for the

graphs G2, G3 and G4 are analogous.

Finally, consider any H ∈ F3. It follows that H is a skipping rope. Let (H1, k1), (H2, k2), x1, and

x2 be as in the definition of a skipping rope. By applying (4.2) to each of the two hefts, it follows

that every saturating vertex weighting w satisfies w(v) = 0 for all v ∈ V (H), clearly contradicting

the fact such w is a saturating vertex weighting. Hence, H has no saturating vertex weighting and

therefore H is not fractionally co-strongly perfect. This proves Theorem 1.3. �

4.2 Perfectly resolved claw-free graphs are fractionally co-strongly perfect

The next step is to show that perfectly resolved graphs are fractionally co-strongly perfect. We

start with a simple lemma:

(4.3) A graph G is fractionally co-strongly perfect if and only if every connected component of G

is fractionally co-strongly perfect.
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Proof. The ‘only-if’ direction follows immediately from the definition of fractional co-strongly

perfection. For the ‘if’ direction, let H be an induced subgraph of G. Let C1, C2, . . . , Cq be the

connected components of G and, for i ∈ [q], let Hi = G|(V (H) ∩ V (Ci)). From the symmetry, we

may assume that V (H1) 6= ∅. Since C1 is fractionally co-strongly perfect, so is H1 and, hence, there

exists w1 : V (H1) → [0, 1] such that
∑

v∈T w1(v) = 1 for every maximal stable set T of H1. Now

define w : V (H)→ [0, 1] by w(u) = w1(u) for all u ∈ V (H1) and w(v) = 0 for all v ∈ V (H)\V (H1).

Let S be a maximal stable set S of H. Since S∩V (H1) 6= ∅ is a maximal stable set in H1, it follows

that
∑

v∈S w(v) =
∑

v∈S∩V (H1)
w(v) = 1, thus proving (4.3). �

This lemma enables us to prove Theorem 1.4, the statement of which we repeat for clarity:

Theorem 1.4. Let G be a claw-free graph. If G is perfectly resolved, then G is fractionally co-

strongly perfect.

Proof. Let G′ be an induced subgraph of G. We argue by induction on |V (G′)|. It follows from

(4.3) that we may assume that G′ is connected. It suffices to show that G′ has a saturating vertex

weighting. Since G is perfectly resolved, G′ is resolved. It follows that either there exists x ∈ V (G′)

such that x is complete to V (G′) \ {x}, or G′ has a dominant clique, or G′ is not perfect and there

exists k ∈ {2, 3} such that every maximal stable set in G′ has size k. First, suppose that there

exists x ∈ V (G′) such that x is complete to V (G′) \ {x}. It follows from the inductive hypothesis

that G′ \ {x} has a saturating vertex weighting w0. Define w : V (G′)→ [0, 1] by setting w(x) = 1

and w(v) = w0(v) for all v ∈ V (G′) \ {x}. It is not hard to see that this is a saturating vertex

weighting for G′ and the claim holds. Next, suppose that G′ has a dominant clique K. Define

w : V (G′) → [0, 1] by w(v) = 1 if v ∈ K and w(v) = 0 otherwise. This is clearly a saturating

vertex weighting for G′ and, hence, the claim holds. Finally, suppose that G′ is not perfect and

there exists k such that every maximal stable set in G′ has cardinality k. Now w : V (G′) → [0, 1]

defined by w(v) = 1/k for all v ∈ V (G′) is clearly a saturating vertex weighting for G′. Therefore,

the claim holds. This proves Theorem 1.4. �

5 F-free basic claw-free graphs are perfectly resolved

In this section, the goal is to prove Theorem 1.5 using the structure theorem for claw-free graphs,

Theorem 2.10. In fact, we prove the following:

(5.1) Every F-free basic claw-free trigraph is resolved.

Since an F-free claw-free trigraph T is resolved if and only if every F-free graphic thickening of

T is resolved, Theorem 1.5 is an immediate corollary of (5.1). We prove (5.1) by dealing with the

outcomes of Theorem 2.10 separately. We first make the following easy observation concerning tri-

graphs from the icosahedron. (See Section 2.3 for the definition of a trigraph from the icosahedron.)
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(5.2) No trigraph from the icosahedron is F-free.

Proof. Let T be a trigraph from the icosahedron and let v1, v2, . . . , v9 be as in the definition of T .

Then, v1-v3-v5-v6-v8-v9-v1 is a weakly induced cycle of length six in T , and thus T is not F-free.

This proves (5.2). �

We will deal with the remaining outcomes of (5.1), namely antiprismatic trigraphs, circular interval

trigraphs, and trigraphs that are the union of three cliques, in Section 5.1, Section 5.2, and Section

5.3, respectively.

5.1 F-free antiprismatic trigraphs

The following lemma deals with F-free antiprismatic trigraphs. (See Section 2.3 for the definition

of an antiprismatic trigraph.)

(5.3) Every F-free antiprismatic trigraph is resolved.

Proof. Let T be an F-free antiprismatic trigraph. If T contains no triad, then T is resolved by

(2.6). Thus, we may assume that T contains a triad {a1, a2, a3}. Let B1 be the vertices that are

complete to {a2, a3}, B2 the vertices that are complete to {a1, a3}, and B3 the vertices that are

complete to {a1, a2}. Since T is antiprismatic, it follows that V (T ) = {a1, a2, a3} ∪ B1 ∪ B2 ∪ B3.

We may assume that T is not resolved. We give the proof using a number of claims.

(i) For distinct i, j ∈ [3], ai is strongly antiadjacent to aj and Bi ∪Bj is not a strong clique.

We may assume that i = 1, j = 2. First suppose that a1a2 ∈ F (T ). If b1, b
′
1 ∈ B1 are

antiadjacent, then a2 is complete to the triad {a1, b1, b′1}, contrary to (2.2). Thus, B1 is a

strong clique and, by the symmetry, B2 is a strong clique. If B1 is strongly complete to

B2, then a3 is a simplicial vertex, contrary to (2.5). Thus, there exist antiadjacent b1 ∈ B1

and b2 ∈ B2. But now, (2.8) applied to a1-a2-b1-a3-b2-a1 implies that T is resolved, a

contradiction. This proves that a1a2 6∈ F (T ), and thus a1 is strongly antiadjacent to a2.

Now suppose that B1 ∪ B2 is a strong clique. Then, a3 is a simplicial vertex, contrary to

(2.5). This proves (i). �

(ii) Let i, j ∈ [3] be distinct. Let x1, x2 ∈ Bi be antiadjacent. Then, Bj can be partitioned into

sets Bj(x1), Bj(x2) such that, for {k, l} = {1, 2}, xk is strongly complete to Bj(xk) and strongly

anticomplete to Bj(xl).

From the symmetry, we may assume that i = 1 and j = 2. If x1 and x2 have a common

neighbor z ∈ B2, then z is complete to the triad {a1, x1, x2}, a contradiction. If x1 and

x2 have a common antineighbor z′ ∈ B2, then a3 is complete to the triad {x1, x2, z′}, a

contradiction. Thus, x1 and x2 have no common neighbor and no common antineighbor in

B2. It follows that for every z ∈ B2, one of x1, x2 is strongly adjacent to z, and the other is

strongly antiadjacent to z. This proves (ii). �
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(iii) There is no triad {b1, b2, b3} with bi ∈ Bi for i = 1, 2, 3.

Suppose that {b1, b2, b3} is a triad with bi ∈ Bi. Then a1-b3-a2-b1-a3-b2-a1 is a weakly induced

cycle of length six, a contradiction. This proves (iii). �

(iv) B1, B2, B3 are all nonempty strong cliques.

First suppose for a contradiction that, for i = 1, 2, there exist antiadjacent pi, qi ∈ Bi.

It follows from (ii) that we may assume that p1 is strongly adjacent to p2 and strongly

antiadjacent to q2, and q1 is strongly adjacent to q2 and strongly antiadjacent to p2. Now,

a2-p1-p2-a1-q2-q1-a2 is a weakly induced cycle of length six, a contradiction. This proves that

at most one of B1, B2, B3 is not a strong clique.

Next, suppose that B1 = ∅. Since at most one of B2, B3 is not a strong clique, we may

assume that B2 is a strong clique. But now B1 ∪B2 is a strong clique, contrary to (i). This

proves that B1, B2 and B3 are all nonempty.

We may assume that B1 is not a strong clique, because otherwise the claim holds. It follows

that B2 and B3 are strong cliques. Let x, y ∈ B1 be antiadjacent. For i = 2, 3, let Bi(x) ⊆ Bi

and Bi(y) ⊆ Bi be as in (ii) applied to x, y, B1, and Bi. It follows from (iii) that B2(x) is

strongly complete to B3(x) and B2(y) is strongly complete to B3(y). Hence, from (i) and the

symmetry, we may assume that there exist antiadjacent x2 ∈ B2(x) and y3 ∈ B3(y). If there

exists x3 ∈ B3(x), then T |{x2, x3, y3, y, a3, x, a1} contains G1 as a weakly induced subgraph,

a contradiction. This proves that B3(x) = ∅ and, by the symmetry, that B2(y) = ∅. Observe

that this implies that B2(x) = B2 and B3(y) = B3.

So we may assume that for every two antiadjacent x′, y′ ∈ B1, one of x′, y′ is strongly complete

to B2 and strongly anticomplete to B3, and the other is strongly complete to B3 and strongly

anticomplete to B2. Since B2, B3 6= ∅, it follows that the complement of T |B1 contains no

odd cycles, and thus B1 is the union of two strong cliques. For i = 2, 3, let Zi ⊆ B1 be the

set of vertices in B1 that have an antineighbor in B1 and that are strongly complete to Bi.

It follows that Z2 and Z3 are strong cliques. Let Z∗ = B1 \ (Z2 ∪Z3). By definition, Z∗ is a

strong clique and Z∗ is strongly complete to Z1 ∪ Z2.

Now observe (Z2, Z3) is a homogeneous pair of strong cliques. It follows from (i) that there

exist antiadjacent b2 ∈ B2 and b3 ∈ B3. But now, by (2.7) applied to (Z2, Z3) and the weakly

induced path b2-a1-b3, it follows that T is resolved, a contradiction. This proves (iv). �

(v) Let {i, j, k} = {1, 2, 3}. Let bi ∈ Bi and bj ∈ Bj be antiadjacent. Then, at least one of bi, bj
is strongly complete to Bk.

We may assume that i = 1, j = 2, k = 3. Suppose that b1 has an antineighbor x ∈ B3 and

b2 has a antineighbor y ∈ B3. It follows from (iii) that x 6= y and that x is strongly adjacent

to b2 and y is strongly adjacent to b1. It follows from (iv) that x is strongly adjacent to

y. Now, T |{a3, b1, x, y, b2, a1, a2} contains G1 as a weakly induced subgraph, a contradiction.

This proves (v). �
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(vi) Let {i, j, k} = {1, 2, 3}. Then, no vertex in Bi has antineighbors in both Bj and Bk.

We may assume that i = 1, j = 2, k = 3. Suppose that b1 ∈ B1 has antineighbors b2 ∈ B2

and b3 ∈ B3. It follows from (iii) that b2 is strongly adjacent to b3. It follows from (v)

that b2 is strongly complete to B3 and b3 is strongly complete to B2. From (i), there exist

antiadjacent b′2 ∈ B2 and b′3 ∈ B3. It follows that {b2, b3} ∩ {b′2, b′3} = ∅. It follows from (v)

that b′2, b
′
3 are both strongly complete to B1. Now T |{b3, b2, a3, b1, a2, b′2, b′3, a1} contains G3

as a weakly induced subgraph, a contradiction. This proves (vi). �

It follows from (i) that for i = 1, 2, 3, there exist xi, yi ∈ Bi such that the pairs x1y2, x2y3, x3y1
are antiadjacent. It follows from (iv) and (vi) that xi 6= yi for i = 1, 2, 3 and all pairs among

{x1, x2, x3, y1, y2, y3} except the aforementioned are strongly adjacent. Now, T |{a1, x1, y1, a2, x2,
y2, a3, x3, y3} contains G4 as a weakly induced subgraph, a contradiction. This proves (5.3). �

5.2 F-free long circular interval trigraphs

In this section, we prove that F-free long circular interval trigraphs are resolved. We start with

the following easy result, which shows that we may assume that the long circular interval trigraphs

that we are dealing with in this section are really long circular interval trigraphs and not linear

interval trigraphs. (See Section 2.3 and Section 2.5 for definitions and basic results on linear interval

trigraphs and long circular interval trigraphs.)

(5.4) Every linear interval trigraph is resolved.

Proof. Let T be a linear interval trigraph. Thus, we may order the vertices of T as v1, v2, . . . , vn
such that for i < j, if vi is adjacent to vj , then vk is strongly adjacent to vl for all i < k ≤ l ≤ j.

It follows that N(v1) is a strong clique and hence that v1 is a simplicial vertex in T . Thus, T is

resolved by (2.5). This proves (5.4). �

In handling long circular interval trigraphs, it turns out to be convenient to make a distinction

depending on the existence of a semihole of length at least five in the trigraph. Section 5.2.1 deals

with the case where the trigraph contains no semihole of length at least five. It will turn out that

there are two types of such trigraphs, namely ones that have a structure that is similar to the

complement of a 7-cycle, and ones that have a structure that is similar to a 4-cycle with certain

attachments. Section 5.2.2 deals with the remaining case where the trigraph does contain such

semihole. In this case, the trigraph has a structure that is similar to either a 5-cycle or a 7-cycle,

with certain attachments.

5.2.1 Long circular interval trigraphs with no long semiholes

Let C̄7 be a graph that is the complement of a 7-cycle. We say that a trigraph T is of the C̄7 type

if V (T ) can be partitioned into seven nonempty strong cliques W1, . . . ,W7 such that for all i ∈ [7],
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Wi is strongly complete to Wi+1, Wi is complete to Wi+2, Wi is strongly anticomplete to Wi+3

(where subscript arithmetic is modulo 7). We first look at long circular interval trigraphs with no

long semiholes that contain C̄7 as a weakly induced subgraph.

(5.5) Let T be a long circular interval trigraph with no semihole of length at least five. If T contains

C̄7 as a weakly induced subgraph, then T is of the C̄7 type.

Proof. Let W1,W2, . . . ,W7 ⊆ V (T ) be such that for all i 6= j (with subscript arithmetic modulo

7), Wi is a nonempty clique, Wi ∩Wj = ∅, Wi is complete to Wi+1 ∪Wi+2, Wi is anticomplete

to Wi+3 ∪Wi+4, and
⋃7

i=1Wi is maximal. The cliques Wi, i ∈ [7], exist since T contains C̄7 as a

weakly induced subgraph. We start with some claims:

(i) For i ∈ [7], Wi is strongly anticomplete to Wi+3 ∪Wi+4.

Without loss of generality we may assume that i = 1, and from the symmetry it follows that

it is enough to show that W1 is strongly anticomplete to W4. So suppose that there exists

a vertex x ∈ W1 which is semiadjacent to some vertex y ∈ W4. From the definition of a

trigraph, it follows that x is strongly complete to W6 ∪W7 and strongly anticomplete to W5,

and y is strongly complete to W5∪W6 and strongly anticomplete to W7. But now any vertex

z ∈W6 is complete to the semihole {x, u, v, y}, where u ∈W7 and v ∈W5, which contradicts

(2.12). �

The following claim states that many edges in W1 ∪W2 ∪ · · · ∪W7 are in fact strong edges.

(ii) For i ∈ [7], Wi ∪Wi+1 is a strong clique.

Suppose that w,w′ ∈Wi ∪Wi+1 are antiadjacent. Let wi+2 ∈Wi+2 and wi+4 ∈Wi+4. Then,

wi+2 is anticomplete to the triad {w,w′, wi+4}, contrary to (2.2). This proves (ii). �

(iii) Suppose that x has a neighbor in Wi. Then, up to symmetry,

(a) x is complete to at least one of Wi−1, Wi+1; and

(b) x is complete to at least one of Wi−1, Wi+2; and

(c) x is complete to at least one of Wi−2, Wi+2.

Let yi be a neighbor of x in Wi. Suppose that x has a strong antineighbor yi−1 ∈ Wi−1
and a strong antineighbor yi+1 ∈ Wi+1. If x has an antineighbor yi−2 ∈ Wi−2, then yi is

complete to the triad {x, yi+1, yi−2}, a contradiction. Thus x is complete to Wi−2. From the

symmetry, it follows that x is complete to Wi+2. Let yi−2 ∈Wi−2 and yi+2 ∈Wi+2. Now x-

yi−2-yi−1-yi+1-yi+2-x is a semihole of length five, a contradiction. This proves part (a). Next

suppose that x has a strong antineighbor yi−1 ∈Wi−1 and a strong antineighbor yi+2 ∈Wi+2.

Then yi is complete to the triad {yi−1, yi+2, x}, a contradiction. This proves part (b). Finally

suppose that x has a strong antineighbor yi−2 ∈Wi−2 and a strong antineighbor yi+2 ∈Wi+2.

Then yi is complete to the triad {yi−2, yi+2, x}, a contradiction. This proves part (c), thus

completing the proof of (iii). �
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We claim that V (T ) =
⋃7

i=1Wi. For suppose not. Then there exists x ∈ V (T ) \
⋃7

i=1Wi with a

neighbor in
⋃7

i=1Wi. Because T |(
⋃7

i=1Wi) contains a semihole of length four, it follows from (2.12)

that x has a neighbor in some set Wi. It follows from (iii) that, for some i ∈ [7], x is complete to

Wi ∪Wi+1. From the symmetry, we may assume that x is complete to W1 ∪W2. Now it follows

from (iii) that x is complete to at least one of W3, W7. We may assume that x is complete to W3.

Finally, it follows from (iii) that x is complete to at least one of W4, W7. We may assume that x is

complete to W4. If x has a neighbor y6 ∈W6, then let y1 ∈W1, y2 ∈W2, y4 ∈W4 and observe that

y1-y2-y4-y6-y1 is a semihole of length four and x is complete to it, contrary to (2.12). This proves

that x is strongly anticomplete to W6,

(iv) x is complete to exactly one of W5,W7 and strongly anticomplete to the other.

Suppose that x has both a strong antineighbor y5 ∈W5 and a strong antineighbor y7 ∈W7.

Then y7-y5-y4-x-y1-y7, where y1 ∈ W1, is a semihole of length five, a contradiction. This

proves that x is complete to one of W5,W7. Finally, suppose that x has a neighbor y5 ∈W5

and a neighbor y7 ∈ W7. Let y2 ∈ W2 and y3 ∈ W3. Then x is a center for the semihole y2-

y7-y5-y3-y2, contrary to (2.12). This proves (iv). �

From (iv), we may assume that x is complete to W5 and strongly anticomplete to W6 ∪ W7.

But now we may add x to W3 and obtain a larger structure, a contradiction. This proves that

V (T ) =
⋃7

i=1Wi. Now it follows from the definition of W1, . . . ,W7 and from (ii) that T is a

trigraph of the C̄7 type. This proves (5.5). �

The previous statement shows that if a long circular interval trigraph with no long semiholes

contains C̄7 as a weakly induced subgraph, then it basically looks like C̄7. The following shows

that such trigraphs have no triads, hence that they are resolved by (2.6):

(5.6) Let T be a trigraph of the C̄7 type. Then T contains no triad.

Proof. Let W1,W2, . . . ,W7 ⊆ V (T ) be as in the definition of a trigraph of the C̄7 type. Now

suppose that T has a stable set {s1, s2, s3}. Since Wi is a strong clique and Wi is strongly complete

to Wi+1, it follows that for j 6= k, sj and sk are not in consecutive sets. Therefore, from the

symmetry, we may assume that s1 ∈W1, s2 ∈W3, and s3 ∈W6. It follows that s1 is semiadjacent

to both s2 and s3, a contradiction. This proves (5.6). �

So, we may exclude C̄7 and concentrate on what happens otherwise. Let T be a trigraph. Let

A1, A2, A3, A4, B1, B2, B3, B4 ⊆ V (T ) be disjoint strong cliques such that, for i ∈ [4], (with sub-

script arithmetic modulo 4)

(1) A1, . . . , A4 are nonempty, and

(2) if i ∈ {1, 3}, then Ai is complete to Ai+1, and if i ∈ {2, 4}, then Ai and Ai+1 are linked, and

(3) Ai is strongly anticomplete to Ai+2, and

(4) Bi is strongly complete to Ai ∪Ai+1 and strongly anticomplete to Ai+2 ∪Ai+3, and

(5) Bi is strongly anticomplete to Bj for i 6= j, and
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(6) if Bi 6= ∅, then Ai is complete to Ai+1, and

(7) no vertex in Ai has antineighbors in both Ai−1 and Ai+1.

We call such (A1, . . . , A4, B1, . . . , B4) a C4-structure in T . If, for T , there exists a C4-structure

(A1, . . . , A4, B1, . . . , B4) such that V (T ) = A1 ∪ . . .∪A4 ∪B1 ∪ . . .∪B4, then we say that T admits

a C4-structure. The following lemma states that if a long circular interval trigraph T with no long

semiholes does not contain C̄7 as a weakly induced subgraph, then T is either a linear interval

trigraph, or T admits a C4-structure:

(5.7) Let T be a long circular interval trigraph that has no semihole of length at least five. Then,

either

(1) T is a linear interval trigraph, or

(2) T is of the C̄7 type, or

(3) T admits a C4-structure.

Proof. In view of outcome (1), we may assume that T is not a linear interval trigraph. Hence,

by (2.13) and the fact that T has no semiholes of length at least five, T has a semihole of length

four. Next, in view of outcome (2) and (5.5), we may assume that T has no weakly induced C̄7.

Let A1, A2, A3, A4 ⊆ V (T ) be cliques in T such that:

(a) A1 is complete to A2 and A3 is complete to A4, and,

(b) A1 is strongly anticomplete to A3, and A2 is anticomplete to A4, and

(c) A2 and A3 are linked, and A1 and A4 are linked.

We may choose A1, A2, A3, A4 with maximal union. We call such quadruple a structure. Since T

contains a semihole of length four, we may assume that Ai 6= ∅ for all i ∈ [4]. Let A =
⋃4

i=1Ai.

Let u1-u2-u3-u4-u1 with ui ∈ Ai be a semihole.

(i) Let v ∈ V (T ) \A. Then there exists i ∈ [4] such that v is strongly complete to Ai ∪Ai+1.

Since T is claw-free, it follows from (2.12) that v is adjacent to at least two consecutive

vertices of u1-u2-u3-u4-u1. Let k be such that v is adjacent to uk and uk+1. We may assume

that k ∈ {1, 2}. First suppose that k = 1. Since no vertex is complete to u1-u2-u3-u4-

u1, we may assume that v is strongly antiadjacent to u3. Since T is claw-free and u2 is

complete to A1, it follows that v is strongly complete to A1. If v is complete to A4, then the

claim holds, so we may assume that v has a strong antineighbor a4 ∈ A4. Let a1 ∈ A1 be

a neighbor of a4. Since a1 is complete to A2 and T is claw-free, it follows that v is strongly

complete to A2, as desired. So we may assume that k = 2 and v is strongly anticomplete

to {u1, u4}. Suppose that v has an antineighbor a2 ∈ A2. Then a2 is strongly antiadjacent

to u3, because otherwise u3 is complete to the triad {u4, v, a2}, a contradiction. Since A2 is

linked to A3, there exists a vertex a3 ∈ A3 such that a2 is adjacent to a3. Now a3 is adjacent

to u2, because otherwise T |{u1, a2, u2, u4, a3, u3} is a weakly induced (1, 1, 1)-prism, contrary

to (2.12). This implies that v is adjacent to a3, because otherwise u2 is complete to the

triad {u1, v, a3}. But now a3 is complete to the triad {u4, v, a2}, a contradiction. Thus v is
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strongly complete to A2 and, from the symmetry, v is also strongly complete to A3. This

proves (i). �

(ii) Suppose that, for some i ∈ [4], v ∈ V (T ) \ A is strongly complete to Ai ∪ Ai+1. Then v is

strongly anticomplete to Ai+2 ∪Ai+3.

From the symmetry, we may assume that i ∈ {1, 2}. For j = i+ 2, i+ 3, let Zj = N(v) ∩Aj

and let Yj = Aj \ Zj .

First suppose that both Zi+2 and Zi+3 are nonempty. Because no vertex is complete to a

semihole of length four by (2.12), it follows that Zi+2 is strongly anticomplete to Zi+3. It

follows that i = 2. Now let x4 ∈ Z4 and x1 ∈ Z1. Since A4 and A1 are linked, x4 has a

neighbor y1 ∈ Y1 and x1 has a neighbor y4 ∈ Y4. Since x4 is complete to {v, y4, y1}, the latter

is not a triad and hence it follows that y4 is adjacent to y1. But now T |{x4, u2, y4, v, y1, u3, x1}
contains C̄7 as a weakly induced subgraph, a contradiction.

So we may assume that at least one of Zi+2, Zi+3 is empty. If both are empty, then v is

strongly anticomplete to Ai+2 ∪ Ai+3 and the claim holds. Therefore, from the symmetry,

we may assume that Zi+2 6= ∅ and Zi+3 = ∅. If i = 1, then we may add v to A2 and obtain a

larger structure, a contradiction. If i = 2 and Yi+2 = ∅, then we may add v to A3 and obtain

a larger structure, a contradiction. Hence, we may assume that i = 2 and Y4 6= ∅.

Now suppose that a2 ∈ A2 and a3 ∈ A3 are strongly antiadjacent. Let q1 ∈ A1 and y4 ∈ Y4
be adjacent. Then a2-v-a3-y4-q1-a2 is a semihole of length five, a contradiction. This proves

that A2 is complete to A3.

We claim that for every a1 ∈ A1, x4 ∈ Z4 and y4 ∈ Y4, a1 is either complete or strongly

anticomplete to {x4, y4}. For suppose not. If a1 is adjacent to x4 and strongly antiadjacent

to y4, then x4 is complete to the triad {a1, y4, v}, a contradiction. So we may assume that

a1 is adjacent to y4 and strongly antiadjacent to x4. But now, v-x4-y4-a1-u2-v is a semihole

of length five, a contradiction. This proves the claim.

Since Z4 and Y4 are both nonempty, it follows that every vertex in A1 is either complete or

anticomplete to A4. Since every vertex in A1 has a neighbor in A4, this implies that A1 is

complete to A4. But now, letting A′1 = A2, A
′
2 = A3∪{v}, A′3 = A4 and A′4 = A1, we obtain

a larger structure, a contradiction. This proves (ii). �

For i ∈ [4], let Bi be the vertices that are strongly complete to Ai∪Ai+1. It follows from (ii) that Bi

is strongly anticomplete to Ai+2∪Ai+3. It follows from (i) that V (T ) = A1∪· · ·∪A4∪B1∪· · ·∪B4.

The next few claims state some properties of the sets A1, . . . , A4, B1, . . . , B4.

(iii) For i ∈ [4], no vertex in Ai has both an antineighbor in Ai+1 and an antineighbor in Ai−1.

Suppose that ai ∈ Ai has nonneighbors ai+1 ∈ Ai+1 and ai−1 ∈ Ai−1. From the symmetry, we

may assume that i = 1. Since A1 is complete to A2, it follows that a1 and a2 are semiadjacent

and hence that a1 and a4 are strongly antiadjacent. Now let a′1 ∈ A1 be a neighbor of a4.

Since A1 is complete to A2, it follows that a′1 is adjacent to a2. Now a′1 is complete to the
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triad {a1, a2, a4}, a contradiction. This proves (iii). �

(iv) For i, j ∈ [4], Bi is strongly anticomplete to Bj for j 6= i.

Let i ∈ {1, 3}. If bi ∈ Bi is adjacent to bi+1 ∈ Bi+1, then bi-bi+1-ui+2-ui+3-ui-bi is a semihole

of length five, a contradiction. If bi ∈ Bi is adjacent to bi+2 ∈ Bi+2, then T |{ui, ui+1, ui+2,

ui+3, bi, bi+1} contains a weakly induced (1, 1, 1)-prism, contrary to (2.12). Thus, it follows

from the symmetry that Bi is strongly anticomplete to Bj for j 6= i. This proves (iv). �

(v) For i ∈ [4], if Bi 6= ∅, then Ai is complete to Ai+1.

This is trivial if i = 1, 3. So from the symmetry we may assume that i = 2. If a2 ∈ A2

and a3 ∈ A3 are nonadjacent, then for any vertex b2 ∈ B2, a2-b2-a3-u4-u1-a2 is a semihole of

length five, a contradiction. This proves (v). �

We claim that T admits a C4-structure. We already noted that A1, . . . , A4, B1, . . . , B4 is a par-

tition of V (T ). Properties (1)-(7) in the definition of a C4-structure follow from the definition of

A1, . . . , A4, B1, . . . , B4 and (iii), (iv), and (v). This proves (5.7). �

We are now ready to prove the first main result of this subsection.

(5.8) Every F-free long circular interval trigraph with no semihole of length at least five is resolved.

Proof. Let T be long circular interval trigraph with no semihole of length at least five. It follows

from (5.7) that either T is a linear interval trigraph, or T is of the C̄7 type, or T admits a C4-

structure. If T is a linear interval trigraph, then the lemma holds by (5.4). If T is of the C̄7 type,

then the lemma holds by (5.6). Therefore, we may assume that T admits a C4-structure. Let

A1, A2, A3, A4, B1, B2, B3, B4 be as in the definition of a C4-structure. We may assume that T is

not resolved.

(i) If, for some i ∈ [4], Bi 6= ∅, then Ai is not strongly complete to Ai+1.

Suppose that Bi 6= ∅ and Ai is strongly complete to Ai+1. Then any vertex in Bi is a

simplicial vertex and hence T is resolved by (2.5), a contradiction. This proves (i). �

(ii) If, for some i ∈ [4], Bi 6= ∅, then Ai+2 is strongly complete to Ai+3.

Let i be such that Bi 6= ∅, let bi ∈ Bi, and suppose that there exist two antiadjacent vertices

x ∈ Ai+2 and y ∈ Ai+3. It follows from (i) that there exist antiadjacent ai ∈ Ai and

ai+1 ∈ Ai+1. It follows from property (7) of a C4-structure that ai is strongly complete to

Ai+3 and ai+1 is strongly complete to Ai+2. If x is semiadjacent to y, then ai-bi-ai+1-x-y-

ai is a weakly induced cycle of length five and xy ∈ F (T ) and, thus, T is resolved by (2.8),

a contradiction. Thus, x is strongly antiadjacent to y. Now let x′ ∈ Ai+2 be a neighbor of y

and let y′ ∈ Ai+3 be a neighbor of x. If x′ and y′ are adjacent, then T |{bi, ai+1, x
′, y′, ai, x, y}

contains G1 as a weakly induced subgraph, a contradiction. Thus x′ and y′ are strongly

antiadjacent.
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We claim that no vertex in Ai+3 is complete to {x, x′}. For suppose that such vertex z ∈
Ai+3 exists. Then, T |{bi, ai+1, x

′, z, ai, x, y} contains G1 as a weakly induced subgraph, a

contradiction. Hence, no vertex in Ai+3 is complete to {x, x′} and, in particular, every

vertex in Ai+3 has an antineighbor in Ai+2. Thus, property (7) of a C4 structure implies that

Ai+3 is strongly complete to Ai. By the symmetry, Ai+2 is strongly complete to Ai+1. But

now, (Ai+2, Ai+3) is a homogeneous pair of cliques and ai-bi-ai+1 is a weakly induced path

between their respective neighborhoods, and hence T is resolved by (2.7). This proves (ii).

�

(iii) For each i ∈ [4], at least one of Bi, Bi+1 is empty.

Suppose that for some i ∈ [4], Bi and Bi+1 are both nonempty. By (i), there exist antiadja-

cent ai ∈ Ai and ai+1 ∈ Ai+1 and antiadjacent a′i+1 ∈ Ai+1 and a′i+2 ∈ Ai+2. It follows from

property (7) of a C4 structure that ai+1 6= a′i+1 and in particular ai+1 is strongly adjacent to

a′i+2 and a′i+1 is strongly adjacent to ai. Let ai+3 ∈ Ai+3 be a common strong neighbor of ai
and ai+2. Such ai+3 exists since from (ii) it follows that Ai+2 is strongly complete to Ai+3

and Ai+3 is strongly complete to Ai. But now T |{ai+3, ai, a
′
i+1, ai+1, a

′
i+2, bi, bi+1} contains

G1 as a weakly induced subgraph, a contradiction. This proves (iii). �

First suppose that Bi = ∅ for all i ∈ [4]. Then, it follows from property (7) of a C4 structure that

T does not contain a triad and, thus, T is resolved by (2.6). Hence, we may assume that Bi 6= ∅
for some i ∈ [4]. From (i), (ii), and (iii), it follows that Bj = ∅ for all j 6= i. It follows from (ii)

that Ai+2 is strongly complete to Ai+3. But now, T has no triad and hence T is resolved by (2.6).

This proves (5.8). �

5.2.2 Long circular interval trigraphs with long semiholes

Lemma (5.8) deals with long circular interval trigraphs with no long semiholes. The following

lemmas deal with the remaining case. The first lemma is an attachment lemma that describes

how vertices can attach to a semihole in a long circular interval trigraph. We need some more

definitions first. Let T be a trigraph and let C be a semihole of length k in T . Suppose that the

vertices of C are ordered, so that C = c1-c2- . . . -ck-c1. Let x ∈ V (T ) \ V (C). Let i ∈ [k]. We say

that x is a hat of type i for C if x is strongly complete to {ci, ci+1} and strongly anticomplete to

V (C) \ {ci, ci+1}. We say that x is a clone of type i for C if x is complete to {ci−1, ci+1}, strongly

adjacent to ci, and strongly anticomplete to V (C) \ {ci−1, ci, ci+1}. Finally, we say that x is a star

of type i for C if x is strongly antiadjacent to ci and complete to {ci−1, ci+1}, and strongly complete

to V (C) \ {ci−1, ci, ci+1}.

(5.9) Let T be an F-free long circular interval trigraph. Let C be a semihole of length k ≥ 5. Then,

k ∈ {5, 7}, and every x ∈ V (T ) \ V (C) is either a hat, or a clone, or a star of type i for C, for

some i ∈ [k]. Moreover, if x is a star for C, then k = 5.

29



C1 Y1

Z1

C2

Y2

Z2

C3

Y3

Z3

C4

Y4

Z4
C5

Y5

Z5

(a)

C1

Y1

C2

Y2

C3

Y3
C4

Y4

C5

Y5

C6

Y6

C7

Y7

(b)

Figure 5: The structure of an F-free long circular interval trigraph with a semihole of length five or seven; see

(5.10) and (5.11). The circle represent strong cliques, the triple edges between circles indicate that the

corresponding cliques are strongly complete to each other, and the dashed edges represent arbitrary

adjacencies.

Proof. Let C = c1-c2- . . . -ck-c1. Since T is F-free it follows that k ∈ {5, 7}. We first observe that:

(∗) if x is adjacent to ci, then x is strongly adjacent to at least one of ci−1, ci+1, because otherwise

{x, ci−1, ci+1} is a triad and ci is complete to it.

It follows from (2.12) that C is dominating and has no center, and therefore x has at least one

neighbor and one strong antineighbor in V (C). We may assume that x is adjacent to c1 and

strongly antiadjacent to c2. It follows from (∗) that x is strongly adjacent to ck. First suppose that

x is adjacent to c3. Then, by (∗), x is strongly adjacent to c4. If k = 5, then, x is a star of type

2, and the claim holds. So we may assume that k = 7. x is strongly antiadjacent to c5 because

otherwise x is complete to the triad {c1, c3, c5}. Thus, by the symmetry, x is strongly antiadjacent

to c6. But now C ′ = x-c4-c5-c6-c7-x is a semihole and c2 has no neighbors in V (C ′), contrary to

(2.12). So we may assume that x is strongly antiadjacent to c3. If k = 5, then, x is a clone of type

5 if x is adjacent to c4 and x is a hat of type 5 if x is strongly antiadjacent to c4 (x is strongly

adjacent to c1 by (∗) in this case). Thus we may assume that k = 7. Suppose that x is adjacent

to c4. x is strongly antiadjacent to c6, because otherwise x is complete to the triad {c1, c4, c6}, a

contradiction. But now c1-c2-c3-c4-x-c1 is a nondominating semihole and c6 has no neighbor in it,

contrary to (2.12). This proves that x is strongly antiadjacent to c4. If x is adjacent to c5, then c1-

c2-c3-c4-c5-x-c1 is a weakly induced cycle of length six, a contradiction. Therefore, x is strongly

antiadjacent to c5. Now, x is a clone of type 7 if x is adjacent to c6 and x is a hat of type 7 if x is

strongly antiadjacent to c6. This proves (5.9). �

Next, we have two lemmas that describe the structure of an F-free long circular interval trigraph

that contains a semihole of length five and seven, respectively. (See Figure 5)
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(5.10) Let T be an F-free long circular interval trigraph. Assume that T has a semihole of

length five and no semihole of length seven. Then, V (T ) can be partitioned into 15 strong cliques

C1, . . . , C5, Y1, . . . , Y5, Z1, . . . , Z5 such that for all i, j ∈ [5], (subscript arithmetic is modulo 5)

(1-a) Ci is complete to Ci+1 and strongly anticomplete to Cj with j 6∈ {i− 1, i, i+ 1},
(1-b) Yi is strongly complete to Ci ∪ Ci+1 and strongly anticomplete to Cj with j 6∈ {i, i+ 1}.
(1-c) Zi is strongly complete to Ci+2 ∪ Ci+3, strongly anticomplete to Ci, and every vertex in Zi

is strongly complete to one of Ci+1, Ci+4 and has a neighbor in the other,

(1-d) if i 6= j, then Yi is strongly anticomplete to Yj.

(1-e) Yi is strongly complete to Zi+2 ∪ Zi+4, and strongly anticomplete to Zi ∪ Zi+1 ∪ Zi+3,

Moreover, if there exists y ∈ Yi, then:

(2) Ci ∪ Ci+1 ∪ Zi+2 ∪ Zi+4 is a strong clique.

Proof. Let C1, . . . , C5 be cliques that satisfy property (1-a), and let C =
⋃5

i=1Ci be maximal.

Let Y1, . . . , Y5 ⊆ V (T ) \ C be cliques that satisfy property (1-b), and let Y =
⋃5

i=1 Yi be maximal.

Let Z1, . . . , Z5 ⊆ V (T ) \ (C ∪ Y ) be cliques that satisfy property (1-c), and let Z =
⋃5

i=1 Zi be

maximal. It follows from the fact that T has a semihole of length five that Ci 6= ∅ for i ∈ [5].

Furthermore, we claim that each Ci, Yi, and Zi is a strong clique. This follows immediately from

(1-a) and (1-b) for Ci and Yi. For Zi, let z, z′ ∈ Zi. From the symmetry and (1-c), we may assume

that z is strongly complete to Ci+1. It follows from (1-c) that z′ has a neighbor ci+1 ∈ Ci+1. Let

ci ∈ Ci. Now, since ci+1 is complete to {z, z′, ci}, it follows because T is claw-free that z and z′ are

strongly adjacent. Thus, Zi is a strong clique for all i ∈ [5].

We claim that V (T ) = C ∪ Y ∪ Z. So suppose for a contradiction that there exists x ∈ V (T ) \
(C ∪ Y ∪ Z). In what follows, we say that F = f1-f2- . . . -f5-f1 is an aligned semihole in C if

fi ∈ Ci for all i ∈ [5]. It follows from (5.9) that, for every aligned semihole in C, x is either a star,

a clone, or a hat. First suppose that x is star of type i, say, for some aligned semihole F = f1-

f2- . . . -f5-f1 in C. From the symmetry, we may assume that i = 1. By rerouting F , it follows

from the fact that T is claw-free that x is strongly complete to C3 ∪ C4, and from (5.9) that x is

strongly anticomplete to C1. We claim that x is strongly complete to at least one of C2, C5. For

suppose that x has antineighbors c2 ∈ C2 and c5 ∈ C5. Then, T |(V (F )∪ {c2, c5, x}) contains G1 as

a weakly induced subgraph, a contradiction. By the maximality of Zi, this means that x ∈ Zi, a

contradiction. So we may assume that x is not a star for any aligned semihole in C. Next, suppose

that x is a clone of type i, say, for some aligned semihole F = f1-f2- . . . -f5-f1 in C. From the

symmetry, we may assume that i = 1. By rerouting F , it follows from the fact that T is claw-free

that x is strongly complete to C1, and from (5.9) that x is strongly anticomplete to C3 ∪ C4. We

claim that x is complete to C2. For suppose that x has a strong antineighbor c′2 ∈ C2. Then,

c′2 6= f2 and T |(V (F ) ∪ {c′2, x}) contains G1 as a weakly induced subgraph, a contradiction. Thus,

x is complete to C2 and, from the symmetry, to C5. But now, by the maximality of C1, x ∈ C1,

a contradiction. So we may assume that x is not a clone for any aligned semihole in C. It follows

that x is a hat for every aligned semihole in C. Choose any aligned semihole F = f1-f2- . . . -f5-

f1 in C. We may assume that x is a hat of type 1 for C. By rerouting F , it follows from (5.9) that
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x is strongly complete to C1 ∪ C2 and strongly anticomplete to C3 ∪ C4 ∪ C5. Therefore, by the

maximality of Y1, x ∈ Y1, a contradiction. This proves that V (T ) = C ∪ Y ∪ Z.

The following claim proves property (1-d):

(i) If i 6= j, then Yi is strongly anticomplete to Yj.

Let cj ∈ Cj with j ∈ [5]. If there exist adjacent yi ∈ Yi and yi+1 ∈ Yi+1 for some i, then yi-

yi+1-ci+2-ci+3-ci+4-ci-yi, is a weakly induced cycle of length six, a contradiction. If there exist

adjacent yi ∈ Yi and yi+2 ∈ Yi+2 for some i, then yi-yi+2-ci+2-ci+1-yi is a weakly induced

cycle and ci+4 has no neighbor in it, contrary to (2.12). By the symmetry, this proves (i). �

The following claim proves property (1-e):

(ii) Yi is strongly complete to Zi+2 ∪ Zi+4 and strongly anticomplete to Zi ∪ Zi+1 ∪ Zi+3.

Let y ∈ Yi. Suppose that y is adjacent to z ∈ Zi ∪Zi+1 ∪Zi+3. It follows from the definition

of Zj (j = i, i + 1, i + 3) that z has neighbors ci+2 ∈ Ci+2 and ci+4 ∈ Ci+4. But now,

z is complete to the triad {y, ci+2, ci+4}, a contradiction. This proves that Yi is strongly

anticomplete to Zi ∪ Zi+1 ∪ Zi+3. Next, suppose that y is antiadjacent to z′ ∈ Zi+2 ∪ Zi+4.

From the symmetry, we may assume that z′ ∈ Zi+2. But now, let ci+1 ∈ Ci+1 be a neighbor

of z′ (such a neighbor exists because of (1-c)). Now, ci+1 is complete to the triad {ci+2, z
′, y},

a contradiction. This proves that Yi is strongly complete to Zi+2 ∪Zi+4. This proves (ii). �

The following claim proves property (2):

(iii) If Yi 6= ∅, then Ci ∪ Ci+1 ∪ Zi+2 ∪ Zi+4 is a strong clique.

Let y ∈ Yi. For j ∈ [5], let cj ∈ Cj . Ci is strongly complete to Ci+1 because if there exist

antiadjacent c′i ∈ Ci and c′i+1 ∈ Ci+1, then c′i-y-c′i+1-ci+2-ci+3-ci+4-c
′
i is a weakly induced

cycle of length six, a contradiction. It follows from the definition of Zi+2 that Ci is strongly

complete to Zi+2. Ci is strongly complete to Zi+4, because if there exist antiadjacent c′i ∈ Ci

and zi+4 ∈ Zi+4, then T |{c′i, ci+1, . . . , ci+4, y, zi+4} contains G1 as a weakly induced subgraph.

From the symmetry, it follows that Ci+1 is strongly complete to Zi+2∪Zi+4. Finally, suppose

that there exist antiadjacent zi+2 ∈ Zi+2 and zi+4 ∈ Zi+4. Let c′i+3 ∈ Ci+3 be a neighbor

of zi+2. If c′i+3 is antiadjacent to zi+4, then T |{ci, ci+2, c
′
i+3, ci+4, zi+2, zi+4, y} contains G1 as

a weakly induced subgraph. Thus, c′i+3 is adjacent to zi+4. But now, T |{ci, ci+1, ci+2, c
′
i+3,

ci+4, zi+2, zi+4, y} contains G3 as a weakly induced subgraph, a contradiction. This proves

that Zi+2 is strongly complete to Zi+4. Now (iii) follows from the symmetry. �

This proves (5.10). �

(5.11) Let T be an F-free long circular interval trigraph. Assume that T has a semihole of length

seven. Then, V (T ) can be partitioned into 14 strong cliques C1, . . . , C7, Y1, . . . , Y7 such that

(a) Ci is complete to Ci+1 and strongly anticomplete to Cj with j 6∈ {i− 1, i, i+ 1},
(b) Yi is strongly complete to Ci ∪ Ci+1 and strongly anticomplete to Cj with j 6∈ {i, i+ 1},
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(c) Yi is strongly anticomplete to Yj for i 6= j.

Proof. Let C1, . . . , C7 be cliques such that Ci is complete to Ci+1 and strongly anticomplete to Cj

with j 6∈ {i− 1, i, i+ 1}, and let C =
⋃7

i=1Ci be maximal. For i = 1, . . . , 7, let Yi be the vertices in

V (T )\C that are strongly complete to Ci∪Ci+1 and strongly anticomplete to Cj with j 6∈ {i, i+1},
and let Y =

⋃7
i=1 Yi. It follows from the fact that T has a semihole of length seven that Ci 6= ∅ for

i ∈ [7]. Furthermore, since T is claw-free it follows that each Ci and each Yi is a strong clique.

We claim that V (T ) = C ∪Y . For suppose for a contradiction that there exists x ∈ V (T )\ (C ∪Y ).

In what follows, we say that F = f1-f2- . . . -f7-f1 is an aligned semihole in C if fi ∈ Ci for all

i ∈ [7]. It follows from (5.9) that, for every aligned semihole F in C, x is either a hat or a clone

for F . First suppose that x is a hat of type i, say, for some aligned semihole F = f1-f2- . . . -f7-

f1 in C. From the symmetry, we may assume that i = 1. We claim that x is strongly anticomplete

to C3. For suppose that x has a neighbor c3 ∈ C3. Then, T |(V (F ) ∪ {x, c3} contains G2 as a

weakly induced subgraph, a contradiction. Therefore, x is strongly anticomplete to C3, and by

symmetry x is strongly anticomplete to C7. By rerouting F , it follows from (5.9) that x is strongly

anticomplete to C4 ∪ C5 ∪ C6. Next, again by rerouting F , it follows from (5.9) that x is strongly

complete to C1∪C2 and, by the maximality of Y1, x ∈ Y1, a contradiction. So we may assume that

x is not a hat for any aligned semihole in C. Now let F = f1-f2- . . . -f7-f1 be an aligned semihole

in C. It follows that x is a clone of type i, say, for F . We may assume that i = 1. By rerouting

F , it follows that x is complete to C2 ∪ C7, strongly complete to C1, and strongly anticomplete to

C3 ∪ C4 ∪ C5 ∪ C6. Therefore, by the maximality of Ci, x ∈ Ci, a contradiction. This proves that

V (T ) = C ∪ Y .

Now suppose that yi ∈ Yi and yj ∈ Yj (i 6= j) are adjacent. Suppose that j = i + 1. Let

cj ∈ Cj for all j ∈ [7]. Then, T |(V (C) ∪ {yi, yj}) contains a weakly induced cycle of length eight,

a contradiction. Thus, j 6∈ {i+ 1, i− 1}. We may assume that i = 1 and 2 < j < 5. Now, yi-ci+1-

ci+2- . . . -cj-yj-yi is a semihole of length at least 4 and c7 has no neighbor in it, contrary to (2.12).

This proves that Yi is strongly anticomplete to Yj for i 6= j, thus completing the proof of (5.11). �

This allows us to deal with long circular interval trigraphs that contain a long semihole:

(5.12) Every F-free long circular interval trigraph that has a semihole of length at least five is

resolved.

Proof. Let T be an F-free long circular interval trigraph. From (5.4), we may assume that T is

not a linear interval trigraph. By (2.8), we may assume that for every semihole in T of length five

or more, all adjacent pairs are in fact strongly adjacent.

First suppose that T has a semihole of length seven. Then, let C1, . . . , C7, Y1, . . . , Y7 be as in

(5.11). Since the edges of every semihole in T of length seven are strong edges, it follows that Ci is

strongly adjacent to Ci+1 for all i ∈ [7]. If there exists y ∈ Yi for some i ∈ [7], then it follows that

y is a simplicial vertex in T and hence T is resolved by (2.5). So we may assume that Yi = ∅ for all

i ∈ [7]. From (2.9), we may assume that T has no strongly adjacent clones. It follows that T is a
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cycle of length seven and, thus, every graphic thickening G of T is imperfect and all maximal stable

sets in G have size three. Thus, T is resolved because every graphic thickening of T is resolved.

So we may assume that T has a semihole of length five and no semihole of length seven. Then, let

C1, . . . , C5, Y1, . . . , Y5, Z1, . . . , Z5 be as in (5.10) and let C =
⋃5

i=1Ci and Z =
⋃5

i=1 Zi. Since the

edges of every semihole in T of length five are strong edges, it follows that Ci is strongly adjacent

to Ci+1 for all i ∈ [5]. Suppose first that Yi 6= ∅ for some i. Let yi ∈ Yi. It follows from (5.10) that

N [yi] = Yi ∪Ci ∪Ci+1 ∪Zi+2 ∪Zi+4 and Yi ∪Ci ∪Ci+1 ∪Zi+2 ∪Zi+4 is a strong clique. Hence, yi is

a simplicial vertex in T and, thus, T is resolved by (2.5). So may assume that Yi = ∅ for all i ∈ [5].

If T has no triad, then T is resolved by (2.6). Therefore, we may assume that T has a triad

S = {s1, s2, s3}. First suppose that |S ∩Z| = 3. From the symmetry, we may assume that s1 ∈ Z1,

s2 ∈ Z2 and s3 ∈ Z3∪Z4. It follows from the definition of Zi that Z1∪Z2 is complete to C4. Suppose

first that s3 ∈ Z3. Let c4 ∈ C4 be a neighbor of s3. Now, c4 is complete to S, a contradiction. It

follows that s3 ∈ Z4. From the symmetry, we may assume that Z4 is complete to C3. Let c3 ∈ C3 be

a neighbor of s2. It follows that c3 is complete to S, a contradiction. Next, suppose that |S∩Z| = 2

and hence |S ∩ C| = 1. We may assume that s1 ∈ C1. It follows from (5.10) that C1 is complete

to Z3 ∪ Z4. Hence, from the symmetry, we may assume that s2 ∈ Z1 ∪ Z2 and s3 ∈ Z5. First

suppose that s2 ∈ Z1. Let c2 ∈ C2 be a neighbor of s2. Then c2 is complete to S, a contradiction.

It follow that s2 ∈ Z2. Let c3 ∈ C3 be a neighbor of s2, and let c4 ∈ C4 be a neighbor of s3. Now,

T |{s1, c2, c3, c4, c5, s2, s3}, where c2 ∈ C2 and c5 ∈ C5, contains G1 as a weakly induced subgraph, a

contradiction. Therefore, since T |C contains no triad, it follows that |S ∩ Z| = 1 and |S ∩ C| = 2.

From the symmetry, we may assume that s1 ∈ C1 and s2 ∈ C3. Because C1 is strongly complete

to Z3 ∪ Z4, and C3 is strongly complete to Z1 ∪ Z5, it follows that s3 ∈ Z2. But this contradicts

the fact that Z2 is strongly complete to at least one of C1, C3. This proves (5.12). �

The previous two lemmas imply the main result of this section:

(5.13) Every F-free long circular interval trigraph is resolved.

Proof. Let T be a F-free long circular interval trigraph. If T is a linear interval trigraph, then it

follows from (5.4) that T is resolved. If T has a semihole of length at least five, then T is resolved

by (5.12). Therefore, we may assume that T has no semihole of length at least five and, thus, the

result follows from (5.8). This proves (5.13). �

5.3 F-free three-cliqued trigraphs

In this section, we deal with three-cliqued claw-free trigraphs. The approach is as follows. Theorem

2.11 states that every three-cliqued claw-free trigraph either lies in T C1∪TC2∪ . . .∪TC5, or admits

a worn hex-chain of trigraphs in T C1 ∪ TC2 ∪ . . . ∪ TC5. (See Section 2.4 for the definitions of the

classes T C1, . . . , T C5.) We first show that in the context of F-free three-cliqued claw-free trigraphs,

it suffices to consider only the basic three-cliqued claw-free trigraphs, and basic three-cliqued claw-

free trigraphs that are hex-joined with a strong clique. After having stated and proved this result,
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we will go through the remaining cases and conclude that F-free three-cliqued claw-free trigraphs

are resolved.

A three-cliqued claw-free trigraph (T,A,B,C) is called very basic if (T,A,B,C) ∈ TC1 ∪ TC2 ∪
TC3∪TC5. We start with the following lemma, which states that it suffices to consider three-cliqued

claw-free trigraphs that are very basic, or that are a hex-join of a very basic three-cliqued claw-free

trigraph and a strong clique.

(5.14) Let (T,A,B,C) be an F-free three-cliqued claw-free trigraph. Then, either T is resolved or

(T,A,B,C) is

(a) a very basic three-cliqued claw-free trigraph, or

(b) a trigraph that is the hex-join of a very basic three-cliqued claw-free trigraph and a strong

clique.

Proof. We may assume that (T,A,B,C) is not very basic. Thus, (T,A,B,C) admits a worn

hex-chain. We may assume that T is not resolved. We start with two claims about worn hex-joins.

(i) Suppose that (T,A,B,C) is a worn hex-join of two three-cliqued claw-free trigraphs (T1, A1,

B1, C1) and (T2, A2, B2, C2). Then, at least one of T1, T2 does not contain a triad.

Suppose that for i = 1, 2, Ti contains a triad {ai, bi, ci}. From the symmetry and the fact that

Ai, Bi, Ci are strong cliques, we may assume that for i = 1, 2, ai ∈ Ai, bi ∈ Bi and ci ∈ Ci.

But now a1-a2-b1-b2-c1-c2-a1 is a weakly induced cycle of length six in T , a contradiction.

This proves (i). �

(ii) A worn hex-chain of antiprismatic three-cliqued claw-free trigraphs is antiprismatic.

Since a worn hex-chain can be constructed by iteratively hex-joining two trigraphs, it suffices

to show the lemma for worn hex-joins. So, for i = 1, 2, let (Ti, Ai, Bi, Ci), be an antiprismatic

three-cliqued claw-free trigraph and consider the worn hex-join T ′ of (T1, A1, B1, C1) and

(T2, A2, B2, C2). In order to show that T ′ is antiprismatic, it suffices to show that for every

triad S in T ′, every vertex v ∈ V (T ′)\S has at least two strong neighbors in S. So let S be a

triad in T ′. From the symmetry, we may assume that S has at least one vertex in T1. From

the definition of a worn hex-join, and the fact that A1, B1, C1 are strong cliques, it follows

that S = {a, b, c} with a ∈ A1, b ∈ B1, c ∈ C1. Now let v ∈ V (T ′) \ S. If v ∈ V (T1), then

it follows from the fact that T1 is antiprismatic that v has at least two strong neighbors in

S. So we may assume that v ∈ V (T2), and from the symmetry we may assume that v ∈ A2.

Now v is strongly complete to A1 ∪ B1, and hence v is strongly adjacent to a and b. This

proves (ii). �

First, notice that every very basic three-cliqued claw-free trigraph contains a triad. Hence, it follows

from (i), Theorem 2.11 and the symmetry that we may assume that (T,A,B,C) admits a worn hex-

chain into terms, at most one of which is a basic three-cliqued claw-free trigraph, and whose other

terms are three-cliqued claw-free trigraphs with no triad (and, in particular, they are antiprismatic).

If all terms are antiprismatic three-cliqued claw-free trigraphs, then T is antiprismatic by (ii) and
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thus the lemma holds by (5.3). So we may assume that exactly one of the terms is a very basic three-

cliqued claw-free trigraph. Notice that a worn hex-chain of antiprismatic three-cliqued claw-free

trigraphs is an antiprismatic three-cliqued claw-free trigraph. Possibly by taking together all terms

that are antiprismatic three-cliqued claw-free trigraphs, it follows that T is a worn hex-join of a

very basic three-cliqued claw-free trigraph L, and an antiprismatic three-cliqued claw-free trigraph

R that contains no triad. Since every vertex of a very basic three-cliqued claw-free trigraph is in

a triad, it follows that T is not only a worn hex-join, but in fact a hex-join of a very basic three-

cliqued claw-free trigraph L = (L1, L2, L3), and an antiprismatic three-cliqued claw-free trigraph

R = (R1, R2, R3) that contains no triad. We may assume that for {i, j, k} = {1, 2, 3}, Ri is strongly

anticomplete to Li and strongly complete to Lj ∪ Lk.

(iii) For i = 1, 2, 3, Li is not strongly anticomplete to L \ Li.

It suffices to show this for i = 2. Suppose that L2 is strongly anticomplete to L \ L2. First

suppose that L1 is strongly anticomplete to L3. Then L is a disjoint union of strong cliques

and, by (2.9) applied to L, we may assume that L is a triad, and thus that L is antiprismatic,

a contradiction. Hence, L1 is not strongly anticomplete to L3. Let l2 ∈ L2. Since l2 is not

simplicial, there exist antiadjacent r1 ∈ R1 and r3 ∈ R3. Now (L1, L3) is a homogeneous

pair of cliques in T such that L1 is neither strongly complete nor strongly anticomplete to

L3, and r1-l2-r3 is a weakly induced path that contradicts (2.7). This proves (iii). �

(iv) Suppose that there exist antiadjacent r1 ∈ R1 and r2 ∈ R2. Then,

(iv-a) there is no weakly induced path x1-x2-x3-x4-x5 with x1 ∈ L2, x2, x3 ∈ L1 and x4, x5 ∈ L3,

or with x1 ∈ L1, x2, x3 ∈ L2 and x4, x5 ∈ L3;

(iv-b) there is no triad {l1, l2, l3} with li ∈ Li such that l1 and l2 are semiadjacent;

(iv-c) if l1 ∈ L1 is adjacent to l3 ∈ L3, and l2 ∈ L2 is in a triad with l1, then l2 is strongly

anticomplete to L1.

For part (iv-a), suppose that there exist such r1, r2, x1, . . . , x5. Then, T |{x1, r1, x4, r2, x2,
x3, x5} contains G1 as a weakly induced subgraph, a contradiction. This proves (iv-a).

For part (iv-b), suppose that such l1, l2, l3 exist. Then, l1-l2-r1-l3-r2-l1 is a weakly induced

cycle of length five that contradicts (2.8). This proves (iv-b).

For part (iv-c), let l1 ∈ L1 and l3 ∈ L3 be adjacent, and let l2 ∈ L2 be in a triad with

l1. Suppose first that {l1, l2, l3} is a triad. It follows that l1 is semiadjacent to l3 and l2 is

strongly antiadjacent to l1 and l3. We may assume that l2 has a neighbor l′1 ∈ L1 because

otherwise (iv-c) holds. Because l′1 is not complete to the triad {l1, l2, l3}, it follows that l′1
is strongly antiadjacent to l3. But now, l1-l3-r1-l2-l

′
1-l1 is a weakly induced cycle in T that

contradicts (2.8). This proves that {l1, l2, l3} is not a triad.

Let {l1, l2, l′3} be a triad. It follows that l′3 6= l3. It follows from (iv-b) that l1l2 is not a

semiedge and thus l1 is strongly antiadjacent to l2. Since l3 is not complete to {l1, l2, l′3}, it

follows that l3 is strongly antiadjacent to l2. Because {l1, l2, l3} is not a triad, it follows that

l1 is strongly adjacent to l3. Let l′1 ∈ L1 be a nonneighbor of l3 (l′1 exists because l3 is in

a triad). Suppose first that l′1 is adjacent to l2. Because l′1 is not complete to {l1, l2, l′3}, l′1
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is strongly antiadjacent to l′3. But now l2-l
′
1-l1-l3-l

′
3 is a weakly induced path contradicting

(iv-a). This proves that l′1 is strongly antiadjacent to l2. We may assume that l2 has a

neighbor l′′1 ∈ L1. Because l′′1 is not complete to {l′1, l2, l3} and not complete to {l1, l2, l′3}, it

follows that l′′1 is strongly anticomplete to {l3, l′3}. But now l2-l
′′
1-l1-l3-l

′
3 is a weakly induced

path that contradicts (iv-a). This proves (iv-c), thus completing the proof of (iv). �

(v) At least one of the pairs (R1, R2), (R2, R3), (R1, R3) is strongly complete.

We first claim that every vertex of R2 is strongly complete to at least one of R1, R3. For

suppose that there exists r2 ∈ R2 with antineighbors r1 ∈ R1 and r3 ∈ R3. Since R contains

no triad, it follows that r1 is strongly adjacent to r3. It follows from (iii) that L2 is not

strongly anticomplete to L1 ∪ L3 and thus, from the symmetry, we may assume that there

exist adjacent l1 ∈ L1 and l2 ∈ L2. Let {l′1, l2, l3} be a triad containing l2. If l′1 = l1, then

it follows that l1 is semiadjacent to l2, thus contradicting (iv-b). Thus, l1 6= l′1. Since l1 is

not complete to the triad {l′1, l2, l3}, it follows that l1 is strongly antiadjacent to l3. But now

T |{l3, r2, l1, r3, r1, l′1, l2} contains G1 as a weakly induced subgraph. This proves the claim.

Notice that by symmetry it follows that for {i, j, k} = {1, 2, 3}, every vertex of Ri is strongly

complete to at least one of Rj , Rk.

Suppose that there exist antiadjacent pairs (r1, r
′
2), (r2, r

′
3), (r′1, r3) with ri, r

′
i ∈ Ri. It follows

from our previous claim that ri 6= r′i for i = 1, 2, 3, and all pairs except (r1, r
′
2), (r2, r

′
3), (r′1, r3)

are strongly adjacent. Let {l1, l2, l3} with li ∈ Li be a triad. Now, T |{l1, l2, l3, r1, r′1, r2, r′2,
r3, r

′
3} contains G4 as a weakly induced subgraph, a contradiction. This proves (v). �

By (v), we may assume that R1 is strongly complete to R3. We may assume that R is not a strong

clique and thus we may assume that there exist antiadjacent r1 ∈ R1 and r2 ∈ R2.

(vi) No vertex in L1 has both a neighbor in L2 and a neighbor in L3.

Suppose that l1 ∈ L1 has a neighbor l3 ∈ L3. Let l2 ∈ L2 be in a triad with l1. By (iv-c), l2
is strongly anticomplete to L1. Since l2 is not simplicial, l2 has a neighbor in L3. Now, from

the symmetry between L1 and L2 and by (iv-c), it follows that l1 is strongly anticomplete

to L2. This proves (vi). �

We may assume that K = R1∪L2∪R3 is not a dominant clique in T . Thus, there exists a stable set

S ⊆ (V (T )\K) that covers K. First suppose that S ∩R2 6= ∅. Then, since R2 is strongly complete

to L1 ∪ L3, it follows that S ⊆ R2. But now, S does not cover L2, a contradiction. Therefore,

S ∩ R2 = ∅. It follows that S ⊆ L1 ∪ L3. Suppose next that S ⊆ L1. Let l1 be the unique vertex

in S, and let {l1, l2, l3} be a triad. Clearly, {l1, l2, l3} is a larger stable set than S, a contradiction.

From this and from the symmetry, it follows that S = {l1, l3} with l1 ∈ L1 and l3 ∈ L3.

Let z ∈ L2. By the maximality of S, it follows that l1 and l3 are not both antiadjacent to z. This

proves that for every z ∈ L2, z is strongly adjacent to at least one of l1, l3.

Let l2, l
′
2 ∈ L2 be antineighbors of l1, l3, respectively. Notice that l2, l

′
2 exist since each vertex in

L is in a triad. It follows by the previous argument that l2 6= l′2, l1 is strongly adjacent to l′2, and
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l3 is strongly adjacent to l2. Let l′3 ∈ L3 be an antineighbor of l2. It follows from (vi) that l′3
is strongly antiadjacent to l1. Because l′2 is not complete the triad {l1, l2, l′3}, it follows that l′2 is

strongly antiadjacent to l′3. But now, l1-l
′
2-l2-l3-l

′
3 is a weakly induced path that contradicts (iv-a).

Thus K is a dominant clique, a contradiction. This proves that R is a strong clique, and hence this

proves (5.14). �

Recall that the F-free three-cliqued claw-free trigraphs that remain open after (5.14) are the very

basic three-cliqued claw-free trigraphs, and the hex-joins of very basic three-cliqued claw-free tri-

graphs with a strong clique. The next few lemmas deal with these cases. We start with three-cliqued

claw-free trigraphs where the part that is very basic is a type of line trigraph.

(5.15) No three-cliqued claw-free trigraph in T C1 is F-free.

Proof. Let (T, L1, L2, L3) ∈ TC1. Let H, v1, v2, v3 be as in the definition of T C1 with respect to

T . First observe that if H contains a cycle of length six (not necessarily induced), then, by the

definition of a line trigraph, T contains a weakly induced cycle of length six, and thus the lemma

holds. So we may assume now that H does not contain any cycle of length six.

For i = 1, 2, 3, let Wi be the vertices of V (H) \ {v1, v2, v3} that are complete to {v1, v2, v3} \ {vi}
and nonadjacent to vi, and let Z be the vertices that are complete to {v1, v2, v3}. It follows

from the definition of T C1 that |Wi| ≤ 1 for all i. Also, if |Z| ≥ 3, say z1, z2, z3 ∈ Z, then

H|{z1, z2, z3, v1, v2, v3} contains a cycle of length six, a contradiction. Thus, we may assume that

|Z| ≤ 2.

If W1,W2,W3 are all nonempty, say wi ∈Wi for i = 1, 2, 3, then H|{v1, v2, v3, w1, w2, w3} contains

a cycle of length six, a contradiction. By symmetry, we may assume that W2 = ∅. Now, from

the fact that |W3| ≤ 1, |Z| ≤ 2, and degH(v1) ≥ 3, it follows that |W3| = 1 and |Z| = 2. From

the symmetry, it follows that |W1| = 1. Let Wi = {wi} for i = 1, 3 and Z = {z1, z2}. But now,

H|{v1, v2, v3, w1, w3, z1} contains a cycle of length six, a contradiction. This proves (5.15). �

Next, we deal with three-cliqued claw-free trigraphs where the part that is very basic is a long

circular interval trigraph. We first prove the following lemma.

(5.16) Every (T, L1, L2, L3) ∈ TC2 is either a linear interval trigraph or contains a semihole of

length at least five.

Proof. Suppose that T has no induced semihole of length at least five. It follows from (5.7) and

the definition of T C2 that either T is a linear interval trigraph, or T is of the C̄7 type, or T admits

a C4-structure. If T is a linear interval trigraph, then we are done. If T is of the C̄7 type, then

it follows from (5.6) that T has no triad, a contradiction. So we may assume that T admits a

C4-structure (A1, A2, A3, A4, B1, B2, B3, B4). Recall that every vertex in T is in a triad and that T

contains no four pairwise antiadjacent vertices.

(i) For i ∈ [4], if ai ∈ Ai is strongly complete to Ai+1, then Bi+1 6= ∅.
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Let i ∈ [4], let ai ∈ Ai be strongly complete to Ai+1, and suppose that Bi+1 = ∅. Let

S = {ai, s1, s2} be a triad in T . Since ai is strongly complete to Ai+1 ∪ Bi ∪ Bi+4, and

Bi+1 = ∅, it follows that {s1, s2} ⊆ Ai+2 ∪ Ai+3 ∪ Bi+2. First suppose that s1 ∈ Ai+2.

Because S is a triad and Ai+2 is strongly complete to Bi+2, it follows that s2 ∈ Ai+3. But

now, s2 ∈ Ai+3 has a nonneighbor in both Ai and Ai+2, a contradiction. Thus, we may

assume that S ∩ Ai+2 = ∅. It follows that we may assume that s1 ∈ Ai+3 and s2 ∈ Bi+2.

But this contradicts the fact that Ai+3 is strongly complete to Bi+2. This proves (i). �

First suppose that for all i ∈ [4], Ai is strongly complete to Ai+1. Then, it follows from (i) that

Bi 6= ∅ for all i ∈ [4]. But now, {b1, b2, b3, b4} is a set of four pairwise antiadjacent vertices, a

contradiction. Thus, we may assume that, for some i ∈ [4], there exist antiadjacent ai ∈ Ai and

ai ∈ Ai+1. It follows from the definition of a C4-structure that ai is strongly complete to Ai+3

and ai+1 is strongly complete to Ai+2. Thus, it follows from (i) applied to ai and Ai+3 that there

exists bi+2 ∈ Bi+2. If there exist semiadjacent ai+2 ∈ Ai+2 and ai+3 ∈ Ai+3, then it follows from

the symmetry that there exists bi ∈ Bi, but now ai-bi-ai+1-ai+2-bi+2-ai+3-ai is a weakly induced

cycle of length six, a contradiction. Therefore, Ai+2 is strongly complete to Ai+3. Thus, it follows

from (i) applied to Ai+2 and Ai+3 that there exists bi+3 ∈ Bi+3 and, symmetrically, there exists

bi+1 ∈ Bi+1. Since T has no weakly induced cycle of length six, it follows that at least one of

the pairs (Ai+1, Ai+2) and (Ai, Ai+3) is strongly complete. We may assume that Ai+1 is strongly

complete to Ai+2. Now, it follows from (i) that there exists bi ∈ Bi. But now, {b1, b2, b3, b4} is a

set of four pairwise antiadjacent vertices, a contradiction. This proves (5.16). �

This enables us to deal with three-cliqued claw-free trigraphs where the part that is very basic is

a long circular interval trigraph.

(5.17) Let T be an F-free trigraph that is a hex-join of (T1, L1, L2, L3) ∈ TC2 and (T2, R1, R2, R3),

where R1 ∪R2 ∪R3 is a strong clique. Then T is resolved.

Proof. It follows from (2.9) that we may assume that |Ri| ≤ 1 for i = 1, 2, 3. Next, we note that

if |R1 ∪ R2 ∪ R3| < 3, then T is a long circular interval trigraph, and the lemma holds by (5.13).

So we may assume that |Ri| = 1 for i = 1, 2, 3. Let Ri = {ri}, for i = 1, 2, 3. It follows from

(5.16) that either T1 is a linear interval trigraph or T1 has a semihole of length at least five. To

avoid confusion, recall that L1 is strongly complete to R1 ∪ R3 and strongly anticomplete to R2,

L2 is strongly complete to R1 ∪ R2 and strongly anticomplete to R3, and L3 is strongly complete

to R2 ∪R3 and strongly anticomplete to R1.

Let us treat the case when T1 is a linear interval trigraph first.

(i) If T1 is a linear interval trigraph, then T is resolved.

Since T1 is a linear interval graph, there exists a linear ordering (≤, V (T1)) such that, for all

distinct x, y, z ∈ V (T1), it holds that if x and y are adjacent and x < z < y, then z is strongly

adjacent to x and y. From the symmetry and from the definition of T C2, it follows that we

may assume that l1 < l2 < l3 for all li ∈ Li, i ∈ [3]. Notice that if there exist adjacent l1 ∈ L1
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and l3 ∈ L3, then, by the definition of a linear interval trigraph, L2 is strongly complete to

L1 ∪ L3. However, since T1 contains a triad and this triad hits each of L1, L2, L3, we have

that L2 is not strongly complete to L1∪L3 and, therefore, L1 is strongly anticomplete to L3.

We may assume that, for i ∈ [3], every li ∈ Li has a neighbor in L1 ∪ L2 ∪ L3 \ Li because

otherwise li is a simplicial vertex and we are done by (2.5). If R3 = ∅, then N(L1) ⊆ R1∪L2,

which is a strong clique, and hence T is resolved by (2.4). Thus, we may assume that there

exists r3 ∈ R3.

First suppose that some l1 ∈ L1 and l2 ∈ L2 are semiadjacent. Since every vertex in T1
is in a triad, there exists l3 ∈ L3 that is antiadjacent to l2. Let l′2 ∈ L2 be a neighbor of

l3. Since l′2 is not complete to {l1, l2, l3} (otherwise it forms a claw), it follows that l′2 is

strongly antiadjacent to l1. Now, l1-l2-l
′
2-l3-r3-l1 is a weakly induced cycle of length five with

one semiedge and, hence, T is resolved by (2.8). Thus, we may assume that there are no

semiedges between L1 and L2.

We claim that K = L1 ∪ R1 ∪ R3 is a dominant clique. For suppose not. Then there exists

a stable set S in T that covers K. Since R2 ∪ L3 is strongly anticomplete to L1, it follows

that S contains a vertex l2 ∈ L2 that is strongly complete to L1, contrary to the fact that l2
is in a triad in T1. Thus, K is a dominant clique and T is resolved. This proves (i). �

In view of (i), we may now assume that T1 contains a semihole of length at least five. It follows

from the fact that T1 is a three-cliqued claw-free trigraph that T1 has no semihole of length seven.

Thus, since T1 is F-free, it follows that T1 contains a semihole of length five. Let C1, . . . , C5,

Y1, . . . , Y5, Z1, . . . , Z5 be as in (5.10). If there are semiadjacent ci ∈ Ci and ci+1 ∈ Ci+1, then

it follows from (2.8) that T is resolved. So we may assume that Ci is strongly complete to Ci+1

for all i ∈ [5]. If Yi = ∅ for all i, then it follows from the proof of (5.12) that T has no triad, a

contradiction. So from the symmetry we may assume that Y1 6= ∅. Recall that (T1, L1, L2, L3) is

a three-cliqued claw-free trigraph. The following claim shows how C1, . . . , C5, and Y1 relate to the

three cliques L1, L2, L3.

(ii) Up to symmetry, Y1 ∪ C1 ∪ C2 ⊆ L1, C3 ⊆ L2, C4 ⊆ L2 ∪ L3, and C5 ⊆ L3.

Let y1 ∈ Y1. We may assume that y1 ∈ L1. Since L1, L2 and L3 are strong cliques, it

follows from the symmetry that we may assume that C3 ⊆ L2, C5 ⊆ L3, and C4 ⊆ L2 ∪ L3.

Therefore, it follows that Y1 ⊆ L1. Now, let c4 ∈ C4. From the symmetry, we may assume

that c4 ∈ L2. It follows that C2 ⊆ L1. We claim that C1 ⊆ L1. For suppose not. Then, since

L2 is a strong clique, it follows that there exists c1 ∈ C1 such that c1 ∈ L3. For i = 2, 3, 5, let

ci ∈ Ci. Now, T |{c1, c2, c3, c4, c5, y1, r3} is weakly isomorphic to G1, a contradiction. Thus,

C1 ⊆ L1 and (ii) holds. �

It follows from (ii) that we may assume that Y1 ∪ C1 ∪ C2 ⊆ L1, C3 ⊆ L2, C4 ⊆ L2 ∪ L3, and

C5 ⊆ L3 Let y1 ∈ Y1. We claim that y1 is a simplicial vertex in T . It follows from (5.10) that

N [y1] = Y1 ∪ C1 ∪ C2 ∪ Z3 ∪ Z5 ∪ {r2, r3} and N [Y1] \ {r2, r3} is a strong clique. From this,

and from the symmetry, it suffices to show that Y1 ∪ Z3 is strongly complete to {r2, r3}. Since

C1 ∪ C2 ⊆ L1, it follows immediately from the definition of a hex-join that C1 ∪ C2 is strongly
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complete to {r2, r3}. So let z3 ∈ Z3. Let cj ∈ Cj for j ∈ [5]. If z3 is antiadjacent to r2, then c2 is

complete to the triad {c3, r2, z3}, a contradiction. Thus, z3 is strongly adjacent to r2. Now suppose

that z3 is antiadjacent to r3. If r3 is adjacent to c4, then T |{c1, c2, . . . , c5, z3, r3, y1} contains G3 as a

weakly induced subgraph, a contradiction. If r3 is antiadjacent to c4, then T |{c1, c3, c4, c5, z3, r3, y1}
contains G1 as a weakly induced subgraph, a contradiction. This proves that Z3 is strongly complete

to {r2, r3} and, from the symmetry, that Z5 is strongly complete to {r2, r3} Thus, N [y1] is a strong

clique, hence y1 is a simplicial vertex in T and the lemma holds by (2.5). This proves (5.17). �

The next lemma deals with three-cliqued claw-free trigraphs where the part that is very basic is a

near-antiprismatic trigraph.

(5.18) Let T be an F-free trigraph that is a hex-join of (T1, L1, L2, L3) ∈ TC3 and (T2, R1, R2, R3),

where R1 ∪R2 ∪R3 is strong clique. Then T is resolved.

Proof. Let (T1, L1, L2, L3) ∈ TC3 and let a0, b0, A,B,C,X, n be as in the definition of a near-

antiprismatic trigraph. Notice that L1 = A \ X,L2 = B \ X,L3 = C \ X. If a0 is strongly

antiadjacent to b0, then N(a0) = L1 ∪ (R2 ∪ R3), hence a0 is a simplicial vertex and the lemma

holds by (2.5). So we may assume that a0 is semiadjacent to b0. First suppose that there exist

antiadjacent ai ∈ L1 and bj ∈ L2, for i, j ≤ n and i 6= j. Because |L3| ≥ 2, it follows that both ai
and bj have a neighbor in L3. Therefore, there exists an shortest weakly induced path P from ai
to bj with interior in L3. Now, (2.8) applied to a0-ai-P

∗-bj-b0-a0 implies that T is resolved.

Thus, we may assume that L1 is strongly complete to L2. It follows from the definition of T C3
that L1 = {a1}, L2 = {b1}, and hence that n = 2 and L3 = {c1, c2}. Moreover, c1 is strongly

anticomplete to {a1, b1}. Therefore, N(c1) = {c2} ∪ R1 ∪ R2, which is a strong clique. Thus, c1 is

a simplicial vertex and T is resolved by (2.5). This proves (5.18). �

Finally, we deal with trigraphs where the part that is very basic is a sporadic exception.

(5.19) Let T be an F-free trigraph T that is a hex-join of (T1, L1, L2, L3) ∈ TC5 and (T2, R1, R2, R3),

where R1 ∪R2 ∪R3 is strong clique. Then T is resolved.

Proof. First suppose that T1 is of the first type of sporadic trigraphs. Let v1, . . ., v8, A, B, C, X

be as in the definition of T1. Observe that L1 = A \X,L2 = B \X,L3 = C. It follows from the

definition of T1 and a hex-join that N(v8) = {v7} ∪ R1 ∪ R2 is a strong clique. Therefore, v8 is a

simplicial vertex in T and hence T is resolved by (2.5).

So we may assume that T1 is of the second type of sporadic trigraphs. Let v1, . . . , v9 be as in

the definition of T1. Let j ∈ {3, 4} be largest such that v2 is adjacent to vj and let k ∈ {5, 6}
be smallest such that v7 is adjacent to vk. Such j, k exist by the fact that v2 is not strongly

anticomplete to {v3, v4} \X and v7 is not strongly anticomplete to {v5, v6} \X. But now v1-v2-vj-

vk-v7-v8-v1 is a weakly induced cycle of length six in T , a contradiction. This proves (5.19). �

This allows us to prove that F-free three-cliqued claw-free trigraphs are resolved:
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(5.20) Every F-free three-cliqued claw-free trigraph is resolved.

Proof. Let (T,A,B,C) be a three-cliqued claw-free trigraph. It follows from (5.14) that either

T is resolved and the lemma holds, or (T,A,B,C) is very basic, or (T,A,B,C) is a hex-join of a

very basic trigraph and a strong clique. We may assume that the former outcome does not hold.

If (T,A,B,C) is very basic, we set (T ′, A′, B′, C ′) = (T,A,B,C). Otherwise, let (T ′, A′, B′, C ′)

be such that T is a hex-join of a very basic trigraph (T ′, A′, B′, C ′) and a strong clique. Since

(T ′, A′, B′, C ′) ∈ T1 ∪ T2 ∪ T3 ∪ T5, the lemma follows from (5.15), (5.17), (5.18) and (5.19). This

proves (5.20). �

5.4 Proof of (5.1)

(5.1). Every F-free basic claw-free trigraph is resolved.

Proof. Let T be an F-free basic claw-free trigraph. It follows that T is either a trigraph from

the icosahedron, or an antiprismatic trigraph, or a long circular interval trigraph, or a trigraph

that is the union of three strong cliques. It follows from (5.2) that T is not a trigraph from the

icosahedron. If T is an antiprismatic trigraph, a long circular interval trigraph, or a trigraph that

is the union of three strong cliques, then it follows from (5.3), (5.13), (5.20), respectively, that T is

resolved. This proves (5.1). �
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