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Abstract

Strongly perfect graphs have been studied by several authors (e.g., Berge and Duchet [1],

Ravindra [7], Wang [8]). In a series of two papers, the current paper being the second one,

we investigate a fractional relaxation of strong perfection. Motivated by a wireless networking

problem, we consider claw-free graphs that are fractionally strongly perfect in the complement.

We obtain a forbidden induced subgraph characterization and display graph-theoretic properties

of such graphs. It turns out that the forbidden induced subgraphs that characterize claw-free

that are fractionally strongly perfect in the complement are precisely the cycle of length 6, all

cycles of length at least 8, four particular graphs, and a collection of graphs that are constructed

by taking two graphs, each a copy of one of three particular graphs, and joining them in a certain

way by a path of arbitrary length. Wang [8] gave a characterization of strongly perfect claw-

free graphs. As a corollary of the results in this paper, we obtain a characterization of claw-free

graphs whose complements are strongly perfect.
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1 Introduction

All graphs in this paper are finite and simple. Let G be a graph. We denote by V (G) and E(G)

the set of vertices and edges, respectively, of G. A clique is a set of pairwise adjacent vertices and

a stable set is a set of pairwise nonadjacent vertices. The clique number ω(G) denotes the size of

a maximum cardinality clique in G and the stability number α(G) denotes the size of a maximum

cardinality stable set in G. Let χ(G) denote the chromatic number of G. We denote by Gc the

complement of G. We say that a clique K is a dominant clique in G if every maximal (under

inclusion) stable set S in G satisfies S ∩ K 6= ∅. For another graph H, we say that G contains

H as an induced subgraph if G has an induced subgraph that is isomorphic to H. The claw is a

graph with vertex set {a0, a1, a2, a3} and edge set {a0a1, a0a2, a0a3}. We say that a graph G is

claw-free if G does not contain the claw as an induced subgraph. We say that G is connected if

there exists a path between every two u, v ∈ V (G). A connected component of G is a maximal

connected subgraph of G. For disjoint sets A,B ∈ V (G) we say that A is complete to B if every

vertex in A is adjacent to every vertex in B, and a ∈ V (G) is complete to B if {a} is complete to

B.

A graph G is perfect if every induced subgraph G′ of G satisfies χ(G′) = ω(G′). We are interested

in the following concept:

Definition. A graph G is fractionally co-strongly perfect if and only if, for every induced subgraph

H of G, there exists a function w : V (H)→ [0, 1] such that∑
v∈S

w(v) = 1, for every maximal stable set S of H. (1)

We call a function w that satisfies (1) a saturating vertex weighting for H.

Next, let us define the following three classes of graphs:

• F1 = {Ck | k = 6 or k ≥ 8}, where Ck is a cycle of length k;

• F2 = {G1,G2,G3,G4}, where the Gi’s are the graphs drawn in Figure 1(a);

• Let H = {H1(k),H2(k),H3(k)
∣∣ k ≥ 0}, where Hi(k) is the graph Hi drawn in Figure 1(b) but

whose ‘wiggly’ edge joining z and x is replaced by an induced k-edge-path. For i ∈ {1, 2, 3},
we call Hi(k) a heft of type i with a rope of length k. We call x the end of the heft Hi(k).

Now let i1, i2 ∈ {1, 2, 3} and let k1, k2 ≥ 0 be integers. Let H1 = Hi1
(k1) and H2 = Hi2

(k2),

and let x1, x2 be the end of heft H1, H2, respectively. Construct H from the disjoint union of

H1 and H2 by deleting x1 and x2, and making the neighbors of x1 complete to the neighbors of

x2. Then H is called a skipping rope of type (i1, i2) of length k1 + k2. Let F3 be the collection

of skipping ropes. Figure 2 shows two examples of skipping ropes.

Let F = F1 ∪ F2 ∪ F3. A graph G is F-free if no induced subgraph of G is isomorphic to a graph

in F . We say that a graph G is resolved if at least one of the following is true:

(a) there exists x ∈ V (G) that is complete to V (G) \ {x}; or

(b) G has a dominant clique; or
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Figure 1: Forbidden induced subgraphs for fractionally co-strongly perfect graphs. (a) The

graphs G1, G2, G3, G4. (b) Hefts H that are combined to construct skipping ropes.

Figure 2: Two examples of skipping ropes. Left: the skipping rope of type (1, 3) of length 3.

Right: the skipping rope of type (3, 3) of length 0.

(c) G is not perfect and there exists k ∈ {2, 3} such that every maximal stable set in G has size

k.

We say that a graph G is perfectly resolved if every connected induced subgraph of G is resolved.

In a series of two papers (the current paper and [3]), we will prove the following theorem:

Theorem 1.1. Let G be a claw-free graph. Then the following statements are equivalent:

(i) G is fractionally co-strongly perfect;

(ii) G is F-free;

(iii) G is perfectly resolved.

Chudnovsky and Seymour [5] proved a structure theorem for claw-free graphs. The theorem roughly

states that every claw-free graph is either of a certain ‘basic’ type or admits a so-called ‘strip-

structure’. The current paper deals with the proof of Theorem 1.1 for the case when G admits a

‘strip-structure’. In fact, [5] deals with slightly more general objects called ‘claw-free trigraphs’.

What is actually meant by ‘a trigraph admits a strip-structure’ will be explained in Section 2. The

goal of this paper is to prove the following result.
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Theorem 1.2. Every connected F-free claw-free trigraph that is not basic is resolved.

Theorem 1.2 finishes the proof of the main result of [3] and the current paper.

Informal overview of the paper

The claw-free graphs that we will be dealing with in this paper are graphs that admit so-called

strip-structures. Such claw-free graphs are generalizations of line graphs in the following sense. Let

H be a multigraph. Think of constructing the line graph G of H in the following way. For every

edge e of H, there is a (unique) vertex in G and this vertex is adjacent to all vertices in G that

correspond to edges that share an endpoint with e. We can think of H as the ‘pattern multigraph’

for its line graph. A strip-structure is a generalization of this construction in the following sense.

We again start with a multigraph H which we call the pattern multigraph for the strip-structure.

In this case, however, for every edge e of H there is a corresponding claw-free graph Ge (an induced

subgraph of G) which is either just a vertex (in the same manner as with line graphs), or a so-called

‘strip’. Each such a strip Ge is a claw-free graph that contains two special disjoint cliques that

are called the ‘endcliques’, and each endclique corresponds to one endpoint of e. The union of all

endcliques corresponding to a specific vertex in the strip-structure is a clique. It turns out (see

Section 2.3) that there are fifteen types of strips.

It may happen that there exist multiple strip-structures that describe a fixed claw-free graph. We

will always insist on choosing a strip-structure with a maximum number of edges in the pattern

multigraph. We call such a strip-structure an optimal strip-structure. The fact that our claw-free

graphs are F-free implies that they do not contain long induced cycles (where ‘long’ means of length

six or at least eight). This has particular consequences for the structure of the pattern multigraph

for the strip-structure, to be precise for its block decomposition. This structure is investigated in

Section 3 (see also Figure 3 for a preview). We will also be able to prove some results about the

lengths of induced paths between endcliques inside strips.

In Section 5, we will start with the proof of Theorem 1.2. This section deals with graphs with

stability number at most three and takes a few pages. The bulk of the work is done in Section 6,

in which we prove Theorem 1.2 for graphs with stability number at least four. Let G be such a

claw-free graph and let H be the pattern multigraph for the optimal strip-structure corresponding

to G. We will look at the maximal 2-connected subgraphs of H (i.e., the block-decomposition of

H). An induced subgraph of G that corresponds to a maximal 2-connected subgraph of H is called

a strip-block. It will turn out that excluding skipping ropes buys us a useful property: at most one

‘special’ strip-block of G contains an induced cycle of length at least five (but not six). We will

call all other strip-blocks ‘ordinary’. Thus, unless H is 2-connected (in which case there is only

one strip-block), we can always find an ordinary strip-block. Ordinary strip-blocks are relatively

simple because of the absence of induced cycle of length at least five and it will turn out that we

are always able to find a dominant clique in some ordinary strip-block. Thus, what remains to be

considered is the case when H is 2-connected. For this reason, Section 6 is divided into two parts:

a part for 2-connected strip-structures (Section 6.2) and a part for non-2-connected strip-structures

(Section 6.3).
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So far we stated everything in terms of graphs. However, the structure theorem for claw-free graphs

of Chudnovsky and Seymour (which is presented in Section 2.3) is stated in terms of more general

objects called ‘trigraphs’. Trigraphs are like graphs, except that some adjacencies are ‘undecided’.

Pairs of vertices between which the adjacency is undecided are said to be ‘semiadjacent’ and in the

setting of claw-free graphs the undecided pairs always form a matching. Although all the results in

this paper can be stated in terms of graphs, the analysis is considerably easier when stated in terms

of trigraphs. The reason for this is the fact that every claw-free graph can be constructed from

a trigraph without adjacent clones (see Section 2.1 for a definition) by a ‘thickening’ operation.

This thickening operation blows up each vertex of the trigraph to a clique, replacing edges of the

trigraph by complete bipartite graphs, semiedges by arbitrary bipartite graphs containing at least

one edge and one nonedge, and nonedges by empty bipartite graphs. At almost all times, we can

conclude that this ‘thickened’ graph is resolved by just looking at the (simpler) trigraph, thereby

circumventing an extra layer of complexity. Unfortunately, at a few places in the proof, this is not

the case and we have to investigate the thickened graph. This will happen in particular in Section

6.3, because it may not always be possible to determine just by looking at the trigraph which blocks

of the strip-structure are ordinary.

Organization of the paper

This paper is structured as follows. In Section 2, we introduce tools that we need throughout the

paper. In the same section, we also present the relevant parts of the structure theorem for claw-free

graphs of Chudnovsky and Seymour [5]. This structure theorem is stated in terms of trigraphs, a

generalization of graphs, which are also defined in Section 2. Then, in Section 3, we will present

the proof of Theorem 1.1 assuming the validity of Theorem 1.2. In Section 3, we will start with

a structure theorem for the pattern multigraph for the strip-structure of F-free graphs. Section 5

deals with F-free claw-free graphs that are not basic and that have stability number at most three.

Finally, in Section 6, we prove Theorem 1.2 for the remaining claw-free graphs.

2 Tools

In this section, we introduce definitions, notation and important lemmas that we use throughout

the paper. As in [5], it will be helpful to work with “trigraphs” rather than with graphs. We

would like to point out that the results in [5] can be stated in terms of graphs as well. Although

we originally tried to write this paper using the graph-versions of these results, we quickly realized

that whether a graph is resolved can – up to a few exceptions – easily be determined from the

underlying trigraph. Therefore, working with trigraphs rather than their graphic thickenings (see

Section 2.1) simplifies the analysis considerably. We use the terminology defined in this section for

graphs as well. The definitions should be applied to graphs by regarding graphs as trigraphs. We

next state some results from [3], the proofs of which we omit here. They can be found in [3].
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2.1 Claw-free graphs and trigraphs

For an integer n ≥ 1, we denote by [n] the set {1, 2, . . . , n}. In this section we define terminology

for trigraphs. We use this terminology defined for trigraphs in this section for graphs as well. The

definitions should be applied to graphs by regarding graphs as trigraphs.

A trigraph T consists of a finite set V (T ) of vertices, and a map θT : V (T ) × V (T ) → {1, 0,−1},
satisfying:

• θT (v, v) = 0, for all v ∈ V (T );

• θT (u, v) = θT (v, u), for all distinct u, v ∈ V (T );

• for all distinct u, v, w ∈ V (T ), at most one of θT (u, v), θT (u,w) equals zero.

We call θT the adjacency function of T . For distinct u, v ∈ V (T ), we say that u and v are

strongly adjacent if θT (u, v) = 1, strongly antiadjacent if θT (u, v) = −1, and semiadjacent if

θT (u, v) = 0. We say that u and v are adjacent if they are either strongly adjacent or semiadjacent,

and antiadjacent if they are either strongly antiadjacent or semiadjacent. We denote by F (T ) the

set of all pairs {u, v} such that u, v ∈ V (T ) are distinct and semiadjacent. Thus a trigraph T is a

graph if F (T ) = ∅.
We say that u is a (strong) neighbor of v if u and v are (strongly) adjacent; u is a (strong)

antineighbor of v if u and v are (strongly) antiadjacent. For distinct u, v ∈ V (T ) we say that

uv = {u, v} is an edge, a strong edge, an antiedge, a strong antiedge, or a semiedge if u and v

are adjacent, strongly adjacent, antiadjacent, strongly antiadjacent, or semiadjacent, respectively.

For disjoint sets A,B ⊆ V (T ), we say that A is (strongly) complete to B if every vertex in A is

(strongly) adjacent to every vertex in B, and that A is (strongly) anticomplete to B if every vertex

in A is (strongly) antiadjacent to every vertex in B. We say that A and B are linked if every

vertex in A has a neighbor in B and every vertex in B has a neighbor in A. For v ∈ V (T ), let

NT (v) denote the set of vertices adjacent to v, and let NT [v] = NT (v) ∪ {v}. Whenever it is clear

from the context what T is, we drop the subscript and write N(v) = NT (v) and N [v] = NT [v].

For X ⊆ V (T ), we write N(X) = (∪x∈XN(x)) \ X and N [X] = N(X) ∪ X. We say that a set

K ⊆ V (T ) is a (strong) clique if the vertices in K are pairwise (strongly) adjacent. We say that a

set S ⊆ V (T ) is a (strong) stable set if the vertices in S are pairwise (strongly) antiadjacent. The

stability number α(T ) of a trigraph T is the size of a largest stable set in T .

We say that a trigraph T ′ is a thickening of T if for every v ∈ V (T ) there is a nonempty subset

Xv ⊆ V (T ′), all pairwise disjoint and with union V (T ′), satisfying the following:

(i) for each v ∈ V (T ), Xv is a strong clique of T ′;

(ii) if u, v ∈ V (T ) are strongly adjacent in T , then Xu is strongly complete to Xv in T ′;

(iii) if u, v ∈ V (T ) are strongly antiadjacent in T , then Xu is strongly anticomplete to Xv in T ′;

(iv) if u, v ∈ V (T ) are semiadjacent in T , then Xu is neither strongly complete nor strongly

anticomplete to Xv in T ′.

When F (T ′) = ∅ then we call T ′ regarded as a graph a graphic thickening of T . Observe that if

T is a trigraph and G is a graphic thickening of T , then α(G) = α(T ).
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For X ⊆ V (T ), we define the trigraph T |X induced on X as follows. The vertex set of T |X is

X, and the adjacency function of T |X is the restriction of θT to X2. We call T |X an induced

subtrigraph of T . We define T \X = T |(V (T ) \X). We say that a graph G is a realization of T

if V (G) = V (T ) and for distinct u, v ∈ V (T ), u and v are adjacent in G if u and v are strongly

adjacent in T , u and v are nonadjacent in G if u and v are strongly antiadjacent in T , and u and v

are either adjacent or nonadjacent in G if u and v are semiadjacent in T . We say that T contains

a graph H as a weakly induced subgraph if there exists a realization of T that contains H as an

induced subgraph. We mention the following easy lemma:

(2.1) ((2.1) in [3]) Let T be a trigraph and let H be a graph. If T contains H as a weakly induced

subgraph, then every graphic thickening of T contains H as an induced subgraph.

A stable set S is called a triad if |S| = 3. T is said to be claw-free if T does not contain the claw

as a weakly induced subgraph. A trigraph T is said to be F-free if it does not contain any graph

in F as a weakly induced subgraph. We state the following trivial result without proof:

(2.2) Let T be a claw-free trigraph. Then no v ∈ V (T ) is complete to a triad in T .

Let p1, p2, . . . , pk ∈ V (T ) be distinct vertices. We say that T |{p1, p2, . . . , pk} of T is a weakly induced

path (from p1 to pk) in T if, for i, j ∈ [k], i < j, pi and pj are adjacent if j = i+ 1 and antiadjacent

otherwise. Let {c1, c2, . . . , ck} ⊆ V (T ). We say that T |{c1, c2, . . . , ck} is a weakly induced cycle (of

length k) in T if for all distinct i, j ∈ [k], ci is adjacent to cj if |i− j| = 1 (mod k), and antiadjacent

otherwise. We say that T |{c1, c2, . . . , ck} is a semihole (of length k) in T if for all distinct i, j ∈ [k],

ci is adjacent to cj if |i − j| = 1 (mod k), and strongly antiadjacent otherwise. A vertex v in a

trigraph T is simplicial if N(v) is a strong clique. Notice that our definition of a simplicial vertex

differs slightly from the definition used in [5], because we allow v to be incident with a semiedge.

Finally, we say that a set X ⊆ V (T ) is a homogeneous set in T if |X| ≥ 2 and θT (x, v) = θT (x′, v)

for all x, x′ ∈ X and all v ∈ V (T ) \X. For two vertices x, y ∈ V (T ), we say that x is a clone of y

if {x, y} is a homogeneous set in T . In that case we say that x and y are clones.

2.2 Classes of trigraphs

Let us define some classes of trigraphs:

• Line trigraphs. Let H be a graph, and let T be a trigraph with V (T ) = E(H). We say that

T is a line trigraph of H if for all distinct e, f ∈ E(H):

– if e, f have a common end in H then they are adjacent in T , and if they have a common

end of degree at least three in H, then they are strongly adjacent in T ;

– if e, f have no common end in H then they are strongly antiadjacent in T .

• Long circular interval trigraphs. Let Σ be a circle, and let F1, . . . , Fk ⊆ Σ be homeomor-

phic to the interval [0, 1], such that no two of F1, . . . , Fk share an end-point, and no three of

them have union Σ. Now let V ⊆ Σ be finite, and let T be a trigraph with vertex set V in

which, for distinct u, v ∈ V ,
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– if u, v ∈ Fi for some i then u, v are adjacent, and if also at least one of u, v belongs to the

interior of Fi then u, v are strongly adjacent

– if there is no i such that u, v ∈ Fi then u, v are strongly antiadjacent.

Such a trigraph T is called a long circular interval trigraph.

2.3 A structure theorem for claw-free trigraphs

Let T be a trigraph such that V (T ) = A∪B ∪C and A,B,C are strong cliques. Then (T,A,B,C)

is called a three-cliqued trigraph. Let (T,A,B,C) be a three-cliqued claw-free trigraph, and let

z ∈ A be such that z is strongly anticomplete to B ∪ C. Let V1, V2, V3 be three disjoint sets of

new vertices, and let T ′ be the trigraph obtained by adding V1, V2, V3 to T with the following

adjacencies:

(i) V1 and V2 ∪ V3 are strong cliques;

(ii) V1 is strongly complete to B ∪ C and strongly anticomplete to A;

(iii) V2 is strongly complete to A ∪ C and strongly anticomplete to B;

(iv) V3 is strongly complete to A ∪B and strongly anticomplete to C.

The adjacency between V1 and V2 ∪ V3 is arbitrary. It follows that T ′ is claw-free, and z is a

simplicial vertex of it. In this case we say that (T ′, {z}) is a hex-expansion of (T,A,B,C). (See

Figure 6 for an illustration)

A multigraph H consists of a finite set V (H), a finite set E(H), and an incidence relation between

V (H) and E(H) (i.e., a subset of V (H) × E(H)) such that every F ∈ E(H) is incident with two

members of V (H) which are called the endpoints of F . For F ∈ E(H), F̄ = {u, v} where u, v are

the two endpoints of F .

Let T be a trigraph. A strip-structure (H, η) of T consists of a multigraph H with E(H) 6= ∅ (which

we call the pattern multigraph for the strip-structure), and a function η mapping each F ∈ E(H)

to a subset η(F ) of V (T ), and mapping each pair (F, h) with F ∈ E(H) and h ∈ F̄ to a subset

η(F, h) of η(F ), satisfying the following conditions.

(a) The sets η(F ) (F ∈ E(H)) are nonempty and pairwise disjoint and have union V (T ).

(b) For each h ∈ V (H), the union of the sets η(F, h) for all F ∈ E(H) with h ∈ F̄ is a strong

clique of T .

(c) For all distinct F1, F2 ∈ E(H), if v1 ∈ η(F1) and v2 ∈ η(F2) are adjacent in T , then there

exists h ∈ F̄1 ∩ F̄2 such that v1 ∈ η(F1, h) and v2 ∈ η(F2, h).

(There is a fourth condition, but we do not need it here.) Let (H, η) be a strip-structure of a trigraph

T , and let F ∈ E(H), where F̄ = {h1, h2}. Let v1, v2 be two new vertices. Let Z = {vi
∣∣ i ∈ [2],

η(F, hi) 6= ∅} and let J be the trigraph obtained from T |η(F ) by adding the vertices in Z, where

vi ∈ Z is strongly complete to η(F, hi) and strongly anticomplete to all other vertices of J . Then

(J, Z) is called the strip of (H, η) at F . (In the strip-structures that we are interested in, for every
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F ∈ E(H) with F̄ = {h1, h2}, at least one of η(F, h1), η(F, h2) will be nonempty and therefore

1 ≤ |Z| ≤ 2.)

Next, we list the classes of strips (J, Z) that we need for the structure theorem. We call the

corresponding sets of pairs (J, Z) Z1–Z15. (The unnatural ordering of the types of strips is due to

the fact that we keep the same ordering as in [5].) The strips marked with a star will turn out (see

(4.4)) to contain a weakly induced cycle of length six, and hence are not F-free. See Figures 7–21

for illustrations of these strips.

Z1: (Linear interval strips) Let J be a trigraph with vertex set {v1, . . . , vn}, such that for

1 ≤ i < j < k ≤ n, if vi, vk are adjacent then vj is strongly adjacent to both vi, vk. We call

J a linear interval trigraph. (Every linear interval trigraph is also a long circular interval

trigraph.) Also, let n ≥ 2 and let v1, vn be strongly antiadjacent, and let there be no vertex

adjacent to both v1, vn, and no vertex semiadjacent to either v1 or vn. Let Z = {v1, vn}.
Z2: (Near antiprismatic strips) Let n ≥ 2. Construct a trigraph J ′ as follows. Its vertex

set is the disjoint union of three sets A,B,C, where |A| = |B| = n + 1 and |C| = n, say

A = {a0, a1, . . . , an}, B = {b0, b1, . . . , bn} and C = {c1, . . . , cn}. Adjacency is as follows. A,

B, C are strong cliques. For 0 ≤ i, j ≤ n with (i, j) 6= (0, 0), let ai, bj be adjacent if and only

if i = j, and for 1 ≤ i ≤ n and 0 ≤ j ≤ n let ci be adjacent to aj , bj if and only if i 6= j 6= 0.

a0, b0 may be semiadjacent or strongly antiadjacent. All other pairs not specified so far are

strongly antiadjacent. Now let X ⊆ A ∪B ∪ C \ {a0, b0} with |C \X| ≥ 2. Let all adjacent

pairs be strongly adjacent except:

• ai is semiadjacent to ci for at most one value of i ∈ [n], and if so then bi ∈ X
• bi is semiadjacent to ci for at most one value of i ∈ [n], and if so then ai ∈ X
• ai is semiadjacent to bi for at most one value of i ∈ [n], and if so then ci ∈ X

Let the trigraph just constructed be J ′ and let J = J ′ \X. Let a0 be strongly antiadjacent

to b0, and let Z = {a0, b0}.
Z3: (Line-trigraph strips) Let H be a graph, and let h1-h2-h3-h4-h5 be the vertices of a path

of H in order, such that h1, h5 both have degree one in H, and every edge of H is incident

with one of h2, h3, h4. Let J be obtained from a line trigraph of H by making the edges h2h3
and h3h4 of H (vertices of J) either semiadjacent or strongly antiadjacent to each other in

J . Let Z = {h1h2, h4h5}.
Z4: (Sporadic family of trigraphs of bounded size #1) Let J be the trigraph with ver-

tex set {a0, a1, a2, b0, b1, b2, b3, c1, c2} and adjacency as follows: {a0, a1, a2}, {b0, b1, b2, b3},
{a2, c1, c2} and {a1, b1, c2} are strong cliques; b2, c1 are strongly adjacent; b2, c2 are semiad-

jacent; b3, c1 are semiadjacent; and all other pairs are strongly antiadjacent. Let Z = {a0, b0}.
Z5: (Sporadic family of trigraphs of bounded size #2 ∗) Let J ′ be the trigraph with vertex

set {v1, . . . , v13}, with adjacency as follows. v1- . . . -v6-v1 is a hole in J ′ of length 6. Next, v7
is adjacent to v1, v2; v8 is adjacent to v4, v5; v9 is adjacent to v6, v1, v2, v3; v10 is adjacent to

v3, v4, v5, v6, v9; v11 is adjacent to v3, v4, v6, v1, v9, v10; v12 is adjacent to v2, v3, v5, v6, v9, v10;

and v13 is adjacent to v1, v2, v4, v5, v7, v8. No other pairs are adjacent, and all adjacent pairs
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are strongly adjacent except possibly v9, v10. (Thus the pair v9v10 is either strongly adjacent

or semiadjacent.) Let J = J ′ \X, where X ⊆ {v7, v11, v12, v13}, and let Z = {v7, v8} \X.

Z6: (Long circular interval strips) Let J be a long circular interval trigraph, and let Σ, F1, . . . , Fk

be as in the corresponding definition. Let z ∈ V (J) belong to at most one of F1, . . . , Fk, and

not be an endpoint of any of F1, . . . , Fk. Then z is a simplicial vertex of J ; let Z = {z}.
Z7: (Modifications of L(K6)) Let H be a graph with seven vertices h1, . . . , h7, in which h7 is

adjacent to h6 and to no other vertex, h6 is adjacent to at least three of h1, . . . , h5, and there

is a cycle with vertices h1-h2- . . . -h5-h1 in order. Let J ′ be the graph obtained from the line

graph of H by adding one new vertex, adjacent precisely to those members of E(H) that

are not incident with h6 in H. Then J ′ is a claw-free graph. Let J be either J ′ (regarded as

a trigraph), or (in the case when h4, h5 both have degree two in H), the trigraph obtained

from J ′ by making the vertices h3h4, h1h5 ∈ V (J ′) semiadjacent. Let e be the edge h6h7 of

H, and let Z = {e}.
Z8: (Augmented near antiprismatic strips) Let n ≥ 2. Construct a trigraph J as follows.

Its vertex set is the disjoint union of four sets A, B, C and {d1, . . . , d5}, where |A| = |B| =
|C| = n, say A = {a1, . . . , an}, B = {b1, . . . , bn}, and C = {c1, . . . , cn}. Let X ⊆ A ∪B ∪ C
with |X ∩A|, |X ∩B|, |X ∩C| ≤ 1. Adjacency is as follows: A, B, C are strong cliques; for

1 ≤ i, j ≤ n, ai, bj are adjacent if and only if i = j, and ci is strongly adjacent to aj if and

only if i 6= j, and ci is strongly adjacent to bj if and only if i 6= j. Moreover,

• ai is semiadjacent to ci for at most one value of i ∈ [n], and if so then bi ∈ X;

• bi is semiadjacent to ci for at most one value of i ∈ [n], and if so then ai ∈ X;

• ai is semiadjacent to bi for at most one value of i ∈ [n], and if so then ci ∈ X;

• no two of A \X, B \X, C \X are strongly complete to each other.

Also, d1 is strongly complete to A ∪ B ∪ C; d2 is strongly complete to A ∪ B, and either

semiadjacent or strongly adjacent to d1; d3 is strongly complete to A ∪ {d2}; d4 is strongly

complete to B ∪ {d2, d3}; d5 is strongly adjacent to d3, d4; and all other pairs are strongly

antiadjacent. Let the trigraph just constructed be J ′. Let J = J ′ \X and Z = {d5}.
Z9: (Special type of antiprismatic strips) Let J have a vertex set partitioned into five sets

{z}, A,B,C,D, with |A| = |B| = n ≥ 1, say A = {a1, . . . , an} and B = {b1, . . . , bn}, such

that

• {z} ∪D is a strong clique and z is strongly antiadjacent to A ∪B ∪ C,

• A ∪ C and B ∪ C are strong cliques,

• for 1 ≤ i ≤ n, ai, bi are antiadjacent, and every vertex in D is strongly adjacent to

exactly one of ai, bi and strongly antiadjacent to the other, and

• for 1 ≤ i < j ≤ n, {ai, bi} is strongly complete to {aj , bj}.
(The adjacency between C and D is arbitrary.) Let Z = {z}.

Z10: (Sporadic family of trigraphs of bounded size #3) Let J ′ be the trigraph with

vertex set {a0, a1, a2, b0, b1, b2, b3, c1, c2, d} and adjacency as follows: A = {a0, a1, a2, d},
B = {b0, b1, b2, b3}, C = {c1, c2} and {a1, b1, c2} are strong cliques; a2 is strongly adja-

cent to b0 and semiadjacent to b1; b2, c2 are semiadjacent; b2, c1 are strongly adjacent; b3, c1

9



are either semiadjacent or strongly adjacent; b0, d are either semiadjacent or strongly ad-

jacent; and all other pairs are strongly antiadjacent. Then (J ′, A,B,C) is a three-cliqued

trigraph (not claw-free) and a0 is a simplicial vertex of J ′. Let X ⊆ {a2, b2, b3, d} such

that either a2 ∈ X or {b2, b3} ⊆ X, let Z = {a0}, and let (J, Z) be a hex-expansion of

(J ′ \X,A \X,B \X,C).

Z11: (Hex-expansions of near-antiprismatic trigraphs) Let n ≥ 2. Construct a trigraph J ′

as follows. Its vertex set is the disjoint union of four sets {z}, A,B,C, where |A| = |B| =

n + 1 and |C| = n, say A = {a0, a1, . . . , an}, B = {b0, b1, . . . , bn} and C = {c1, . . . , cn}.
Adjacency is as follows. A, B, C are strong cliques. z is strongly complete to A and strongly

anticomplete to B ∪C. For 0 ≤ i, j ≤ n with (i, j) 6= (0, 0), let ai, bj be adjacent if and only

if i = j, and for 1 ≤ i ≤ n and 0 ≤ j ≤ n let ci be adjacent to aj , bj if and only if i 6= j 6= 0.

a0, b0 may be semiadjacent or strongly antiadjacent. All other pairs not specified so far are

strongly antiadjacent. Now let X ⊆ A∪B∪C \{b0} with |C \X| ≥ 2. Let all adjacent pairs

be strongly adjacent except:

• ai is semiadjacent to ci for at most one value of i ∈ [n], and if so then bi ∈ X
• bi is semiadjacent to ci for at most one value of i ∈ [n], and if so then ai ∈ X
• ai is semiadjacent to bi for at most one value of i ∈ [n], and if so then ci ∈ X

Let the trigraph just constructed be J ′. Let Z = {z} and let (J, Z) be a hex-expansion of

(J ′ \X, (A \X) ∪ Z,B \X,C \X).

Z12: (Hex-expansions of sporadic exception #2 ∗) Let J ′ be the trigraph with vertex set

{v1, . . . , v9}, and adjacency as follows: the sets A = {v3, v4, v5, v6, v9}, B = {v1, v2} and

C = {v7, v8}, are strong cliques; v9 is strongly adjacent to v1, v8 and strongly antiadjacent to

v2, v7; v1 is strongly antiadjacent to v4, v5, v6, v7, semiadjacent to v3 and strongly adjacent

to v8; v2 is strongly antiadjacent to v5, v6, v7, v8 and strongly adjacent to v3; v3, v4 are

strongly antiadjacent to v7, v8; v5 is strongly antiadjacent to v8; v6 is semiadjacent to v8 and

strongly adjacent to v7; and the adjacency between the pairs v2v4 and v5v7 is arbitrary. Let

X ⊆ {v3, v4, v5, v6}, such that

• v2 is not strongly anticomplete to {v3, v4} \X;

• v7 is not strongly anticomplete to {v5, v6} \X;

• if v4, v5 ∈ X then v2 is adjacent to v4 and v5 is adjacent to v7.

Let J ′′ be the trigraph obtained from J ′ be adding a new vertex z that is strongly complete

to A. Let Z = {z}. Then (J ′′ \X, (A ∪ Z) \X,B,C) is a three-cliqued trigraph. Let (J, Z)

be a hex-expansion of (J ′′ \X, (A ∪ Z) \X,B,C).

Z13: (Hex-expansions of long circular interval trigraphs) Let J ′ be a long circular interval

trigraph such that every vertex of J ′ is in a triad, and let Σ be a circle with V (J ′) ⊆ Σ,

and F1, . . . , Fk ⊆ Σ, as in the definition of long circular interval trigraph. By a line we

mean either a subset X ⊆ V (J) with |X| ≤ 1, or a subset of some Fi homeomorphic to the

closed unit interval, with both end-points in V (J). Let L1, L2, L3 be pairwise disjoint lines

with V (J ′) ⊆ L1 ∪ L2 ∪ L3. Then (J ′, V (J ′) ∩ L1, V (J ′) ∩ L2, V (J ′) ∩ L3) is a three-cliqued

claw-free trigraph. Let z ∈ L1 belong to the interior of F1. Thus, z is a simplicial vertex of

J ′. Let Z = {z} and let (J, Z) be a hex-expansion of (J ′, V (J ′)∩L1, V (J ′)∩L2, V (J ′)∩L3).
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Z14: (Hex-expansions of line trigraphs ∗) Let v0, v1, v2, v3 be distinct vertices of a graph H,

such that: v1 is the only neighbor of v0 in H; every vertex of H different from v0, v1, v2, v3 is

adjacent to both v2, v3, and at most one of them is nonadjacent to v1; v1, v2, v3 are pairwise

nonadjacent, and each has degree at least three. For i = 1, 2, 3, let Ai be the set of edges

of H incident with vi, and let z be the edge v0v1. Let J ′ be a line trigraph of H; thus

(J ′, A1, A2, A3) is a three-cliqued claw-free trigraph, and z is a simplicial vertex of J ′ . Let

Z = {z}, and let (J, Z) be a hex-expansion of (J ′, A1, A2, A3).

Z15: (Hex-expansions of sporadic exception #1) Let J ′ be the trigraph with vertex set

{v1, . . . , v8} and adjacency as follows: vi, vj are strongly adjacent for 1 ≤ i < j ≤ 6 with

j − i ≤ 2; the pairs v1v5 and v2v6 are strongly antiadjacent; {v1, v6, v7} is a strong clique,

and v7 is strongly antiadjacent to v2, v3, v4, v5; v7, v8 are strongly adjacent, and v8 is strongly

antiadjacent to v1, . . . , v6; the pairs v1v4 and v3v6 are semiadjacent, and v2 is antiadjacent

to v5. Let A = {v1, v2, v3}, B = {v4, v5, v6} and C = {v7, v8}. Let X ⊆ {v3, v4}; then

(J ′ \ X,A \ X,B \ X,C) is a three-cliqued trigraph and all its vertices are in triads. Let

Z = {v8} and let (J, Z) be a hex-expansion of (J ′ \X,A \X,B \X,C).

Notice that only the elements of Z1, . . . ,Z5 have |Z| = 2. Informally speaking, this means that

such strips are the only strips that can (but not necessarily do) attach to the rest of the trigraph

on two sides (through a so-called ‘2-join’, see Section 5). The other types of strips, Z6, . . . ,Z15,

have |Z| = 1 and attach to the rest of the trigraph on one side (through a so-called ‘1-join’). Also

notice that the strips in Z2, . . . ,Z5 are three-cliqued.

Let Z0 = Z1 ∪ . . . ∪ Z15. We say that a claw-free trigraph T is basic if T is a trigraph from the

icosahedron, an antiprismatic trigraph, a long circular interval trigraph, or a trigraph that is a

union of three strong cliques (since their definitions are long and irrelevant for the current paper,

we refer to [3] for the definitions), and T is nonbasic otherwise (we will describe the structure of

such nonbasic trigraph completely). Analogously, a claw-free graph G is basic if G is a graphic

thickening of a basic claw-free trigraph T and G is nonbasic otherwise.

Let F ∈ E(H) and let (J, Z) be the strip of (H, η) at F . We say that (J, Z) is a spot if η(F ) =

η(F, u) = η(F, v) and |η(F )| = 1. Let J ′ be a thickening of J and, for v ∈ V (J), let Xv be the

strong clique in J ′ that corresponds to v. Let Z ′ =
⋃

z∈Z Xz. If |Xz| = 1 for each z ∈ Z, then we

say that (J ′, Z ′) is a thickening of (J, Z).

We say that a strip-structure (H, η) is proper if all of the following hold:

(1) |E(H)| ≥ 2; (a strip-structure that satisfies only this condition is called nontrivial in [5])

(2) for each strip (J, Z), either

(a) (J, Z) is a spot, or

(b) (J, Z) is a thickening of a member of Z0;

(3) for every F ∈ E(H), if the strip of (H, η) at F is a thickening of a member of Z6∪Z7∪. . .∪Z15,

then, at least one of the vertices in F̄ has degree 1.

We note that in the definition of a strip-structure (H, η) given in [5], the multigraph H is actually

a hypergraph. In this hypergraph, however, every hyperedge has cardinality either one or two.
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We may replace every hyperedge F of cardinality one by a new vertex, z say, and a new edge F ′

with {u, z}, where u is the unique vertex in F̄ , and setting η(F ′) = η(F ), η(F ′, u) = η(F, u), and

η(F, z) = ∅. Thus, we may regard this hypergraph as a multigraph. With this observation in mind,

the following theorem is an easy corollary of the main result of [5].

(2.3) ([5]) Every connected nonbasic claw-free graph is a graphic thickening of a claw-free trigraph

that admits a proper strip-structure.

2.4 Resolved graphs and trigraphs; finding dominant cliques

We say that an F-free claw-free trigraph T is resolved if every F-free thickening of T is resolved.

We state a number of useful lemmas for concluding that a trigraph is resolved. Let T be a trigraph.

For a vertex x ∈ V (T ), we say that a stable set S ⊆ V (T ) covers x if x has a neighbor in S. For

a strong clique K ⊆ V (T ), we say that a stable set S ⊆ V (T ) covers K if S covers every vertex

in K. We say that a strong clique K ⊆ V (T ) is a dominant clique if T contains no stable set

S ⊆ V (T ) \ K such that S covers K. It is easy to see that this definition of a dominant clique,

when applied to a graph, coincides with our earlier definition of a dominant clique for a graph.

(2.6) ((2.3) in [3]) Let T be a trigraph and suppose that K is a dominant clique in T . Then, T is

resolved.

(2.7) ((2.4) in [3]) Let T be a trigraph, let A and B be nonempty disjoint strong cliques in T and

suppose that B is strongly anticomplete to V (T ) \ (A ∪B). Then, T is resolved.

(2.8) ((2.5) in [3]) Let T be a trigraph and let v ∈ V (T ) be a simplicial vertex in T . Then, T is

resolved.

(2.9) ((2.6) in [3]) Let T be a trigraph with no triad. Then, T is resolved.

Let T be a trigraph, and suppose that X1 and X2 are disjoint nonempty strong cliques. We say

that (X1, X2) is a homogeneous pair of cliques in T if, for i = 1, 2, every vertex in V (T )\ (X1∪X2)

is either strongly complete or strongly anticomplete to Xi. For notational convenience, for a

weakly induced path P = p1-p2- . . . -pk−1-pk, define the interior P ∗ of P by P ∗ = p2-p3- · · · -pk−2-
pk−1.

(2.10) ((2.7) in [3]) Let T be an F-free claw-free trigraph. Let (K1,K2) be a homogeneous pair

of cliques in T such that K1 is not strongly complete and not strongly anticomplete to K2. For

{i, j} = {1, 2}, let Ni = N(Ki) \N [Kj ] and M = V (T ) \ (N [K1]∪N [K2]). If there exists a weakly

induced path P between antiadjacent v1 ∈ N1 and v2 ∈ N2 such that V (P ∗) ⊆ M and |V (P )| ≥ 3,

then T is resolved.

(2.11) ((2.8) in [3]) Let T be an F-free claw-free trigraph and suppose that T contains a weakly

induced cycle c1-c2- . . . -ck-c1 with k ≥ 5 and such that c1c2 ∈ F (T ). Then, T is resolved.
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(2.12) ((2.9) in [3]) Let T be a trigraph and suppose that v, w ∈ V (T ) are strongly adjacent clones.

If T \ v is resolved, then T is resolved.

3 The proof of Theorem 1.1 assuming Theorem 1.2

The remainder of this paper is devoted to proving Theorem 1.2. This suffices because Theorem 1.2

implies our main theorem, Theorem 1.1:

Proof of Theorem 1.1. (Assuming Theorem 1.2) Theorem 1.3 in [3] proves that (i) implies

(ii). Theorem 1.4 in [3] proves that (iii) implies (i). Thus, it suffices to prove that (ii) implies

(iii). So let G be an F-free claw-free graph and let G′ be any connected induced subgraph of G. It

follows from (2.1) and (2.3) that G′ is a graphic thickening of an F-free claw-free trigraph T . G′

is resolved by Theorem 1.4 in [3] if T is basic, and by Theorem 1.2 if T is nonbasic. This proves

that every connected induced subgraph of G is resolved, and therefore that G is perfectly resolved.

This proves that (ii) implies (iii), thereby completing the proof of Theorem 1.1. �

4 A structure theorem for the pattern multigraph for the strip-structure

of F-free claw-free trigraphs

Let G be a nonbasic claw-free graph. We say that (T,H, η) is a representation of G if G is a

graphic thickening of T , and (H, η) is a proper strip-structure for T . We say that a representation

is optimal for G if T is not a thickening of any other claw-free trigraph and, subject to that, H has

a maximum number of edges.

Observation 4.1. Let (T,H, η) be an optimal representation of some claw-free graph G. Then, by

the fact that T is not the thickening of some other trigraph, T has no strongly adjacent clones. In

particular, (H, η) has no parallel spots. Moreover, every strip (J, Z) is connected (this follows from

the definition of Z0 and the maximality of the number of edges).

Let H be a multigraph. We say that a vertex x ∈ V (H) is a cut-vertex of H if H \ {x} is

disconnected. A multigraph H is 2-connected if H has no cut-vertex. A maximal submultigraph

of H that has no cut-vertex is called a block of H, and the collection (B1, . . . , Bq) of blocks of H is

called the block-decomposition of H. It is well-known that the block-decomposition of a multigraph

exists and is unique (see e.g., [9]). Observe that a multigraph H is 2-connected if and only if H

has at most one block. For a cycle C in H and F ∈ E(C), let C \ F denote the graph obtained

from C by deleting F .

Let G be a graph and let x ∈ V (G). Construct G′ by adding a vertex x′ such that N(x) = N(x′).

Then, we say x and x′ are nonadjacent clones in G′ and we say that G′ is constructed from G by

nonadjacent cloning of x. Let t ≥ 1. Let Kt be a complete graph on t vertices. Let K2,t denote a

complete bipartite graph whose vertex set is the union of disjoint stable sets X, Y with |X| = 2

and |Y | = t. Let K+
2,t denote the graph constructed from K2,t by adding an edge between the two

13



Figure 3: An example of the pattern multigraph H of an optimal representation (T,H, η) of an F-free claw-free

trigraph. The ellipses show the blocks of the multigraph. The pendant edges represent strips (J, Z) that

satisfy 1 ≤ |Z| ≤ 2. All other edges represent strips (J, Z) with |Z| = 2.

vertices in X, where X is as in the definition of K2,t.

We define the following two classes of graphs:

B1: Let us first define the class B∗1. Let k ∈ {5, 7} and let G be a graph with vertex set

{c1, c2, . . . , ck} such that c1-c2- . . . ck-c1 is a cycle. If k = 5, then each other pair not specified

so far is either adjacent or nonadjacent. If k = 7, then all pairs that are not in the cycle are

nonadjacent except possibly a subset of the pairs {c1, c4}, {c1, c5}, {c4, c7}. Then, G ∈ B∗1.

Now let every graph in B∗1 be in B1. For every G′ ∈ B1, let the graph G′′ constructed from G′

by nonadjacent cloning of a vertex of degree 2 be in B1.
B2: Let B2 = {K2,K3,K4,K2,t,K

+
2,t

∣∣ t ≥ 2}.

For a multigraph H, let U(H) be the graph constructed from H by removing all but one in each

class of parallel edges and regarding the resulting multigraph as a graph. For i ∈ [2], we say that

a multigraph H is of the Bi type if U(H) is isomorphic to a graph in Bi. It turns out that if

(T,H, η) is an optimal representation of an F-free nonbasic claw-free graph, then the structure of

H is relatively simple. In particular, the goal of this section is to prove the following:

(4.2) Let G be an F-free nonbasic claw-free graph. Then, G has an optimal representation and,

for every optimal representation (T,H, η), all of the following hold:

(i) every block of H is either of the B1 type or of the B2 type;

(ii) at most one block of H is of the B1 type;

(iii) for every cycle C in H with |E(C)| ≥ 4, all strips of (H, η) at F ∈ E(C) are spots.

Figure 3 illustrates the structure of H. The block decomposition of the multigraph H shown in the

figure has one block of the B1 type. The other blocks are of the B2 type.
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4.1 Properties of optimal representations of F-free nonbasic claw-free graphs

Before we can prove (4.1), we need to prove some lemmas. We use the results in this subsection

later on as well.

(4.3) Let G be an F-free claw-free graph and let (T,H, η) be an optimal representation of G. Then,

for each strip (J, Z), either

(a) (J, Z) is a spot, or

(b) (J, Z) is isomorphic to a member of Z0.

Proof. Suppose that, for some F ∈ E(H), (J, Z) is not a spot and (J, Z) is not isomorphic to

a member of Z0. Then, (J, Z) is a thickening of some member (J ′, Z ′) of Z0. Now, construct

(T ′, H, η′) by replacing (J, Z) by (J ′, Z ′), and updating the corresponding sets for η. Then, G is

a graphic thickening of T ′ and T is a thickening of T ′, contrary to the fact that (T,H, η) is an

optimal representation for G. This proves (4.2). �

The following lemma states that T and every strip of the strip-structure is F-free (recall that a

trigraph T is F-free if it does not contain any graph in F as a weakly induced subgraph).

(4.4) Let (T,H, η) be a representation of some F-free claw-free graph G. Then T is F-free and,

for all F ∈ E(H), the strip of (H, η) at F is F-free.

Proof. It follows from (2.1) that if T contains a graph H ∈ F as a weakly induced subgraph, then

G contains H as an induced subgraph, a contradiction. Therefore, T is F-free. Next, let F ∈ E(H)

and consider the strip (J, Z) of (H, η) at F and suppose that for some X ⊆ V (J), J |X contains

a graph H ∈ F as a weakly induced subgraph. We may choose X minimal with this property.

Because none of the graphs in F has a simplicial vertex, it follows that X ∩Z = ∅. Therefore, J |X
is an induced subtrigraph of T that contains H as a weakly induced subgraph, contrary to the fact

that T is F-free. This proves (4.3). �

(4.3) implies that three classes of strips do not occur in the strip-structure of F-free claw-free

trigraphs, more precisely:

(4.5) Let (T,H, η) be a representation of some F-free claw-free graph. Let F ∈ E(H). Then, the

strip of (H, η) at F is not isomorphic to a member of Z5 ∪ Z12 ∪ Z14.

Proof. Suppose that the strip of (H, η) at F is isomorphic to a member (J, Z) ∈ Z5. For i ∈ [6],

let vi be as in the definition of Z5. Then, v1-v2- · · · -v6-v1 is a weakly induced cycle of length six in

J , contrary to (4.3). Next, suppose that (J, Z) ∈ Z12. Let v1, v2, . . . , v9, X be as in the definition

of Z12. Let j ∈ {3, 4} be largest such that v2 is adjacent to vj and let k ∈ {5, 6} be smallest

such that v7 is adjacent to vk. Such j, k exist by the fact that v2 is not strongly anticomplete

to {v3, v4} \ X and v7 is not strongly anticomplete to {v5, v6} \ X. But now v1-v2-vj-vk-v7-v8-

v1 is a weakly induced cycle of length six in J , contrary to (4.3). Finally, suppose that the strip of

(H, η) at F is isomorphic to a member (J, Z) ∈ Z14. Let H ′, T ′, v0, v1, v2, v3 be as in the definition
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of Z14. Let N = V (H ′) \ {v0, v1, v2, v3}. Because deg(vi) ≥ 3, for i = 1, 2, 3, there exist p1, p2, p3
such that p1, p2 are complete to {v1, v2, v3} and p3 is complete to {v2, v3}. Now v1-p1-v2-p3-v3-p2-

v1 is a cycle of length six in H ′. Hence, T ′ has a weakly induced cycle of length six. Thus, J has a

weakly induced cycle of length six, contrary to (4.3). �

Let (T,H, η) be an optimal representation of some nonbasic claw-free graph. Let F ∈ E(H) and let

{u, v} = F̄ . Let `(F ) denote the set of integers k such that there exists a k-vertex weakly induced

path from a vertex in η(F, u) to a vertex to η(F, v) whose interior vertices lie in η(F ) \ (η(F, u) ∪
η(F, v)). Notice that for F ∈ E(H) with {u, v} = F̄ , `(F ) = ∅ if and only if one of η(F, u) or η(F, v)

is empty (the strip of (H, η) at such an F is a thickening of a member of Z5 ∪Z6 ∪ . . . ∪Z15). For

a set of edges S ⊆ E(H), we define

`(S) =

{∑
F∈S

xF
∣∣ xF ∈ `(F ), F ∈ S

}
.

To clarify, `(S) is the set of numbers that can be obtained by choosing for each F ∈ S a number

xF ∈ `(F ) and taking the sum of these numbers {xF }F∈S . We have the following property:

(4.6) Let (T,H, η) be an optimal representation of some F-free claw-free graph. Let F ∈ E(H)

and {u, v} = F̄ . The following statements are equivalent:

(i) 1 ∈ `(F ),

(ii) η(F, u) ∩ η(F, v) 6= ∅,
(iii) `(F ) = {1},
(iv) the strip of (H, η) corresponding to F is a spot.

Moreover, if `(F ) 6= ∅, then the strip of (H, η) at F is either a spot, or isomorphic to a member of

Z1 ∪ · · · ∪ Z4.

Proof. Clearly, (i) and (ii) are equivalent. Moreover, it is clear that (iv) implies (iii) and (iii)

implies (i). Therefore, it suffices to prove that (ii) implies (iv). So suppose that η(F, u)∩η(F, v) 6= ∅.
If the strip (J, Z) of (H, η) at F is a spot, we are done. So we may assume that (J, Z) is not a spot

and hence, by (4.2), (J, Z) is isomorphic to a member of Z0. Since η(F, u) ∩ η(F, v) 6= ∅ and, in

particular, η(F, u) and η(F, v) are both nonempty, it follows that (J, Z) is isomorphic to a member

of Z1 ∪ · · · ∪ Z5. Let {z1, z2} = Z and let x ∈ η(F, u) ∩ η(F, v) ⊆ V (J). It follows that x is a

common neighbor of z1 and z2, but it is easy to check from the definitions of Z1, . . . ,Z5 that J

does not have such a vertex.

For the second statement, suppose that `(F ) 6= ∅. If the strip of (H, η) at F is a spot, then we are

done. So we may assume by the definition of a proper strip-structure that the strip of (H, η) at F

is isomorphic to a member of Z0. Let {u, v} = F̄ . The fact that `(F ) 6= ∅ implies that η(F, u) and

η(F, v) are both nonempty. Therefore, the strip (J, Z) of (H, η) at F satisfies |Z| = 2, and hence

(J, Z) is isomorphic to a member of Z1 ∪ · · · ∪ Z5. Moreover, (J, Z) is not isomorphic to a member

of Z5 because of (4.4). This proves (4.5). �
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A cycle C in H is a subgraph of H on vertex set {c1, c2, . . . , ck}, with k ≥ 2, and edge set

{F1, F2, . . . , Fk} such that F̄i = {ci, ci+1} (with subscript modulo k). Notice that, by property (3)

of the definition of a proper strip-structure, it follows that, for every cycle C in H, `(F ) 6= ∅ for all

F ∈ E(C) and, thus, `(E(C)) 6= ∅. The following lemma deals with the possible values of `(E(C))

for cycles C in H.

(4.7) Let (T,H, η) be an optimal representation of some F-free claw-free graph. Let C be a cycle

in H. Then, z ∈ {3, 4, 5, 7} and z ≥ |E(C)| for all z ∈ `(E(C)).

Proof. Suppose for a contradiction that there exists z ∈ `(E(C)) \ {3, 4, 5, 7}. Assume first that

z = 2. Then it follows that |E(C)| = 2 and hence that the strips corresponding to the edges of

C are spots. Let F ∈ E(C). Clearly, T is a thickening of T \ η(F ), which contradicts the fact

that (T,H, η) is an optimal representation. Hence, z = 6 or z ≥ 8. Now, write C = c1-c2- . . . -

ck-c1 with k = |E(C)| and such that, for all i ∈ [k], there exists Fi ∈ E(C) with F̄i = {ci, ci+1}
(subscripts modulo k). For i ∈ [k], let xi ∈ `(Fi) be such that z =

∑
i∈[k] xi and let Pi be a weakly

induced path from a vertex in η(Fi, ci) to a vertex in η(Fi, ci+1) with |V (Pi)| = xi. Now, P1-P2-

. . . -Pk-P1 is a weakly induced cycle of length z, a contradiction. This proves (4.6). �

We would like to stress here that (4.6) shows that optimal strip-structures do not have parallel

spots. We need another lemma. For a trigraph T and a set X ⊆ V (T ), we say that y ∈ V (T ) \X
is mixed on X if y is not strongly complete or strongly anticomplete to X. We say that a set

Y ⊆ V (T ) \X is mixed on X if some vertex in Y is mixed on X.

(4.8) Let T be a claw-free trigraph, and let A,B,C ⊆ V (T ) be disjoint nonempty sets in T such

that A is strongly anticomplete to B, and C is a clique. Then, either at most one of A, B is mixed

on C, or there exists a weakly induced 4-vertex path P with one endpoint in A and the other in B,

and V (P ∗) ⊆ C.

Proof. Clearly, if |C| = 1, then it follows immediately from the fact that no vertex is incident

with two semiedges that at most one of A, B is mixed on C. So we may assume that |C| ≥ 2. We

may assume that there exist a ∈ A and b ∈ B that are mixed on C. If a is complete to C, then let

X ⊆ C be the set of strong neighbors of a in C and let Y ⊆ C be the set of antineighbors of a in C.

If a is not complete to C, then let X ⊆ C be the set of neighbors of a in C and let Y ⊆ C be the

set of strong antineighbors of a in C. Observe that C = X ∪Y and, because |C| ≥ 2 and a is mixed

on C, X and Y are nonempty. If b has both an antineighbor x ∈ X and a neighbor in y ∈ Y , then

P = a-x-y-b is a weakly induced 4-vertex path with one endpoint in A and the other in B, and

V (P ∗) ⊆ C. Thus, we may assume that b is either strongly complete to X or strongly anticomplete

to Y . Next, if b has both a neighbor x′ ∈ X and an antineighbor y′ ∈ Y , then x′ is complete to the

triad {a, y′, b}, contrary to (2.2). It follows that if b is strongly complete to X, then b is strongly

complete to Y and, thus, b is not mixed on C. So we may assume that b is strongly anticomplete

to Y . But now, it follows that b is strongly anticomplete to X and, thus, b is not mixed on C. It

follows that B is not mixed on C, thereby proving (4.7). �
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This lemma allows us to rule out strips in which all weakly induced paths have the same length

k ≥ 3. The idea of the proof is that when this happens, the strip has a special structure that allows

us to enlarge the strip-structure, therefore showing that the strip-structure we started with was not

optimal.

(4.9) Let (T,H, η) be an optimal representation of some F-free claw-free graph G. Then, there

exists no F ∈ E(H) such that `(F ) = {k} for some k ≥ 3.

Proof. Assume for a contradiction that there exists F ∈ E(H) such that `(F ) = {k} for some

k ≥ 3. Let (J, Z) be the strip of (H, η) at F . Let {u, v} = F̄ , A = η(F, u), B = η(F, v), and

C = η(F ) \ (A ∪ B). It follows from the fact that 1, 2 6∈ `(F ) that A and B are disjoint and A is

strongly anticomplete to B.

Define the following sets. Let N0 = {z1} and Nk+1 = {z2}, where z1 is the unique vertex in Z

that is strongly complete to A and z2 is the unique vertex in Z that is strongly complete to B.

Let N1 = A and Nk = B, and let N2, . . . , Nk−1 be such that Ni is strongly anticomplete to Nj if

i < j−1, and Ni and Ni+1 are linked. We may choose N2, . . . , Nk−1 with maximal union and, since

there exists a weakly induced path of length k from a vertex in N1 = A to a vertex in Nk = B,

|Ni| ≥ 1 for all i ∈ [k].

Since `(F ) 6= ∅, it follows from (4.5) that (J, Z) is isomorphic to a member of Z1 ∪ Z2 ∪ Z3 ∪ Z4.

In particular, J is either a linear interval trigraph or a three-cliqued trigraph.

(i) Let x ∈ η(F ) \ (N1 ∪ · · · ∪Nk). Then, there exists i ∈ [k − 1] such that x has a neighbor in

Ni and in Ni+1 and x is anticomplete to Nj with j 6= i, i+ 1.

Since J is either a linear interval trigraph or a three-cliqued trigraph, it follows that x has a

neighbor in
⋃k

i=1Ni. Let i be smallest such that x has a neighbor in Ni, say y, and let j be

largest such that x has a neighbor in Nj . Clearly, since Z is strongly anticomplete to C, it

follows that 1 ≤ i ≤ j ≤ k. First suppose that i = j. Then y has a neighbor y1 ∈ Ni−1 and a

neighbor y2 ∈ Ni+1. But now, y is complete to the triad {x, y1, y2}, contrary to (2.2). Thus,

i 6= j. If |i − j| = 1, then the lemma holds. Next, suppose that |i − j| = 2. Then, adding

x to Ni+1 contradicts the maximality of N1 ∪ . . . ∪ Nk. Thus, |i − j| ≥ 3. But now, let P1

be a weakly induced i-vertex path from a vertex in N1 to a vertex in Ni, and let P2 be a

(k− j)-vertex path from a vertex in Nj to a vertex in B. Then, P1-x-P2 is a weakly induced

path from a vertex in A to a vertex in B that has less that k vertices, a contradiction. This

proves (i). �

Next, for i = 0, 1, . . . , k, let Mi,i+1 ⊆ η(F ) \ (N1 ∪ · · · ∪Nk) be the set of vertices with a neighbor

in both Ni and Ni+1. It follows from (i) that η(F ) =
(⋃k

i=1Ni

)
∪
(⋃k−1

i=1 Mi,i+1

)
. Also observe

that M0,1 = Mk,k+1 = ∅.
(ii) For distinct i, j ∈ [k − 1], Mi,i+1 is strongly anticomplete to Mj,j+1.

Suppose that x ∈ Mi,i+1 is adjacent to y ∈ Mj,j+1 for distinct i, j ∈ [k − 1]. From the

symmetry, we may assume that i < j. Now, let P1 be a weakly induced i-vertex path from a

vertex in N1 to a vertex in Ni, and let P2 be a (k− j − 1)-vertex path from a vertex in Nj+1
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to a vertex in B. Then, P1-x-y-P2 is a weakly induced path from a vertex in A to a vertex

in B that has k′ 6= k vertices, a contradiction. �

(iii) For i ∈ [k − 1], Ni ∪Mi−1,i is a strong clique.

Recall that J is either a linear interval trigraph or a J is three-cliqued. If J is three-cliqued,

then it follows from the definitions of the strips that C is a strong clique. So we may assume

that J is a linear interval trigraph. Thus, there exists a linear ordering (≤, V (J)) such that

for all adjacent x, y ∈ V (J) and z ∈ V (J), x < z ≤ y implies that z is strongly adjacent to

x and y. We may assume that for every x, y ∈ V (J), either x > y or x < y. We prove a

stronger statement:

(∗) For i ∈ [k−1], Ni∪Mi−1,i is a strong clique and vi−1 < vi for all adjacent vi−1 ∈ Ni−1,

vi ∈ Ni ∪Mi−1,i.

We prove (∗) by induction on i. First consider the case i = 1. N1 ∪M0,1 is a strong clique

because N1 ∪M0,1 = A, and it follows from our assumptions that v0 < v1 for all v0 ∈ N0 and

v1 ∈ N1 ∪M0,1. So let i ≥ 2. We first claim that vi−1 < vi for all adjacent vi−1 ∈ Ni−1 and

vi ∈ Ni ∪Mi−1,i. For let vi−1 ∈ Ni−1 and vi ∈ Ni ∪Mi−1,i be adjacent. It follows from the

definitions of Ni−1, Ni, and Mi−1,i that vi−1 has a neighbor vi−2 ∈ Ni−2, and vi is strongly

antiadjacent to vi−2. Inductively, vi−2 < vi−1. Then it follows from the definition of a linear

interval trigraph that vi > vi−1, as required.

Now suppose that Ni ∪Mi−1,i is not a strong clique. Then there exist antiadjacent x1, x2 ∈
Ni ∪Mi−1,i. By the definition of Ni and Mi−1,i, x1 and x2 have neighbors y1, y2 ∈ Ni−1,

and y1, y2 have neighbors z1, z2 ∈ Ni−2, where possibly z1 = z2. Inductively, y1 and y2
are strongly adjacent. Since T is claw-free, it follows that both y1, y2 are not complete to

{x1, x2}. Thus, y1 6= y2, y1 is strongly antiadjacent to x2 and y2 is strongly antiadjacent to

x1. It follows from the previous argument that x1 > y1 and x2 > y2. From the symmetry

between x1 and x2, we may assume that x1 > x2. If y1 > x2, then the fact that y1 > x2 > y2
and y1 is adjacent to y2 implies that x2 is adjacent to y1, a contradiction. Hence, y1 < x2.

Now, y1 < x2 < x1 and the fact that y1 and x1 are adjacent imply that x2 is strongly adjacent

to both y1 and x1, a contradiction. Thus, Ni is a strong clique. This proves (iii). �

It follows from (iii) that, for i ∈ [k − 1], Ni ∪Mi−1,i is a strong clique. From the symmetry, it

follows that for i ∈ [k] \ {1}, Ni ∪Mi,i+1 is a strong clique. Thus, all sets Mi,i+1 are strong cliques

and each Mi,i+1 is strongly complete to Ni ∪Ni+1.

(iv) If, for some j ∈ [k], Nj is strongly complete to Nj+1, then (T,H, η) is not an optimal

representation of G.

Let j ∈ [k] be such that Nj is strongly complete to Nj+1. Construct a new strip-structure

(H ′, η′) for T from (H, η) as follows. First add to H ′ two new vertices w1, w2. Next, replace

F by two new edges F1, F2 such that F̄1 = {u,w1}, F̄2 = {v, w1}. Let η′(F1) =
⋃j

i=1(Ni ∪
Mi−1,i), η

′(F1, u) = A, η′(F1, w1) = Nj , η
′(F2) =

⋃k
i=j+1(Ni ∪Mi,i+1), η

′(F2, v) = B, and

η′(F2, w1) = Nj+1. If Mj,j+1 6= ∅, it follows from the fact that T is not a thickening of some
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other claw-free graph that |Mj,j+1| = 1; now add to H ′ an edge F3 with F̄3 = {w1, w2}
η′(F3) = η′(F3, w1) = η′(F3, w2) = {z}, where z is the unique vertex in Mj,j+1. Then, the

strip of (H ′, η′) at F1, F2 is isomorphic to a member of Z1, and, if Mj,j+1 6= ∅, the strip of

(H ′, η′) at F3 is a spot. Thus, (T,H ′, η′) is representation of G that satisfies |E(H ′)| > |E(H)|
and therefore, (T,H, η) is not an optimal representation, a contradiction. This proves (iv).

�

It follows from (4.7) that either at most one of N1, N3 is mixed on N2, or there exists a weakly

induced 4-vertex path P = p1-p2-p3-p4 with p1 ∈ A, p2, p3 ∈ N2, and p4 ∈ N3. If such P exists,

then clearly, this path may be extended to obtain a (k+ 1)-vertex path from p1 to a vertex in B, a

contradiction. Thus, it follows that at least one of N1, N3 is not mixed on N2. Since Ni and Ni+1

are linked, it follows that at least one of N1, N3 is strongly complete to N2, and thus the lemma

holds by (iv). This proves (4.8). �

The previous lemma deals with strips in which all weakly induced paths have the same length

k ≥ 3. A question is: what happens when all weakly induced paths have length two? The next

lemma deals with this case when such a strip is part of a long cycle. The idea of the proof is again

that under some circumstances, we may enlarge the strip-structure.

(4.10) Let (T,H, η) be an optimal representation of some F-free claw-free graph G. Let C be a

cycle in H. If there exists F ∈ E(C) such that `(F ) ∈ {{2}, {2, 4}}, then `(E(C \F ))∩ {3, 5} = ∅.

Proof. Let (T,H, η) be an optimal representation of some F-free claw-free graph G. Let C be a

cycle in H and let F ∈ E(C) be such that `(F ) ∈ {{2}, {2, 4}}. Let {u, v} = F̄ and let A′ = η(F, u),

B′ = η(F, v), and D′ = η(F ) \ (η(F, u) ∪ η(F, v)). We start with the following claim:

(i) D′ is a strong clique.

Since `(F ) 6= ∅, it follows from (4.5) that the strip (J, Z) of (H, η) at F is isomorphic to a

member of Zl for some l ∈ [4]. If l ∈ {2, 3, 4}, then it follows immediately from the definition

of the respective strips that D′ is a strong clique. So we may assume that l = 1. Thus, J is

a linear interval trigraph. Since 2 ∈ `(F ), there exists adjacent a ∈ A′ and b ∈ B′. Now, it

follows from the definition of a linear interval trigraph that D′ is a strong clique. This proves

(i). �

We need to consider the graph G. Recall that G is a graphic thickening of T . For u ∈ V (T ),

let Xu be the clique in G that corresponds to u. Let A =
⋃{

Xv

∣∣ v ∈ A′}, and define B and D

analogously.

(ii) No vertex in D has nonadjacent neighbors a ∈ A and b ∈ B.

If d ∈ D is adjacent to some nonadjacent a ∈ A and b ∈ B, then a-d-b is an induced path

that implies that 3 ∈ `(F ), a contradiction. This proves (ii). �

Assume for a contradiction that there exists m ∈ `(E(C)\{F}) with m ∈ {3, 5}. It follows from the

definition of a strip-structure that there exists a path p1-p2- . . . -pm in G such that p1 is complete
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to B, pm is complete to A, V (P ∗) is anticomplete to A ∪ B, and V (P ) is anticomplete to D. Let

A0, A1, A2, . . . , Ak ⊆ A and B0, B1, B2, . . . , Bk ⊆ B be disjoint sets of vertices such that

• for 0 ≤ i, j ≤ k, i 6= j, Ai is anticomplete to Bj ;

• A0 is anticomplete to B0;

• for i ∈ [k], |Ai| ≥ 1, |Bi| ≥ 1, and Ai is complete to Bi.

We may choose these sets such that k is maximal and, subject to that, such that their union is

maximal. Notice that we allow A0 and B0 to be empty, but the sets Ai, Bi, i ∈ [k], are nonempty.

Notice also that, because 2 ∈ `(F ), k ≥ 1.

(iii) A =
⋃k

i=0Ai and B =
⋃k

i=0Bi.

Suppose not. From the symmetry, we may assume that there exists a ∈ A \
⋃k

i=0Ai. First, a

has at least one neighbor in
⋃k

i=0Bi, because otherwise we may add a to A0, contradicting

the maximality of A0. Suppose that a has neighbors bi ∈ Bi, bj ∈ Bj with 0 ≤ i < j ≤ k. Let

aj ∈ Aj . Now, G|{p1, p2, . . . , pm, a, bi, aj , bj} is isomorphic to G1 (if m = 3) or G2 (if m = 5),

a contradiction. Thus, a has a neighbor in Bi for only one value of i. If a has a neighbor in

B0, then letting Ak+1 = {a} and Bk+1 = N(a) ∩B0 contradicts the maximality of k. Thus,

a has a neighbor b ∈ Bi for some i ∈ [k]. By the maximality of Ai, a has a nonneighbor

b′ ∈ Bi. Let a′ ∈ Ai. Now, G|{p1, p2, . . . , pm, a′, b, a, b′} is isomorphic to G1 (if m = 3) or G2
(if m = 5), a contradiction. This proves (iii). �

Next, we analyze how vertices in D attach to A ∪B:

(iv) For i ∈ [k], if d ∈ D has a neighbor in Ai∪Bi, then d is complete to Ai∪Bi and anticomplete

to A ∪B \ (Ai ∪Bi).

From the symmetry, we may assume that d ∈ D has a neighbor a ∈ Ai. Let b ∈ Bi. Recall

that Ai is complete to Bi. Hence, a is complete to {b, d, pm}. It follows from (2.2) that d is

adjacent to b. Thus, d is complete to Bi and, by the same argument, d is complete to Ai. It

follows from (ii) that d is anticomplete to Aj ∪Bj for j ∈ [k] ∪ {0}, j 6= i. This proves (iv).

�

(v) There do not exist d1, d2 ∈ D such that d1 has a neighbor in A0 and d2 has a neighbor in B0.

Let d1 ∈ D have a neighbor a0 ∈ A0 and let d2 ∈ D have a neighbor b0 ∈ B0. It follows from

(ii) and (iv) that d1 is anticomplete to (A∪B)\A0 and d2 is anticomplete to (A∪B)\B0. Let

a1 ∈ A1, b1 ∈ B1. Then, a0-d1-d2-b0-b1-a1-a0 is an induced cycle of length six, a contradiction.

This proves (v). �

By (v) and the symmetry, we may assume that D is anticomplete to B0. For i ∈ [k] ∪ {0},
let Di be the vertices in D that have a neighbor in Ai ∪ Bi. It follows from (iv) that the sets

D0, D1, . . . , Dk are disjoint and that, for i ∈ [k], Di is complete to Ai∪Bi. It follows from (ii) that

D0 is anticomplete to B. Let D∗ = D \ (D0 ∪D1 ∪ · · · ∪Dk). We need one more lemma:

(vi) There are at most two values i ∈ [k] ∪ {0} such that Di 6= ∅.
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(a) D0 = ∅ (b) D0 6= ∅

Figure 4: The construction of a larger strip-structure in (4.9). The gray vertices and edges represent the relevant

submultigraph of H ′. The black vertices and edges represent the relevant induced subtrigraph of T ′. The

gray ellipses represent the sets K1 and K2. The ‘wiggly’ edge represents a semiedge. The black vertices

are drawn on top of the gray edges to indicate to which strip each black vertex belongs.

Suppose that there are i, j, l with 0 ≤ i < j < l ≤ k such that Di, Dj and Dl are nonempty.

It follows that Ai, Al, Bj , Bl are all nonempty. Let ai ∈ Ai, al ∈ Al, di ∈ Di, dj ∈ Dj ,

bj ∈ Bj and bl ∈ Bl such that the pairs ai, di and al, dl are adjacent. Then, ai-di-dj-bj-bl-al-

ai is an induced cycle of length six, a contradiction. This proves (vi). �

We will construct a new representation (T ′′, H ′, η′); see Figure 4 for an illustration of the construc-

tion. First construct T ′ from T \ η(F ) as follows. Let

K1 =
⋃{

η(F ′, u)
∣∣ F ′ ∈ E(H) \ {F}, u ∈ F̄ ′

}
, and

K2 =
⋃{

η(F ′, v)
∣∣ F ′ ∈ E(H) \ {F}, v ∈ F̄ ′

}
.

Add a strong clique of new vertices Ā = {a0, a1, . . . , ak} such that Ā is strongly complete to K1,

add a strong clique of new vertices B̄ = {b0, b1, . . . , bk} such that B̄ is strongly complete to K2,

and add a strong clique of new vertices D̄ = {d0, d1, . . . , dk}. If D∗ 6= ∅, then add a new vertex

d∗ that is strongly complete to D̄. For i ∈ [k], let {ai, bi, di} be a strong clique. If A0 is strongly

complete to D0, let a0 be strongly adjacent to d0; if A0 is strongly anticomplete to D0, let a0 be

strongly antiadjacent to d0; otherwise let a0 be semiadjacent to d0. All other pairs are strongly

antiadjacent. Let X ′ ⊆ {a0, b0} be such that a0 ∈ X ′ if and only if A0 = ∅ and b0 ∈ X ′ if and

only if B0 = ∅. Let X = X ′ ∪ {di
∣∣ Di = ∅, i ∈ [k] ∪ {0}}. Let T ′′ = T ′ \X. Then, G is a graphic

thickening of T ′′.

Next, construct (H ′, η′) from (H, η) as follows. First, delete F . For i ∈ [k], add new vertices wi, and

edges F1,i, F2,i with F̄1,i = {u,wi} and F̄2,i = {v, wi}, and let η′(F1,i) = η′(F1,i, u) = η′(F1,i, wi) =

{ai} and η′(F2,i) = η′(F2,i, v) = η′(F2,i, wi) = {bi}. If B0 6= ∅, then add a new vertex zb and an

edge Fb with F̄b = {v, zb} and η′(Fb) = η′(Fb, v) = η′(Fb, zb) = {b0}. Now, there are two cases,

depending on whether D0 is empty or not.

The case when D0 is empty. If A0 6= ∅, then add a new vertex za and an edge Fa with

F̄a = {u, za} and η′(Fa) = η′(Fa, u) = η′(Fa, za) = {a0}. It follows from (vi) and the symmetry
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that we may assume that Di = ∅ for all i ∈ [k]\{1, 2}. If D = ∅, then the construction of (T ′′, H ′, η′)

is complete. So we may also assume that D1 6= ∅. Add to H ′ a new vertex w0. If D∗ 6= ∅, then add

a new vertex zd and an edge Fd with F̄d = {w0, zd} and η′(Fd) = η′(Fd, w0) = η′(Fd, zd) = {d∗}. For

i = 1, 2, if Di 6= ∅, then add a new edge Fi with F̄i = {wi, w0}, η′(Fi) = η′(Fi, wi) = η′(Fi, w0) =

{di}. This finishes the construction of (T ′′, H ′, η′) when D0 = ∅. (see Figure 4a)

The case when D0 is nonempty. The fact that D0 is nonempty implies that A0 is nonempty. It

follows from (vi) and the symmetry that we may assume that Di = ∅ for all i ∈ [k]\{1}. Add a new

vertex w0. If D∗ 6= ∅, then add a new vertex zd and an edge Fd with F̄d = {w0, zd} and η′(Fd) =

η′(Fd, w0) = η′(Fd, zd) = {d∗}. Add to H ′ a new edge F0 with F̄0 = {u,w0}, and η′(F0, u) = {a0},
η′(F0, w0) = {d0}, and η′(F0) = {a0, d0}. Notice that the strip of (H ′, η′) at F0 is a member of Z1.

If D1 6= ∅, then add a new edge F1 with F̄1 = {w0, w1}, η′(F1) = η′(F1, w0) = η′(F1, w1) = {d1}.
This finishes the construction of (T ′′, H ′, η′) when D0 6= ∅. (see Figure 4b)

Now G is a graphic thickening of T ′′, T ′′ is not a thickening of any other claw-free trigraph, (H ′, η′)

is a proper strip-structure for T ′′, and |E(H ′)| > |E(H)|, contrary to the fact that (T,H, η) is an

optimal representation for G. This proves (4.9). �

(4.11) Let (T,H, η) be an optimal representation of some F-free claw-free graph G. Let C be a

cycle in H and let F ∈ E(C) be such that `(E(C \ F )) ∩ {3, 4, 5, 6} 6= ∅. Then, the strip of (H, η)

at F is a spot.

Proof. We may assume that `(F ) 6= {1}. If 6 ∈ `(E(C \ F )), then it follows from (4.6) that

`(F ) = {1}, contrary to our assumption. If 5 ∈ `(E(C \ F )), then it follows from (4.6) that

`(F ) = {2}, contrary to (4.9). If 4 ∈ `(E(C \F )), then, since `(F ) 6= {1}, it follows from (4.6) that

`(F ) = {3}, contrary to (4.8). Thus, we may assume that 3 ∈ `(E(C \ F )). It follows from (4.6)

that `(F ) ⊆ {2, 4}. It follows from (4.9) that `(F ) 6= {2} and `(F ) 6= {2, 4}. Thus, `(F ) = {4}.
But this contradicts (4.8). This proves (4.10). �

Another useful corollary is the following description of possible strips in optimal representations:

(4.12) Let (T,H, η) be an optimal representation of some F-free claw-free graph G. Let F ∈ E(H)

with `(F ) 6= ∅ and let {u, v} = F̄ . Then either

(a) the strip of (H, η) at F is a spot, or

(b) η(F ) \ (η(F, u) ∪ η(F, v)) is a strong clique and z ≤ 4 for all z ∈ `(F ), or

(c) the strip of (H, η) at F is isomorphic to a member of Z1, 2 6∈ `(F ), and there exists z ∈ `(F )

with z ≥ 4.

Proof. We may assume that 1 6∈ `(F ), because otherwise, by (4.5), case (a) holds. Let (J, Z) be

the strip of (H, η) at F . Since `(F ) 6= ∅, it follows from (4.5) that (J, Z) is isomorphic to a member

of Z1 ∪ Z2 ∪ Z3 ∪ Z4. If (J, Z) is isomorphic to a member of Z2 ∪ Z3 ∪ Z4, then it follows from

the definition of the respective strips that η(F ) \ (η(F, u) ∪ η(F, v)) is a strong clique, and hence

outcome (b) holds (the fact that z ≤ 4 for all z ∈ `(F ) follows immediately). Therefore, we may

assume that (J, Z) is isomorphic to a member of Z1, and thus J is a linear interval trigraph. Let
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A = η(F, u), B = η(F, v), and C = η(F ) \ (η(F, u)∪ η(F, v)). If 2 ∈ `(F ), then there exist adjacent

a ∈ A and b ∈ B, and hence it follows from the definition of a linear interval trigraph that C is

a strong clique and thus (b) holds. So we may assume that 2 6∈ `(F ). It follows from (4.8) that

`(F ) 6= {3} and therefore there exists z ∈ `(F ) with z ≥ 4, which implies that outcome (c) holds.

This proves (4.11). �

4.2 The structure of the blocks of the pattern multigraph in an optimal representation

Let T be a connected claw-free trigraph that admits a proper strip-structure (H, η) such that H is

not 2-connected. Let B be a block of H and let W be the cut-vertices of H in V (B). Let D be

the trigraph obtained from T |
⋃{

η(F )
∣∣ F ∈ E(B)

}
by adding, for every w ∈W , a vertex y that is

complete to
⋃{

η(F,w)
∣∣ F ∈ E(B)

}
. Let Y be the vertices added in that way. We call (D,Y ) the

strip-block of (H, η) at B.

(4.13) Let T be a connected F-free claw-free trigraph that admits a proper strip-structure (H, η).

Let (B1, B2, . . . , Bq) be the block decomposition of H. Then, at most one of B1, B2, . . . , Bq contains

a cycle of length at least five.

Proof. Suppose that for distinct i ∈ [2], Bi contains a cycle of length ki ≥ 5. It follows from

the definition of a proper strip-structure that for i ∈ [2] the strip-block (Di, Xi) of (H, η) at Bi

contains a weakly induced cycle Ci with |V (Ci)| ∈ {5, 7} (because T is F-free). Because C1 and

C2 are in different strip-blocks, it follows that V (C1) ∩ V (C2) = ∅. Let C1 = c1- . . . -ck1-c1 and

C2 = c′1- . . . -c
′
k2

-c′1. Since T is connected, there exists a shortest weakly induced path P = p1-

p2- . . . -pm from a vertex in V (C1) to a vertex in V (C2). We may assume that p1 = c1 and

pm = c′1. First suppose that m = 2. Because c1 is complete to {c′1, c2, ck1}, it follows that c′1 is

adjacent to at least one of c2, ck1 . From the symmetry, we may assume that c′1 is adjacent to c2.

Symmetrically, we may assume that c1 is adjacent to c′2. Since, by the definition of a strip-structure,

N(C1)∩V (C2) and N(C2)∩V (C1) are strong cliques, it follows that c1 is strongly anticomplete to

V (C2) \ {c′1, c′2} and c′1 is strongly anticomplete to V (C1) \ {c1, c2}. If c2 is antiadjacent to c′2, then

c′1 is complete to the triad {c2, c′2, c′k2}, contrary to (2.2). Thus, c2 is strongly adjacent to c′2. Since

N(C1) ∩ V (C2) and N(C2) ∩ V (C1) are strong cliques, it follows that N(C1) ∩ V (C2) = {c′1, c′2}
and N(C2) ∩ V (C1) = {c1, c2}. Thus, T |(V (C1) ∪ V (C2)) is a weakly induced skipping rope, a

contradiction. So we may assume that m ≥ 3. Since P is shortest, it follows that V (C1) ∪ V (P ∗)

is strongly anticomplete to V (C2) and V (C2) ∪ V (P ∗) is strongly anticomplete to V (C1). Because

c1 is complete to {p2, c2, ck1}, it follows from (2.2) that p2 is adjacent to at least one of c2, ck1 .

We may assume that p2 is adjacent to c2. Next, if p2 is complete to antiadjacent c, c′ ∈ V (C1),

then p2 is complete to the triad {p3, c, c′}, contrary to (2.2). Hence, it follows that p2 is strongly

anticomplete to V (C1) \ {c1, c2}. Symmetrically, we may assume that pm is complete to {c′1, c′2}
and strongly anticomplete to V (C2) \ {c′1, c′2}. But now, T |(V (C1) ∪ V (C2) ∪ V (P )) is a weakly

induced skipping rope, a contradiction. This proves (4.12). �
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As the previous lemma suggests, when we describe the blocks, it is convenient to distinguish between

blocks that contain a cycle of length at least five, and blocks that do not contain such a cycle. We

start with the former case. In [2], we implicitly proved the following result. For completeness we

give the proof of it here.

(4.14) Let H be a 2-connected simple graph with no cycle of length k with k = 6 or k ≥ 8. Then,

either every cycle in H has length at most 4, or H is isomorphic to a graph in B1.

Proof. We use induction on |E(H)|. Let F = f1-f2- . . . -fk-f1 be a largest cycle in H. If k ≤ 4,

then the lemma holds. Thus, since H has no cycle of length six or of length eight or more, we may

assume that k ∈ {5, 7}. We say that a vertex x ∈ V (H) \ V (F ) is a clone for F if, for some i ∈ [k],

N(x) ∩ V (F ) = {fi−1, fi+1} (subscript modulo k). In this case we say that x is a clone of type i.

We start with a number of claims:

(i) Every vertex in V (H) \ V (F ) is a clone for F .

Let x ∈ (V (H)\V (F )). Since H is 2-connected, there exist two paths P1 and P2 from x to two

distinct vertices of F , say fi and fj , respectively, such that V (P1) ∩ V (P2) = {x}. From the

symmetry, we may assume that i = 1 and j > k/2. First assume that |E(P1)|+ |E(P2)| ≥ 3.

Now f1-P
∗
1 -x-P ∗2 -fj-fj−1- · · · -f2-f1 is a cycle of length |E(P1)|+ |E(P2)|+ j− 1 and f1-P

∗
1 -x-

P ∗2 -fj-fj+1- · · · -fk-f1 is a cycle of length |E(P1)|+ |E(P2)|+ (k − j)− 1. Thus, since H has

no cycle of length six and by the maximality of F , we have

|E(P1)|+ |E(P2)|+ j − 1 ∈ [k] \ {6}, and |E(P1)|+ |E(P2)|+ (k − j)− 1 ∈ [k] \ {6}.

It is straightforward to check that this system has no solution if |E(P1)| + |E(P2)| ≥ 3. It

follows that |E(P1)| + |E(P2)| = 2 and, therefore, |E(P1)| = |E(P2)| = 1. Thus, x has two

neighbors in V (F ). If x has two consecutive neighbors in V (F ), say f1, f2, then f1-x-f2-f3-

· · · -fk−1-fk-f1 is a cycle of length k + 1, contrary to the maximality of F . If k = 5, then,

since x has at least two neighbors in V (F ), it follows that x is a clone for F . So we may

assume that k = 7. Suppose that x is adjacent to fp and fp+3 for some p ∈ [7]. From the

symmetry, we may assume that p = 1. But now f1-x-f4-f5-f6-f7-f1 is a cycle of length six, a

contradiction. From the symmetry, it follows that x has exactly two neighbors in F , say fq
and fq+2 for some q ∈ [7]. Hence, x is a clone for F . This proves (i). �

(ii) If x ∈ V (H) \ V (F ) is a clone for F of type i, then no vertex in V (H) \ V (F ) is a clone of

type i+ 1 (modulo k).

From the symmetry, we may assume that x is a clone for F of type 1 and there exists

y ∈ V (H) \ V (F ) that is a clone for F of type 2. Now, f1-fk-x-f2-f3-y-f1 is a cycle of length

six, a contradiction. This proves (ii). �

(iii) V (H) \ V (F ) is a stable set.

Suppose that x, y ∈ V (H) \ V (F ) are adjacent. From (i), we may assume that x is a clone

of type 1. From the symmetry and (ii), we may assume that y is a clone of type 1, type

3, or, if k = 7, of type 4. First suppose that y is a clone of type 1. Then y-x-f2- · · · -fk-
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y is a cycle of length k+ 1, contrary to the maximality of F . Next, suppose that y is a clone

of type 3. Then, f1-f2-x-y-f4- · · · -fk-f1 is a cycle of length k+ 1, contrary to the maximality

of F . Finally, suppose that k = 7 and y is a clone of type 4. Then f2-f3-f4-f5-y-x-f2 is a

cycle of length six, a contradiction. This proves (iii). �

Now suppose that there exists x ∈ V (H) \ V (F ). It follows from (i) that x is a clone for F . From

the symmetry, we may assume that x is a clone of type 1. We claim that deg(f1) = 2. For suppose

not. Then f1 has a neighbor y ∈ V (H) \ {fk, f1, f2}. First suppose that y ∈ V (H) \ V (F ). It

follows from (i) that y is a clone of type 2 or type k, contrary to (ii). Thus, it follows that y = fj
for some j ∈ {3, . . . , k − 1}. From the symmetry, we may assume that either j = 3, or k = 7 and

j = 4. First assume that j = 3. Then x-f2-f1-f3- . . . fk-x is a cycle of length k+ 1, a contradiction.

So we may assume that k = 7 and j = 4. But now f1-f4-f3-f2-x-f7-f1 is a cycle of length six, a

contradiction. This proves that deg(f2) = 2. Thus, H is obtained from H \ {x} by cloning a vertex

of degree two. Hence it follows from the induction hypothesis that H is isomorphic to a graph in

B1 and therefore the lemma holds.

So we may assume that V (H) = V (F ). If k = 5, then H is isomorphic to a graph in B1 and the

lemma holds. Therefore, we may assume that k = 7.

(iv) Let i ∈ [7]. Then, fi is nonadjacent to fi+2.

From the symmetry, we may assume that i = 1. If f1 is adjacent to f3, it follows that f1-f3-

f4-f5-f6-f7-f1 is a cycle of length six, a contradiction. This proves (iv). �

(v) Let i ∈ [7]. If fi is adjacent to fi+3, then fi+5 is anticomplete to {fi+1, fi+2}.
From the symmetry, we may assume that i = 1. Suppose that f1 is adjacent to f4. If f6 is

adjacent to f2, then it follows that f1-f4-f3-f2-f6-f7-f1 is a cycle of length six, a contradiction.

This proves that f6 is nonadjacent to f2 and, symmetrically, f6 is nonadjacent to f3. This

proves (v). �

If F is an induced cycle, then the lemma holds. Therefore, it follows from (iv) and the symmetry

that we may assume that f1 is adjacent to f4. It follows from (v) that f6 is anticomplete to

{f2, f3}. First suppose that f2 is nonadjacent to f5 and f3 is nonadjacent to f7. Then, the only

undetermined adjacencies are between the pairs f4, f7 and f1, f5. Hence, H is of the B1 type and

the lemma holds. Therefore, we may assume from the symmetry that f2 is adjacent to f5. It follows

from (v) that f7 is anticomplete to {f3, f4}. Now the only undetermined adjacency is between f1
and f5. Thus, H is of the B1 type. This proves (4.13). �

Lemma (4.13) deals with blocks that contain a long cycle. For blocks with no such cycle, we use

the following result from [6].

Theorem 4.15. ([6]) Let G be a graph. Then, the following statements are equivalent:

(1) G does not contain any odd cycle of length at least 5.

(2) For every connected subgraph G′ of G, either G′ is isomorphic to K4, or G′ is a bipartite

graph, or G′ is isomorphic to K+
2,t for some t ≥ 1, or G′ has a cut-vertex.
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This allows us to prove the following structural description of blocks that do not contain cycles of

length at least five.

(4.16) Let H be a 2-connected graph with |V (H)| ≥ 2 that contains no cycle of length five or longer.

Then, H is isomorphic to a graph in B2.

Proof. It follows from Theorem 4.14 that either H is isomorphic to K4, or H is a bipartite graph,

or H isomorphic to K+
2,t for some t ≥ 1. If H is isomorphic to K4, then H is of the B2 type. If

H is isomorphic to K+
2,t for some t ≥ 1, then H is either isomorphic to K3 (if t = 1), or to K+

2,t

with t ≥ 2, both of which imply that H is of the B2 type. Therefore, we may assume that H is

a bipartite graph. Let V (H) = X ∪ Y such that X and Y are stable sets. The 2-connectedness

of H implies that |X| ≥ 2 and |Y | ≥ 2. Now suppose that x ∈ X is nonadjacent to y ∈ Y . Since

H is 2-connected, it follows that there are two edge-disjoint paths P1 and P2 from x to y. Since x

and y are nonadjacent and H is bipartite, it follows that |E(P1)| ≥ 3 and |E(P2)| ≥ 3. But now x-

P ∗1 -y-P ∗2 -x is a cycle of length at least six, a contradiction. It follows that X is complete to Y . If

|X| ≥ 3 and |Y | ≥ 3, then clearly, H contains a cycle of length six, a contradiction. Therefore, at

least one of X,Y has size exactly 2. Hence, H is isomorphic to K2,t with t = max{|X|, |Y |} and H

is of the B2 type. This proves (4.15). �

This allows us to prove (4.1):

Proof of (4.1). Let G be a nonbasic connected F-free claw-free graph. It follows from (2.3) that

G is a graphic thickening of a claw-free trigraph T that admits a proper strip-structure. We may

assume that T is not a thickening of some other trigraph. By choosing among all strip-structures

of T , a strip-structure (H, η) of T that has a maximum number of edges, it follows that G has an

optimal representation (T,H, η). Property (iii) follows from the following claim:

(∗) Let C be a cycle in H with |E(C)| ≥ 4. Then, `(F ) = {1} for all F ∈ E(C).

Let F ∈ E(C). Since each edge in E(C \ F ) lies in a cycle, it follows that `(F ′) 6= ∅ for all

F ′ ∈ E(C \F ) and hence z ≥ 3 for all z ∈ `(E(C \F )). It follows from (4.6) that z ≤ 6 for all

z ∈ `(E(C \F )). Since `(E(C \F )) is nonempty, it follows that `(E(C \F ))∩{3, 4, 5, 6} 6= ∅
and, thus, by (4.10), `(F ) = {1}. �

By (4.3), T is F-free. It follows from the fact that T is F-free that H has no cycles of length six

or of length at least eight. Let B1, B2, . . . , Bq be the block-decomposition of H. Consider Bi. We

claim that Bi is either of the B1 type, or of the B2 type. If Bi contains a cycle of length at least

five, then it follows from (4.13) that Bi is of the B1 type. So we may assume that Bi has no cycle

of length at least five. Now, it follows from (4.15) applied to U(Bi) that Bi is of the B2 type. This

proves part (i). Finally, for part (ii), it follows from (4.12) and the fact that every block of the B1
type contains a cycle of length five or seven, that at most one block of H is of the B1 type. This

proves (4.1). �
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5 F-free nonbasic trigraphs with stability number at most 3

Recall that, by (2.9), all F-free claw-free trigraphs with stability number at most 2 are resolved.

In this section, we deal with nonbasic F-free claw-free trigraphs with stability number 3.

Let T be a trigraph. Assuming that T is connected, a strong clique X in T is called a clique cutset

if T −X is disconnected. Suppose that V0, V1, V2 are disjoint sets with union V (T ), and for i = 1, 2

there are subsets Ai, Bi of Vi satisfying the following:

(1) V0∪A1∪A2 and V0∪B1∪B2 are strong cliques, and V0 is strongly anticomplete to Vi\(Ai∪Bi)

for i = 1, 2,

(2) for i = 1, 2, Ai ∩Bi = ∅, and Ai, Bi are nonempty, and

(3) for all v1 ∈ V1 and v2 ∈ V2, either v1 is strongly antiadjacent to v2, or v1 ∈ A1 and v2 ∈ A2,

or v1 ∈ B1 and v2 ∈ B2, and

(4) for i = 1, 2, Vi \ (Ai ∪Bi) is nonempty.

We call the triple (V0, V1, V2) a generalized 2-join. We call a triple (V0, V1, V2) a modified generalized

2-join if (V0, V1, V2) and A1, A2, B1, B2 satisfy properties (1)–(3) and, instead of (4), the following:

(4’) for i = 1, 2, either Vi \ (Ai ∪Bi) is nonempty, or |Ai| = |Bi| = 1 and the unique two vertices

in Ai ∪Bi are semiadjacent.

Because the trigraphs that we are interested in are nonbasic, they admit a proper strip-structure.

The following lemma shows that such a trigraph is either the line graph of a 2-connected graph, or

has a clique cutset, or admits a modified generalized 2-join.

(5.1) Let G be a connected F-free nonbasic claw-free graph and let (T,H, η) be an optimal repre-

sentation of G. Then one of the following three statements hold:

(a) all strips of (H, η) are spots and H is 2-connected, or

(b) T has a clique cutset, or

(c) T admits a modified generalized 2-join.

Proof. We start with the case in which T , regarded as a graph, is a line graph:

(i) If all strips of (H, η) are spots, then the lemma holds.

Suppose that all strips of (H, η) are spots. If H is 2-connected, then outcome (a) holds. So

we may assume that H has a cut vertex x. Let X1, . . . , Xq be the connected components of

H − x (q ≥ 2). Because T is nonbasic, H is not a star and, hence, there exists i ∈ [q] such

that Xi is not a single vertex. Because Xi is connected, Xi contains at least one edge. Now,

{η(F )
∣∣ F̄ = {x, u}, u ∈ V (Xi)} is a clique cutset in T and (b) holds. This proves (i). �

By (i), we may assume that there exists F ∗ ∈ E(H) such that the strip of (H, η) at F ∗ is not a

spot. Let {u, v} = F̄ ∗. First suppose that one of η(F ∗, u) and η(F ∗, v) is empty. We may assume

that η(F ∗, v) = ∅. Observe that η(F ∗) 6= η(F ∗, u) since the strip of (H, η) at F ∗ is not a spot.

Thus, η(F ∗, u) is a clique cutset and outcome (b) holds.
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So we may assume that both η(F ∗, u) and η(F ∗, v) are nonempty. This implies that (J, Z) is

isomorphic to a member of Z1 ∪ · · · ∪ Z5. Let E0 ⊆ E(H) be the set of edges F0 such that

F̄0 = F̄ ∗ and the strip of (H, η) at F0 is a spot. Notice that it follows from ?? that |E0| ≤ 1. Let

E2 = E(H) \ (E0 ∪ {F ∗}).
(ii) E2 is nonempty.

Suppose that E2 is empty. Then, since (H, η) is proper, we have that |E0| = 1. Let F be the

unique element of E0. If (J, Z) is isomorphic to a member of Z1, then T is a circular interval

trigraph. It follows that either T is three-cliqued, or T is a long circular interval trigraph.

In either case, T is basic, a contradiction. Therefore, (J, Z) is isomorphic to a member of

Z2 ∪ . . . ∪Z5 and hence (J, Z) is three-cliqued. But now, T is three-cliqued because V (T ) is

the union of the strong cliques η(F ∗, u)∪ η(F ), η(F ∗, v), and η(F ∗) \ (η(F ∗, u)∪ η(F ∗, v)), a

contradiction. This proves (ii). �

Let V1 = η(F ∗), A1 = η(F ∗, u) and B1 = η(F ∗, v). Next, set V0 =
⋃
{η(F0)

∣∣ F0 ∈ E0}, V2 =⋃
{η(F2)

∣∣ F2 ∈ E2}, A2 =
⋃
{η(F2, u)

∣∣ F2 ∈ E2, u ∈ F̄2} and B2 =
⋃
{η(F2, v)

∣∣ F2 ∈ E2, v ∈ F̄2}.
Notice that A1∪A2∪V0 and B1∪B2∪V0 are strong cliques, and the sets A2 and B2 are disjoint. Since

E2 6= ∅ by (ii) and H is connected (because T is connected), at least one of A2, B2 is nonempty. If

one of A2 is empty, then B1 ∪V0 is a clique cutset (separating A1 from B2) and outcome (b) holds.

Thus, from the symmetry, we may assume that A2, B2 are both nonempty.

(iii) For i = 1, 2, if Vi = Ai ∪ Bi, then |Ai| = |Bi| = 1 and the unique two vertices in Vi are

semiadjacent.

Suppose that Vi = Ai ∪Bi. First suppose that one of Ai, Bi contains more than one vertex.

Let j be such that {i, j} = {1, 2}. Let T ′ be the graph constructed from T as follows. First,

replace Ai by a new vertex ai and replace Bi by a new vertex bi. Second, make ai strongly

complete to Aj ∪ V0 and bj strongly complete to Bj ∪ V0. Third, depending on whether the

pair (Ai, Bi) is strongly complete, strongly anticomplete, or neither, make ai and bi strongly

adjacent, strongly antiadjacent, or semiadjacent, respectively. Now T is a thickening of T ′,

a contradiction. This proves that |Ai| = |Bi| = 1. Let ai ∈ Ai and bi ∈ Bi. If ai is

strongly adjacent to bi, then we may enlarge the strip-structure (H, η) for T by replacing

edge uv (in H) by a two-edge path (with a new internal vertex) between u, v and making the

corresponding strips spots, thereby contradicting the optimality of the representation. If ai is

strongly antiadjacent to bi, then we may enlarge the strip-structure (H, η) for T by replacing

edge uv (in H) by a pending edge attached to each of u, v and making the corresponding

strips spots, thereby contradicting the optimality of the representation. Thus, ai and bi are

semiadjacent. This proves ??. �

Now it follows from ?? that (V0, V1, V2) is a modified generalized 2-join and, thus, outcome (c)

holds. This proves (5.1). �

The first lemma deals with the case where all strips are spots. That is, we deal with outcome (a)

of (5.1).
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(5.2) Let G be a connected F-free nonbasic claw-free graph and let (T,H, η) be an optimal repre-

sentation of G. Suppose that α(T ) = 3, all strips of (H, η) are spots and H is 2-connected. Then

T is resolved.

Proof. Notice that T is the line graph of H. It follows from (4.1) that H is either of the B1 type

or of the B2 type. If H is of the B2 type, then every matching of H has size at most two, and

hence α(T ) ≤ 2, a contradiction. Thus, H is of the B1 type. First suppose that H contains a cycle

of length 7. If |V (H)| ≥ 8, then, by the construction of B1, H contains a matching of size four,

and hence α(T ) = 4, a contradiction. Thus, H is isomorphic to a graph on vertex set c1, . . . , c7
where c1-c2- . . . c7-c1 is a cycle and in which all pairs that are not in the cycle are nonadjacent

except possibly a subset of the pairs {c1, c4}, {c1, c5}, {c4, c7}. It is easy to see that every maximal

matching in this graph has size exactly 3. This implies that every maximal stable set in T has

size 3, which means that T is resolved. So we may assume that H contains no cycle of length 7.

Hence, H can be constructed, by nonadjacent cloning of vertices of degree 2, from a graph on 5

vertices that contains a cycle of length 5, say c1-c2- . . . -c5-c1. If |V (H)| = 5, then every maximal

matching in H has size two, and thus T is resolved. So we may assume that |V (H)| ≥ 6. By the

symmetry, we may assume that the vertices of degree 2 that were cloned form a nonempty subset

of {c1, c3}. Thus, c1c3 6∈ E(H). Now notice that δ(c2) ∪ δ(c4) ∪ δ(c5) = E(H) (where δ(u) is the

set of edges of H that are incident with vertex u). This implies that T is three-cliqued, contrary

to the assumption that T is nonbasic. This proves (5.2). �

The next lemma deals with clique cutsets (i.e., outcome (b) of (5.1)).

(5.3) Let T be an F-free nonbasic claw-free trigraph with α(T ) = 3. If T has a clique cutset, then

T is resolved.

Proof. Let X be a clique cutset in T . Let K1,K2, . . . ,Km be the connected components of T \X.

Since X is a clique cutset, m ≥ 2. Because α(T ) ≤ 3, it follows that for all i, j, at least one of Ki,

Kj is a strong clique. Therefore, there exists i such that Ki is a strong clique. Now it follows from

(2.7) applied to Ki and X that T is resolved. This proves (5.3). �

The following lemma deals with modified generalized 2-joins (i.e., outcome (c) of (5.1)).

(5.4) Let T be an F-free nonbasic claw-free trigraph with α(T ) = 3. Suppose that T admits a

modified generalized 2-join. Then, T is resolved.

Proof. For i = 1, 2, let Vi, Ai, Bi and V0 be as in the definition of a modified generalized 2-join.

Let Qi = Vi \ (Ai ∪Bi). In view of (5.3), we may assume that T has no clique cutset.

First suppose that Q1 = ∅. Property (4’) of a modified generalized 2-join implies that |A1| = |B1| =
1 and the unique two vertices of A1 ∪B1 are semiadjacent. Since α(T ) = 3, it follows that Q2 is a

strong clique. But now, A1 ∪ V0 ∪ B1, A2 ∪ B2 and Q2 are strong cliques, which implies that T is

three-cliqued, contrary to our assumption that T is nonbasic. Thus, we may assume that Q1 and,

by the symmetry, Q2 are nonempty.
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If, for some i ∈ [2], Ai is strongly complete to Bi, then Ai∪Bi is a clique cutset in T , a contradiction.

Hence, for i ∈ [2], Ai is not strongly complete to Bi. Next, it follows from the fact that α(T ) = 3

and Q1, Q2 6= ∅, that α(T |Vi) ≤ 2 for i = 1, 2. Let {i, j} = {1, 2} and suppose that Qi is not a

strong clique. Since α(T ) = 3, it follows that Vj is a strong clique and hence that Aj is strongly

complete to Bj , a contradiction. Thus, Q1 and Q2 are strong cliques.

Let i ∈ [2]. If N(Qi) is a strong clique, then N(Qi) is a clique cutset, a contradiction. It follows

that there exist antiadjacent ai, bi ∈ N(Qi) and, because Ai and Bi are strong cliques, we may

assume that ai ∈ Ai and bi ∈ Bi. It follows that there exist pi, qi ∈ Qi (possibly equal) such that

pi is adjacent to ai and qi is adjacent to bi. Since T has no weakly induced cycles of length six or

of length at least 8, it follows that we may assume that p1 6= q1, p1 is strongly antiadjacent to b1,

q1 is strongly antiadjacent to a1, and p2 = q2. Since T has no weakly induced cycle of length six, it

follows that A2 is strongly anticomplete to B2. Moreover, since α(T ) = 3, it follows from the fact

that p1 is antiadjacent to b1 that Q2 is strongly complete to A2 and hence, from the symmetry,

that Q2 is strongly complete to B2.

Let G be an F-free graphic thickening of T . We claim that G is resolved. For v ∈ V (T ), let Xv

be the clique in G corresponding to v. For i ∈ [2], let V ′i =
⋃{

Xv

∣∣ v ∈ Vi} and define A′i, B
′
i, Q

′
i,

and V ′0 analogously. Observe that T contains a weakly induced cycle of length seven. Therefore,

by (2.1) and the strong perfect graph theorem [4], G is not perfect. Thus, if every maximal stable

set in G has size three, then G satisfies condition (c) of the definition of a resolved graph and hence

G is resolved. Clearly, no vertex is complete to all other vertices, so there is no maximal stable

set of size one. So we may assume that there exists a maximal stable set S = {s1, s2} of size two

in G. If S ∩ V ′2 = ∅, then we may add any vertex from Q′2 to S to obtain a larger stable set, a

contradiction. If S ⊆ V ′2 , then we may add any vertex from Q′1 to S to obtain a larger stable set,

a contradiction. It follows that |S ∩ V ′2 | = 1 and hence |S ∩ (V ′0 ∪ V ′1)| = 1. We may assume that

s1 ∈ V ′0 ∪ V ′1 and s2 ∈ V ′2 . If s1 ∈ V ′0 , then we may add any vertex from Q′1 to S to obtain a larger

stable set, a contradiction. It follows that s1 ∈ V ′1 . We need the following observation:

(∗) If q′1 ∈ Q′1 has neighbors a′1 ∈ A′1 and b′1 ∈ B′1, then a′1 is adjacent to b′1.

Suppose not. Then, let a′2 ∈ A′2, b′2 ∈ B′2, and q′2 ∈ Q′2 and observe that a′1-q
′
1-b
′
1-b
′
2-q
′
2-a
′
2-

a′1 is an induced cycle of length six, a contradiction. This proves (∗). �

First suppose that s1 ∈ Q′1. Since A′1 is not complete to B′1, there exist nonadjacent a′1 ∈ A′1 and

b′1 ∈ B′1. It follows from (∗) that s1 is not complete to {a′1, b′1}. From the symmetry, we may

assume that s1 is nonadjacent to a′1. It follows from the maximality of S that s2 ∈ A2. But now,

we may add any vertex from B′2 is S to obtain a larger stable set, a contradiction. This proves

that s1 6∈ Q′1. Therefore, from the symmetry, we may assume that s1 ∈ A′1. The maximality of

S implies that s1 is complete to Q′1. In particular, s1 is complete to Xp1
and Xq1

. Since Xq1
is

complete to Xb1
, it follows from (∗) that s1 is complete to Xb1

. But now, s1 is complete to the

triad {a′2, b′1, p′1} with a′2 ∈ A′2, b′1 ∈ Xb1
and p′1 ∈ Xp1

, contrary to (2.2). This proves that G is

resolved, which implies that T is resolved, thus proving (5.4). �

This leads to the main result of this subsection:
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(5.5) Let G be a connected F-free nonbasic claw-free graph and let (T,H, η) be an optimal repre-

sentation of G. If α(T ) ≤ 3, then T is resolved.

Proof. If α(T ) ≤ 2, then it follows from (2.9) that T is resolved. Thus, we may assume that

α(T ) = 3. Since T is nonbasic, T has an proper strip-structure (H, η). It follows from (5.1) that

either H is 2-connected and T is the line graph of H, or T has a clique cutset, or T admits a

modified generalized 2-join. Hence, it follows from (5.2), (5.3), and (5.4) that T is resolved. This

proves (5.5). �

6 F-free nonbasic claw-free graphs are resolved

We are now ready to prove that nonbasic F-free claw-free graphs are resolved. In Section 5, we

dealt with nonbasic trigraphs that have stability number at most three, so we may assume that

our trigraphs have stability number at least four. In view of the definition of a (tri)graph being

resolved, this means that we always look for dominant cliques. In Section 3, we gave a structure

theorem for the pattern multigraph H for an optimal representation (T,H, η) of an F-free nonbasic

claw-free trigraph and we stated this structure in terms of the block decomposition of H. After

introducing a few more lemmas in Section 6.1, we will deal, in Section 6.2, with trigraphs for which

the pattern multigraph of an optimal representation is 2-connected. Then, in Section 6.3, we will

deal with trigraphs whose pattern multigraph in an optimal representation is not 2-connected.

6.1 Tools

We need a few more tools that help us conclude that graphs are resolved. We need the following

result on clones of vertices of degree 2.

(6.1) Let G be an F-free nonbasic claw-free graph and let (T,H, η) be an optimal representation

of G. Suppose that there exist x1, x2 ∈ V (H) with N(x1) = N(x2) = {u, v} such that the strips of

(H, η) at F with F̄ ∈ {{u, x1}, {v, x1}, {u, x2}, {v, x2}} are all spots. Then, G is resolved.

Proof. Let Eu be the set of edges in H incident with u. Let K =
⋃{

η(F, u)
∣∣ F ∈ Eu

}
. We claim

that K is a dominant clique in T . For suppose not. Then, there exists a stable set S ⊆ V (T ) \K
that covers K. For i = 1, 2, let zi ∈ η(uxi). For i ∈ {1, 2}, since zi 6∈ S and S covers K, it follows

that there exist yi ∈ S that is adjacent to zi. It follows from the assumptions and the choice of K

that yi ∈ η(vxi). But now it follows that y1 and y2 are strongly adjacent, contrary to the fact that

S is a stable set. This proves (6.1). �

(6.2) Let G be an F-free nonbasic claw-free graph and let (T,H, η) be an optimal representation of

G. Let F ∈ E(H) and let {u, v} = F̄ . If `(F ) = {2}, then either η(F ) = η(F, u) ∪ η(F, v), or T is

resolved.
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Proof. Let A = η(F, u), B = η(F, v), C = η(F ) \ (η(F, u) ∪ η(F, v)). We may assume that C 6= ∅,
because otherwise the lemma holds. Since 2 ∈ `(F ), it follows from (4.11) that C is a strong clique.

If N(C) is a strong clique, then (2.7) applied to N(C) and C implies that G is resolved, and the

lemma holds. Thus, we may assume that N(C) is not a strong clique. Therefore, since A, B are

strong cliques and N(C) ⊆ A ∪ B, there exist antiadjacent a ∈ A ∩ N(C), b ∈ B ∩ N(C) and a

weakly induced path P from a to b with V (P ∗) ⊆ C and |V (P )| ∈ {3, 4}. But this implies that

|V (P )| ∈ `(F ), a contradiction. This proves (6.2). �

6.2 2-connected strip-structures

We start with trigraphs whose pattern multigraph in the optimal representation is 2-connected.

(6.3) Let G be an F-free nonbasic claw-free graph and let (T,H, η) be an optimal representation of

G. If H is 2-connected, then G is resolved.

Proof. In view of (5.5), we may assume that α(T ) ≥ 4. It follows from (4.1) and the fact that H

is 2-connected that H is either of the B1 type or of the B2 type.

First suppose that H is of the B1 type. Since every edge of H is in a cycle of length 4, 5, or 7, it

follows from (4.1) that `(F ) = {1} for all F ∈ E(H). If there exist F1, F2 ∈ E(H) with F̄1 = F̄2

then {F1, F2} is a cycle that contradicts (4.6). Thus, H has no parallel edges. It follows that T ,

regarded as a graph, is the line graph of H. If H contains nonadjacent clones of vertices of degree 2,

then it follows from (6.1) that G is resolved. So we may assume that H contains no such clones, and

thus U(H) is isomorphic to a graph in B∗1. But now, it is straightforward to check that α(T ) ≤ 3,

a contradiction.

So we may assume that H is of the B2 type. It follows that U(H) is either isomorphic to Km for

some m ∈ {2, 3, 4}, or to K2,t or K+
2,t for some t ≥ 2. We prove the lemma by considering each case

separately.

(i) If U(H) is isomorphic to K2, then there is no F ∗ with `(F ) = {1} for all F ∈ E(H)\{F ∗}.
Suppose that such F ∗ exists. Let u, v be the unique two vertices of H. It follows from the

fact that (H, η) is proper that |E(H)| ≥ 2. Clearly, if all strips of (H, η) are spots, then

α(T ) = 1, a contradiction. Thus, the strip of (H, η) at F ∗ is not a spot. First suppose

that η(F ∗) \ (η(F ∗, u) ∪ η(F ∗, v)) is a strong clique. Then, T is the union of three strong

cliques
⋃{

η(F, u)
∣∣ F ∈ E(H)

}
,
⋃{

η(F, v)
∣∣ F ∈ E(H)

}
, and η(F ∗) \ (η(F ∗, u) ∪ η(F ∗, v)),

and thus α(T ) ≤ 3, a contradiction. Thus, η(F ∗)\ (η(F ∗, u)∪η(F ∗, v)) is not a strong clique.

It follows from (4.11) that the strip of (H, η) at F ∗ is in Z1 and that 2 6∈ `(F ∗). Now, T is a

long circular interval trigraph, a contradiction. This proves (i). �

(ii) If U(H) is isomorphic to K2, then G is resolved.

It follows from the fact that (H, η) is proper that |E(H)| ≥ 2. Let z be maximum such that

z ∈ `(F ∗) for some F ∗ ∈ E(H). It follows from (4.6) that z ≤ 6, and it follows from (i) that

z ≥ 2. Let {u, v} = F̄ ∗ = V (H). Now there are five cases.

33



First suppose that z = 6. It follows that `(F ) = {1} for all F ∈ E(H) \ {F ∗}, contrary to

(i). Next, suppose that z = 5. Let F ∈ E(H) \ {F ∗}. It follows from (4.6) that `(F ) = {2},
contrary to (4.9). Next, suppose that z = 4. It follows from (4.6) that `(F ) ∈ {{1}, {3}}
for all F ∈ E(H) \ {F ∗}. Since, by (4.8), no F ∈ E(H) \ {F ∗} satisfies `(F ) = {3}, it

follows that `(F ) = {1} for all F ∈ E(H) \ {F ∗}, contrary to (i). Now, suppose that z = 3.

It follows from (4.6) that either `(F ) = {1} or `(F ) = {2} for all F ∈ E(H) \ {F ∗}. It

follows from (4.9) that `(F ) 6⊆ {2, 4} for all F ∈ E(H) \ {F ∗}. Therefore, `(F ) = {1} for all

F ∈ E(H) \ {F ∗}, contrary to (i). So we may assume that z = 2. It follows from (4.11) that

for every F ∈ E(H) with `(F ) = {2}, η(F ) = η(F, u) ∪ η(F, v). Hence, T is the union of

two strong cliques, namely
⋃{

η(F, u)
∣∣ F ∈ E(H)

}
and

⋃{
η(F, v)

∣∣ F ∈ E(H), `(F ) = {2}
}

.

Therefore, α(T ) ≤ 2, a contradiction. This proves (ii). �

(iii) If U(H) is isomorphic to K3, then G is resolved.

Let z be maximum such that z ∈ `(F ∗) for some F ∗ ∈ E(H). It follows from (4.6) that

z ≤ 5. Let V (H) = {c1, c2, c3} such that F̄ ∗ = {c1, c2}. Now, there are five cases.

First suppose that z = 5. Then, by (4.6), `(F ) = {1} for all F ∈ E(H) such that F̄ 6= {c1, c2}.
If there exists F ∈ E(H) \ {F ∗} such that F̄ = {c1, c2}, then it follows from (4.6) that

`(F ) = {2}, contrary to (4.9). Thus, no such F exists. It follows from (4.11) that the strip

of (H, η) at F ∗ is in Z1 and that 2 6∈ `(F ∗). But now, T is a long circular interval trigraph, a

contradiction. Next, suppose that z = 4. Let F1, F2 ∈ E(H) be such that F̄1 = {c1, c3} and

F̄2 = {c2, c3}. It follows from (4.6) that exactly one of F1, F2, say F ′, satisfies `(F ′) = {2}.
But now consider C = {F ∗, F1, F2}. It follows that 5 ∈ `(E(C)\F ′), contrary to (4.9). Now,

suppose that z = 3. It follows from (4.8) that `(F ∗) = {2, 3}. Therefore, it follows from (4.9)

that `(F ) = {1} for all F ∈ E(H) with F̄ 6= {c1, c2}. Moreover, it follows from (4.6) and

(4.9) that `(F ) = {1} for all F ∈ E(H) \ {F ∗} with F̄ = {c1, c2}. It follows from (4.11) that

η(F ∗) \ (η(F ∗, c1) ∪ η(F ∗, c2)) is a strong clique. Now, T is the union of three strong cliques⋃{
η(F, c1)

∣∣ F ∈ E(H)
}

,
⋃{

η(F, c2)
∣∣ F ∈ E(H)

}
, and η(F ∗)\(η(F ∗, c1)∪η(F ∗, c2)). Thus,

α(T ) ≤ 3, a contradiction. Next, suppose that z = 2. It follows that `(F ∗) = {2}. Hence

`(F ) = {1} for all F ∈ E(H) with F̄ 6= F̄ ∗. Indeed suppose that for some F1 ∈ E(H) with

F̄1 6= F̄ ∗, we have l(F1) = {2}. Then consider the cycle C = {F ∗, F1, F2, }, where F2 ∈ E(H)

and F̄2 6= F̄ ∗. Now it follows that 3 ∈ `(E(C) \ F1), contrary to (4.9). It follows from (6.2)

that for every F ∈ E(H) with `(F ) = {2}, η(F ) = η(F, c1) ∪ η(F, c2). Hence, T is the

union of two strong cliques
⋃{

η(F, c1)
∣∣ F ∈ E(H)

}
and

⋃{
η(F, c2)

∣∣ F ∈ E(H)
}

. Thus,

α(T ) ≤ 2, a contradiction. Therefore, we may assume that z = 1. Now T is a strong clique

and α(T ) = 1, a contradiction. This proves (iii). �

(iv) If U(H) is isomorphic to K4, then G is resolved.

Since every edge of H is in a cycle of length four, (4.1) implies that `(F ) = {1} for all

F ∈ E(H). It follows that T , regarded as a graph, is the line graph of K4. But now,

α(T ) ≤ 2, a contradiction. This proves (iv). �

(v) For t ≥ 2, if U(H) is isomorphic to K2,t or K+
2,t, then G is resolved.
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Let Y and Z be such that Y is a stable set and Z satisfies |Z| = 2. Write Y = {y1, . . . , yt}
and Z = {z1, z2}. Let E′ ∈ E(H) be the set of edges F ∈ E(H) with F̄ = {z1, z2}. Since

every edge in E(H) \ E′ is in a cycle of length four, (4.1) implies that `(F ) = {1} for all

F ∈ E(H)\E′. But now, y1 and y2 are nonadjacent clones in H that satisfy the assumptions

of (6.1) and therefore G is resolved by (6.1). This proves (v). �

Thus, it follows from (ii), (iii), (iv), and (v) that G is resolved. This proves (6.3). �

6.3 Strip-structures that are not 2-connected

Let T be a connected nonbasic claw-free trigraph and let (T,H, η) be an optimal representation of

T . We say that a block B of H is a leaf-block if B contains exactly one cut-vertex of H. In Figure

3, for example, the block labeled K+
2,4 is a leaf-block. We call a strip-block that corresponds to a

leaf-block in H a leaf strip-block.

Let G be an F-free nonbasic claw-free trigraph and let (T,H, η) be an optimal representation of

G. Let B be a leaf-block of H. Consider the strip-block (D,Y ) of (H, η) at B. Because B is a

leaf-block, there is a unique y ∈ Y . Construct the graph D′ from G|
⋃{

Xv

∣∣ v ∈ V (D)
}

by adding

a new vertex y′ that is strongly complete to Y ′ =
⋃{

Xv

∣∣ v ∈ ND(y)
}

. Then, G contains D′ as an

induced subgraph. If D′ contains no induced heft with end y′, then (D,Y ) is said to be ordinary

(with respect to G).

It turns out that if we consider two leaf strip-blocks of an F-free claw-free trigraph T , then at least

one them has to be ordinary with respect to a fixed F-free thickening of T (we will prove this in

(6.4)). In particular, since the pattern multigraphs of the strip-structures that we are interested in

at this point are not 2-connected, there exists at least one ordinary leaf strip-block. Our strategy

for concluding that graphs with non-2-connected strip-structures are resolved is to consider such

an ordinary leaf strip-block, and find a dominant clique contained in it.

We note that, in the definition of an ordinary leaf strip-block, it is necessary to refer to a specific

graphic thickening, because in general the leaf strip-block that is ordinary depends on the graphic

thickening. Consider, for example, Figure 5. The diagram on the left depicts an F-free nonbasic

claw-free trigraph T and the diagram on the right shows a graphic thickening G of T , where, for

i = 1, 2, the vertices in V ′i correspond to the vertices in Vi. With respect to the graphic thickening

G, the strip-block corresponding to the set V2 in T is ordinary and the strip-block corresponding

to the set V1 in T is not ordinary. But by rotating the graphic thickening by 180 degrees, it is clear

that with respect to a different graphic thickening, it is possible that the left hand side of the cut

edge in T is ordinary. In fact, there are exactly two dominant cliques in G, namely {u1, u2, u3} and

{w1, w2}, which shows that it is not possible to know where to find a dominant clique from the

trigraph alone.

6.3.1 Tools

We need a few lemmas on ordinary leaf strip-blocks.
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Trigraph T

V1 V2

Graphic thickening G of T

V ′
1 V ′

2

Figure 5: An example of a trigraph T (left) for which it is not possible to determine from the trigraph alone which

leaf strip-block is the ordinary block given by (6.4). The graph on the right shows a F-free graphic

thickening of T .

(6.4) Let G be a connected F-free nonbasic claw-free graph and let (T,H, η) be an optimal rep-

resentation of G. Suppose that B1, B2 are two distinct leaf-blocks of H. Then, the strip-block of

(H, η) at at least one of B1, B2 is ordinary.

Proof. Suppose that for i = 1, 2, the strip-block (Di, Yi) of (H, η) at Bi is not ordinary. Let

D′i, y
′
i be as in the definition of the ordinary strip-block (Di, Yi). Because Bi is not ordinary, it

follows that Di has an induced heft Hi with end y′i. Because G is connected and B1 and B2 are

leaf-blocks, it follows that there exists an induced path P = p1-p2- . . . -pk, with k ≥ 2, from a vertex

in N(y′1) ∩ V (H1) to a vertex in N(y′2) ∩ V (H2), and V (P ∗) is disjoint from V (D′1) ∪ V (D′2). It

follows from the definition of a strip-structure that p2 is strongly complete to N(y′1) ∩ V (H1) in G

and pk−1 is strongly complete to N(y′2)∩V (H2) in G. Now, G|V (H1)∪V (H2)∪V (P ) is a skipping

rope, a contradiction. This proves (6.4). �

We have the following useful properties of ordinary strip-blocks:

(6.5) Let G be an F-free nonbasic claw-free graph and let (T,H, η) be an optimal representation of

G. Let B be a leaf-block of H and suppose that the strip-block (D,Y ) of (H, η) at B is ordinary.

Then, all of the following hold:

(a) D contains no weakly induced heft with its end in Y ;

(b) D contains no weakly induced cycle of length at least five;

(c) B is of the B2 type;

(d) for every cycle C in B, `(E(C)) ⊆ {3, 4}.

Proof. Part (a) follows immediately from the definition of D, Y , and from (2.1). For part (b),

suppose that D contains a weakly induced cycle C = c1-c2- . . . -ck-c1 of length k ≥ 5. Since T

is F-free, it follows that k ∈ {5, 7}. Since every vertex in Y is simplicial in D, it follows that

Y ∩ V (C) = ∅. However, since D is connected, there exists a path P from a vertex y ∈ Y to

a vertex in V (C) with interior in V (D) \ Y . From the symmetry, we may write P = p1-p2- . . . -

pm, where m ≥ 2 and p1 = y and pm = c1. Since P is shortest, it follows that, for 1 ≤ j < m− 1,

pj is anticomplete to V (C). We first claim that pm−1 does not have two antiadjacent neighbors

c, c′ ∈ V (C). For suppose it does. Since p1 is a simplicial vertex, it follows that m ≥ 3. But

now, pm−1 is complete to the triad {c, c′, pm−2}, a contradiction. Thus, pm−1 does not have two
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antiadjacent neighbors c, c′ ∈ V (C). If pm−1 is anticomplete to {c2, ck}, then c1 is complete to

the triad {c2, ck, pm−1}, a contradiction. Thus, since pm−1 is not complete to {c2, ck}, we may

assume that pm−1 is strongly adjacent to c2 and strongly antiadjacent to ck. Since every vertex

in V (C) \ {c1, c2} is antiadjacent to one of c1, c2, it follows that pm−1 is strongly anticomplete to

V (C) \ {c1, c2}. Now, T |(V (P ) ∪ V (C)) is a weakly induced heft with end y ∈ Y , a contradiction.

This proves (b). Part (c) follows from part (b), (4.1), and the fact that if B is of the B1 type, then

D contains a weakly induced cycle of length at least five. Part (d) follows immediately from part

(b) and (4.6). This proves (6.5). �

This lemma implies that some types of strips Zi cannot occur in ordinary blocks.

(6.6) Let G be an F-free nonbasic claw-free graph and let (T,H, η) be an optimal representation of

G. Let B be a leaf-block of H such that the strip-block of (H, η) at B is ordinary, and let F ∈ E(B).

Then, the strip of (H, η) at F is not isomorphic to a member of Z4 ∪ Z7 ∪ Z8.

Proof. Let (J, Z) be the strip of (H, η) at F . For notational convenience, we may assume that

(J, Z) is a member of Z4∪Z7∪Z8 (as opposed to isomorphic to a member of that family). We will

go through the classes of strips one by one. It follows from (6.5) that J contains no weakly induced

cycle of length five. First suppose that (J, Z) ∈ Z4. Let T, a1, a2, c1, b2, b1 be as in the definition

of Z4. Then, a1-a2-c1-b2-b1-a1 is a weakly induced cycle of length five in J , a contradiction. Thus,

(J, Z) 6∈ Z4. Next, suppose that (J, Z) ∈ Z7. Let H,H ′, h1, . . . , h5 be as in the definition of

Z7. Since h1-h2- · · · -h5-h1 is a cycle of length five in H, it follows that J has an induced cycle of

length five, contrary to (6.5). Now, suppose that (J, Z) ∈ Z8. Let A,B,C,X, d1, d3, d4 be as in the

definition of Z8. Because A \X is not strongly complete to B \X, there exist antiadjacent a ∈ A
and b ∈ B. But now, d1-a-d3-d4-b-d1 is a weakly induced cycle of length five, a contradiction. This

proves (6.6). �

The following lemma is a counterpart of (2.10) for ordinary strip-blocks.

(6.7) Let G be an F-free nonbasic claw-free graph and let (T,H, η) be an optimal representation of

G. Let B be a leaf-block of H and suppose that the strip-block (D,Y ) of (H, η) at B is ordinary.

Suppose that (K1,K2) is a homogeneous pair of cliques in D such that K1 is not strongly complete

and not strongly anticomplete to K2, and V (K1) ∪ V (K2) is strongly anticomplete to Y . For

{i, j} = {1, 2}, let Ni = N(Ki) \N [Kj ]. If the unique vertex y ∈ Y has a neighbor in both N1 and

N2, then G is resolved.

Proof. Let M = V (T ) \ (N [K1] ∪ N [K2]). For v ∈ V (T ), let Xv denote the corresponding

clique in G. Let K ′1 =
⋃{

Xv

∣∣ v ∈ K1

}
and define K ′2, N

′
1, N

′
2, Y

′, M ′ analogously. Let Z ′ =

(N(K ′1)∩N(K ′2)) \ (K ′1 ∪K ′2). Since (K1,K2) is a homogeneous pair of cliques, it follows that, for

{i, j} = {1, 2}, N ′i is complete to K ′i and anticomplete to K ′j , and Z ′ is complete to K ′1∪K ′2. Hence,

from the fact that K ′1 is not anticomplete to K ′2 and the fact that G is claw-free, it follows that N ′1
and N ′2 are cliques. Z ′ is anticomplete to M ′, because if z ∈ Z ′ has a neighbor u ∈ M ′, then let

a ∈ K ′1, b ∈ K ′2 be nonadjacent and observe that z is complete to the triad {a, b, u}, contrary to
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(2.2). Notice that Y ′ ⊆M ′.
From the assumptions of the lemma, it follows that there exist x1 ∈ N ′1, x2 ∈ N ′2 and y ∈ Y ′ such

that y is complete to {x1, x2}. It follows from the fact that the vertex in Y is simplicial in T that

x1 and x2 are adjacent. We start with the following claim.

(i) Suppose that there exist a1, a2 ∈ K ′1, b ∈ K ′2 such that b is adjacent to a1 and nonadjacent

to a2. Then, Z ′ is complete to N ′1.

We may assume that Z ′ 6= ∅, because otherwise we are done. We first claim that Z ′ is

complete to x1. For suppose that z ∈ Z ′ is nonadjacent to x1. If z is nonadjacent to

x2, then x1-a2-z-b-x2-x1 is an induced cycle of length five, a contradiction. Therefore, z is

adjacent to x2. But now, G|{y, x1, a1, z, x2, a2, b} is an induced heft H3(0) with end y ∈ Y ′,
a contradiction. This proves that Z ′ is complete to x1.

Now let p ∈ N ′1 and suppose that p is nonadjacent to some z ∈ Z ′. Since x1 is complete

to {p, y, z}, it follows from (2.2) that p is adjacent to y. Since y is a simplicial vertex, and

{p, x2} ∈ N(y), it follows that p is adjacent to x2. Now, it follows from the previous argument

that p is complete to Z ′, a contradiction. This proves (i). �

We claim that Z ′ is a clique. For suppose that z, z′ ∈ Z ′ are nonadjacent. From the fact that K ′1
is not complete and not anticomplete to K ′2, it follows that either there exist a1, a2 ∈ K ′1, b ∈ K ′2
such that b is adjacent to a1 and nonadjacent to a2, or there exist a1, a2 ∈ K ′2, b ∈ K ′1 such that b is

adjacent to a1 and nonadjacent to a2. Thus, it follows from (i) that Z ′ is complete to at least one

of N ′1, N
′
2. We may assume from the symmetry that Z ′ is complete to N ′1. But now x1 is complete

to the triad {y, z, z′}, contrary to (2.2). Thus, Z ′ is a clique. The last claim deals with an easy

case:

(ii) If some vertex in K ′1 is complete to K ′2, then the lemma holds.

Suppose that a1 ∈ K ′1 is complete to K ′2. First observe that no vertex in K ′1 has both

a neighbor and a nonneighbor in K ′2, because if a2 ∈ K ′1 has a neighbor b1 ∈ K ′2 and a

nonneighbor b2 ∈ K ′2, then G|{x, x1, x2, a1, a2, b1, b2} is an induced heft H3(0) with end

y ∈ Y ′, a contradiction. It follows that every vertex in K ′1 is either complete or anticomplete

toK ′2. SinceK ′1 is not complete toK ′2, it follows that there exists a2 ∈ K ′1 that is anticomplete

to K ′2. Now it follows from (i) that Z ′ is complete to N ′1. Thus, a2 is a simplicial vertex and

the lemma holds by (2.8). This proves (ii). �

It follows from (ii) and the symmetry that we may assume that, for {i, j} = {1, 2}, no vertex in

K ′i is complete to K ′j . Thus, it follows from (i) and the fact that K ′1 is not complete and not

anticomplete to K ′2 that Z ′ is complete to N ′1∪N ′2. We claim that K = K ′1∪Z ′∪N ′1 is a dominant

clique. For suppose not. Then there exists a maximal stable set S in G such that S ∩K = ∅. Let

a ∈ K ′1. Since N(a) ⊆ K ∪K ′2, it follows that a has a neighbor in S ∩K ′2, because otherwise we

may add a to S and obtain a larger stable set. In particular, S ∩K ′2 6= ∅ and, since K ′2 is a clique,

|S ∩ K ′2| = 1. But now, the unique vertex v in S ∩ K ′2 is complete to K ′1, a contradiction. This

proves that K is a dominant clique, thus proving (6.7). �
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6.3.2 One-edge ordinary leaf-blocks

The most tedious ordinary leaf blocks that we have to deal with are the blocks B that consist of

just one edge. In principle, there are 15 different types of strips that we need to deal with. Lemma

(4.4) and (6.6) already ruled out six of them. Lemmas (6.8) to (6.19) deal with the remaining nine

types of strips.

(6.8) Let G be an F-free nonbasic claw-free graph and let (T,H, η) be an optimal representation of

G. Let B be a leaf block of H with E(B) = {F} and suppose that the strip-block (D,Y ) of (H, η)

at B is ordinary. If the strip of (H, η) at F is isomorphic to a member of Z1, then G is resolved.

Proof. Let (J, Z) be the strip of (H, η) at F . Write F̄ = {f1, f2}. From the symmetry, we

may assume that f1 is a cut-vertex of H. Since J is a linear interval trigraph, we may order the

vertices of V (J \ Z) as v1, . . . , vn such that for 1 ≤ i < k ≤ j ≤ n, if vi is adjacent to vj , then vk
is strongly adjacent to vi and vj . From the symmetry, we may assume that v1 ∈ η(F, f1). Now

let i be smallest such that vn is adjacent to vi. It follows from the definition of v1, . . . , vn that

N(vn) = {vi, vi+1, . . . , vn−1} and N(vn) is a strong clique. Therefore, vn is a simplicial vertex and

the result follows from (2.8). This proves (6.8). �

(6.9) Let G be an F-free nonbasic claw-free graph and let (T,H, η) be an optimal representation of

G. Let B be a leaf block of H with E(B) = {F} and suppose that the strip-block (D,X) of (H, η)

at B is ordinary. If the strip of (H, η) at F is isomorphic to a member of Z2, then G is resolved.

Proof. Let (J, Z) be the strip of (H, η) at F . For convenience, we identify the vertices of J with

the vertices of the member of Z2 to which (J, Z) is isomorphic. It follows from (6.5) that J contains

no weakly induced cycle of length five. Let A,B,C,X, n, {ai}, {bi}, {ci} be as in the definition of

Z2. Let A′ = A \ X, B′ = B \ X, C ′ = C \ X. Let {f1, f2} = F̄ . We may assume that f1 is

a cut-vertex of H and, from the symmetry, that A′ = η(F, f1). We first make the following easy

observation:

(i) There are no distinct i, j, k ∈ [n] such that ai, aj ∈ A′, bi, bk ∈ B′ and ci ∈ C ′.
Suppose that such ai, aj , bi, bk, ci exist. Then, ci-aj-ai-bi-bk-ci is a weakly induced cycle of

length five, a contradiction. �

First suppose that |B′| = 1. Let i be such that bi ∈ B′. Since N(bi) = (C ′ \ {ci}) ∪ {ai}, it follows

from the definition of Z2 that bi is simplicial and hence G is resolved by (2.8). So we may assume

that |B′| ≥ 2.

(ii) If there exists i ∈ [n] such that ai ∈ A′, bi ∈ B′, ci ∈ C ′, then G is resolved.

Without loss of generality we may assume that i = 1. It follows from the definition of Z2

that ci is strongly anticomplete to {a1, b1}, and a1, b1 are strongly adjacent. First suppose

that there exists j ∈ {2, . . . , n} such that aj ∈ A′ and bj ∈ B′. We may assume that j = 2.

It follows from (i) that A = {a1, b2} and B = {b1, b2}. If a2 is semiadjacent to b2, then a1-

a2-c1-b2-b1-a1 is a weakly induced cycle of length five, a contradiction. Thus, a2 is strongly
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adjacent to b2.

We claim that K = {a2, b2} ∪ (C ′ \ {c2}) is a dominant clique in T . Clearly, K is a strong

clique. So suppose that there exists a stable set S ⊆ V (T ) that covers K. Since, in particular,

S covers c1. Because {a1, b1, c2} is a strong clique, it follows that S ∩ {a1, b1, c2} = {c2}.
But now, no vertex in S covers b2, a contradiction. Thus K is a dominant clique and G is

resolved by (2.6).

So we may assume that for no j ∈ {2, . . . , n}, both aj ∈ A′ and bj ∈ B′. By this and (i),

it follows from the fact that |B′| ≥ 2 that A′ = {a1}. Now let X1 = (B \ {b1}) ∪ {c1} and

X2 = (C \ {c1}) ∪ {a1, b1}. Observe that X1 and X2 are strong cliques. Since N(X2) ⊆ X1,

it follows from (2.7) that G is resolved. This proves (ii). �

In view of (ii), we may assume that there is no i ∈ [n] such that ai ∈ A′, bi ∈ B′, ci ∈ C ′. Now let

B∗ = {bi : i ∈ [n], ci ∈ C ′}. It follows that B∗ is strongly anticomplete to A′ and B′ \B∗ is strongly

complete to C. If B∗ 6= ∅, then B∗ is a strong clique, N(B∗) ⊆ (B′ \B∗)∪C, and G is resolved by

(2.7). So we may assume that B∗ = ∅. Now, B′ ∪C is a strong clique and N(B′ ∪C) ⊆ A′, and G

is resolved by (2.7). This proves (6.9). �

(6.10) Let G be an F-free nonbasic claw-free graph and let (T,H, η) be an optimal representation

of G. Let B be a leaf block of H with E(B) = {F} and suppose that the strip-block (D,Y ) of (H, η)

at B is ordinary. If the strip of (H, η) at F is isomorphic to a member of Z3, then G is resolved.

Proof. Let (J, Z) be the strip of (H, η) at F . For convenience, we identify the vertices of J with

the vertices of the member of Z3 to which (J, Z) is isomorphic. It follows from (6.5) that J contains

no weakly induced cycle of length five. Let H,h1, . . . , h5, Z be as in the definition of Z3. Write

F̄ = {f1, f2}. From the symmetry, we may assume that f1 is a cut-vertex of H and we may assume

that h2h3 ∈ η(F, f1).

(i) If there exists v ∈ V (H) that is adjacent to h2 and not to h3, h4, then T is resolved.

Suppose such v exists. It follows from the definition of a line trigraph that h2v is a simplicial

vertex in T and hence T is resolved by (2.8). This proves (i). �

By (i) and the symmetry, we may assume that no vertex is adjacent to h2 and nonadjacent to

h3, h4, and that no vertex is adjacent to h4 and nonadjacent to h2, h3. Thus, we may partition

V (H) \ {h1, h2, h3, h4, h5} into sets X,Y2, Y3, Y4,W such that X is complete to {h2, h3, h4} and, for

i ∈ {2, 3, 4}, Yi is anticomplete to hi and complete to {h2, h3, h4} \ {hi}, and W is complete to h3
and anticomplete to {h2, h4}.
(ii) If X ∪ Y3 6= ∅, then W = ∅.

Suppose there exists x ∈ X ∪Y3 and w ∈W . Then, h2h3-h3w-h3h4-h4x-h3x-h2h3 is a weakly

induced cycle of length five, a contradiction. This proves (ii). �

(iii) If X 6= ∅, then G is resolved.
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Suppose that X 6= ∅. It follows from (ii) that W = ∅. Let x ∈ X. If there exists y2 ∈ Y2,
then y2-h3-h4-x-h2-y2 is a cycle of length five, and thus, by the definition of a line trigraph,

J contains a weakly induced cycle of length five, a contradiction. If there exists y3 ∈ Y3,

then y3-h2-x-h3-h4-y3 is a cycle of length five, a contradiction. If there exists x′ ∈ X, x′ 6= x,

then h2-x-h3-x
′-h4-h2 is a cycle of length five in H, a contradiction. From this and the

symmetry, it follows that Y2 = Y3 = Y4 = ∅ and |X| = 1. Now let A = {h3h4, h4x} and let

B = {h2h3, h2x, h3x}. Now, A and B are strong cliques and N(A) = B. Therefore, G is

resolved by (2.7). This proves (iii). �

It follows from (iii) that we may assume that X = ∅. Now first suppose that Y3 6= ∅. It follows

from (ii) that W = ∅. If there exists y4 ∈ Y4, then h2-y4-h3-h4-y3-h2 is a cycle of length five,

and hence T contains a weakly induced cycle of length five, a contradiction. Therefore, by the

symmetry, Y2 = Y4 = ∅. Let A = {h4y3
∣∣ y3 ∈ Y3} ∪ {h3h4} and let B = {h2y3

∣∣ y3 ∈ Y3} ∪ {h2h3}.
Then, N(A) ⊆ N(B) and A and B are strong cliques and, thus, G is resolved by (2.7). Thus,

we may assume that Y3 = ∅. Now, let A = {h4y2
∣∣ y2 ∈ Y2} ∪ {h3h4} and let B = {h3y

∣∣ y ∈
Y2 ∪ Y4 ∪ W} ∪ {h2h3}. Then, N(A) ⊆ N(B) and A and B are strong cliques and, thus, G is

resolved by (2.7). This proves (6.10). �

For the next type of strip, we need a lemma from [3]. Before we can state the result, we need some

definitions. Let C̄7 be the complement graph of a 7-cycle. We say that a trigraph T is of the C̄7

type if V (T ) can be partitioned into seven nonempty strong cliques W1, . . . ,W7 such that for all

i ∈ [7], (subscript arithmetic is modulo 7)

(1) Wi is strongly complete to Wi+1;

(2) Wi is complete to Wi+2;

(3) Wi is strongly anticomplete to Wi+3.

For a trigraph T , let A1, A2, A3, A4, B1, B2, B3, B4 ⊆ V (T ) be strong cliques such that, for i =

1, 2, 3, 4, (with subscript arithmetic modulo 4)

(1) if i ∈ {1, 3}, then Ai is complete to Ai+1, and if i ∈ {2, 4}, then Ai and Ai+1 are linked, and

(2) Ai is strongly anticomplete to Ai+2, and

(3) Bi is strongly complete to Ai ∪Ai+1 and strongly anticomplete to Ai+2 ∪Ai+3, and

(4) Bi is strongly anticomplete to Bj for i 6= j, and

(5) if Bi 6= ∅, then Ai is complete to Ai+1, and

(6) no vertex in Ai has antineighbors in both Ai−1 and Ai+1.

We call such (A1, . . . , A4, B1, . . . , B4) a C4-structure in T . If, for T , there exists a C4-structure

(A1, . . . , A4, B1, . . . , B4) such that V (T ) = A1 ∪ . . .∪A4 ∪B1 ∪ . . .∪B4, then we say that T admits

a C4-structure. The following lemma states that there are three types of long circular interval

trigraphs that have no semiholes of length at least five:

(6.11) ((5.7) in [3]) Let T be a long circular interval graph that has no semihole of length at least

five. Then, either
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(i) T is a linear interval trigraph, or

(ii) T is of the C̄7 type, or

(iii) T admits a C4-structure.

This allows use to deal with strips that are circular interval trigraphs.

(6.12) Let G be an F-free nonbasic claw-free graph and let (T,H, η) be an optimal representation

of G. Let B be a leaf block of H with E(B) = {F} and suppose that the strip-block (D,Y ) of (H, η)

at B is ordinary. If the strip of (H, η) at F is isomorphic to a member of Z6, then G is resolved.

Proof. Let (J, Z) be the strip of (H, η) at F . It follows from the definition of Z6 that J is a long

circular interval graph that contains a simplicial vertex z ∈ Z. We may assume that J is not a

linear interval trigraph, because then the result follows from (6.8). It follows from (6.5) and the fact

that G is F-free that J contains no weakly induced cycle of length at least five, and in particular,

J contains no semihole of length at least five. We may assume that G is not resolved.

(i) J admits a C4-structure (A1, . . . , A4, B1, . . . , B4) and there exists i ∈ [4], such that z ∈ Bi

and Bj = ∅ for j ∈ [4] \ {i}.
Since a trigraph of the C̄7 type contains no simplicial vertex, it follows from (6.11) that J

admits a C4-structure (A1, . . . , A4, B1, . . . , B4). It follows from properties (1) and (2) of a

C4-structure that no vertex in A1 ∪ A2 ∪ A3 ∪ A4 is simplicial, and hence that z ∈ Bi for

some i ∈ [4]. It follows from property (5) that Ai is strongly complete to Ai+1. Now suppose

that Bj 6= ∅ for some j ∈ [4] \ {i}. By properties (3), (4) and (5), every vertex in Bj is

simplicial in T and therefore G is resolved by (2.8), a contradiction. It follows that Bj = ∅
for all j ∈ [4] \ {i}. This proves (i). �

Let A1, . . . , A4, i be as in the statement of (i).

(ii) Ai is strongly complete to Ai+3 and Ai+2 is strongly complete to Ai+1.

We first claim that there exist antiadjacent ai+2 ∈ Ai+2 and ai+3 ∈ Ai+3. For suppose

not. Then, Ai+2 ∪ Ai+3 and Ai ∪ Ai+1 are strong cliques and N(Ai+2 ∪ Ai+3) ⊆ Ai ∪ Ai+1.

Therefore, G is resolved by (2.7), a contradiction. This proves the claim.

It follows from property (6) that ai+2 is strongly complete to Ai+1, and ai+3 is strongly

complete to Ai. Now suppose that there exist antiadjacent ai ∈ Ai and a′i+3 ∈ Ai+3. Then,

by property (6), a′i+3 is strongly complete to Ai+2. Now, ai-ai+1-ai+2-a
′
i+3-ai+3-ai, with

ai ∈ Ai, is a weakly induced cycle of length five, a contradiction. This proves that Ai is

strongly complete to Ai+3 and therefore, by the symmetry, that Ai+2 is strongly complete to

Ai+1, completing the proof of (ii). �

It follows from (ii) that (Ai+2, Ai+3) is a homogeneous pair of cliques that satisfies the assumptions

of (6.7), and therefore G is resolved by (6.7). This proves (6.12). �

(6.13) Let G be an F-free nonbasic claw-free graph and let (T,H, η) be an optimal representation
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of G. Let B be a leaf block of H with E(B) = {F} and suppose that the strip-block (D,Y ) of (H, η)

at B is ordinary. If the strip of (H, η) at F is isomorphic to a member of Z9, then G is resolved.

Proof. Let (J, Z) be the strip of (H, η) at F . It follows from (6.5) that J contains no weakly

induced cycle of length five. We may assume that G is not resolved. For convenience, we identify

the vertices of J with the vertices of the member of Z9 to which (J, Z) is isomorphic.

Let A, B, C, D, {ai}, {bi}, and n be as in the definition of Z9. Recall that, every vertex d ∈ D
is strongly adjacent to one of ai, bi, i ∈ [n], and strongly antiadjacent to the other. For i ∈ [n], we

say that two vertices d1, d2 ∈ D agree on aibi if {d1, d2} is strongly complete to one of ai, bi, and

strongly anticomplete to the other. They disagree on aibi otherwise.

(i) If d1, d2 ∈ D disagree on aibi for some i ∈ [n], then d1, d2 disagree on ajbj for every j ∈ [n].

From the symmetry, we may assume that d1, d2 disagree on a1b1 and d1, d2 agree on a2b2.

From the symmetry, we may also assume that d1 is strongly complete to {a1, a2} and strongly

anticomplete to {b1, b2}, and d2 is strongly complete to {b1, a2} and strongly anticomplete to

{a1, b2}. But now, d1-a1-b2-b1-d2-d1 is a weakly induced cycle of length five, a contradiction.

This proves (i). �

It follows from (i) that D may be partitioned into two sets D1, D2, such that, for i = 1, 2, the

vertices in Di agree on all pairs ajbj , j ∈ [n], and whenever d1 ∈ D1 and d2 ∈ D2, then d1, d2
disagree on all pairs ajbj , j ∈ [n]. For {i, j} = {1, 2}, let Ai ⊆ A, Bi ⊆ B be the vertices in A,

B, respectively, that are strongly complete to Di and strongly anticomplete to Dj . It follows that

A = A1 ∪A2, B = B1 ∪B2, D = D1 ∪D2 and, for i = 1, 2, Ai ∪Bi ∪Di is a strong clique.

(ii) A1, A2, B1, B2 are all nonempty, A1 is strongly anticomplete to B2, and A2 is strongly anti-

complete to B1.

Since, for {i, j} = {1, 2}, every vertex in Ai has an antineighbor in Bj and vice versa, it follows

that Ai, Bj are either both empty or both nonempty. If A1 ∪ B2 = ∅, then C ∪ A2 ∪ B1 is

a strong clique, N(C ∪ A2 ∪ B1) ⊆ D, and D is a strong clique, and thus G is resolved by

(2.7), a contradiction. Hence, by the symmetry, A1, A2, B1, B2 are all nonempty.

Since every vertex in A1 has an antineighbor in B, it follows that A1 is not strongly complete

to B2. Now observe that (A1, B2) is a homogeneous pair of cliques that satisfies the assump-

tions of (6.7). It follows from (6.7) and the fact that G is not resolved that A1 is strongly

anticomplete to B2. Symmetrically, it follows that A2 is strongly anticomplete to B1, thus

proving (ii). �

Now suppose for a contradiction that D1 = ∅. It follows that X1 = A1 ∪B1 ∪ C is a strong clique

and, since D1 = ∅, N(X1) ⊆ A2 ∪B2 ∪D2, which is also a strong clique. Therefore, it follows from

(2.7) that G is resolved. It follows from the symmetry that D1 and D2 are both nonempty.

(iii) C is strongly complete to at least one of D1, D2.

If c ∈ C has antineighbors d1 ∈ D1, d2 ∈ D2, then d1-a1-c-b2-d2-d1 with a1 ∈ A1, b2 ∈ B2 is

a weakly induced cycle of length five, a contradiction. We may assume that some c1 ∈ C has
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an antineighbor d1 ∈ D1, and some c2 ∈ C has an antineighbor d2 ∈ D2. By the previous

argument, c1 6= c2, c1 is strongly adjacent to d2, and c2 is strongly adjacent to d1. Let a ∈ A1

and b ∈ B2. Then, J |{y, d1, c2, c1, d2, a, b} contains a weakly induced heft H3(0) with end

y ∈ Y , contrary to (6.5). This proves (iii). �

So we may assume that C is strongly complete to D1. Now, let K = A1 ∪B1 ∪D1 ∪ C. We claim

that K is a dominant clique in T . For suppose that there exists a stable set S ⊆ V (T ) that covers

K. Since, in particular, S covers B1, it follows that S ∩ A2 6= ∅. Since A2 ∪ B2 ∪ D2 is a strong

clique, it follows that |S ∩ (A2 ∪ B2 ∪ D2)| = 1. But this implies that S does not cover A1, a

contradiction. Thus, K is a dominant clique in T and G is resolved by (2.6). This proves (6.13).

�

In the remaining cases, we will always deal with strips that are hex-expansions of three-cliqued

strips. We first prove a useful lemma on hex-expansions:

(6.14) Let G be an F-free nonbasic claw-free graph and let (T,H, η) be an optimal representation

of G. Let B be a leaf block of H with E(B) = {F}. Suppose that the strip block of (H, η) at B is

ordinary and that the strip of (H, η) at F is a trigraph that is a hex-expansion of a three-cliqued

trigraph (T ′, A,B,C). Let V1, V2, V3 be as in the definition of the hex-expansion. Then, either:

(a) G is resolved, or

(b) B and C are nonempty, and V1 ∪ V2 ∪ V3 is a strong clique.

Proof. Let (J, Z) be the strip of (H, η) at F . Let (T ′, A,B,C) be such that J is a hex-expansion

of (T ′, A,B,C) with z ∈ A, and let V1, V2, V3 be as in the definition of the hex-expansion, i.e., V1 is

strongly complete to B∪C, V2 is strongly complete to A∪C, and V3 is strongly complete to A∪B.

It follows from (6.5) that J contains no weakly induced cycle of length five. We may assume that

G is not resolved, because otherwise outcome (a) holds.

First suppose that V1 ∪ V2 ∪ V3 is a strong clique. If B is empty, then V1 ∪C ∪ V2 is a strong clique

that only has neighbors in the strong clique A ∪ V2 ∪ V3, and hence G is resolved by (2.7). Thus,

by the symmetry, B and C are both nonempty, and hence outcome (b) holds. So we may assume

that V1 ∪ V2 ∪ V3 is not a strong clique.

Next, if B is strongly complete to C, then B ∪C ∪ V1 is a strong clique that only has neighbors in

the strong clique A1 ∪ V2 ∪ V3, and hence G is resolved by (2.7), a contradiction. It follows that B

is not strongly complete to C,

(i) V1 is strongly complete to one of V2, V3.

Since B is not strongly complete to C, there exist antiadjacent b ∈ B, c ∈ C. First suppose

that v1 ∈ V1 has antineighbors v2 ∈ V2 and v3 ∈ V3. Then, v2-c-v1-b-v3-v2 is a weakly induced

cycle of length five, a contradiction. This proves that no vertex in V1 has an antineighbor

in both V2 and V3. So we may assume that there exist antiadjacent v1 ∈ V1, v2 ∈ V2 and

antiadjacent v′1 ∈ V2 and v3 ∈ V3. It follows that v1 is strongly adjacent to v3 and v′1 is

strongly adjacent to v2. Now, J |{z, v1, v′1, v2, v3, b, c} contains a weakly induced heft H3(0)

with end z ∈ Z, a contradiction. This proves (i). �
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In view of (i) and the symmetry, we may assume that V1 is strongly complete to V2 and V1 is not

strongly complete to V3. Let C ′ ⊆ C be all vertices in C that have a neighbor in A.

(ii) C ′ is strongly complete to B.

Suppose that c ∈ C ′ has an antineighbor b ∈ B. Since c ∈ C ′, c has a neighbor a ∈ A.

Because a is not complete to the triad {b, c, z}, it follows that a is strongly antiadjacent to

b. Now, v3-a-c-v1-b-v3, with v1 ∈ V1 and v3 ∈ V3 antiadjacent, is a weakly induced cycle of

length five, a contradiction. This proves (ii). �

Since B is not strongly complete to C, it follows that C \C ′ 6= ∅. If V2 = ∅, then C \C ′ is a strong

clique, N(C \C ′) ⊆ B ∪C ′ ∪ V1 is a strong clique, and thus G is resolved by (2.7), a contradiction.

Therefore, V2 6= ∅.
(iii) There are no a ∈ A, b, b′ ∈ B, c ∈ C such that both a and c are mixed on {b, b′}.

Suppose that such a, b, b′, c′ exist. From the symmetry, we may assume that a is adjacent to

b and antiadjacent to b′. Because C ′ is strongly complete to B, it follows that c ∈ C \ C ′.
Thus, c is strongly antiadjacent to a. If c is adjacent to b and antiadjacent to c′, then b is

complete to the triad {a, b′, c}, contrary to (2.2). Thus, c is adjacent to b′ and antiadjacent to

b. Let v2 ∈ V2. Now, v2-a-b-b′-c-v2 is a weakly induced cycle of length five, a contradiction.

This proves (iii). �

Since B is not strongly complete to C, it follows from (ii) that some b ∈ B and c ∈ C \ C ′ are

antiadjacent. If b and c are semiadjacent, then G is resolved by (6.7) applied to b-c-v2-v1-b with

v1 ∈ V1 and v2 ∈ V2, a contradiction. Thus, c ∈ C is not semiadjacent to any vertex in B. If c is

strongly anticomplete to B, then c is simplicial and thus G is resolved by (2.8), a contradiction.

Hence, c has a strong neighbor b′ ∈ B. Therefore, c is mixed on {b, b′} and hence, by (iii), no

vertex in A is mixed on {b, b′}. Since every vertex in B \ {b, b′} is adjacent to one of b, b′, it follows

that no vertex in A is mixed on B. Now, (B,C) is a homogeneous pair of cliques that satisfies (6.7)

and hence G is resolved by (6.7), a contradiction. This proves (6.14). �

(6.15) Let G be an F-free nonbasic claw-free graph and let (T,H, η) be an optimal representation

of G. Let B be a leaf block of H with E(B) = {F} and suppose that the strip-block (D,Y ) of (H, η)

at B is ordinary. If the strip of (H, η) at F is isomorphic to a member of Z10, then G is resolved.

Proof. Let a0, a1, a2, a3, b0, b1, b2, b3, c1, c2, A,B,C,X be as in the definition of Z10. Let V1, V2, V3
be as in the definition of the hex-expansion, i.e., V1 is strongly complete to B ∪ C, V2 is strongly

complete to A∪C, and V3 is strongly complete to A∪B. It follows from (6.14) that we may assume

that V1 ∪V2 ∪V3 is a strong clique. We first note that if {b2, b3} ⊆ X, then N(c1) = V1 ∪V2 ∪{c2},
and hence c1 is a simplicial vertex. Therefore, by (2.8), we may assume that at least one of b2, b3
is not in X. It follows from the fact that either a2 ∈ X or {b2, b3} ⊆ X, that a2 ∈ X. If d ∈ X,

then it follows that N(b0) = {b1, b2, b3}∪V1∪V3 and hence b0 is a simplicial vertex. Thus, by (2.8),

we may assume that d 6∈ X. Now, if b2 6∈ X, then b0-d-a1-c2-c1-b2-b0 is a weakly induced cycle of

length six, a contradiction. Therefore, b2 ∈ X and b3 6∈ X. Now, b0-d-a1-c2-c1-b3-b0 is a weakly
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induced cycle of length six, a contradiction. This proves (6.15). �

(6.16) Let G be an F-free nonbasic claw-free graph and let (T,H, η) be an optimal representation

of G. Let B be a leaf block of H with E(B) = {F} and suppose that the strip-block (D,Y ) of (H, η)

at B is ordinary. If the strip of (H, η) at F is isomorphic to a member of Z11, then G is resolved.

Proof. Let (J, Z) be the strip of (H, η) at F . It follows from (6.5) that J contains no weakly induced

cycle of length five. Let a0, b0, A,B,C,X be as in the definition of Z11 Let A′ = A\(X∪{a0}), B′ =
B \ (X ∪ {b0}), C ′ = C \X. Let V1, V2, V3 be as in the definition of the hex-expansion, i.e., V1 is

strongly complete to B′ ∪ C ′, V2 is strongly complete to A′ ∪ C ′, and V3 is strongly complete to

A′ ∪B′.
It follows from (6.14) that we may assume that V1 ∪V2 ∪V3 is a strong clique, and B′ is nonempty.

If a0 ∈ X or a0 is strongly antiadjacent to b0, then N(b0) = B′∪V1∪V3 and hence b0 is a simplicial

vertex, and G is resolved by (2.8). So we may assume that a0 6∈ X and a0 is semiadjacent to b0.

We claim that N(C) is a strong clique. For suppose not. Then there exist antiadjacent u1, u2 ∈
N(C). Since N(C) ⊆ A′ ∪B′ ∪ V1 ∪ V2, B′ is strongly complete to V1, and A′ is strongly complete

to V2, we may assume that u1 ∈ A′ ∪ V2 and u2 ∈ B′ ∪ V1. Because u1, u2 ∈ N(C), there exists a

weakly induced path P from u1 to v2 such that V (P ∗) ⊆ C and |V (P )| ∈ {3, 4}. Now, a0-u1-P -u2-

b0-a0 is a weakly induced cycle of length five or six, a contradiction. �

Before we prove the next lemma, we need a definition and a corresponding result from [3]. Let

T be a long circular interval trigraph, and let Σ be a circle with V (T ) ⊆ Σ, and F1, . . . , Fk ⊆ Σ,

as in the definition of long circular interval trigraph. By a line we mean either a subset X ⊆
V (T ) with |X| = 1, or a subset of some Fi homeomorphic to the closed unit interval, with both

end-points in V (T ). Let L1, L2, L3 be pairwise disjoint lines with V (T ) ⊆ L1 ∪ L2 ∪ L3. Then

(T, V (T ) ∩ L1, V (T ) ∩ L2, V (T ) ∩ L3) is a three-cliqued claw-free trigraph. We denote by T C2 the

class of such three-cliqued trigraphs with the additional property that every vertex is in a triad.

(6.17) ((5.16) in [3]) Every (T, L1, L2, L3) ∈ TC2 is either a linear interval trigraph or contains a

semihole of length at least five.

(6.18) Let G be an F-free nonbasic claw-free graph and let (T,H, η) be an optimal representation

of G. Let B be a leaf block of H with E(B) = {F} and suppose that the strip-block (D,Y ) of (H, η)

at B is ordinary. If the strip of (H, η) at F is isomorphic to a member of Z13, then G is resolved.

Proof. Let (J, Z) be the strip of (H, η) at F . Let z be the unique vertex in Z. Let T ′, L1, L2, L3

be as in the definition of Z13. Let V1, V2, V3 be as in the definition of the hex-expansion, i.e., V1 is

strongly complete to L2 ∪ L3, V2 is strongly complete to L1 ∪ L3, and V3 is strongly complete to

L1 ∪L2. It follows from (6.14) that we may assume that V1 ∪ V2 ∪ V3 is a strong clique. Therefore,

from the symmetry, we may assume that z ∈ L1. Notice that (T ′, V (T ′)∩L1, V (T ′)∩L2, V (T ′)∩L3)

is a three-cliqued claw-free trigraph that belongs to the class T C2. It follows from (6.17) that either

T ′ contains a semihole of length at least five, or T ′ is a linear interval trigraph. Suppose first that
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T ′ contains a semihole of length at least five. Then, since T ′ is an induced subtrigraph of J , it

follows that J contains a semihole of length at least five, contrary to (6.5). This proves that T ′

is a linear interval trigraph. It follows that at least one of the pairs (L1, L2), (L1, L3), (L2, L3) is

strongly anticomplete.

First, assume that L2 is strongly anticomplete to L3. We may assume that V1 6= ∅, because

otherwise L2 and L1 ∪ V3 are nonempty strong cliques and N(L2) ⊆ L1 ∪ V3 and G is resolved

by (2.7). We first claim that there do not exist u,w ∈ L1 such that u is complete to L2 and w

is complete to L3. For suppose such u,w do exist. Then, since every vertex in L1 ∪ L2 ∪ L3 is in

a triad, there exists u′ ∈ L2 such that u and u′ are semiadjacent and there exists w′ ∈ L3 such

that w and w′ are semiadjacent. Since every vertex is semiadjacent to at most one other vertex,

it follows that u 6= w. If u is antiadjacent to w′ and w is antiadjacent to u′, then v1-u
′-u-w-w′-

v1 with v1 ∈ V1 is a weakly induced cycle of length five, contrary to (6.5). If u is adjacent to w′

and w is adjacent to u′, then v1-u
′-w-u-w′-v1 with v1 ∈ V1 is a weakly induced cycle of length five,

contrary to (6.5). Thus, from the symmetry, we may assume that u is strongly antiadjacent to w′

and w is strongly adjacent to u′. But now, w is complete to the triad {u, u′, w′}, contrary to (2.2).

This proves that there do not exist u,w ∈ L1 such that u is complete to L2 and w is complete to

L3. Thus, from the symmetry, we may assume that no vertex in L1 is complete to L2. We now

claim that K = V1 ∪ V3 ∪ L2 is a dominant clique. For suppose not. Then there exists a stable

set S ⊆ V (T ) such that S covers K. Since L3 ∪ V2 is strongly anticomplete to L2, it follows that

there exists s ∈ L1 that is complete to L2, a contradiction. Thus, K is a dominant clique and G is

resolved.

So we may assume that L2 is not anticomplete to L3. From the symmetry, we may assume that L1

is strongly anticomplete to L2. Moreover, if some l2 ∈ L2 and l3 ∈ L3 are semiadjacent, then G is

resolved by (6.7) applied to the homogeneous pair of cliques ({l2}, {l3}) and the lemma holds. So we

may assume that there are no semiadjacencies between L2 and L3. We claim that K = V1∪V3∪L2

is a dominant clique. For suppose for a contradiction that there exists a stable set S that covers K.

Since, in particular, S covers L2, it follows that there exists x ∈ S ∩ L3 such that x is complete to

L2. Since no vertex in L3 is semiadjacent to a vertex in L2, it follows that x is strongly complete

to L2. But this contradicts the fact that x lies in a triad in L1 ∪ L2 ∪ L3. This proves (6.18). �

(6.19) Let G be an F-free nonbasic claw-free graph and let (T,H, η) be an optimal representation

of G. Let B be a leaf block of H with E(B) = {F} and suppose that the strip-block (D,Y ) of (H, η)

at B is ordinary. If the strip of (H, η) at F is isomorphic to a member of Z15, then G is resolved.

Proof. Let (J, Z) be the strip of (H, η) at F . It follows from (6.5) that J contains no weakly

induced cycle of length five. Let A,B,C,X, v1, . . . , v8 be as in the definition of Z15. Let V1, V2, V3
be as in the definition of the hex-expansion, i.e., V1 is strongly complete to B ∪ C, V2 is strongly

complete to A ∪ C, and V3 is strongly complete to A ∪ B. It follows from (6.14) that we may

assume that V1 ∪ V2 ∪ V3 is a strong clique. If v2 is semiadjacent to v5, then ({v2}, {v5}) form a

homogeneous pair of cliques in T that satisfy the assumptions of (6.7) and thus G is resolved by

(6.7). Therefore, we may assume that v2 is strongly antiadjacent to v5. Moreover, if X = ∅, then
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J |{v1, v2, . . . , v8} contains a weakly induced heft H3(1), a contradiction. From the symmetry, we

may assume that v4 ∈ X. But now, N(v2) ⊆ {v1, v3} ∪ V2 ∪ V3 is a strong clique. Thus, v2 is a

simplicial vertex and, hence, G is resolved by (2.8). This proves (6.19). �

6.3.3 Multi-edge ordinary leaf-blocks

The previous subsection dealt with ordinary leaf-blocks that consist of exactly one edge. The

following lemmas deal with the remaining cases when an ordinary leaf-block consists of multiple

edges. Recall from (6.5) that such a leaf-block B is of the B2 type, and hence U(B) is isomorphic

to one of K2, K3, K4, K2,t, or K+
2,t (t ≥ 2). We start with the case K2:

(6.20) Let G be an F-free nonbasic claw-free graph and let (T,H, η) be an optimal representation of

G. Let B be a leaf block of H such that U(B) is isomorphic to K2, and suppose that the strip-block

(D,Y ) of (H, η) at B is ordinary. Then, G is resolved.

Proof. We may assume that G is not resolved. Let {u, v} = V (B) such that u is the unique

cut-vertex of H that belongs to V (B). It follows from (6.5) that either `(F ) ∈ {{1}, {2}} for all

F ∈ E(B), or there exists F ∗ ∈ E(B) with `(F ∗) ⊆ {2, 3} and `(F ) = {1} for all F ∈ E(H) \ {F ∗}.
First suppose that `(F ) ∈ {{1}, {2}} for all F ∈ E(B). Since G is not resolved, it follows from

(6.2) that η(F ) = η(F, u) ∪ η(F, v) for all F ∈ E(H) with `(F ) = {2}. But now let

M1 =
⋃{

η(F, u)
∣∣ F ∈ E(H)

}
and M2 =

⋃{
η(F, v)

∣∣ F ∈ E(H), `(F ) = {2}
}
.

It follows from the definition of a strip-structure that M1 and M2 are strong cliques and N(M2) ⊆
N(M1). Hence, the lemma holds by (2.7).

So we may assume that there exists F ∗ ∈ E(B) with 3 ∈ `(F ∗) and `(F ) = {1} for all F ∈
E(H) \ {F ∗}. It follows from (4.8) that `(F ∗) 6= {3} and hence `(F ∗) = {2, 3}. Let A = η(F ∗, u),

B = η(F ∗, v), and C = η(F ∗) \ (η(F ∗, u) ∪ η(F ∗, v)). It follows from (4.11) that C is a strong

clique. Let (J, Z) be the strip of (H, η) at F ∗, let z1 be the unique vertex in Z that is strongly

complete to A and let z2 be the unique vertex in Z that is strongly complete to B. Let M =⋃{
η(F )

∣∣ F ∈ E(H) \ {F ∗}
}

. It follows that M is strongly complete to A ∪ B and strongly anti-

complete to C.

(i) At least one of A,B is not mixed on C.

Suppose that A and B are both mixed on C. Construct the trigraph T ′ from T by making

A strongly anticomplete to B. It follows from (4.7) applied to T ′ that there exists a weakly

induced path P = p1-p2-p3-p4 in T ′ with p1 ∈ A, p2, p3 ∈ C, and p4 ∈ B. If p1, p4 are

antiadjacent in T , then x-P -x with x ∈ M is a weakly induced cycle of length five in D, a

contradiction. Thus, p1, p4 are adjacent. But now, p1 is complete to the triad {z1, p2, p4},
contrary to (2.2). This proves (i). �

Now let A′ ⊆ A, B′ ⊆ B be the vertices in A, B, respectively, that have a neighbor in C. It follows

that A \A′ is strongly anticomplete to C and, because J is claw-free, to B′. It follows that B \B′
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is strongly anticomplete to C and, because J is claw-free, to A′.

(ii) A = A′ and B = B′.

If N(C) is a strong clique, then it follows from (2.7) that G is resolved, a contradiction.

Thus, there exist cA, cB ∈ C such that cA has a neighbor a ∈ A′, cB has a neighbor b ∈ B′,
and cA and cB are antiadjacent. If we cannot choose cA = cB, then the path a-cA-cB-b is a

weakly induced path of length 4 and hence 4 ∈ `(F ∗), a contradiction. Thus, we may assume

that cA = cB. We claim that A \ A′ is strongly anticomplete to B \ B′. For suppose that

there exist adjacent a ∈ A \A′ and b ∈ B \B′. Then, a-a′-cA-b′-b-a is a weakly induced cycle

of length five, a contradiction. Now suppose that one of A \ A′, B \ B′ is nonempty. Then,

because N [A \ A′] ⊆
⋃{

η(F, u)
∣∣ F ∈ E(H), u ∈ F̄

}
and N [B \ B′] = M are strong cliques,

it follows from (2.7) that G is resolved, a contradiction. Therefore, A = A′ and B = B′. �

By (i), at most one of A, B is mixed on C. Since every vertex in A ∪ B has a neighbor in C, it

follows that at least one of A,B is strongly complete to C. If B is strongly complete to C, then,

because N [B ∪ C] ⊆ M ∪ A, (2.7) implies that G is resolved. Thus, we may assume that A is

strongly complete to C and B is not strongly complete to C. Let B′′ ⊆ B be the set of vertices in

B that are not strongly complete to C. It follows from our assumptions that B′′ 6= ∅. Since J is

claw-free, it follows that B′′ is strongly anticomplete to A. Now, (B′′, C) is a homogeneous pair of

cliques that satisfies the assumptions of (6.7) and, thus, G is resolved by (6.7). This proves (2.8).

�

This leaves the cases K3, K4, K2,t and K+
2,t, all of which we deal with in the next lemma:

(6.21) Let G be an F-free nonbasic claw-free graph and let (T,H, η) be an optimal representation

of G. Let B be a leaf block of H such that U(B) is isomorphic to K3, K4, K2,t, or K+
2,t for some

t ≥ 2, and suppose that the strip-block (D,Y ) of (H, η) at B is ordinary. Then, G is resolved.

Proof. Let V (B) = {v1, . . . , vk} with k = |V (B)|. We may assume that v1 is the unique cutvertex

of H in V (B).

(i) If U(B) is isomorphic to K3, then G is resolved.

From (6.5), it follows that z ≤ 2 for all z ∈ `(F ) with F ∈ E(B). First suppose that

`(F ) = {1} for all F ∈ E(H) with F̄ = {v2, v3}. Then,⋃{
η(F )

∣∣ F ∈ E(H), F̄ = {v2, v3}
}

is a strong clique and all its neighbors are in the strong clique⋃{
η(F, v1)

∣∣ F ∈ E(H), v1 ∈ F̄
}
.

Thus, the lemma holds by (2.7). So we may assume that there exists F ∗ ∈ E(H) with

F̄ ∗ = {v2, v3} and `(F ∗) = {2}. We may also assume that G is not resolved. It follows from

(6.2) that η(F ∗) = η(F ∗, v2) ∪ η(F ∗, v3). But now, (η(F ∗, v2), η(F ∗, v3)) is a homogeneous

pair of cliques that satisfies the assumptions of (6.7), and thus G is resolved by (6.7). �
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(ii) If U(B) is isomorphic to K4, then G is resolved.

Because every edge in E(B) is in a cycle of length four in B, it follows from (4.1) that

`(F ) = {1} for all F ∈ E(H). Now,⋃{
η(F )

∣∣ F ∈ E(H), F̄ ⊆ {v2, v3, v4}
}

is a strong clique and all its neighbors are in the strong clique⋃{
η(F, v1)

∣∣ F ∈ E(H), v1 ∈ F̄
}
.

Thus, G is resolved by (2.7). �

(iii) If U(B) is isomorphic to K2,t or K+
2,t for some t ≥ 2, then G is resolved.

Observe that every edge in E(B) is in a cycle of length four in B. Therefore, it follows from

(4.1) that `(F ) = {1} for all F ∈ E(H). Let V (B) = X ∪ Y such that X is a stable set of

size t and |Y | = 2. Let v be the unique cutvertex of H in B. If v ∈ Y , then p, p′ ∈ X satisfy

the assumptions of (6.1), and hence that G is resolved. Thus, we may assume that v ∈ X.

First assume that U(B) is not isomorphic to K+
2,2. If U(B) is isomorphic to K2,t, then let

p, p′ ∈ Y . Otherwise, t ≥ 3, and let p, p′ ∈ X \ {v}. Now, p and p′ satisfy the assumptions of

(6.1), and hence G is resolved.

So we may assume that U(B) is isomorphic to K+
2,2. We may also assume that G is not

resolved. Let Y = {y1, y2}. It follows from (6.5) that `(F ) ⊆ {1, 2} for every F ∈ E(H)

with F̄ = {y1, y2}. Moreover, it follows from (4.11) that η(F ) = η(F, y1) ∪ η(F, y2) for every

F ∈ E(H) with F̄ = {y1, y2} and `(F ) = {2}. Now, let

Z1 =
⋃{

η(F, y1)
∣∣ F ∈ E(H), y1 ∈ F

}
and

Z2 =
⋃{

η(F, y2)
∣∣ F ∈ E(H), y2 ∈ F̄ , `(F ) = {2}

}
.

It follows that Z1 and Z2 are strong cliques and N(Z2) ⊆ N(Z1). Thus, G is resolved by

(2.7). �

This proves (6.21). �

6.4 Proof of Theorem 1.2

We are finally in a position to prove Theorem 1.2:

Theorem 1.2. Every connected F-free nonbasic claw-free graph is resolved.

Proof. Let G be a connected F-free nonbasic claw-free graph. It follows from (2.3) that G is a

graphic thickening of some claw-free trigraph that admits a proper strip-structure. Therefore, by

(4.1), G has an optimal representation (T,H, η). It follows from (4.2) that, for each strip (J, Z),

either

50



(a) (J, Z) is a spot, or

(b) (J, Z) is a isomorphic to a member of Z0.

If H is 2-connected, then it follows from (6.3) that G is resolved. Thus, we may assume that H

is not 2-connected. Therefore, let (B1, B2, . . . , Bq), with q ≥ 2, be the block-decomposition of H.

Since q ≥ 2, H has at least two leaf-blocks B,B′. It follows from (6.4) that the strip-block of (H, η)

at at least one of these two blocks, B say, is ordinary with respect to G.

First suppose that |E(B)| = 1. Let F ∈ E(B). It follows from (4.4) and (6.6) that the strip (J, Z)

of (H, η) at F is either a spot or is isomorphic to a member of one of Z1, Z2, Z3, Z6, Z9, Z10,

Z11, Z13, or Z15. If (J, Z) is a spot, then the unique vertex in V (J) \ Z is a simplicial vertex and

the result follows from (2.8). Thus, we may assume that (J, Z) is not a spot. Now, the theorem

follows from (6.8), (6.9), (6.10), (6.12), (6.13), (6.15), (6.16), (6.18), (6.19), respectively. So we may

assume that |E(B)| ≥ 2. It follows from (6.5) that there exists t ≥ 2 such that U(B) is isomorphic

to one of K2, K3 K4, K2,t, or K+
2,t. Thus, the theorem follows from (6.20) and (6.21). This proves

Theorem 1.2. �

References

[1] C. Berge and P. Duchet. Strongly perfect graphs. Topics on Perfect Graphs, 21:57–61, 1984.

[2] B. Birand, M. Chudnovsky, B. Ries, P. Seymour, G. Zussman, and Y. Zwols. Analyzing the

performance of greedy maximal scheduling via local pooling and graph theory. In Proc. IEEE

INFOCOM’10, March 2010.

[3] M. Chudnovsky, B. Ries, and Y. Zwols. Claw-free graphs with strongly perfect complements.

Fractional and integral version. Part I. Basic graphs. Submitted to Discrete Applied Mathemat-

ics. Available online at http://www.columbia.edu/~yz2198/papers/clawfree1.pdf, 2010.

[4] M. Chudnovsky, N. Robertson, P.D. Seymour, and R. Thomas. The strong perfect graph

theorem. Ann. Math., 164:51–229, 2006.

[5] M. Chudnovsky and P. Seymour. Claw-free graphs V. Global structure. Journal of Combina-

torial Theory, Series B, 98:1373–1410, 2008.

[6] F. Maffray. Kernels in perfect line-graphs. Journal of Combinatorial Theory Series B, 55(1):1–8,

1992.

[7] G. Ravindra. Strongly perfect line graphs and total graphs. Finite and infinite sets, page 621,

1984.

[8] H.Y. Wang. Which claw-free graphs are strongly perfect? Discrete Mathematics, 306(19-

20):2602–2629, 2006.

[9] D.B. West et al. Introduction to graph theory. Prentice Hall Upper Saddle River, NJ, 2001.

51

http://www.columbia.edu/~yz2198/papers/clawfree1.pdf


A Illustrations

This appendix contains some figures that graphically illustrate the different types of strips defined

in Section 2.3. We have included these figures to give an indication of the structure of the strips,

and not to give complete definitions of them. Therefore, in doing so, we aimed at keeping the

drawings as simple as possible while still being instructive and, hence, we omitted certain details.

The formal definitions can be found in Section 2.3.

For each strip (J, Z), we adopt the convention that end vertices (i.e. the vertices in Z) are drawn

as black squares; all other vertices are drawn as black circles. The gray ellipses represent sets of

vertices. Strong adjacencies are represented by solid lines, strong antiadjacencies by dashed lines,

and semiadjacencies by “wiggly” lines. Parallel solid lines between sets indicate that these sets are

strongly complete to each other, and parallel wiggly lines between sets indicate that the adjacency

between them is arbitrary (or ‘arbitrary’ subject to some rules).

Figure 6 illustrates the hex-expansion construction. Figures 7–21 illustrate the 15 different types of

strips. The strips Z2,Z8,Z11 contain complements of matchings between pairs of sets. For obvious

reasons, although there are in general lots of adjacencies between these sets, we have only drawn

the antiadjacencies between these sets.

A

BC

V1

V2 V3

Figure 6: Schematic drawing of a hex-expansion. The sets A,B,C, V1, V2, V3 are all strong cliques. The double lines

indicate which sets are strongly complete to each other, the double curved line indicates which sets have

arbitrary adjacencies between them.
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v1 vn

A B

v2 v3 v4 v5 v6 v7

F1

F2

F3

F4

Figure 7: Schematic drawing of strips in Z1 (Linear interval strips). The sets A and B are strong cliques.

a0 b0

a1

a2

a3

A\{a0} B\{b0}

C

b1

b2

b3

c1

c2

c3

Figure 8: Schematic drawing of strips in Z2 (Near antiprismatic strips). The sets A,B,C are strong cliques. There

is essentially a matching between the sets A \ {a0} and B \ {b0}, and there are essentially complements of

matchings between the sets A \ {a0} and C and between the sets B \ {a0} and C.

h1 h2 h3 h4 h5

H

h1h2 h4h5

h2h3 h3h4

A\{h2h3} B\{h3h4}

C

J

Figure 9: Schematic drawing of strips in Z3. On the left: the graph H. On the right: the corresponding strip (J, Z),

which is almost a line trigraph of H, with the only exception that h2h3 and h3h4 are either semiadjacent

or strongly antiadjacent. The sets A,B,C satisfy A = δH(h2), B = δH(h4), C = δH(h3) \ {h2h3, h3h4),

where, for i ∈ {2, 3, 4}, δH(hi) is the set of edges in H that are incident with hi.
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a0

a1

a2

b0
b1

b2 b3

c1c2

Figure 10: Schematic drawing of strips in Z4 (Sporadic family of trigraphs of bounded size #1). The pairs b2, c2
and b3, c1 are semiadjacent.

v11 v12

v13

v1

v2

v3

v4

v5

v6

v9 v10
v7 v8

Figure 11: Schematic drawing of strips in Z5. The pair v8v9 is either semiadjacent or strongly adjacent. The

vertices v7, v11, v12, v13 may be deleted.

F1

F2

F3F4

F5

v1

v2

v3

v4

v5v6

v7

v8

v9

Figure 12: Example of a strip in Z6 (Long circular interval strips). v1 is a simplicial vertex. The sets F1, . . . , F5 are

the intervals.
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h1

h2

h3

h4

h5

h6h7

Figure 13: Schematic drawing of the graph H that underlies strips in Z7 (modifications of L(K6)). The graph H is

the graph shown above, with possibly the edges of any subset of {h1h3, h2h4, h3h5, h2h4, h2h5} deleted

(these edges correspond to the five edges ‘inside’ the 5-cycle h1-h2-h3-h4-h5-h1), and at most two of the

edges
{
h6hi

∣∣ i = 1, 2, 3, 4, 5
}

deleted. The trigraph J is essentially the line graph of H (regarded as a

trigraph).

A

B

C
d1

d2

d3

d4

d5

a1 a2 a3

b1 b2 b3

c1 c2 c3

Figure 14: Schematic drawing of strips in Z8 (Augmented near antiprismatic strips). The pair d1d2 is either

semiadjacent or strongly adjacent. There is essentially a matching between A and B, and there are

complements of matchings between the sets A and C and between the sets B and C.

A

B

D

z

a1 a2 a3

b1 b2 b3

d1

d2

d3

C

Figure 15: Schematic drawing of strips in Z9 (Special type of antiprismatic strips). There is essentially a

complement of a matching between A and B. For every i and every d, d is strongly adjacent to one of

ai, bi, and strongly antiadjacent to the other. The adjacency between C and D is arbitrary.
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V1

V2

V3

a0

a1

a2

d b0

b1 b2 b3

c1c2

Figure 16: Schematic drawing of strips in Z10 (Sporadic family of trigraphs of bounded size #3). V2 is strongly

complete to V3, and the adjacency between (V1, V2) and (V1, V3) is arbitrary. a2, b1 are semiadjacent; the

pairs b3, c1 and b0, d are either semiadjacent or strongly adjacent.

A B

C

z

a0

a1

a2

a3

b0

b1

b2

b3

c1

c2

c3

V1V2

V3

Figure 17: Schematic drawing of strips in Z11 (Hex-expansions of near-antiprismatic trigraphs). There is essentially

a matching between A and B, and there are complements of matchings between the sets A and C and

between the sets B and C. V2 is strongly complete to V3, and the adjacency between the pairs (V1, V2)

and (V1, V3) is arbitrary. a0, b0 are either semiadjacent or strongly antiadjacent.

56



B C

V1

V2V3

z

v1

v2 v3

v4 v5

v6 v7

v8
v9

Figure 18: Schematic drawing of strips in Z12 (Hex-expansions of of sporadic exception #2). V1, V2, V3 are strong

cliques. V2 is strongly complete to V3, and the adjacency between the pairs (V1, V2) and (V1, V3) is

arbitrary. The vertices v3, v4, v5, v6 may be deleted according to some rules.

L1\{z}

L2

L3

V1

V2

V3

z

Figure 19: Schematic drawing of strips in Z13 (Hex-expansions of circular interval trigraphs). L1, L2, L3, V1, V2, V3

are strong cliques. L1 ∪ L2 ∪ L3 is a circular interval trigraph such that z is strongly anticomplete to

L2 ∪ L3. V2 is strongly complete to V3, and the adjacency between the pairs (V1, V2) and (V1, V3) is

arbitrary.
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W
v0 v1

v2

v3

w

H

V1

V2

V3

A1

A2

A3

z
a1
1

a2
1

a0
2

a2
2

a0
3

a1
3

a2
3

a1
2

Figure 20: Schematic drawing of strips in Z14 (Hex-expansions of line trigraphs). On the left: the graph H. The set

W is a stable set. For i = 1, 2, 3, the edges between vi and W ∪ {w} correspond to the vertices in Ai.

The vertex w may be deleted. On the right: the corresponding hex-expansion of the line trigraph of H.

V2 is strongly complete to V3, and the adjacency between the pairs (V1, V2) and (V1, V3) is arbitrary. The

vertices a02, a
0
3 are either both present or absent (depending on whether w is present in H).

V1

V2

V3

v1
v2

v3

v4
v5

v6

v7v8

Figure 21: Schematic drawing of strips in Z15 (Hex-expansions of sporadic exception #1). V2 is strongly complete

to V3, and the adjacency between (V1, V2) and (V1, V3) is arbitrary. The pairs v1, v4 and v3, v6 are

semiadjacent, and the pair v2, v5 is either semiadjacent or strongly antiadjacent.
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