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1 Introduction

Let G be a graph, with vertex set V (G) and edge set E(G). Denote by G,
the complement of G. Given two graphs G and G′ we say that G′ is smaller

than G if |V (G)′| < |V (G)|, and that G contains G′ if G′ is isomorphic to an
induced subgraph of G. When we need to refer to the non-induced subgraph
containment relation, we will say so explicitly. A claw is the graph isomorphic
to K1,3. A graph is claw-free if it does not contain a claw. The line graph L(G)
of G is the intersection graph of the edges of G. A graph F is a line graph if
there exists a graph H such that L(H) = F . Clearly, line graphs are a subclass
of claw-free graphs.

The neighborhood of a vertex v is the set N(v) consisting of all the vertices
which are adjacent to v. The closed neighborhood of v is N [v] = N(v) ∪ {v}.
A vertex v of G is universal if N [v] = V (G). Two vertices v and w are twins

if N [v] = N [w]; and u dominates v if N(v) ⊆ N [u].

A complete set or just a complete of G is a subset of vertices pairwise adjacent.
(In particular, an empty set is a complete set.) We denote by Kn the graph
induced by a complete set of size n. A clique is a complete set not properly
contained in any other. We may also use the term clique to refer to the cor-
responding complete subgraph. Let X and Y be two sets of vertices of G. We
say that X is complete to Y if every vertex in X is adjacent to every vertex in
Y , and that X is anticomplete to Y if no vertex of X is adjacent to a vertex
of Y . A stable set in a graph G is a subset of pairwise non-adjacent vertices
of G. The stability number α(G) is the cardinality of a maximum stable set of
G.

A complete of three vertices is called a triangle, and a stable set of three
vertices is called a triad. Let A be a set of vertices of G, and v a vertex of
G not in A. Then v is A-complete if it is adjacent to every vertex in A, and
A-anticomplete if it has no neighbor in A.

A vertex is called simplicial if its neighbors induce a complete, and singular if
its non-neighbors induce a complete. Equivalently, a vertex is singular if it is
in no stable set of size three. The core of G is the subgraph induced by G on
the set of non-singular vertices.

Let G be a graph and X be a subset of vertices of G. Denote by G|X the
subgraph of G induced by X and by G \ X the subgraph of G induced by
V (G) \ X. X is connected, if there is no partition of X into two non-empty
sets Y and Z, such that no edge has one end in Y and the other one in Z. In
this case the graph G|X is also connected. X is anticonnected if it is connected
in G. In this case the graph G|X is also anticonnected.
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The set X is a cutset if G \X has more connected components than G. Let G

be a connected graph, X a cutset of G, and M1, M2 a partition of V (G) \ X

such that M1, M2 are non-empty and M1 is anticomplete to M2 in G. In this
case we say that G = M1 + M2 + X, and Mi + X denote G|(Mi ∪ X), for
i = 1, 2. When X = {v}, we simplify the notation to M1 +M2 +v and Mi +v,
respectively.

Let X be a cutset of G. If X = {v} we say that v is a cutpoint. If X contains
a vertex adjacent in G to every other vertex of X and to no vertex of G \ X,
it is called a star cutset. If X is complete, it is called a clique cutset. A clique
cutset X is internal if G = M1 + M2 + X and each Mi contains at least two
vertices that are not twins.

Let G be a graph and H a subgraph of G (not necessarily induced). The graph
H is a clique subgraph of G if every clique of H is a clique of G.

A clique cover of a graph G is a subset of cliques covering all the vertices of
G. The clique-covering number k(G) is the cardinality of a minimum clique
cover of G. The chromatic number of a graph G is the smallest number of
colors that can be assigned to the vertices of G in such a way that no two
adjacent vertices receive the same color, and is denoted by χ(G). An obvious
lower bound is the maximum cardinality of the cliques of G, the clique number

of G, denoted by ω(G).

A graph G is perfect if χ(H) = ω(H) for every induced subgraph H of G. Per-
fect graphs are interesting from the algorithmic point of view, see [18]. While
determining the clique-covering number, the independence number, the chro-
matic number and the clique number of a graph are NP-complete problems,
they are solvable in polynomial time for perfect graphs [19].

The clique graph K(G) of G is the intersection graph of the cliques of G. A
graph G is K-perfect if K(G) is perfect.

A graph is bipartite if its vertex set can be partitioned into two stable sets.
Bipartite graphs are perfect.

A hole is a chordless cycle of length at least 4. An antihole is the complement
of a hole. A hole or antihole is said to be odd if it consists of an odd number
of vertices (and, equivalently, edges). A hole of length n is denoted by Cn.

A graph is chordal if it does not contain a hole as an induced subgraph. Chordal
graphs can be recognized in polynomial time [25].

An r-sun, r ≥ 3, is a chordal graph of 2r vertices whose vertex set can be
partitioned into two sets: W = {w1, . . . , wr} and U = {u1, . . . , ur}, such that
W is a stable set and for each i and j, wj is adjacent to ui if and only if i = j
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or i ≡ j + 1 (mod r). An r-sun is said to be odd if r is odd.

A graph is balanced if its vertex-clique incidence matrix is balanced. A 0-1
matrix is balanced if it does not contain the incidence matrix of an odd cycle
as a submatrix.

A family of sets S is said to satisfy the Helly property if every subfamily of
it, consisting of pairwise intersecting sets, has a common element. A graph is
clique-Helly (CH) if its cliques satisfy the Helly property, and it is hereditary

clique-Helly (HCH) if H is clique-Helly for every induced subgraph H of G.

A clique-transversal of a graph G is a subset of vertices that meets all the
cliques of G. A clique-independent set is a collection of pairwise vertex-disjoint
cliques. The clique-transversal number and clique-independence number of G,
denoted by τC(G) and αC(G), are the sizes of a minimum clique-transversal
and a maximum clique-independent set of G, respectively. It is easy to see
that τC(G) ≥ αC(G) for any graph G. A graph G is clique-perfect if τC(H) =
αC(H) for every induced subgraph H of G. Clique-perfect graphs have been
implicitly studied in [1,3,7,5,8,16,20,21]. The terminology “clique-perfect” has
been introduced in [20]. There are two main open problems concerning this
class of graphs:

• find all minimal forbidden induced subgraphs for the class of clique-perfect
graphs, and

• is there a polynomial time recognition algorithm for this class of graphs?

In this paper, we present some results related to these problems. We charac-
terize clique-perfect graphs by forbidden subgraphs when the graph belongs
to a certain class. Both classes studied are subclasses of claw-free graphs: line
graphs and HCH claw-free graphs. As corollaries of these partial characteri-
zations, we can immediately deduce polynomial time algorithms to recognize
clique-perfect graphs in these classes of graphs.

A preliminary version of this paper appeared in [4].

2 Preliminaries

It has been proved recently that perfect graphs can be characterized by two
families of minimal forbidden induced subgraphs [10] and recognized in poly-
nomial time [9].

Theorem 1 (Strong Perfect Graph Theorem) [10] Let G be a graph. Then

the following are equivalent:
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(i) no induced subgraph of G is an odd hole or an odd antihole.

(ii) G is perfect.

On the other hand, the problem of recognition of clique-perfect chordal graphs
can be reduced to the recognition of balanced graphs, which is solvable in
polynomial time [6,15].

Theorem 2 [21] Let G be a chordal graph. Then the following are equivalent:

(i) G does not contain odd suns.

(ii) G is balanced.

(iii) G is clique-perfect.

Next we define the family of the so called “generalized suns” [5]. Let G be a
graph and C be a cycle of G not necessarily induced. An edge of C is non proper

(or improper) if it forms a triangle with some vertex of C. An r-generalized

sun, r ≥ 3, is a graph G whose vertex set can be partitioned into two sets: a
cycle C of r vertices, with all its non proper edges {ej}j∈J (J is permitted be
an empty set) and a stable set U = {uj}j∈J , such that for each j ∈ J , uj is
adjacent only to the endpoints of ej. An r-generalized sun is said to be odd if
r is odd. Clearly odd holes and odd suns are odd generalized suns.

Theorem 3 [5] Odd generalized suns and antiholes of length t = 1, 2 mod 3
(t ≥ 5) are not clique-perfect.

Unfortunately, odd generalized suns are not necessary minimal (with respect
to taking induced subgraphs) and besides there are other minimal non-clique-
perfect graphs, for example the following family of graphs. Define the graph Sk,
k ≥ 2, as follows: V (Sk) = {v1, . . . , v2k, v, v′, w, w′} where v1, . . . , v2k induce a
path; v is adjacent to v′, v1, v2 and v2k; v′ is adjacent to v, v1, v2k−1 and v2k; w

is adjacent only to v1 and v2; and w′ is adjacent only to v2k−1 and v2k (Figure
1).

w'

v'

v

v

vv
1

v
22k-1

2k

w

Fig. 1. The graph Sk.

At this time we do not know whether the list of all such forbidden graphs has
a nice description. However, if we restrict our attention to certain classes of
graphs (that can be described by forbidding certain induced subgraphs), we
can describe all the minimal forbidden induced subgraphs.
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Hereditary clique-Helly graphs are of particular interest because in this case it
follows from [5] that if K(H) is perfect for every induced subgraph H of G, then
G is clique-perfect (the converse is not necessarily true). On the other hand,
the class of hereditary clique-Helly graphs can be characterized by forbidden
induced subgraphs.

Theorem 4 [23] A graph G is hereditary clique-Helly if and only if it does

not contain the graphs of Figure 2 as induced subgraphs.

Fig. 2. Forbidden induced subgraphs for hereditary clique-Helly graphs: (left to
right) 3-sun (or 0-pyramid), 1-pyramid, 2-pyramid and 3-pyramid.

One of our main results in this paper is a characterization of clique-perfect
HCH claw-free graphs by induced subgraphs. To prove this characterization
we use a recent structure theorem for claw-free graphs [12]. In order to state
that theorem we need to introduce some definitions.

A graph G is prismatic if for every triangle T of G, every vertex of G not in
T has a unique neighbor in T . A graph G is antiprismatic if its complement
graph G is prismatic.

Construct a graph G as follows. Take a circle C, and let V (G) be a finite set of
points of C. Take a set of intervals from C (an interval means a proper subset
of C homeomorphic to [0, 1]) such that there are not three intervals covering
C; and say that u, v ∈ V (G) are adjacent in G if the set of points {u, v} of
C is a subset of one of the intervals. Such a graph is called circular interval

graph. When the set of intervals does not cover C, the graph is called linear

interval graph.
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v

5
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3
v

Fig. 3. Example of a circular interval graph and its circular interval representation.

Let G be a graph and A, B be disjoint subsets of V (G). The pair (A, B) is
called a homogeneous pair in G if for every vertex v ∈ V (G)\(A∪B), v is either
A-complete or A-anticomplete and either B-complete or B-anticomplete. If,
in addition, B is empty, then A is called a homogeneous set. Let (A, B) be
a homogeneous pair, such that A, B are both completes, and A is neither
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complete nor anticomplete to B. In these circumstances the pair (A, B) is
called a W-join. Note that there is no requirement that A ∪ B 6= V (G). The
pair (A, B) is non-dominating if some vertex of G \ (A ∪ B) has no neighbor
in A ∪ B, and it is coherent if the set of all (A ∪ B)-complete vertices in
V (G) \ (A ∪ B) is a complete.

Next, suppose that V1, V2 is a partition of V (G) such that V1, V2 are non-empty
and there are no edges between V1 and V2. The pair (V1, V2) is called a 0-join
in G. Thus G admits a 0-join if and only if it is not connected.

Next, suppose that V1, V2 is a partition of V (G), and for i = 1, 2 there is a
subset Ai ⊆ Vi such that:

• for i = 1, 2, Ai is a complete, and Ai, Vi \ Ai are both non-empty
• A1 is complete to A2

• every edge between V1 and V2 is between A1 and A2.

In these circumstances, the pair (V1, V2) is a 1-join.

Now, suppose that V0, V1, V2 are disjoint subsets with union V (G), and for
i = 1, 2 there are subsets Ai, Bi of Vi satisfying the following:

• for i = 1, 2, Ai, Bi are completes, Ai ∩Bi = ∅, and Ai, Bi and Vi \ (Ai ∪Bi)
are all non-empty

• A1 is complete to A2, and B1 is complete to B2, and there are no other
edges between V1 and V2

• V0 is a complete, and for i = 1, 2, V0 is complete to Ai∪Bi and anticomplete
to Vi \ (Ai ∪ Bi).

The triple (V0, V1, V2) is called a generalized 2-join, and if V0 = ∅, the pair
(V1, V2) is called a 2-join. This is closely related to, but not the same as, what
has been called a 2-join in other papers, like [9].

The last decomposition is the following. Let (V1, V2) be a partition of V (G),
such that for i = 1, 2 there are completes Ai, Bi, Ci ⊆ Vi with the following
properties:

• For i = 1, 2 the sets Ai, Bi, Ci are pairwise disjoint and have union Vi

• V1 is complete to V2 except that there are no edges between A1 and A2,
between B1 and B2, and between C1 and C2

• V1, V2 are both non-empty.

In these circumstances it is said that G is a hex-join of G|V1 and G|V2. Note
that if G is expressible as a hex-join as above, then the sets A1 ∪ B2, B1 ∪C2

and C1∪A2 are three completes with union V (G), and consequently no graph
G with α(G) > 3 is expressible as a hex-join.
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Fig. 4. Scheme for 1-join, 2-join and hex-join.

Now, define classes S0, . . . ,S6 as follows.

• S0 is the class of all line graphs.

• The icosahedron is the unique planar graph with twelve vertices all of de-
gree five. For 0 ≤ k ≤ 3, icosa(−k) denotes the graph obtained from the
icosahedron by deleting k pairwise adjacent vertices. A graph G ∈ S1 if G is
isomorphic to icosa(0), icosa(−1) or icosa(−2). As it can be seen in Figure
5, all of them contain odd holes.

Fig. 5. Graphs icosa(0), icosa(−1) and icosa(−2).

• Let H1 be the graph with vertex set {v1, . . . , v13}, with adjacency as follows:
v1v2 . . . v6v1 is a hole in G of length 6; v7 is adjacent to v1, v2; v8 is adjacent
to v4, v5 and possibly to v7; v9 is adjacent to v6, v1, v2, v3; v10 is adjacent
to v3, v4, v5, v6, v9; v11 is adjacent to v3, v4, v6, v1, v9, v10; v12 is adjacent
to v2, v3, v5, v6, v9, v10; and v13 is adjacent to v1, v2, v4, v5, v7, v8. A graph
G ∈ S2 if G is isomorphic to H1 \X, where X ⊆ {v11, v12, v13}. Please note
that vertices v3v4v5v6v9v3 induce a hole of length five in G.

• S3 is the class of all circular interval graphs.

• Let H2 be the graph with seven vertices h0, . . . , h6, in which h1, . . . , h6 are
pairwise adjacent and h0 is adjacent to h1. Let H3 be the graph obtained
from the line graph L(H2) of H2 by adding one new vertex, adjacent pre-
cisely to the members of V (L(H2)) = E(H2) that are not incident with h1

in H2. Then H3 is claw-free. Let S4 be the class of all graphs isomorphic to
induced subgraphs of H3. Note that the vertices of H3 corresponding to the
members of E(H2) that are incident with h1 in H2, form a complete in H3.
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Fig. 6. Graph H1 \ {v11, v12, v13}. Every graph in S2 contains it as an induced
subgraph.

So every graph in S4 is either a line graph or it has a singular vertex.

• Let n ≥ 0. Let A = {a1, . . . , an}, B = {b1, . . . , bn}, C = {c1, . . . , cn} be
three completes, pairwise disjoint. For 1 ≤ i, j ≤ n, let ai, bj be adjacent if
and only if i = j, and let ci be adjacent to aj, bj if and only if i 6= j. Let
d1, d2, d3, d4, d5 be five more vertices, where d1 is (A ∪ B ∪ C)-complete;
d2 is complete to A ∪ B ∪ {d1}; d3 is complete to A ∪ {d2}; d4 is complete
to B ∪ {d2, d3}; d5 is adjacent to d3, d4; and there are no more edges. Let
the graph just constructed be H4. A graph G ∈ S5 if (for some n) G is
isomorphic to H4 \ X for some X ⊆ A ∪ B ∪ C. Note that vertex d1 is
adjacent to all the vertices but the triangle formed by d3, d4 and d5, so it is
a singular vertex in G (Figure 7).
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1
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5

d
3

d
2

d
1

Fig. 7. Graph H4, for n = 2.

• Let n ≥ 0. Let A = {a0, . . . , an}, B = {b0, . . . , bn}, C = {c1, . . . , cn} be
three completes, pairwise disjoint. For 0 ≤ i, j ≤ n, let ai, bj be adjacent if
and only if i = j > 0, and for 1 ≤ i ≤ n and 0 ≤ j ≤ n let ci be adjacent to
aj, bj if and only if i 6= j 6= 0. Let the graph just constructed be H5. A graph
G ∈ S6 if (for some n) G is isomorphic to H5 \X for some X ⊆ A∪B ∪C,
and then G is said to be 2-simplicial of antihat type (Figure 8).

The structure theorem in [12] is the following:

Theorem 5 Let G be a claw-free graph. Then either G ∈ S0 ∪ · · · ∪ S6, or G

admits twins, or a non-dominating W-join, or a coherent W-join, or a 0-join,
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Fig. 8. Graph H5, for n = 2.

or a 1-join, or a generalized 2-join, or a hex-join, or G is antiprismatic.

In the proofs in this paper we will mention some special graphs, shown in
Figure 9, and we will use the following results on perfect graphs, cutsets and
clique graphs (some of the results bellow are immediate, and in these cases
we do not give a proof or a reference; we state these in order to make it more
convenient to refer to them in the future.).

Lemma 6 Let G be a graph and v be a simplicial vertex of G. Then G is

perfect if and only if G \ {v} is.

Theorem 7 [2] Let G be a graph and X be a clique cutset of G, such that

G = M1 + M2 + X. Then the graph G is perfect if and only if the graphs

M1 + X and M2 + X are.

This theorem due to Berge was generalized by Chvátal for star cutsets.

Theorem 8 [13] Let G be a graph and X be a star cutset of G, such that

G = M1 + M2 + X. Then the graph G is perfect if and only if the graphs

M1 + X and M2 + X are.

Let P be an induced path of a graph G. The length of P is the number of
edges in P . The parity of P is the parity of its length . We say that P is even

if its length is even, and odd otherwise.

Theorem 9 Let G be a perfect graph and let e = v1v2 be an edge of G. Assume

that {v1, v2} is a cutset in G. Assume also that no vertex of G is a common

neighbor of v1 and v2. Then G \ e is perfect.

PROOF. Since G is perfect, it is enough to check that there is no odd hole
or antihole in G \ e using both v1 and v2. Suppose such a hole or an antihole
exists, denote it by A. Since no vertex of G is a common neighbor of v1, v2,
it follows that A is not an antihole. So A is a hole, and let A1, A2 be the
two subpaths of A joining v1 and v2. Then both A1, A2 have length at least
three, and one of them, say A1, is even. But then G|V (A1) is an odd hole, a
contradiction. 2

Theorem 10 [14] Let G be a graph and let U be a homogeneous set in G. Let

G′ be the graph obtained from G by deleting all but one vertex of U . Then G
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is perfect if and only if both G′ and G|U are.

This, together with Theorem 8, implies the following:

Theorem 11 Let G be a graph, and let u, v ∈ V (G) such that u dominates

v. Then G is perfect if and only if both G \ {u} and G \ {v} are.

PROOF. The “only-if” part is clear, so it is enough to prove that if G \ {u}
and G \ {v} are perfect, then so is G. If {u, v} is a homogeneous set in G,
the result holds by Theorem 10. Otherwise, since u properly dominates v, it
follows that N(v) ∪ {u} is a star cutset in G. By Theorem 8, if G \ {v} and
G|(N [v]∪ {u}) are perfect, then so is G. Since {u, v} is a homogeneous set in
G|(N [v] ∪ {u}), Theorem 10 implies that if G|(N [v] \ {u}) is perfect, then so
is G|(N [v] ∪ {u}). But now, since G|(N [v] \ {u}) is an induced subgraph of
G \ {u}, the result follows. 2

Theorem 12 [11] Let G be a claw-free graph admitting an internal clique

cutset. Then G is either a linear interval graph or G is the 3-sun, or G admits

twins, or a 0-join, or a 1-join, or a coherent W-join.

Lemma 13 Let G be a graph and H a clique subgraph of G. Then K(H) is

an induced subgraph of K(G).

Lemma 14 If G admits twins u, v, then K(G) = K(G \ {v}).

Lemma 15 If G is disconnected, then so is K(G), and G is K-perfect if and

only if each connected component is.

Theorem 16 [24] Let G be a claw-free graph with no induced 3-fan, 4-wheel

or odd hole. Then K(G) is bipartite.

claw4-wheel3-fan tK2

t }
3-sun trinity

Fig. 9. Some graphs mentioned in the paper.

3 Partial characterizations

We say that a graph is interesting if no induced subgraph of it is an odd
generalized sun or an antihole of length greater than 5 and equal to 1, 2 mod 3.
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Our two main results are the following.

Theorem 17 Let G be a line graph. Then G is clique perfect if and only if

no induced subgraph of G is an odd hole or a 3-sun.

Theorem 18 Let G be an HCH claw-free graph. Then G is clique perfect if

and only if no induced subgraph of G is an odd hole or an antihole of length

seven.

We observe the following:

Proposition 19 Let S be an odd generalized r-sun, and assume that S is

claw-free. Then either S is an odd hole or r = 3.

PROOF. As in the definition of a generalized sun, let C be a cycle of S, and
let U = V (S) \ V (C) be a stable set, such that every vertex of U is complete
to both ends of exactly one non-proper edge of C and has no other neighbor
in V (C). We may assume that S is not an odd hole, and so C has at least one
non-proper edge. Let c1c2 be a non-proper edge of C, let c3 ∈ V (C) \ {c1, c2}
be such that {c1, c2, c3} is a triangle, and let u be the vertex of U adjacent to c1

and c2. We may assume r > 3, and therefore, possibly with c1 and c2 switched,
c1 has a neighbor c′2 in C, different from c2 and c3. Since {c1, u, c3, c

′

2} does
not induce a claw in S, it follows that c′2 is adjacent to c3, and therefore c1c

′

2

is another non-proper edge of S. Let u′ be the vertex of U adjacent to c1 and
c′2. Then {c1, u, u′, c3} is a claw, a contradiction. 2

Let us call a class of graphs C hereditary if for every G ∈ C, every induced
subgraph of G also belongs to C. The following is a useful fact about hereditary
clique-Helly graphs:

Proposition 20 Let L be a hereditary graph class, which is HCH and such

that every interesting graph in L is K-perfect. Then every interesting graph in

L is clique-perfect.

PROOF. Let G be an interesting graph in L. Let H be an induced subgraph
of G. Since L is hereditary, H is an interesting graph in L, so it is K-perfect.
Since L is a HCH class, H is clique-Helly and then αC(H) = α(K(H)) =
k(K(H)) = τC(H) [5], and the result follows. 2

3.1 Line graphs

First, we prove that interesting line graphs are K-perfect.
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Proposition 21 A line graph is interesting if and only if it has no induced

subgraph isomorphic to an odd hole or a 3-sun.

PROOF. Since no line graph contains an antihole of length at least seven,
and every line graph is claw-free, the result follows from Proposition 19. This
proves Proposition 21. 2

Theorem 22 If G is an interesting line graph, then K(G) is perfect.

PROOF. Let G = L(H). By Lemma 15, we may assume H is connected. If
H is bipartite then G = K(H) and K(G) = K2(H) is an induced subgraph
of H [17], so it is bipartite and hence perfect.

If H is not bipartite, all the odd cycles of H are triangles, otherwise G has an
odd hole (the line graph of a subgraph of H is an induced subgraph of L(H)).

A trinity is the complement of the 3-sun, and its line graph is also the 3-sun.
Therefore H does not contain a trinity as a subgraph, for otherwise G contains
a 3-sun as an induced subgraph.

The proof is by induction on |V (G)|. The theorem holds for the graph with
one vertex, and in each case we will reduce the K-perfection of G to the
K-perfection of some proper induced subgraphs of G. Since every induced
subgraph of an interesting line graph is also an interesting line graph, the
result will then follow from the inductive hypothesis.

Suppose H contains a triangle T = {v1, v2, v3}, and let eij = vivj be the
edges of T . We start by looking at paths joining v1, v2 and v3 in the graph
HT = H \ {e12, e23, e31}. Suppose that v1 and v2 are connected by a path P

in HT such that v3 6∈ P . If P has length at least 3, then either P + e12 or
P + e23 + e31 is an odd cycle of length at least 5 in H (which implies an odd
hole in G). So the length of P must be 2. Suppose now that two pairs of
vertices of T , say {v1, v2} and {v2, v3}, are connected in HT through vertices
outside T , say w and w′, respectively. If w 6= w′, then v1wv2w

′v3v1 is a cycle
of length 5 in H, a contradiction. So w = w′ and H contains a complete set
of size four.

The proof now breaks into two cases, depending of whether H contains a
complete set of size four. Note that if H does not contain a complete set of
size four, then for every triangle T of H, at most one pair of vertices of T is
joined in HT by a path not using the third vertex of T .

Case 1: H contains a complete set of size four.
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Let K be a complete set of size four in G. Every vertex outside of K is
adjacent to at most one of the vertices of K, otherwise H contains cycle of
length five as a subgraph. If two vertices v, v′ of K have different neighbors
w, w′, respectively, outside of K, then H contains a trinity as a subgraph. So
at most one vertex v of K has neighbors outside of K.

If all the edges of H are those joining two vertices of K and those incident
with v, then K(L(H)) is the complement of 4K2, and so it is perfect (it is the
complement of a bipartite graph).

Otherwise, let kv be the vertex of K(G) corresponding to the clique of G

formed by the edges of H incident with v. Then kv is a cutpoint of K(G).
Moreover, K(G) = M1 + M2 + kv, where M1 + kv is the clique graph of the
line graph of K4 (the complement of 4K2, a perfect graph) and M2 + kv is
the clique graph of the line graph of H \ {z, z′}, with z and z′ vertices of the
K4 different from v, so M2 + kv is perfect by the inductive hypothesis. By
Theorem 7, since M1 + kv and M2 + kv are perfect, so is K(G).

Case 2: H does not contain a complete set of size four, and hence, for every
triangle T of H, at most one pair of vertices of T is joined in HT by a path
not using the third vertex of T .

First note that G has two kinds of cliques: those formed by the vertices of G

corresponding to the edges of H with a common endpoint v (we will denote
by kv the vertex of K(G) corresponding to such a clique) and those formed by
three vertices corresponding to the three edges of a triangle T of H (we will
denote by kT the vertex of K(G) corresponding to such a clique).

L

K

T

k

L

K

v

k
T v

Fig. 10. Cliques of K(L(H)).

Let T1 = {v1, v2, w1} be a triangle of H, and, without loss of generality, suppose
that there is no path from w1 to {v1, v2} in the graph obtained from H by
removing the edges of T1.

Let W = w1, . . . , ws be the set of common neighbors of v1 and v2. Then W is
a stable set of H, because H does not contain a complete set of size four. Let
Ti be the triangle of H formed by v1, v2, wi. Let A1 = N(v1) \ (W ∪ {v2}) and
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A2 = N(v2) \ (W ∪ {v1}). Note that A1 and A2 are disjoint.

Case 2.1: |W | ≥ 2 and |W ∪ A1 ∪ A2| ≥ 3.

We note that in this case W is anticomplete to A1∪A2, for if w ∈ W is adjacent
to a ∈ A1, say, then for the triangle {v1, v2, w}, there is a path from v1 to w

through a, and a path from v1 to v2 though w′ ∈ W \ {w}, a contradiction.
Next we observe that all the vertices in W are adjacent only to v1 and v2,
otherwise H contains a trinity as a subgraph. In K(G), each kTi

is a simplicial
vertex, because N [kTi

] = {kT1
, . . . , kTs

, kv1
, kv2

} is a complete set in K(G).
So, by Lemma 6, K(G) is perfect if and only if K(G) \ kTs

is perfect. And
K(G) \ {kTs

} = K(L(H \ {ws})) because s ≥ 2, hence it is perfect by the
inductive hypothesis.

Case 2.2: |W | = 2, A1 and A2 are empty.

We claim that there is no path from w1 to w2 in H \ {v1, v2}. Suppose such a
path P exists. Since W is a stable set, P has at least one internal vertex. But
now either v1w1Pw2v1 or v1w1Pw2v2v1 is an odd cycle of length at least five
in H, a contradiction. This proves the claim.

Let B1 = N(w1) \ {v1, v2} and B2 = N(w2) \ {v1, v2}. If B1 = B2 = ∅, then,
since H is connected, V (H) = {v1, v2, w1, w2}, and therefore K(G) is perfect.
So we may assume that B1 is non-empty, say. Then the graph H \ {w1} is
disconnected. Let H2 be the component of H \ {w1} containing w2 and let
H1 = H \ (V (H2)∪ {w1}). Then B1 ⊆ V (H1). It follows that {kT1

} is a clique
cutset of K(G). Moreover, K(G) = M1 + M2 + {kT1

}, and Mi + {kT1
} =

K(L(Hi)). The graphs L(H1) and L(H2) are induced subgraphs of G, so by
the inductive hypothesis they are K-perfect, and so it follows from Theorem
7 that K(G) is perfect.

Case 2.3: |W | = 1, A1 and A2 are empty.

The vertices of G corresponding to the edges w1v1 and w1v2 are twins in G.
So K(G) = K(L(H \ w1v1)).

Case 2.4: |W | = 1, A1 and A2 are non-empty.

In this case, w1 has no neighbor in A1 ∪A2, because there is no path from w1

to {v1, v2} in HT1
. Therefore w1 is adjacent only to v1 and v2, otherwise H

contains a trinity as a subgraph. In K(G), kT1
is a simplicial vertex, because

N [kT1
] = {kT1

, kv1
, kv2

} is a complete in K(G). So, by Lemma 6, K(G) is
perfect if and only if K(G) \ {kT1

} is perfect; and K(G) \ {kT1
} = K(L(H \

{w1})) is perfect by the inductive hypothesis.

Case 2.5: |W | = 1, and exactly one of A1 or A2 is empty.
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Renaming the vertices (v1 or v2, respectively, playing the role of w1), we can
reduce this case either to Case 2.3 or to Case 2.4. 2

Theorem 17 is an immediate corollary of the following:

Theorem 23 Let G be a line graph. Then the following are equivalent:

(i) no induced subgraph of G is and odd hole, or a 3-sun.

(ii) G is clique-perfect.

(iii) G is perfect and it does not contain a 3-sun.

PROOF. The equivalence between (i) and (iii) is a corollary of Theorem
1, because line graphs do not contain antiholes Cn with n ≥ 7 as induced
subgraphs. From Theorem 3 it follows that (ii) implies (i).

It therefore suffices to prove that (i) implies (ii). This proof is again by in-
duction on |V (G)|. The class of line graphs with no odd holes or induced
3-suns is hereditary, so we only have to prove that for every graph in this
class τC equals to αC . By Theorem 22 and Proposition 21, every such graph
is K-perfect. So, by Proposition 20, an interesting HCH line graph is clique-
perfect. Let G = L(H) and suppose that G is not HCH. Then G contains a
0-,1-,2- or 3-pyramid. as an induced subgraph.

A 0-pyramid is a 3-sun. A 2-pyramid is not a line graph, and therefore is not
an induced subgraph of G.

Assume first that H contains a complete set of size four, say K. By Lemma 15
we may assume H is connected. We analyze how vertices of V (H)\K attach to
K. If a vertex v is adjacent to two different vertices of K, then H contains an
odd cycle as a subgraph and G contains an odd hole. If two different vertices
v, w are adjacent to two different vertices of K, then H contains a trinity as a
subgraph and so G contains a 3-sun as an induced subgraph. These cases can
be seen in Figure 11.

Fig. 11. How the remaining vertices of H can be attached to the K4.

So only one of the four vertices x1, x2, x3, x4 of K may have neighbors in
H \ K, say x1. Let v, w, z1, z2, z3 and z4 be the vertices of G corresponding
to the edges x1x2, x3x4, x1x3, x1x4, x2x4 and x2x3 of H, respectively. The
vertex w is adjacent in G only to z1, z2, z3 and z4, which induce a hole of
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length 4 and are adjacent also to v. So G \ {w} is a clique subgraph of G

(every clique of G \ {w} is a clique of G). On the other hand, since x2 has no
neighbors in H \K, all the neighbors of v are vertices corresponding to edges
of H containing x1, and they are a complete in G. This situation can be seen
in Figure 12.

v

w

complete

rest of the graph

Fig. 12. Structure of G when H has a K4.

By the inductive hypothesis, G \ {w} is clique-perfect. Let A be a maximum
clique-independent set and T be a minimum clique-transversal of G \ {w}. By
maximality and by the structure of G, A has exactly one clique containing v.
Adding w, four new cliques appear, each one disjoint from a different one of
the four cliques containing v, and adding w to T we have a clique-transversal
of G, so αC(G) = αC(G \ {w}) + 1 = τC(G \ {w}) + 1 = τC(G). So we may
assume that H contains no complete set of size four.

Since if G contains a 3-pyramid as an induced subgraph, then H contains a
complete set of size four, it follows that the only remaining case is when G

contains a 1-pyramid. Since G contains a 1-pyramid, H contains as a subgraph
a graph on five vertices v1, . . . , v5 where v1 is adjacent to v2, v3 and v4, v2 is
adjacent to v3 and v4, and v3 is adjacent to v5 (Figure 13). Moreover, v3 and v4

are not adjacent because H does not contain a complete set of size four, v1 and
v2 are not adjacent to v5, otherwise H contains an odd cycle as a subgraph,
and v1 and v2 do not have other neighbors, otherwise H contains a trinity as a
subgraph. Then v1 and v2 form a cutset in H, because if there is a path v3Pv4

in H \ {v1, v2}, then either v3Pv4v1v3 or v3Pv4v1v2v3 is an odd cycle in H.

v1

v5

v3

v4

v2

Fig. 13. Subgraph of H when H contains no K4 and G contains a 1-pyramid.
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Let w1, . . . , w5 be the vertices of G corresponding to the edges v1v3, v2v3, v1v4,
v2v4 and v1v2 of H, respectively. Then w1w2w4w3w1 is a hole of length four
in G, w5 is adjacent only to w1, . . . , w4 and w1, . . . , w5 is a cutset of G. The
remaining neighbors of w1 or w2 are adjacent to both w1 and w2, and form
a non-empty complete in G (they are the vertices corresponding to the edges
of H containing v3 and not v1 or v2, and there exists at least one such edge,
namely the edge v3v5). Similarly, the neighbors of w3 or w4 are adjacent to
both w3 and w4, and form a (possibly empty) complete in G. The structure
of G in this case can be seen in Figure 14.

complete

rest of the graph II

rest of the graph I

complete

w1 w2

w3 w4

w5

Fig. 14. Structure of G when H has no K4.

We show that αC(G) = αC(G′) and τC(G) = τC(G′), where G′ is the line
graph of the graph H ′, obtained from H by deleting the edges v2v3 and v1v4.
So G′ = G \ {w2, w3}.

Since every clique transversal of G′ either contains w5, or contains both w1

and w4, it follows that every clique transversal of G′ is a clique transversal of
G. On the other hand, starting with a clique transversal T of G and replacing
the vertices w2 and w3 by w1 and w4 respectively, if w2 or w3 belong to T ,
produces a clique transversal of G′. Therefore τC(G) = τC(G′).

We claim that there is a maximum clique-independent set not containing either
of the cliques {w1, w3, w5}, {w2, w4, w5}. Suppose the claim is false. Let I be
a clique independent set, we may assume I contains the clique {w1, w3, w5}.
Then I does not contain any other clique containing w1 or w5; and since the
only clique containing w2 and not w1 is {w1, w2, w5}, it follows that every
clique in I is disjoint from {w1, w2, w5}. But now the set obtained from I by
removing the clique {w1, w3, w5} and adding the clique {w1, w2, w5} has a the
desired property. This proves the claim.

Let I a maximum clique independent set of G not containing either of the
cliques {w1, w3, w5}, {w2, w4, w5}. Let I ′ be a set of cliques of G′, obtained
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from I by replacing the clique {w1, w2, w5} by {w1, w5} if {w1, w2, w5} ∈ I,
and the clique {w3, w4, w5} by {w4, w5} if {w3, w4, w5} ∈ I. On the other hand,
clearly every clique independent set of G′ gives rise to a clique independent
set of G, and therefore αC(G) = αC(G′).

But now, since G′ is a proper induced subgraph of G, it follows inductively
that αc(G

′) = τC(G′), and therefore αc(G
′) = τC(G′). This completes the proof

of Theorem 23. 2

The recognition problem for line graphs can be solved in polynomial time
[22]. By the theorem above, the recognition of clique-perfect line graphs can
be reduced to the recognition of perfect graphs with no 3-sun, which is solvable
in polynomial time [9].

3.2 Hereditary clique-Helly claw-free graphs

We will use Proposition 20 to prove the characterization for HCH claw-free
graphs, so first we will prove the following.

Theorem 24 Let G be an interesting HCH claw-free graph. Then K(G) is

perfect.

Proposition 25 No HCH graph contains an antihole of length at least eight.

An HCH claw-free graph is interesting if and only if it does not contain an

odd hole or an antihole of length seven.

PROOF. Since by Theorem 4 an HCH graph contains no induced subgraph
isomorphic to one of the graph of Figure 2, it follows that no HCH graph
contains a 3-sun as an induced subgraph. Since every antihole of length at
least eight contains a 2-pyramid, it follows that no HCH graph contains an
antihole of length at least eight. Finally, since by Proposition 19, every claw-
free odd generalized sun is either an odd hole or a 3-sun, it follows that an
HCH claw-free graph is interesting if an only if it contains no odd hole and
no antihole of length seven. This proves Proposition 25. 2

In the remainder of this section we use Theorem 5 to prove that every inter-
esting HCH claw-free is K-perfect. The proof is by induction on |V (G)|.
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3.2.1 Circular Interval Graphs

First we prove that clique graph of interesting HCH circular interval graphs
are perfect.

Lemma 26 Let G be a circular interval graph. Then K(G) is an induced

subgraph of G.

PROOF. Let G be a circular interval graph with vertices v1, . . . , vn in clock-
wise order, say. We define a homomorphism v from V (K(G)) to V (G) (mean-
ing that for two distinct vertices a, b ∈ V (K(G)), v(a) 6= v(b); and a is adjacent
to b if and only if v(a) is adjacent to v(b)). For every clique M of G, since no
three intervals in the definition of a circular interval graph cover the circle,
M = {vi, . . . , vi+t} (where the indices are taken mod n). In this case we say
that vi is the first vertex of M . We define v(M) = vi. Since vi is the first vertex
of a unique clique, it follows that v(M) 6= v(M ′) if M and M ′ are distinct
cliques of G. It remains to show that v(M) is adjacent to v(M ′) if and only if
M ∩M ′ 6= ∅. If M and M ′ intersect at a vertex vk, then the clockwise order of
v(M), v(M ′) and vk is either v(M), v(M ′), vk or v(M ′), v(M), vk and in both
cases v(M) and v(M ′) are adjacent. On the other hand, if there are two cliques
such that v(M) and v(M ′) are adjacent, we may assume v(M) appears first
clockwise in the circular interval which contains both v(M) and v(M ′). Then
since v(M) is the first vertex of the clique M , it follows that v(M ′) belongs
to M , so M and M ′ intersect. 2

Proposition 27 Let G be an HCH interesting circular interval graph. Then

K(G) is perfect.

PROOF. By Lemma 26, K(G) is an induced subgraph of G. Since G is
HCH and interesting, it contains no odd hole and no antihole of length at
least seven, and therefore it is perfect by Theorem 1.

3.2.2 Decompositions

Now we show that if an interesting HCH claw-free graph admits one of the
decompositions of Theorem 5, then either it is K-perfect or we can reduce the
problem to a smaller one.

Theorem 28 Let G be an interesting HCH claw-free graph. If G admits a

1-join, then K(G) has a cutpoint v, K(G) = H1 + H2 + v, and Hi + v is the

clique graph of a smaller interesting HCH claw-free graph.
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PROOF. Since G admits a 1-join, it follows that V (G) is the disjoint union
of two non-empty sets V1 and V2, each Vi contains a complete Mi, such that
M1∪M2 is a complete and there are no other edges from V1 to V2. So M1∪M2

is a clique in G. Let v be the vertex of K(G) corresponding to M1∪M2. Every
other clique of G is either contained in V1 or in V2, and no clique of the first
type intersects a clique of the second type. So v is a cutpoint of K(G), and
K(G) = H1 + H2 + v. Let Gi be the graph obtained from G|Vi by adding
a vertex vi complete to Mi and with no other neighbors in Gi. Then Gi is
isomorphic to an induced subgraph of G, so it is interesting, HCH and claw-
free, and for i = 1, 2, Hi + v is isomorphic to K(Gi) (where the vertex v is
mapped to the vertex of K(Gi) corresponding to the clique Mi ∪ {vi} of Gi).
This proves Theorem 28. 2

Theorem 29 Let G be an interesting HCH claw-free graph. If G admits a

generalized 2-join and no twins, 0-join or 1-join, then there exist two clique

graphs of smaller interesting HCH claw-free graphs, H1 and H2, such that if

H1 and H2 are perfect, then so is K(G).

PROOF. Since G admits a generalized 2-join, it follows that V (G) is the
disjoint union of three sets V0, V1 and V2, for i = 1, 2 each Vi contains two
completes Ai, Bi such that Ai, Bi and Vi \ (Ai ∪ Bi) are all non-empty, A1 ∪
A2 ∪ V0 and B1 ∪B2 ∪ V0 are completes and there are no other edges from V1

to V2 or from V0 to V1 ∪ V2. Since G admits no twins, it follows that |V0| ≤ 1.

So A1 ∪ A2 ∪ V0 and B1 ∪ B2 ∪ V0 are cliques of G, and they correspond to
vertices w1, w2 of K(G). Every other clique of G is either contained in V1 or
in V2, and no clique of the first type intersects a clique of the second type. So
{w1, w2} is a cutset in K(G).

If V0 is non-empty, then w1 is adjacent to w2 and {w1, w2} is a clique cutset in
K(G). Let V0 = {v0}. Now K(G) = M1 + M2 + {w1, w2}, where, for i = 1, 2,
Hi = Mi + {w1, w2} is the clique graph of the subgraph of G induced by
Vi ∪ {v0}. By Theorem 7, K(G) is perfect if and only if H1 and H2 are. So we
may assume that V0 is empty, and therefore w1 is non-adjacent to w2.

We start with the following easy observation

(*) Let S be a graph which is either a claw, or an odd hole, or C7, or a 0-,1-,2-,
or 3-pyramid, and suppose there exists a vertex s ∈ V (S), whose neighborhood
is the union of two non-empty completes with no edges between them. Then
S is and odd hole.

Since G admits no 0-join or 1-join, for i = 1, 2 there exist ai in Ai and bi in
Bi joined by an induced path with interior in Vi \ (Ai ∪Bi). (The interior of a
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path are the vertices different from the endpoints; the interior may be empty,
if ai and bi are adjacent.)

Then, since G contains no odd hole, for every ai in Ai and bi in Bi, all induced
paths from a1 to b1 with interior in V1 \ (A1 ∪B1) and all induced paths from
a2 to b2 with interior in V2 \ (A2 ∪ B2) have the same parity.

Case 1: This parity is even.

Note that in this case Ai is anticomplete to Bi. Let H be the graph obtained
from K(G) by adding the edge w1w2. Since Ai is anticomplete to Bi, there is
no clique in G intersecting both A1 ∪ A2 and B1 ∪ B2. So w1 and w2 have no
common neighbor in K(G). By Theorem 9, if H is perfect then K(G) is.

Construct graphs Gi with vertex set Vi ∪ {vi}, where Gi|Vi = G|Vi and vi

is complete to Ai ∪ Bi and has no other neighbors in Gi. Now, H = M1 +
M2 + {w1, w2}, with Mi + {w1, w2} = K(Gi), and {w1, w2} is a clique cutset
in H. By Theorem 7, it follows that if K(G1) and K(G2) are perfect then H

is perfect and thus K(G) is perfect.

We claim that for i = 1, 2 the graphs Gi are claw-free, HCH and interesting.
Suppose that G1, say, is not. So G1 contains an induced subgraph S isomorphic
to a claw, an odd hole, C7, or a 0-,1-,2- or 3-pyramid. If V (S) does not contain
v1, then S is isomorphic to an induced subgraph of G, a contradiction. If
V (S) contains v1 but has empty intersection with A1 or B1, say B1, then S

is isomorphic to an induced subgraph of G, obtained by replacing v1 by any
vertex of A2, a contradiction. So V (S) meets both A1 and B1, and therefore
the neighborhood of v1 in S can be partitioned into two non-empty completes
AS, BS, such that AS is anticomplete to BS. By (*), S is an odd hole. Let
a1 ∈ A1 and b1 ∈ B1 be the neighbors of v1 in S. Then S \ {v1} is an induced
odd path from a1 to b1 with interior in V1 \ (A1 ∪ B1), a contradiction.

Case 2: This parity is odd.

Let H be the graph obtained from K(G) by adding a vertex w adjacent only to
w1 and w2. Since K(G) is an induced subgraph of H, if H is perfect, so is K(G).
Construct graphs Gi with vertex set Vi + {vA,i, vB,i}, where Gi|Vi = G|Vi,
vA,i is complete to Ai, vB,i is complete to Bi, vA,i is adjacent to vB,i, and
there are no other edges in Gi. Now, {w1, w2, w} is a star cutset in H, and
H = M1 + M2 + {w1, w2, w}, with Mi + {w1, w2, w} = K(Gi). By Theorem
8, it follows that if K(G1) and K(G2) are perfect then H is perfect and thus
K(G) is perfect.

We claim that both Gi are claw-free, interesting and HCH. Suppose that G1

contains an induced subgraph S isomorphic to a claw, an odd hole, C7, or a
0-,1-,2-,or 3-pyramid.
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If V (S) does not contain vA,1 or vB,1, say vB,1, then S is isomorphic to an
induced subgraph of G, obtained by replacing vA,1 by any vertex of A2, a
contradiction. If V (S) contains vA,1 and vB,1 but has empty intersection with
A1 or B1, say B1, then S is isomorphic to an induced subgraph of G, obtained
by replacing vA,1 and vB,1 by two adjacent vertices a2, c2 of V2 such that
a2 ∈ A2 and c2 ∈ V2 \A2 (such a pair of vertices exist because there is at least
one path from A2 to B2 in G), a contradiction. So V (S) meets both A1 and
B1, and the neighborhood of vA,1 in S can be partitioned into two non-empty
completes with no edges between them, namely AS = A1 ∩ V (S) and {vB,1}.
By (*) S is an odd hole. Let a1 ∈ A1 and b1 ∈ B1 be the neighbors of vA,1 and
vB,1 in V (S) ∩ V1, respectively. Then S \ {vA,1, vB,1} is an induced even path
from a1 to b1 with interior in V1 \ (A1 ∪ B1), a contradiction. This concludes
the proof of Theorem 29. 2

Lemma 30 Let G be an HCH graph such that G is a bipartite graph. Then

K(G) is perfect.

PROOF. In this proof we use the vertices of K(G) and the cliques of G

interchangeably. By Theorem 1, if K(G) is not perfect then it contains an odd
hole or an odd antihole.

Let A, B be two disjoint completes of G such that A ∪ B = V (G). If there
exists a vertex v of G adjacent to every other vertex in G, then v belongs to
every clique of G and K(G) is a complete graph, and therefore perfect. So
we may assume that no vertex of A is complete to B and no vertex of B is
complete to A. Then A and B are cliques of G, and every other clique of G

meets both A and B. The degrees of A and B in K(G) is |V (K(G))| − 1, so
they cannot be part of an odd hole or an odd antihole in K(G).

It is therefore enough to show that there is no odd hole or antihole in the graph
obtained from K(G) by deleting the vertices A and B. We prove a stronger
statement, namely that there is no induced path of length two in this graph.
Since every hole and antihole of length at least five contains a two edge path,
the result follows.

Suppose for a contradiction that there are three cliques X, Y and Z in G,
each meeting both A and B, and such that X is disjoint from Z, and both
X ∩ Y and Y ∩ Z are non-empty. From the symmetry we may assume that
X ∩ Y contains a vertex axy ∈ A.

Suppose first that there is a vertex ayz ∈ A∩Y ∩Z. Let by be a vertex in Y ∩B.
Since no vertex of B is complete to A, there is a vertex a in A non-adjacent
to by. Since ayz does not belong to X, there is a vertex bx in X non-adjacent
to ayz, and since A is a complete, bx belongs to B. Analogously, since axy does
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not belong to Z, there is a vertex bz in B ∩ Z non-adjacent to axy. But now
{axy, ayz, by, bz, bx, a} induce a 1-, 2- or 3-pyramid, a contradiction.

So A ∩ Y ∩ Z is empty, and therefore B ∩ Y ∩ Z is non-empty, and, by the
argument of the previous paragraph with A and B exchanged, B ∩ X ∩ Y is
empty. Choose byz in B∩Y ∩Z. Choose az in Z∩A, then az 6∈ X∪Y . Since az

does not belong to X, there is a vertex bx ∈ X non-adjacent to az, and since A

is a complete, bx is in B. Since byz does not belong to X and B is a complete,
there is a vertex ax ∈ A∩X non-adjacent to byz ; and since axy does not belong
to Z and A is a complete, there is a vertex bz ∈ B ∩ Z non-adjacent to axy.
But now {az, axy, byz, ax, bx, bz} induces a 2- or a 3-pyramid, a contradiction.
This proves Lemma 30. 2

Theorem 31 Let G be a connected interesting HCH claw-free graph, and

suppose G admit no twins. Assume that G admits a coherent or a non-dominating

W-join (A, B). Then either K(G) is perfect, or there exist induced subgraphs

G1, . . . , Gk of G, each smaller than G, such that if K(Gi) is perfect for every

i = 1, . . . , k, then K(G) is perfect.

PROOF. Choose a coherent or non-dominating W-join (A, B) with A ∪ B

minimal. Let C be the vertices complete to A and anticomplete to B, D be the
vertices complete to B and anticomplete to A, E be the vertices complete to
A ∪B, and F be the vertices anticomplete to A ∪B. Since the W-join (A, B)
is either coherent or non-dominating, it follows that either E is a complete,
or F is non-empty.

31.1 A ∪ C, B ∪ D are both completes, and E is anticomplete to F .

Suppose not. Assume first that there exist two nonadjacent vertices c1, c2 in
C. Choose a in A and b in B such that a is adjacent to b, now {a, c1, c2, b}
is a claw, a contradiction. So C is a complete, and since A is a complete, it
follows that A∪C is a complete. From the symmetry it follows that B ∪D is
a complete.

Next assume that there are two adjacent vertices e in E and f in F . Choose
a in A and b in B such that a is not adjacent to b. Then {e, a, b, f} is a claw,
a contradiction. This proves 31.1.

Let E1 be a clique of G|E. Let L be the set of all cliques of G|(A ∪ B).
Let

U = {E1 ∪ L : L ∈ L and L 6= A, B}.
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Since E is anticomplete to F , and every member of U meets both A and B,
it follows that the members of U are cliques of G.

31.2 We may assume that |U | ≥ 2.

Suppose |U | ≤ 1. Since in G there is at least one edge between A and B, it
follows that there is a unique clique L in G|(A ∪ B) meeting both A and B,
and |U | = 1. Let A′ = A ∩ L, B′ = B ∩ L. Then A′ is complete to B′, A \ A′

is anticomplete to B and B \B ′ is anticomplete to A. Since G does not admit
twins, each of A′, A \A′, B′, B \B′ has size at most 1, and by the minimality
of A∪B at most one of A\A′, B \B′ is non-empty. By the symmetry, we may
assume that B \ B′ is empty and |A′| = |B′| = |A \ A′| = 1. Let A′ = {a1},
B′ = {b1} and A \ A′ = {a2}.

If K(G \ {a2}) = K(G) then the theorem holds, so we may assume not.
Therefore there exists a subset E ′ of E such that M = A ∪ E ′ is a clique of
G. It follows, in particular, that no vertex of C is complete to E.

Assume first that E is a complete, consider the cliques M1 = {a1, b1}∪E and
M2 = {a1, a2}∪E of G. Since every clique of G containing a2 also contains a1,
it follows that every clique of G that has a non-empty intersection with M2,
meets M1. Therefore the vertex w1 of K(G), corresponding to M1, dominates
the vertex w2 of K(G), corresponding to M2. Since K(G)\{w1} is an induced
subgraph of K(G \ {a1}) and K(G) \ {w2} = K(G \ {a2}), by Theorem 11,
K(G) is perfect if K(G \ {a1}) and K(G \ {a2}) are, and the theorem holds.
So we may assume that E is not a complete.

Next we claim that D is empty. Since E is not a compelete, there are two
non-adjacent vertices e1, e2 in E, and let d in D. If d is non-adjacent to
both of e1 and e2, then {b1, e1, e2, d} is a claw, a contradiction. But then,
{b1, e1, e2, d, a1, a2} induces a 1- or 2-pyramid, a contradiction. This proves
that D is empty.

Since D is empty, every clique disjoint from F contains the vertex a1, and,
since every clique containing a vertex of F is disjoint from A, B and E, it
follows that the vertices of K(G) corresponding to the cliques {a1, b1} ∪ E ′,
with E ′ a clique of G|E, are simplicial in K(G). By Lemma 6, K(G) is perfect
if and only if K(G \ {b1}) is. This proves 31.2.

31.3 We may assume that no vertex of B is complete to A, and no vertex
of A is complete to B.

Suppose there is a vertex b ∈ B complete to A. Since A is not complete to
B, there is a vertex b′ ∈ B \ {b}. By 31.2, |A| > 1. But now (A, B \ {b}) is a
coherent or non-dominating W-join in G, contrary to the minimality of A∪B.
This proves 31.3.
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In view of 31.2 and 31.3, we henceforth assume that |U | ≥ 2, no vertex of
A is complete to B, and no vertex of B is complete to A.

31.4 E is a complete.

Since no vertex of B is complete to A, and there is at least one edge between
A and B, there is a vertex a1 ∈ A with a neighbor b1 and a non-neighbor b2

in B. Since b1 is not complete to A, there is a vertex a2 ∈ A, non-adjacent to
b1. Since A, B are both cliques, a1 is adjacent to a2 and b1 to b2. If there exist
two non-adjacent vertices e1 and e2 in E, now {a1, a2, b1, b2, e1, e2} induces a
2- or a 3-pyramid in G, a contradiction. This proves 31.4.

31.5 Every vertex of K(G) \ U with a neighbor in U is complete to U .

Throughout the proof of 31.5 we use cliques of G and vertices of K(G) inter-
changeably.

It follows from 31.4 that E1 = E. Let w be a vertex of K(G) \ U with a
neighbor in U . Since w has a neighbor in U , it follows that w meets one of
A, B, E. If w meets E, then w is complete to U and the result follows. If w

includes one of A, B, then since every member of U meets each of A, B, we
again deduce that w is complete to U and the result follows. So we may assume
that w is disjoint from E, and the sets w ∩ (A∪B), A \ {w}, and B \ {w} are
all non-empty.

Assume first that w meets both A and B. Since w is a clique of G, C ∪ F is
anticomplete to B and D∪F is anticomplete to B, it follows that w ⊆ A∪B∪E.
But now, since w is a clique, it follows that w includes E and w belongs to U ,
a contradiction. So we may assume that w is disjoint from at least one of A

and B.

By the symmetry we may assume that w is disjoint from B, and therefore w

meets A. Since F ∪ D is anticomplete to A, it follows that w is a subset of
A∪C ∪E, and since w is a clique, w includes A, a contradiction. This proves
31.5.

31.6 U is a homogeneous set in K(G) and the graph K(G)|U is perfect.

It follows from 31.5 that U is a homogeneous set in K(G). The graph K(G)|U
is isomorphic to the graph obtained from K(G|(A ∪ B ∪ E)) by deleting the
vertices corresponding to the cliques A∪E and B∪E. Since G|(A ∪ B ∪ E) is
bipartite, it follows from Theorem 30 that K(G)|U is perfect. This proves 31.6.

Choose u ∈ U .
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31.7 If there exist a1, a2 ∈ A and b1, b2 ∈ B, such that a1 is adjacent to b1 and
not to b2, and a2 is adjacent to b2 and not to b1, then either K(G) is perfect,
or there is an induced subgraph G′ of G, such that K(G)\ (U \{u}) = K(G′).

If there exist non-adjacent c ∈ C and e ∈ E, then {a1, a2, e, c, b1, b2} induces
a 1-pyramid, a contradiction, so C is complete to E, and similarly D is com-
plete to E. By 31.4, E is a complete. Since G admits no twins, |E| ≤ 1. If
C ∪D is empty, then, since G is connected, F is empty, and G is the comple-
ment of a bipartite graph. By Lemma 30, K(G) is perfect. So we may assume
that C is non-empty, and in particular, A ∪ E is not a clique of G. But now
K(G) \ (U \ {u}) = K(G \ ((A ∪ B) \ {a1, b1, b2})). This proves 31.7.

To finish the proof, let a1 ∈ A and b1 ∈ B be adjacent. By 31.3, there ex-
ist a vertex b2 ∈ B, non-adjacent to a1 and a vertex a2 ∈ A non-adjacent
to b1. If a2 is adjacent to b2, then the theorem follows from 31.6, 31.7 and
Theorem 10. So we may assume that a2 is non-adjacent to b2. Let G′ =
G \ ((A∪B) \ {a1, b1, a2, b2}). We deduce from 31.2 that G′ is smaller than G.
Moreover, G′ is an induced subgraph of G. But K(G) \ (U \ {u}) = K(G′),
and, together with 31.6 and Theorem 10, this implies that the theorem holds.
This proves Theorem 31. 2

Theorem 32 Let G be an interesting HCH claw-free graph. Suppose G ad-

mits a hex-join and no twins and every vertex of G is in a triad. Then G = C6.

PROOF. Since G admits a hex-join, there exist six completes A1, A2, A3,
B1, B2, B3 in G such that Ai is anticomplete to Bi and complete to Bj for i

different from j; A1 ∪ A2 ∪ A3 and B1 ∪ B2 ∪ B3 are non-empty; and V (G) =
A1 ∪ A2 ∪ A3 ∪ B1 ∪ B2 ∪ B3. Since every vertex of G is in a stable set of size
three and no stable set of size three meets both A1∪A2∪A3 and B1∪B2∪B3,
it follows that Ai, Bi are all non-empty.

Suppose there is an edge a1a
′

2 with a1 in A1 and a′

2 in A2. Since every vertex is
a stable set of size three, there exists a stable set {b1, b2, b3} with bi in Bi and
a stable set {a1, a2, a3} with ai in Ai. Since G is interesting, a1a

′

2b1a3b2a1 is
not a hole in G, so a′

2 is adjacent to a3. But now {a′

2, a1, a2, a3} is a claw in G,
a contradiction. So A1 is anticomplete to A2, A3. Since the vertices of A1 are
not twins in G, it follows that |A1| = 1. From the symmetry, |Bi| = |Ai| = 1
for all i, and G = C6. This proves Theorem 32. 2

Theorem 33 Let G be an interesting HCH graph. Assume that G admits no

twins and no coherent or non-dominating W-join, and contains no stable set

of size three. Then K(G) is perfect.
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PROOF. We may assume G contains either a 4-wheel or a 3-fan, otherwise,
by Theorem 16, K(G) is bipartite.

Case 1: G contains a 4-wheel. Let a1a2a3a4a1 be a hole and let c be adjacent to
all ai. We claim every vertex in G is adjacent to c. Suppose v is non-adjacent
to c. Then since G contains no stable set of size three, from the symmetry
we may assume v is adjacent to a1, a2. But now {a1, a2, a3, a4, c, v} induces
a 1-,2-, or 3-pyramid, a contradiction. So every clique in G contains c, then
K(G) is a complete graph and the result follows. This proves Case 1.

Case2: G contains a 3-fan and no 4-wheel.

Let A1, .., Ak be anticonnected sets in G, pairwise complete to each other, with
k > 2, |A1| > 1, and subject that with maximal union, say A. (Such sets exist
because there is a 3-fan. Let a1a2a3a4 be a path and let c be adjacent to all
ai. Then A1 = {a1, a3}, A2 = {a2}, A3 = {c} make a family of sets with the
desired properties.)

Suppose |A2| > 1. Then, since A1, A2 are both anticonnected, each of A1, A2

contains a non-edge, say aibi. Choose a3 in A3. Now {a1, a2, b1, b2, a3} is a
4-wheel, a contradiction. So for 2 ≤ i ≤ k, |Ai| = 1, and let Ai = {ai}.

(*) No vertex in V (G) \ A is complete to more than one of A1, . . . , Ak.

Let v be a vertex in V (G) \A and define I = {i : 1 ≤ i ≤ k and v is complete
to Ai} and J = {j : 1 ≤ j ≤ k and v has a non-neighbor in Aj}. Suppose
|I| > 1. Define A′

t = At for t ∈ I and A′

J =
⋃

j∈J Aj ∪ {v}. Then {A′

i}i∈I , A
′

J

is a collection of at least three anticonnected sets, pairwise complete to each
other, but their union is a proper superset of A, contrary to the maximality
of A. This proves (*).

(**) There is no C4 in A1.

Otherwise, G contains a 4-wheel with center a2, a contradiction. This proves
(**).

Since |A1| > 1 and A1 is anticonnected, A1 contains a non-edge, and so,
since there is no stable set of size three in G, every vertex of V (G) \ A has a
neighbor in A1. Let A′ = A \ A1. If no vertex of V (G) \ A has a neighbor in
A′, then the vertices of A′ are twins, a contradiction.

So there exists v in V (G) \ A with a neighbor in A1 and a neighbor a′ in A′.
By (*) v has a non-neighbor a′′ in A′. If v has two non-adjacent neighbors in
A1, say x, y then xvya′′x is a 4-hole and a′ is complete to it, so G contains a 4-
wheel, a contradiction. So the neighbors of v in A1 are a complete. Since G has
no stable set of size three, the non-neighbors of v in A1 are a complete. Thus
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G|A1 is complement bipartite, and since it is anticonnected the bipartition is
unique, say X, Y , both X and Y are non-empty, and every vertex of V (G) \A

with a neighbor in A′ is either complete to X and anticomplete to Y , or
complete to Y and anticomplete to X. Let X ′ be the vertices with a neighbor
in A′ and complete to X, Y ′ be the vertices with a neighbor in A′ and complete
to Y . Then, X ′∪Y ′ is non-empty, and since there is no stable set of size three
in G, X ′, Y ′ are both completes.

For i = 2, . . . , k let Xi be the vertices of X ′ adjacent to ai, and let Yi be
defined similarly. By (*), Ai ∩Aj = ∅ for i 6= j, and the same holds for Bi, Bj.
If there is an edge from X to Y then there is no edge from Xi to Yi, or else G

contains a 4-wheel with center ai. Let Z be the vertices of G with no neighbor
in A′. Then, since G contains no triad, Z is a complete.

33.1 Every vertex in Z is complete to X ′ ∪ Y ′ and to one of X, Y .

If some vertex z in Z has a non-neighbor x2 in X2, then z, x2, a3 is a stable set
of size three, a contradiction, so Z is complete to X ′, and similarly Y ′. Next
suppose some vertex z in Z has a non-neighbor x in X and a non-neighbor y

in Y . Then x is adjacent to y, and there is an odd antipath Q from x to y in
X ∪ Y . Thus xQyzx is an antihole, so Q has length 1 mod 3. But then Q has
length at least 4, and so X ∪ Y contains a C4, contrary to (**). This proves
33.1.

Let Zx be the vertices of Z complete to X, and let Zy = Z \ Zx.

33.2 k ≤ 4 and X ′ = Xi, Y ′ = Yj for some i different from j.

Suppose both X2, X3 are non-empty, choose x2 in X2 and x3 in X3. Then
a2x2x3a3a2 is a hole of length four, and every x in X is complete to it, so G

contains a 4-wheel, a contradiction. So we may assume that X ′ = X2 and,
similarly, Y ′ = Yj for some j. If Y2 is non-empty, then since x2, y2, a3 is not a
stable set of size three, x2 is adjacent to y2. Since A1 is anticonnected, there
exist non-adjacent vertices x ∈ X and y ∈ Y . But now xx2y2ya3x is a hole of
length five, a contradiction. So Y2 is empty and therefore i is different from j,
say j = 3. Since a4, a5 are not twins, k ≤ 4. This proves 33.2.

By 33.2 we may assume that X ′ = X2, Y ′ = Y3. Let M1 be the vertices
in X with a neighbor in Zy, M2 = X \ M1. Let N1 be the vertices in Y with
a neighbor in Zx, N2 = X \ N1.

33.3 If Z, X ′, Y ′ are all non-empty then the theorem holds.

We may assume Zx is non-empty. Since a2x2zy3a3a2 (where z ∈ Z, x2 ∈ X2

and y3 ∈ Y3) is not a hole of length five, X2 is complete to Y3. Suppose z in
Zx has a neighbor y in Y . Since A1 is anticonnected, y has a non-neighbor
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x in X. But now a3za2y3xyx2a3 (with x2 in X2 and y3 in Y3) is an antihole
of length seven, a contradiction. So Zx is anticomplete to Y . Choose z in Zx

and non-adjacent x in X and y in Y . Then zxa2yy3z is a hole of length five,
a contradiction. This proves 33.3.

33.4 If Z is empty then the theorem holds.

The pairs (X, Y ) and (X2, Y3) are coherent homogeneous pairs, and since G

does not admit twins or a coherent W-join, all four of these sets have size ≤ 1.
Every vertex of G is adjacent to a3, except the vertex x2 of X2, if X ′ is non-
empty. So every clique of G contains either a3 or x2, and therefore K(G) is
perfect (it is either a complete graph, or the complement of a bipartite graph).
This proves 33.4.

In view of 33.4, we henceforth assume that Z 6= ∅. By 33.3 we may assume X ′

is empty, and so Y ′ is non-empty. By 33.2 we may assume Y ′ = Y3. Since the
vertices of Y3 are not twins, Y3 = {y3}.

33.5 Z is complete to Y .

Suppose not. Choose z in Z, with a non-neighbor y is in Y . Then z in Zx.
Since A1 is anticonnected, y has a non-neighbor x in X. But now zxa2yy3z is
a hole of length five, a contradiction. This proves 33.5.

Let M be the set of vertices in X with a neighbor in Z. Suppose some z

in Z has adjacent neighbors x in X and y in Y . Then xya3 is a triangle, z is
adjacent to x, y and not to a3; y3 is adjacent to a3, y and not to x. Choose a
non-neighbor x′ of y in X. Then x′ is adjacent to a3, x. But now the graph
induced by {x, x′, y, y3, a3, z} is a 1- or 2-pyramid, a contradiction. This proves
that M is anticomplete to Y . Now (Z, M) is a coherent homogeneous pair, and
the same for (X \M, Y ). Since G admits no twins and no coherent W-join, all
four of these sets have size ≤ 1. Also, since a2 and a4 are not twins, k = 3. Let
Z = {z}. Every vertex of G different from z is adjacent to a3. So every clique
of G contains either a3 or z, and then K(G) is perfect (it is the complement
of a bipartite graph). This completes the proof of Theorem 33. 2

Theorem 34 Let G be an interesting HCH claw-free graph, and suppose that

G is connected, does not admit a coherent or non-dominating W-join, a 1-join
or twins. If G contains a stable set of size three and a singular vertex, then

K(G) is perfect.

PROOF. The proof is by induction on |V (G)|. Assume that for every smaller
graph G′ satisfying the hypotheses of the theorem, K(G′) is perfect. Let v be
a singular vertex in G with maximum number of neighbors. Let A be the set
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of neighbors of v and B be the set of its non-neighbors. Since v is singular, B

is a complete.

Since G contains a stable set of size three, and every such set meets both A

and B (because B is a clique, and G is claw-free), there exist vertices in B

that are non singular. Let U be the set of all such vertices.

34.1 If U is anticomplete to A then K(G) is perfect.

Let V = B \ U , so every vertex of V is singular, and since G is connected,
V is non-empty. Let a1, a2 be two non-adjacent vertices in A. If b ∈ V is
non-adjacent to both a1, a2, then {b, a1, a2} is a stable set of size three, and
if b is adjacent to both a1, a2 then {b, a1, a2, u} is a claw for every u ∈ U ;
in both cases we get a contradiction. So every vertex in V is adjacent to
exactly one of a1, a2. Suppose there exist v1, v2 in V with vi adjacent to ai.
Then v1v2a2va1v1 is a hole of length five, a contradiction. So one of a1, a2 is
anticomplete to V , and therefore the other one is complete to V . Let A1 be
the vertices in A complete to V , A2 be the vertices in A anticomplete to V

and A3 = A \ (A1 ∪ A2). It follows from the previous argument that A1 ∪ A3

and A2 ∪A3 are both completes. If A3 is non-empty, then |V | > 1 and (A3, V )
is a coherent W-join, a contradiction. So we may assume A3 is empty. Now
(A1, A2) is a coherent homogeneous pair, and all the vertices of each of U, V

are twins. So all these sets have size at most 1 and K(G) is the clique graph
of an induced subgraph of a 4-edge path, and hence perfect. This proves 34.1.

So we may assume that there exists a non-singular vertex u in B with a
neighbor in A. Let M be the set of neighbors of u in A, N the set of non-
neighbors. Since u is non-singular, N contains two non-adjacent vertices x, y.
Choose m in M . If m is adjacent to both x, y then {m, x, y, u} is a claw. If m

is non-adjacent to both x, y then {v, x, y, m} is a claw. So every vertex in M

is adjacent to exactly one of x, y. So there is no complement of an odd cycle
in G|N , and therefore the complement of G|N is bipartite and N is the union
of two completes.

Let M1 be the vertices in M adjacent to x, M2 those adjacent to y, then
M1 ∪ M2 = M and M1 ∩ M2 = ∅.

If there exists m1 in M1 and m2 in M2 such that m1 is adjacent to m2, then
the graph induced by {m1, m2, v, x, y, u} is 3-sun, a contradiction. So there are
no edges between M1 and M2, M1 is anticomplete to y and M2 is anticomplete
to x. Since {v, m, m′, y} is not a claw for m, m′ in M1, it follows that M1 is a
complete, and the same holds for M2.

Case 1: M1 and M2 are both non-empty.
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Since A contains no stable set of size three (for otherwise there would be a
claw in G), every vertex in N is complete to one of M1, M2. Let N3 be the
vertices complete to M1∪M2, N1 the vertices of N \N3 complete to M1 and N2

vertices of N \ N3 complete to M2. So x ∈ N1 and y ∈ N2. Since {m, n, n′, u}
is not a claw for m in M1 and n, n′ in N1 ∪ N3, it follows that N1 ∪ N3 is
a complete. Similarly N2 ∪ N3 is a complete. Suppose N3 is non-empty, and
choose n ∈ N3. Then n is complete to (A∪{v})\{n}, and therefore is singular
(for its non-neighbors are a subset of B); and by the choice of v, n and v are
twins. Since G admits no twins, it follows that N3 is empty. Suppose some
n1 in N1 is adjacent to n2 in N2. Choose m′

1 in M1 non-adjacent to n2 and
m′

2 in M2 non-adjacent to n1. Then m′

1n1n2m
′

2um′

1 is a hole of length five, a
contradiction. So N1 is anticomplete to N2. Suppose n1 in N1 has a neighbor
m′

2 in M2. Then {m′

2, n1, y, u} is a claw, a contradiction. So N1 is anticomplete
to M2, and, similarly, N2 is anticomplete to M1.

For i = 1, 2 choose m′

i in Mi, and assume that m′

i has a non-neighbor bi in
B. If m′

1 and m′

2 have a common non-neighbor b ∈ B, then {u, m′

1, m
′

2, b} is
a claw, a contradiction. So there are two vertices b1 and b2 in B such that
b1 is non-adjacent to m′

1 and adjacent to m′

2, and b2 is non-adjacent to m′

2

and adjacent to m′

1. But then m′

1b2b1m
′

2vm′

1 is a hole of length five, again a
contradiction. So, exchanging M1 and M2 if necessary, we may assume that
M1 is complete to B, and since G admits no twins, |M1| = 1, say M1 = {m1}.

Let b be a vertex of B with a neighbor in N1. We claim that b is complete
to M2 and anticomplete to N2. For if b has a non-neighbor m2 in M2, then
n1bum2vn1 is a hole of length five; and if b has a neighbor n2 in N2, then
{b, n1, n2, u} is a claw; in both cases a contradiction. This proves the claim.

So every vertex of B is either anticomplete to N1, or complete to M2 and
anticomplete to N2. Let B1 be the set of vertices of B with a neighbor in
N1. Then (B1, N1) is a non-dominating homogeneous pair, and since G does
not admit a non-dominating W-join or twins, it follows that |B1| ≤ 1 and
|N1| = 1, say N1 = {n1}.

Assume that B1 is non-empty, let B1 = {b1}. Let B2 = B \ B1. We claim
that in this case B2 is complete to M2. If b2 in B2 has a non-neighbor m2 in
M2, then b2 6= b1 and {b1, n1, m2, b2} is a claw, a contradiction. This proves
the claim. But now the vertices of M2 are all twins, and since G does not
admit twins, |M2| = 1. Moreover, (B2, N2) is a non-dominating homogeneous
pair, and since G does not admit a non-dominating W-join or twins, it follows
that |B2| = |N2| = 1, so B2 = {u} and N2 = {n2}. But now every clique of
G contains either v or b1, and hence K(G) is the complement of a bipartite
graph, and therefore perfect. This finishes the case when B1 is non-empty.
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If B1 is empty, (B, M2 ∪ N2) is a non-dominating homogeneous pair, and
since G does not admit a non-dominating W-join or twins, it follows that
|B| = |M2 ∪N2| = 1, a contradiction because both M2 and N2 are non-empty.
This finishes the case when both M1 and M2 are non-empty.

Case 2: One of M1, M2 is empty.

We may assume that M2 is empty, and so M is complete to x and anticomplete
to y. Let N1 be the set of vertices in N complete to M , N2 the set of vertices
in N that are anticomplete to M and let N3 = N \ (N1 ∪ N2).

We claim that N1 ∪N3 and N2 ∪N3 are both completes. Choose two different
vertices n3 in N3∪N1 and n1 in N1, and let m be a neighbor of n3 in M . Since
{m, u, n1, n3} is not a claw, n1 is adjacent to n3; and therefore N1 is a complete
and N1 is complete to N3. Next, choose two different vertices n3 in N3 ∪ N2

and n2 in N2, and let m be a non-neighbor of n3 in M . Since {v, m, n2, n3}
is not a claw, n2 is adjacent to n3; and therefore N2 is a complete and N2 is
complete to N3. Finally, suppose there exist two non-adjacent vertices n3 and
n′

3 in N3. Since {m, u, n3, n
′

3} is not a claw for any m ∈ M , it follows that no
vertex of M is adjacent to both n3 and n′

3. Let m be a neighbor of n3 in M

and m′ be a neighbor of n′

3 in M . Then m is non-adjacent to n′

3 and m′ is
non-adjacent to n3, and the graph induced by {v, m, m′, u, n3, n

′

3} is a 3-sun,
a contradiction. So N3 is a complete. This proves the claim. Since there exist
two non-adjacent vertices in N , both N1 and N2 are non-empty.

34.2 Let b in B adjacent to n3 in N3 and to m in M . Then n3 is non-adjacent
to m.

Suppose they are adjacent. Let m′ be a non-neighbor of n3 in M , and let n2

be in N2. Then n3mv is a triangle, b is adjacent to n3, m; n2 is adjacent to
v and n3; m′ is adjacent to v and m, and this is a 0-, 1- or 2-pyramid, a
contradiction. This proves 34.2.

34.3 Every vertex in N1 has a non-neighbor in N2.

Suppose some vertex n1 of N1 is complete to N2. Then the set of non-neighbors
of n1 is included in B, and therefore n1 is singular; and it is complete to
A \ {n1}. From the choice of v, n1 has no neighbor in B, but now n1 and v

are twins, a contradiction. This proves 34.3.

34.4 M is complete to B.

Let B1 be the set of vertices in B that are complete to M . Suppose there
exists b2 in B \ B1, and let m be a non-neighbor of b2 in M .
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34.4.1 |N2| = 1, N2 is anticomplete to B, and consequently all stable sets of
size three using u share a vertex in A.

Let n be in N2. Since nb2umvn is not a hole of length five, it follows that
n is non-adjacent to b2, and the same holds for every vertex of B \ B1. So
n is anticomplete to B \ B1. Since {b1, b2, m, n} is not a claw for b1 ∈ B1, it
follows that n is anticomplete to B1, and the same holds for every vertex of
N2. Therefore N2 is anticomplete to B. But now {v} ∪ N1 ∪ N3 is a clique
cutset separating N2 from M ∪B. By Theorem 12, G is either a linear interval
graph or G is the 3-sun, or G admits twins, or a 0-join, or a 1-join, or a
coherent W-join, or it is not an internal clique cutset; and it follows from the
hypotheses of the theorem and from Theorem 27, that we may assume that
the last alternative holds, and |N2| = 1, say N2 = {n2}. Now, since M , B and
N1 ∪N3 are all completes, it follows that n2 belongs to every stable set of size
three using u. This proves 34.4.1.

34.4.2 N1 is anticomplete to n2.

Follows from 34.3.

34.4.3 We may assume that every vertex of B has a neighbor in A.

Suppose not. Let b be a vertex of B anticomplete to A.

We claim that in this case K(G) is perfect if and only if K(G \ {b}) is. Since
every vertex of G \ B has a non-neighbor in B, B is a clique of G. b is a
simplicial vertex and B is the only clique containing b. Let vB be the vertex
of K(G) corresponding to B. There are two possibilities: either B \ {b} is a
clique of G \ {b}, and then K(G \ {b}) = K(G), or there is a vertex mB in A

complete to B \ {b} in G, and then K(G \ {b}) = K(G) \ {vB}. The vertex
mB belongs to M because, in particular, it is adjacent to u. We claim that
every clique of G different from B and having non-empty intersection with B

contains the vertex mB. Otherwise, there is a clique of G containing a vertex of
B, say b3, and a vertex a of A non-adjacent to mB. But now {b3, b, mB, a} is a
claw, a contradiction. Thus vB is simplicial in K(G), and Lemma 6 completes
the proof of the claim. But now, since K(G \ {b}) is perfect, so is K(G). This
proves 34.4.3.

We henceforth assume that every vertex of B has a neighbor in A.

34.4.4 Let b ∈ B be a vertex non-adjacent to some n3 ∈ N3; and let m be in
M . Then n3 is adjacent to m.

Suppose not. Then b is in a stable set of size three {b, n3, m} and b has a
neighbor in A; and by 34.4.1 applied to b instead of u, {b, n2} ∪ N1 does not
contain a stable set of size three. So b is complete to N1. But now {n1, b, m, n3}
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is a claw for every n1 ∈ N1, a contradiction. This proves 34.4.4.

34.4.5 B is anticomplete to N3.

Suppose a vertex b ∈ B has a neighbor n ∈ N3. By the definition of N3, n has
a neighbor m in M . By 34.2, m is non-adjacent to b. By 34.4.4 n is adjacent
to m. But now {n, n2, b, m} is a claw, a contradiction. This proves 34.4.5.

Now M ∪N1 is a clique cutset separating {v}∪N2∪N3 from B. Since |B| > 1
and |{v}∪N2∪N3| > 1, it follows from Theorem 12, that G is a linear interval
graph, and therefore K(G) is perfect by Theorem 27. This completes the proof
of 34.4.

By 34.4, for every non-singular vertex in B, the set of its neighbors in A is
complete to B.

34.5 B is anticomplete to N3.

Suppose some vertex b in B has a neighbor n3 is N3. By the definition of N3,
n3 has a neighbor in M , and this contradicts 34.2. This proves 34.5.

34.6 N3 is empty and |M | = 1.

If N3 is non-empty then |M | > 1 and (N3, M) is a coherent homogeneous pair.
So N3 is empty, but now the vertices of M are twins, so |M | = 1. This proves
34.6.

It follows from 34.6 that every singular vertex in B has at most one neighbor
in A, and since M is complete to B and has size 1, every singular vertex in B

is complete to M and anticomplete to A \ M . Therefore the vertices of U are
all twins, and since G admits no twins, U = {u}. Let B2 = B \ U .

34.7 B2 is non-empty.

Otherwise (N1, N2) is a coherent homogeneous pair, so each of them has size
1 and K(G) is a three-edge path. This proves 34.7.

34.8 If n1 in N1 is non-adjacent to n2 in N2, then every b in B2 is adjacent to
exactly one of n1, n2.

Let b2 in B2. Since b2 in B2 is singular, b2 is adjacent to at least one of n1, n2.
Since {b2, n1, n2, u} is not a claw, b2 is non-adjacent to at least one of n1, n2.
This proves 34.8.

34.9 No vertex of N1 has a neighbor and a non-neighbor in B2.
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Suppose n1 in N1 has a neighbor b1 in B2 and a non-neighbor b2 in B2. By
34.3 n1 has a non-neighbor n2 in N2. By 34.8 n2 is adjacent to b2 and not to
b1. But now b1n1vn2b2b1 is a hole of length five, a contradiction. This proves
34.9.

Let N11 be the vertices of N1 complete to B2, N12 = N1 \ N11. So N12 is
anticomplete to B. It follows from 34.8 every vertex of N2 is either complete
to N11 or to N12. Let N22 be the set of vertices in N2 with a non-neighbor in
N11. Then N22 is complete to N12. Let N21 be the vertices in N2 with a non-
neighbor in N12. Then N21 is complete to N11. Let N23 = N2 \ (N21 ∪ N22).
So N23 is complete to N1. By 34.8 B2 is anticomplete to N22 and complete
to N21. Now (B2, N23) is a coherent homogeneous pair, and all the vertices of
N11, N12, N22, N21 are twins, so all these sets have size at most 1.

Now, every clique of G contains either v or b2, so K(G) is the complement
of a bipartite graph, and hence it is perfect. This completes the proof of
Theorem 34. 2

3.2.3 Basic classes

Finally we show that if an interesting HCH claw-free graph belongs to one of
the basic classes of Theorem 5, then its clique graph is perfect.

Theorem 35 If G is interesting HCH, antiprismatic and every vertex of G

is in a triad, then K(G) is perfect.

PROOF. We prove that G contains no 4-wheel or 3-fan, and then, by The-
orem 16, K(G) is bipartite.

Suppose G contains a 4-wheel. Let a1a2a3a4a1 be a hole and let c be adjacent
to all ai. Since every vertex is in a triad, there are two vertices c1, c2 different
from a1, a2, a3, a4 such that {c, c1, c2} is a stable set. Since G is antiprismatic,
every other vertex in G is adjacent exactly to two of {c, c1, c2}. In particular,
each ai is adjacent either to c1 or to c2. If two consecutive vertices of the hole,
for instance a1, a2, are adjacent to the same cj, then {a1, a3, a2, a4, c, cj}
induces a 1-,2- or 3-pyramid, a contradiction because G is HCH. So, without
loss of generality, we may assume that a1 and a3 are adjacent to c1 and not
to c2, while a2 and a4 are adjacent to c2, and not to c1. But then {a1, a3, c2}
is a claw, a contradiction. This proves that G does not contain a 4-wheel.

Suppose now that G contains a 3-fan. Let a1a2a3a4 be an induced path and
let c be adjacent to all ai. Since every vertex is in a triad, there are two
vertices c1, c2 different from a1, a2, a3, a4 such that {c, c1, c2} is a stable set.
Since G is antiprismatic, each ai is adjacent either to c1 or to c2. If a2 and
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a3, are adjacent to the same cj, then {a1, a3, a2, a4, c, cj} induces a 0-,1- or
2-pyramid, a contradiction because G is HCH. So, without loss of generality,
we may assume that a2 is adjacent to c1 and not c2, while a3 is adjacent to
c2 and not c1. Since {a3, a2, c2, a4} is not a claw, a4 is adjacent to c2, and,
analogously, a1 is adjacent to c1. By the same argument applied to the 3-fan
induced by the path a2ca4c2 and the vertex a3, there is a vertex d adjacent to
a4 and c2 but not adjacent to a2, c or a3, and so d 6∈ {a1, a2, a3, a4, c, c1, c2}
(see Figure 15).
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c
1

c
2

c

d

Fig. 15. Situation for the second part of the proof of Theorem 35.

Since c1a2a2a4dc1 is not a hole of length five, d is non-adjacent to c1. Thus
c1, c and d form a triad, but the vertex c2 is adjacent only to one of them, a
contradiction because G is antiprismatic. This concludes the proof of Theorem
35. 2

Theorem 36 Let G ∈ S6 be a connected interesting HCH graph such that

every vertex of G is in a triad. Then K(G) is perfect.

PROOF. Let A, B and C be the sets of vertices of the graph H5 in the
definition of the class S6, and let AG, BG and CG be those sets intersected
with V (G). We remind the reader that a0 ∈ AG and b0 ∈ BG by the definition
of S6. Every triad in G is of the form {ai, bj, ck}, since AG, BG and CG are
complete sets. Moreover, either i = j = 0 or k = i and j = 0 or k = j and
i = 0. Since every vertex of G is in a triad, it follows that AG, BG and CG are
non-empty and if i 6= 0 and ai ∈ AG, then ci ∈ CG. Analogously, if i 6= 0 and
bi ∈ AG, then ci ∈ CG. Let IA = {i > 0 : ai ∈ AG}, IB = {i > 0 : bi ∈ BG}
and IC = {i > 0 : ci ∈ CG}. Then IA ∪ IB ⊆ IC .

Assume first that IC \ (IA ∪ IB) is non-empty. Since the set C ′ = {ci : i ∈
C \ (IA ∪ IB)} is complete to V (G) \ (C ′ ∪ {a0, b0}), and the only cliques
containing a0 or b0 are AG and BG, respectively, it follows that every pair of
cliques of G, except for the pair AG, BG, has non-empty intersection. Thus
V (K(G)) is the union of a stable set and a complete. On the other hand, if A

is an odd hole or antihole, there is no partition of the vertex set of A into a
complete and a stable set. Therefore K(G) contains no odd hole or antihole,
and hence K(G) is perfect by Theorem 1.
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So we may assume that IA ∪ IB = IC . If |IA ∪ IB| ≥ 3, we may assume by
switching A and B if necessary that 1, 2 ∈ IA, and then the graph induced
by {a1, a2, c1, c2, c3, a0} is a 1-pyramid, a contradiction because G is HCH.
On the other hand, since G is connected, both IA and IB are non-empty
and |IA ∪ IB| ≥ 2. So, without loss of generality, we consider three cases:
IA = IB = {1, 2}; IA = {1, 2} and IB = {2}; IA = {1} and IB = {2}. Graphs
obtained in each case are depicted in Figure 16, with their corresponding clique
graphs, which are all perfect. That concludes this proof. 2
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Fig. 16. Last three cases for the proof of Theorem 36.

3.3 Proof of Theorem 18

Proof of Theorem 24. Let G be an interesting HCH claw-free graph. The
proof is by induction on |V (G)|, using the decomposition of Theorem 5. As-
sume that for every smaller interesting HCH claw-free G′, K(G′) is perfect.
We show that K(G) is perfect.

If G admits twins, then K(G) is perfect by Lemma 14, and if G is not con-
nected, then K(G) is perfect by Lemma 15. If G is connected, admits a 1-join
and no twins, then K(G) is perfect by Theorem 28 and Lemma 7. If G admits
no twins, 0- or 1-joins, but admits a 2-join, then K(G) is perfect by Theorem
29. If G admits a coherent or non-dominating W-join and no twins, then K(G)
is perfect by Theorem 31. If G contains a singular vertex, then K(G) is perfect
by Theorems 33 and 34. So we may assume not. If G admits a hex-join and no
twins, then by Theorem 32 G = K(G) = C6, and therefore K(G) is perfect.

So we may assume that G admits none of the decompositions of the previous
paragraph, and by Theorem 5, G is antiprismatic, or belongs to S0 ∪ · · · ∪ S6.

If G ∈ S0, then K(G) is perfect by Theorem 22. The graphs icosa(−2),
icosa(−1) and icosa(0) contain holes of length five, and therefore are not
interesting, so G 6∈ S1. G 6∈ S2, because vertices v3, v4, v5, v6, v9 induce a hole
of length five in H1 (Figure 6). If G ∈ S3, then by Proposition 27, K(G) is
perfect. If G ∈ S4 then, since G does not contain a singular vertex, G is a
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line graph and K(G) is perfect by Theorem 22. G 6∈ S5, because the vertex
d1 in the definition of the class S5 is singular. If G ∈ S6, then K(G) is perfect
by Theorem 36, and finally, if G is antiprismatic, then K(G) is perfect by
Theorem 35. This completes the proof of Theorem 24. 2

Theorem 18 is an immediate corollary of the following:

Theorem 37 Let G be claw-free and assume that G is HCH. Then the fol-

lowing are equivalent:

(i) no induced subgraph of G is an odd hole, or C7.

(ii) G is clique-perfect.

(iii) G is perfect.

PROOF. The equivalence between (i) and (iii) is a corollary of Theorem 1,
because by Proposition 25 HCH graphs contain no antiholes of length at least
eight. From Theorem 3 it follows that (ii) implies (i). Finally, by Theorem 24
and Propositions 20 and 25, we deduce that (i) implies (ii), and this completes
the proof. 2

The recognition of clique-perfect HCH claw-free graphs can be reduced to the
recognition of perfect graphs, which is solvable in polynomial time [9].

3.4 Summary

These results allow us to formulate partial characterizations of clique-perfect
graphs by forbidden subgraphs, as is shown in Table 1.

Graph classes Forbidden subgraphs Reference

HCH claw-free graphs odd holes Thm 18

C7

Line graphs odd holes Thm 17

3-sun

Table 1
Forbidden induced subgraphs for clique-perfect graphs in each studied class.

Note that in both cases all the forbidden induced subgraphs are minimal.
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