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Abstract

A (loopless) digraph H is strongly immersed in a digraph G if the vertices of H are mapped to
distinct vertices of GG, and the edges of H are mapped to directed paths joining the corresponding
pairs of vertices of GG, in such a way that the paths used are pairwise edge-disjoint, and do not pass
through vertices of G that are images of vertices of H. A digraph has cutwidth at most k if its
vertices can be ordered {v1,...,v,} in such a way that for each j, there are at most k edges uv such
that w € {v1,...,vj_1} and v € {v;,..., v, }.

We prove that for every set S of tournaments, the following are equivalent:

e there is a digraph H such that H cannot be strongly immersed in any member of S
e there exists k such that every member of S has cutwidth at most k

e there exists k such that every vertex of every member of S belongs to at most k edge-disjoint
directed cycles.

This is a key lemma towards two results that will be presented in later papers: first, that strong
immersion is a well-quasi-order for tournaments, and second, that there is a polynomial time algo-
rithm for the k edge-disjoint directed paths problem (for fixed k) in a tournament.



1 Introduction

In this paper, all graphs and digraphs are finite, and may have loops or multiples edges. A digraph
is simple if it has no loops, and for every pair of distinct vertices u, v there is at most one edge with
tail v and head v. A digraph is semi-complete if it is simple, and for every pair of distinct vertices
u, v, either there is an edge uv (this means an edge with tail u and head v) or an edge vu. A digraph
is a tournament if it is simple and for every pair of distinct vertices wu, v, there is exactly one edge
with ends {u,v}. Thus, every tournament is semi-complete.

Let G, H be digraphs. A weak immersion of H in G is a map 7 such that

e 7n(v) € V(G) for each v € V(H)
e n(u) # n(v) for distinct u,v € V(H)

e for each non-loop edge e = uv of H (this notation means that e is directed from u to v), n(e)
is a directed path of G from n(u) to n(v) (paths do not have “repeated” vertices)

e for each loop e of H incident with v € V(H), n(e) is a directed cycle of G passing through n(v)

e if e, f € E(H) are distinct, then n(e),n(f) have no edges in common, although they may share
vertices.

If in addition we add the condition
e if v e V(H) and e € E(H), and e is not incident with v in H, then n(v) is not a vertex of n(e)

we call the relation strong immersion. Two of us proved the following, which will be presented in
another paper [1]:

1.1 In every infinite set of tournaments there are two tournaments such that one can be strongly
immersed in the other.

The result of the present paper is a key lemma that allows us to prove 1.1. Before its statement
we need a few more definitions. If G is a digraph, we define A\(G) to be the maximum ¢ such that
some vertex of G belongs to ¢ directed cycles that are pairwise edge-disjoint, and p(G) the maximum
t such that some vertex of G belongs to ¢ directed cycles that are otherwise pairwise vertex-disjoint.
If £ > 0 is an integer, an enumeration (v1,...,v,) of the vertex set of a digraph has cutwidth at
most k if for all j € {2,...,n}, there are at most k edges uv such that v € {vi,...,v;_1} and
v € {vj,...,v,}; and a digraph has cutwidth at most k if there is an enumeration of its vertex set
with cutwidth at most k. Two vertices u, v are k-edge-connected if there are k pairwise edge-disjoint
directed paths from u to v, and k pairwise edge-disjoint directed paths from v to u. We say u, v are
strongly k-vertex-connected if there are k directed paths from w to v, each with an internal vertex
and pairwise vertex-disjoint except for u, v, and there are k directed paths from v to u, each with an
internal vertex and pairwise vertex-disjoint except for u,v.

Let T be a digraph, let k£ > 0 be an integer, and let u,v € V(T') be distinct. We say that (u,v)
is a

e k-pair of the first type if there is a set A of k vertices in T" each adjacent to u and adjacent from
v, and there is a set B of k vertices each adjacent from u and adjacent to v, with AU B = ()



e k-pair of the second type if there is a set C' of k vertices in T each adjacent to v and not from

u, and each adjacent from v and not to v, and there is a set of k edges {aib1,...,arbi} such
that ay,...,ax,b1,..., b are all distinct and not in C, and ay,...,a; are adjacent from u and
not to u, and by, ..., by are adjacent to v and not from wv.

Our main theorem is the following.

1.2 For every set S of semi-complete digraphs, the following are equivalent:
1. there exists k such that every member of S has cutwidth at most k
. there exists k such that \(T') < k for every T € S

. there exists k such that for each T € S, no two vertices of T are k-edge-connected

L

. there exists k such that for each T € S, there do not exist k vertices of T that are pairwise
k-edge-connected

. there is a digraph H such that H cannot be weakly immersed in any member of S
. there is a digraph H such that H cannot be strongly immersed in any member of S
. there exists k such that u(T) < k for every T € S

. there exists k such that for each T € S, no two vertices of T are strongly k-vertex-connected

© ® N DY W™

. there exists k such that for each T € S, no pair of vertices is a k-pair of either the first or
second type.

The proof is given in the next section. Incidentally, here are a couple more statements that are NOT
equivalent to the statements of 1.2:

e there exists k such that for each T' € S, there do not exist k vertices of 1" that are pairwise
strongly k-vertex-connected

e there is a digraph H such that no subdivision of H is a subgraph of any member of S. (A
subdivision of a digraph H is obtained by repeatedly deleting an edge uv, and adding a new
vertex w, and adding two new edges uw and wv.)

To see the non-equivalence, take a tournament 7" with 2k + 1 vertices vg, v1, ..., V9, in which v; is
adjacent to v; for 1 < i < j < 2k, and vg is adjacent to vi,...,v; and from viyy,...,v9;. Then
w(T) = k, and yet no three vertices are strongly 2-vertex-connected. Moreover, if H is the digraph
obtained from a directed cycle of length three by adding a new edge parallel to each of the three
original edges, then no subdivision of H is a subgraph of T.

There are also at least two algorithmic consequences of 1.2. In the final section we show that
for every fixed digraph H there is an algorithm to test whether H can be strongly immersed in a
semi-complete digraph T', with running time polynomial in the size of T'; and also such an algorithm
for weak immersion. Secondly, two of us proved, using 1.2, that for all fixed k there is an algorithm
which, given a tournament T" and k pairs s1,t1, ..., Sk, tg of vertices, tests in polynomial time whether
there are k edge-disjoint directed paths of T where the ith path is from s; to t; for 1 <4 < k. This
will be presented in a later paper [3].



2 The main proof

We begin by studying the semi-complete digraphs that do not have any k-pair of the first type. Let T

be a digraph. For every enumeration (v1,...,v,) of the vertex set of T', we define the converse-degree
of this enumeration to be the maximum over all j € {1,...,n} of the larger of

e the number of edges with head v; and tail in {v1,...,vj—1}

e the number of edges with tail v; and head in {vjq1,...,vn}.

We define the converse-degree of T' to be the smallest k& such that some enumeration of V(T") has
converse-degree k. Thus, the converse-degree of T' is at most the cutwidth of T'. We first prove:

2.1 Let T be a digraph, and let k > 0 be an integer.
o [f some pair of vertices is a k-pair of the first type then the converse-degree of T is at least k/2.

o IfT is semi-complete and no pair of vertices is a k-pair of the first type then the converse-degree
of T is at most 4k.

Proof. For the first assertion, we assume that some pair of vertices of T is a k-pair of the first type.
Let b be the converse-degree of T, and let {v1,...,v,} be an enumeration of V(T') with converse-
degree b. Let (v;,v;) be a k-pair of the first type. Since also (vj,v;) is a k-pair of the first type, we
may assume that ¢ < j. Let X be a set of k vertices adjacent from v; and to v;. For every v, € X,
either h > ¢ or h < j, since ¢ < j; but there at most b values of h with v, € X such that h > ¢, since
the enumeration has converse-degree b and each such vy, is adjacent from v;; and similarly there are
at most b values of h such that v, € X and h < j. Consequently | X| < 2b. Since |X| = k, we deduce
that b > k/2. This proves the first assertion of the theorem.

For the second, we assume that T is semi-complete and no pair of vertices of T is a k-pair of
the first type. For distinct u,v € V(T), let us write u = v if there are at least 2k vertices that are
adjacent from u and adjacent to v.

(1) There is no sequence x1,...,x; of vertices such that
X1 = T2 = XT3 = = Tt = T1.

For suppose that z1,...,xz; is such a sequence; thus ¢ > 2. For 1 < i < ¢, let A; be a set of 2k
vertices that are adjacent from xz; and to x;41 (where z;41 means z1). Now x; is adjacent to at least
k members of A; (indeed, to all 2k > k members of A;), and so we may choose i with 1 <i <t —1
maximum such that z; is adjacent to at least & members of A;. Choose A C A; with |A| = k such
that x; is adjacent to every vertex in A. If i = ¢ — 1, then there exists B C A; with |B| = k and
AN B = (), since |A¢| = 2k, and so (z1,x¢—1) is a k-pair of the first type, a contradiction. Thus
i <t —1; and from the maximality of i, we deduce that there is a set B C A;;1 with |B| = k such
that x is not adjacent to any member of B. In particular, AN B = (), and since T is semi-complete
it follows that x; is adjacent from every member of B, and so (x1,x;+1) is a k-pair of the first type,
a contradiction. This proves (1).



From (1) we may write V(T') = {v1,...,v,} such that for all distinct 4,5 € {1,...,n}, if v; = v,
then 5 < i. We claim this enumeration has converse-degree at most 4k. For let 1 < j < n, and let

X ={v; : 1 <i<j,v;is adjacent to v}, Y = {v; : j <1 < n,v; is adjacent from v;}.

We claim that | X| < 4k. Thus we may assume that X # (), and so, since T is semi-complete, some
vertex v; € X is adjacent to at least half of the other members of X, that is, to at least (| X|—1)/2
other members of X. Since i < j (because v; € X), it follows from the choice of the enumeration that
v; 7 vj, and so (| X|—1)/2 < 2k, that is, | X| < 4k. Similarly |Y'| < 4k, and so T has converse-degree
at most 4k. This proves 2.1. |

The second part of 2.1 is easily converted to an algorithm; we have:

2.2 There is an algorithm with running time O(n?), which, given as input a semi-complete digraph
with n vertices and an integer k > 0, outputs a k-pair of the first type if one exists, and otherwise
outputs an enumeration of V(T') with converse-degree at most 4k.

Proof. For every pair of distinct vertices u, v, we find the set of all vertices adjacent from u and to
v. (This takes time O(n?).) From this information we read off whether some pair is a k-pair of the
first type, and if so we output it and stop. If there is no k-pair of the first type, we find all pairs u, v
such that v = v (defined as in the proof of 2.1); and it follows that statement (1) in the proof of
2.1 holds. Construct the enumeration (v1,...,v,) as in the proof of 2.1 (to do so, repeatedly choose
a vertex u such that there is no v satisfying v = u, and then delete u; the order in which vertices
are chosen is the desired enumeration); this takes time O(n?). Then output this enumeration. This
proves 2.2. |

We use 2.1 for part of 1.2, the following.

2.3 Let T be a semi-complete digraph and let k > 0 be an integer. Suppose that no pair of vertices
of T is a k-pair of the first or second type. Then the cutwidth of T is at most T2k* + 8k; and indeed
every enumeration of V(T) with converse-degree at most 4k has cutwidth at most 72k* + 8k.

Proof. Since there is no k-pair of the first type, there is an enumeration of V(T') with converse-
degree at most 4k, by 2.1. Take some such enumeration (v1,...,v,). We claim that this enumeration
has cutwidth at most 72k%+8k. For let 2 < j < n; let A = {vj,vj41,...,v,} and B = {vy,...,vj_1}.
We must show that there are at most 72k% + 8k edges with tail in B and head in A. Let F be the
set of all such edges. Since the enumeration has converse-degree at most 4k, we have immediately

(1) Every vertex of T is incident with at most 4k edges in F.

Consequently |F| < 4k|A|, and so we may assume that |A| > 18k + 2; and in particular
J+9%+1<n Let m=j+9k+1, and let C = {vj,vj11,...,vn} and D = {Up41,...,Un}.

(2) There are fewer than 36k edges in F from B to D.

For suppose that there are at least 36k% such edges. These edges form the edge set of a bipar-
tite graph (with bipartition (B, D)) with maximum degree at most 4k; and so every set of vertices



that meets every edge of this bipartite graph has cardinality at least 36k?/(4k) = 9k. By Konig’s
theorem it follows that this bipartite graph has a matching of cardinality 9%k; and so there exist
distinct a1,...,a9x € D and distinct by, ..., bgr € B such that b; is adjacent in T to a; for 1 < i < 9k.
Since the enumeration has converse-degree at most 4k, it follows that there are most 4k values of
i€ {1,...,9k} such that v; is adjacent from b;; and at most 4k values of i € {1,...,9k} such that
U, is adjacent to a;. Consequently there are at least k values of i € {1,...,9k} such that v; is not
adjacent from b;, and v, is not adjacent to a;. Moreover, since the enumeration has converse-degree
at most 4k, there are at most 4k values of i € {j+1,...,m—1} such that v; is adjacent to v;, and at
most 4k such that v, is adjacent from v;, and so at least & such that v; is not adjacent from v; and
not adjacent to vy,. But then (vj,vy,) is a k-pair of the second type, a contradiction. This proves

(2).

Now C'UD = A, and every edge in F is either from B to C or from B to D. Since |C| = 9k + 2,
(1) implies that there are at most 4k(9%k + 2) edges from B to C; and so by (2) it follows that
|F| < 72k% + 8k. This proves 2.3. |

Consequently, we have:

2.4 There is an algorithm with running time O(n*), which, given as input a semi-complete digraph
T with n vertices and an integer k > 0, outputs a k-pair of the first or second type if one ezists,
and otherwise outputs an enumeration of V(T) with cutwidth at most 72k* + 8k. There is also an
algorithm with running time O(n3), which with the same input, outputs a k-pair of the first type if
one exists, and otherwise outputs either a k-pair of the second type, or an enumeration of V(T') with
cutwidth at most 72k? 4 8k.

Proof. To test whether a given pair (u,v) is a k-pair of the second type takes time O(n?) (we find
the set A of out-neighbours of u, and the set B of in-neighbours of v, duplicating any vertex that
belongs to both sets; and then run a bipartite matching algorithm on the graph formed by the edges
of T from A to B). Thus we can output a k-pair of the second type (if one exists) in time O(n?*), by
trying all pairs (u,v). If there is no such pair, we run 2.2. If this provides a k-pair of the first type,
we output it. Otherwise it provides an enumeration of V' (7T') with converse-degree at most 4k, and
by 2.3 this has cutwidth at most 72k2 + 8k; we output it. This proves the first assertion.

For the second, we begin by running 2.2. If it give us a k-pair of the first type, we output it, and
if not then we are given an enumeration (vy,...,v,) with converse-degree at most 4k. We test its
cutwidth. If its cutwidth is at most 72k? + 8k then we output the enumeration and stop. Otherwise
we find some j such that |F| > 72k? + 8k, with notation as in the proof of 2.3. Defining A, B, C, D
as in that proof, it follows that there are at most 4k(9k +2) edges from B to C, and so at least 36k
edges from B to D. By running a bipartite matching algorithm in the corresponding bipartite graph,
we find a 9k-edge matching of edges from B to D; and as in the proof of step (2) of 2.3, we convert
this to a k-pair of the second type. (This takes time O(n?).) This proves the second assertion, and
so completes the proof of 2.4. |

We use \ to denote deletion; thus, G \ X is the graph obtained from G by deleting X. (Here X
may be a vertex or an edge, or a set of vertices or edges.)
Proof of 1.2. By 2.3 it follows that 1.2.9 implies 1.2.1. We prove the remaining implications in
order (except for two).



(1) If T is a loopless digraph of cutwidth at most k then A\(T) < 2k. In particular 1.2.1 implies
1.2.2.

For let (vi,...,v,) be an enumeration of V(7T') of cutwidth at most k. Let 1 < j < n. Let A
be the set of edges from {v; : 1 < i < j} to {v; : j < i < n}, and let B be the set of edges
from {v; : 1 < i < j}to{v; : j < i< n} Since the enumeration has cutwidth at most k it
follows that |Al, |B| < k. Suppose that C1,. .., C; are edge-disjoint directed cycles, all containing v;.
Let 1 < h < t. We claim that some edge of Cj, belongs to AU B. For if some vertex of C}, is in
{v; : 1 <i< j} then some edge of C} is in A, and if some vertex of Cy, is in {v; : j < i < n} then
some edge of C}, is in B; and if neither of these happens then V(Cj,) = {v;}, which is impossible
since T is loopless. This proves that some edge of C} belongs to AU B. Since |A U B| < 2k and
C1,...,Cy are pairwise edge-disjoint, it follows that ¢ < 2k and so A(T") < 2k. This proves (1).

(2) If T is a loopless digraph with \(T)) < k, then there do not exist two vertices u,v that are
(k + 1)-edge-connected to each other. In particular, 1.2.2 implies 1.2.5.

For suppose that u,v are (k + 1)-edge-connected to each other. Let H be the digraph obtained
from T by deleting v and adding two new vertices wu, us, where the edges incident with wuq,ug are
as follows. If e is an edge of T" with tail u and head x say, then in H let e be an edge with tail u;
and head z; and if e has head v and tail = in 7', then in H let e have head uy and tail . We claim
that there are k+ 1 directed paths of H from u; to us, pairwise edge-disjoint. For suppose not; then
by Menger’s theorem there exists X C V(H) with u; € X and ug ¢ X such that there are at most
k edges of H with tail in X and head in V(H) \ X. Since u,v are (k 4+ 1)-edge-connected to each
other, Menger’s theorem applied to 1" implies that there are k + 1 edge-disjoint directed paths of T’
from u to v; and hence there are (k + 1) edge-disjoint paths in H from wu; to v. Since there are at
most k edges in H from X to V/(H) \ X, one of these paths uses no such edge, and so, since u; € X,
it follows that v € X. But similarly since there are k 4+ 1 edge-disjoint directed paths in T" from v to
u, it follows that v € V(H) \ X, a contradiction. Thus there are no such w,v. This proves (2).

It is clear that 1.2.3 implies 1.2.4; also 1.2.4 implies 1.2.5 (take H to be the digraph obtained from
a directed cycle of length k by replacing each edge by k parallel edges; if H can be weakly immersed in
T then the k images of vertices of H are pairwise k-edge-connected). Also, trivially 1.2.5 implies 1.2.6.

(3) For every digraph H there exists an integer k > 0 such that there is a strong immersion of
H in every tournament with a k-pair of either the first or second type. In particular 1.2.6 implies
1.2.9.

Let H' be the digraph obtained by subdividing twice every edge of H (that is, replacing each edge
by a directed three-edge path joining the same pair of vertices, so that these paths have pairwise
disjoint interiors). Every tournament that admits a strong immersion of H' also admits a strong
immersion of H, and so it suffices to prove the result for H’. Thus we may assume that H is a
subdigraph of a tournament; and indeed, by adding any missing edges, we may assume that H is a
tournament. Let |V(H)| =t and let & = 2!(+2) We claim that this choice of k satisfies (3). For
let T be a tournament, and let (u,v) be a k-pair of either the first or second type. Thus there is



a set X C V(T) with |X| = k such that every vertex in X is adjacent to u and from v; and since
|E(H)| < k, there is a set {P, : e € E(H)} of directed paths from u to v, all of length two or all
of length three, and pairwise vertex-disjoint except for their common ends u, v, and each containing
no vertex in X. Now every tournament with 2™ vertices contains a transitive tournament with n
vertices. (This is easy to prove by induction on n; let v be one vertex, and choose N be either the
set of all out-neighbours of v, or the set of all in-neighbours of v, whichever is larger; then the result
follows by induction applied to N.) Thus we may assume that there exist x1,z2,..., 22,9 € X,
such that z; is adjacent to z; for 1 <i < j <>+ 2t. Let V(H) = {h1,...,ht}, and for 1 <i <t
define 1(h;) = z;(;41). For each edge e = h;h; of H, we define 7(e) as follows. Let p = i(t + 1) and
g =j(t+1). Then (in the obvious notation) 7n(e) is the directed path

n(hi) = Tp-Tpyj-u-Pe-v-g—i-q = 1(h;).
It is easy to check that 7 is a strong immersion of H in 7. This proves (3).

Thus 1.2.1,...,1.2.6 and 1.2.9 are all equivalent. But 1.2.2 implies 1.2.7, and 1.2.7 implies 1.2.9
(because if (u,v) is a k-pair of either type, one of u,v is in at least k/2 directed cycles that are
otherwise vertex-disjoint); and 1.2.3 implies 1.2.8, and the latter implies 1.2.9. This completes the
proof of 1.2. |

3 Testing for immersion

In this section we use 1.2 to give a polynomial-time algorithm to test whether a fixed digraph H can
be strongly (or weakly) immersed in a given semi-complete digraph G. We remark first that it is
important that G is semi-complete; for general digraphs G the analogous problem is NP-complete.
To see this, let H be the digraph with two vertices h1, hy and four edges, namely a loop at hy, a loop
at ho, and edges hihg, hahi.

3.1 It is NP-hard to test whether H can be strongly immersed in a digraph G; and the same holds
for weak immersion.

Proof. Fortune, Hopcroft and Wyllie [2] (FHW) showed that it is NP-complete to decide whether
two given vertices x1,x2 of a digraph are in a directed cycle; and we may assume that x1,z2 both
have indegree one and outdegree one. But given a hard instance G of FHW’s question, if some
vertex v has indegree at least two, let e, es be edges with head v and with tails w1, us say; then we
may delete eq,es from G and add a new vertex v’ and three new edges uiv’, usv’,v'v, and in this
new digraph the answer to FHW’s question is the same as in G. By repeating this it follows that
FHW’s question is NP-hard even for digraphs G in which every vertex has indegree at most one and
outdegree at most two, or outdegree at most one and indegree at most two. For such a digraph G
add a loop at 21 and a loop at z9, forming G’; then there is a strong (or weak) immersion of H in
G’ if and only if there is a directed cycle of G' containing x1,xs. This proves 3.1. |

The idea of our algorithm is: choose k as in 1.2 such that there is a strong immersion of H in
every semi-complete digraph with a k-pair of either the first or second type. Now, given the input



a semi-complete digraph G, run 2.4 on G with this value of k. If we get a k-pair we convert it to a
strong immersion of H and we are done. Otherwise we get an enumeration of V(G) with cutwidth at
most 72k? + 8k; and now we use this enumeration to test for a strong or weak immersion of H using
dynamic programming. We need to explain the dynamic programming in more detail, and that is
the main content of this section.

Throughout the following, H is a fixed digraph and k£ > 0 is a fixed integer; we will describe an
algorithm to test whether an input semi-complete digraph G with an enumeration of cutwidth at
most k contains a strong or weak immersion of H. Thus, let (v1,...,v,) be an enumeration of V(G)
with cutwidth at most k.

First we prove a couple of theorems, and later we shall show how to use them to make an
algorithm. Let 0 <i < n, and let S; = {v1,...,v;} and T; = {viy1,..., 0.}

Let J be a digraph (not necessarily semicomplete, and not necessarily a subdigraph of G) such
that

o T, CV(J) S V(G)

e for all u,v € V(J) with not both u,v € S;, there is an edge from u to v in J if and only if there
is such an edge in GG, and there is at most one edge from w to v, and none if v = v

e for all distinct u,v € V(J) N S;, there are at most |E(H )| edges of J from u to v, and for each
v € V(J)NS; there are at most |E(H)| loops incident with v.

We say that J is an i-extension. Let C1*? denote the set of all pairs (J, X') such that
e J is an i-extension, and J \ T; has at most p vertices and at most ¢ edges
e X C V(J ) n.S;

e there is a strong immersion 1 of H in J such that X = n(V(H)) N S;, where n(V(H)) denotes
{nv): ve V(H)}.

3.2 Let 0 < i <n as above. Letp > |V(H)|+|E(H)|+2k+1 and let ¢ > 0. Let J be an i-extension
such that J\T; has at most p vertices and at most q edges, and let X C V(J)NS;. Then (J,X) € CP?
if and only if either

o (J,X)ecl M or
o there exists v € V(J) N (S; \ X) such that (J\ v, X) € Cf‘l’q, or
o there exists e € E(J) with both ends in S;, such that (J \ e, X) € Cf’q_l, or

e there exist vertices u,v,w € V(J)NS;, with u,w # v and v ¢ X, and edges e = wv and f = vw
of J, such that (J',X) € Cf’qfl, where J' denotes the digraph obtained from J by deleting e
and f and adding a new edge from u to w.

Proof. The “if” part if clear, and holds for all p. For “only if”, suppose that (J, X) € C/?, and let 7
be a strong immersion of H in J such that X = n(V(H))NS;. Let K be the minimal subdigraph of .J
such that 7 is a strong immersion in K; thus, K is formed by the union of the vertices n(v) (v € V(H))



and all the subgraphs n(e) (e € E(H)). It follows that every vertex u € V(K') has outdegree at most
|E(H)| in K, since each n(e)(e € E(H)) uses at most one edge with tail .

Let F,F" C E(J) be the set of edges of J from S; to T;, and from T; to S;, respectively. For
each edge e of H, n(e) is a path or cycle, and between any two members of F’ in 7(e) there is a
member of F', and consequently |E(n(e)) N F'| < |E(n(e)) N F|+ 1. Since |F| < k, by summing over
all e € E(H) we deduce that |E(K)NF’'| < k+|E(H)|. Consequently there are at most 2k + |E(H)|
vertices in S; that are adjacent in K to or from a vertex in 7;. Moreover |n(V(H) NS;| < |V(H)].
Now we may assume that |S;| = p, for otherwise the first assertion of the theorem holds. Thus
|Si| =p>|V(H)|+ |E(H)| + 2k, and it follows that there exists v € S; such that v is not adjacent
in K with any member of T;, and v ¢ n(V(H)). Thus v ¢ X. Now we may assume that v € V(K),
since otherwise the second assertion of the theorem holds. From the minimality of K it follows that
there is an edge g = ab € F(H) such that v belongs to 1(g); and v # n(a),n(b) from our choice of v.
Let u,w be the vertices of 7(g) such that e = wv and f = vw are edges of n(e); then u, w € S;, since
v is not adjacent in K with any member of T;. Let J’ be obtained from J by deleting e, f and adding
a new edge from w to w; then there is a strong immersion 1’ of H in J' with X = n(V(H)) N S;.
If J’ is an i-extension then the fourth assertion of the theorem holds, so we may assume not; and
therefore there are more than |E(H)| edges of J' from u to w. Consequently there are more than
|E(H)| edges of J with tail v and head in S (namely, at least |E(H)| with head v, and one with
head w). Since u has outdegree at most |E(H)| in K, as we saw earlier, it follows that there is an
edge of J with tail v and head in S; that is not an edge of K. But then the third statement of the
theorem holds. This proves 3.2. |

Let C? be the union of the sets C"? over all ¢ € {0,1,...,p*|E(H)|}. (Note that if J is an i-
extension then J\ T; has at most p?|E(H)| edges.) Two members (J, X), (J', X') € C? are equivalent
if there is an isomorphism between .J, J’ taking X to X’ and fixing each of v;11,...,v,. For all p, the
number of equivalence classes of members of C¥' depends only on p and k, since there at most k edges
of G from S; to T;, and since G is semicomplete. (Note that this step depends very strongly on G
being semicomplete; for general digraphs the proof breaks down here.) Since the set Cf is the union
of its equivalence classes, we handle this set in the algorithms that follow by listing its equivalence
classes. For simplicity we speak of “a knowledge of C!” when what we mean is “a knowledge of the
equivalence classes that have union C”, and so on.

8.3 Let 0<i<n. Let p=|V(H)|+ |E(H)| + 2k. Then C? can be computed from a knowledge of
Cf—&-l in time that depends only on k, H.

Proof. Starting from a knowledge of C? 1, we shall first compute Cf:ll, and then use this to compute

C?, as follows.
p+1
i+1

To compute C},; from a knowledge of C ;. From 3.2 we can compute Cfill’q from a knowledge

of C¥ ; and of Cf:ll’q_l in time that depends only on k, H; and by repeating for ¢ = 1,...,p?|E(H)|

1
we compute ij:l .

To compute C’ from a knowledge of Cf_:rll. Let J be an i-extension such that J \ V(7;) has at
most p vertices, and let X C V(J)\ V(T;). We need to determine whether (J, X) € C!. But J is an
(i + 1)-extension, and therefore (J, X) € C? if and only if (J, X) € Cf_:rll or (J,XU{vin1}) € Cf:ll.

This proves 3.3. |



Now we can describe the algorithm.

3.4 For each digraph H and each integer k, there is an algorithm with running time O(n), which,
with input a semi-complete digraph G with n vertices and an enumeration (vy,...,v,) of V(G) with
cutwidth at most k, outputs whether there is a strong immersion of H in G.

Proof. Let p = |V(H)|+ |E(H)| 4+ 2k. Now Ch can be computed in constant time, since all n-
extensions have at most p vertices and at most p?|E(H)| edges (so we just check them all, up to
equivalence). By n applications of 3.3, we can determine C} in time O(n). But the only 0-extension
is G itself (because of the condition that V(J) C V(G) for i-extensions), and so there is a strong
immersion of H in G if and only if C! # (). This proves 3.4. |

This can easily be modified to do weak immersion (just change strong to weak in the definition of
CP? above); and also can be modified to output an immersion if one exists, rather than just a yes/no
answer (for each equivalence class in CP'? | we store one member, and a corresponding immersion of
H.). We omit these details.

Consequently, as explained at the start of this section, we have:

3.5 For every digraph H there is an algorithm, with running time O(n®), which, with input a semi-
complete digraph G with n vertices, outputs whether there is a strong or weak immersion of H in

G.

Once again, this can be modified to output the immersion if one exists.

We remark that, if we permit parallel edges in the input digraph (so for every pair of distinct
vertices u, v there is at least one edge between them, either from u to v or from v to u, but there
might be many such edges), then our algorithm does not work any more (it was crucial that
was the union of only constantly many equivalence classes, and this is no longer true). In another
paper [3] two of us give a algorithm for this problem, with running time at most an® where b is
independent of H.
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