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Abstract

We prove that a graph G contains no induced 5-vertex path and no induced
complement of a 5-vertex path if and only if G is obtained from 5-cycles
and split graphs by repeatedly applying the following operations: substi-
tution, split unification, and split unification in the complement (where
split unification is a new class-preserving operation that is introduced in
this paper).

1 Introduction

All graphs in this paper are finite and simple. For fixed n ≥ 1, let Pn denote
the path on n vertices, and for n ≥ 3 let Cn denote the cycle on n vertices.
The complement of a graph G is denoted by G. Given graphs G and F , we say
that G is F -free if G does not contain (an isomorphic copy of) F as an induced
subgraph. Given a family F of graphs, we say that a graph G is F-free provided
that G is F -free for all F ∈ F .
There are various instances of the collection F such that the F-free graphs are
highly structured in a way that can be described precisely, which is an interesting
fact in itself and also for the purpose of solving some optimization problems on
such graphs. Two famous cases are the P4-free graphs (also known as cographs)
and the {C4, C4, C5}-free graphs (also known as split graphs). Clearly, the class
of {P5, P5}-free graphs contains all cographs and all split graphs. The goal of
this paper is to understand the structure of {P5, P5}-free graphs.
This paper results from the merging of the two manuscripts [2] and [4] on the
same subject; it combines the proofs and results from these two manuscripts so
as to present them in the most succint way.
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2 Definitions

For a graph G, we denote by V (G) its vertex-set and by E(G) its edge-set.
Given a set S ⊆ V (G), let N(S) be the set of vertices in V (G) \ S that have
a neighbor in S. Let G[S] denote the induced subgraph of G with vertex-set
S, and let G \ S denote the induced subgraph G[V (G) \ S]. We say that a
vertex v in V (G) \ S is complete to S if v is adjacent to every vertex of S, and
v is anticomplete to S if v has no neighbor in S. A vertex of V (G) \ S that is
neither complete nor anticomplete to S is mixed on S. Given two disjoint sets
S, T ⊆ V (G), we say that S is complete to T when every vertex of S is complete
to T , and S is anticomplete to T when every vertex of S is anticomplete to T .
An anticomponent of a set S ⊆ V (G) is any subset of S that induces a compo-
nent of the graph G[S].
A homogeneous set is a set S ⊆ V (G) such that every vertex of V (G) \ S is
either complete or anticomplete to S. A homogeneous set S is proper when
|S| ≥ 2 and S 6= V (G). Let G be a graph that admits a proper homogeneous
set S, and let s be any vertex in S. We can decompose G into the two graphs
G[S] and G\ (S \s). Note that, up to isomorphism, the latter graph is the same
whatever the choice of s, because S is a homogeneous set. Moreover, both G[S]
and G \ (S \ s) are induced subgraphs of G.
The reverse operation, known as substitution, can be defined as follows. Let G
and H be two vertex-disjoint graphs and let x be a vertex in G. Make a graph
G′ with vertex-set V (G\x)∪V (H), taking the union of the two graphs G\x and
H and adding all edges between V (H) and the neighborhood of x in G. Clearly,
in G′, the set V (H) is a homogeneous set, H = G′[V (H)] and G is isomorphic to
an induced subgraph of G′. Moreover V (H) is a proper homogeneous set if both
G and H have at least two vertices. Thus, a graph G is obtained by substitution
from smaller graphs if and only if G contains a proper homogeneous set.
A graph is prime if it has no proper homogeneous set.
The following result about the structure of {P5, P5}-free graphs was proven by
Fouquet in [7].

Theorem 2.1 ([7]) For each {P5, P5}-free graph G at least one of the following
holds:

• G contains a proper homogeneous set;

• G is isomorphic to C5;

• G is C5-free.

The graph C5 is also called a pentagon. Theorem 2.1 immediately implies that
every {P5, P5, C5}-free graph can be obtained by substitution starting from
{P5, P5, C5}-free graphs and pentagons. Furthermore, it is easy to check that
every graph obtained by substitution starting from {P5, P5, C5}-free graphs and
pentagons is {P5, P5}-free. We remark that the Strong Perfect Graph Theo-
rem [3] implies that a {P5, P5}-free graph is perfect if and only if it is C5-free.
Thus, every {P5, P5}-free graph can be obtained by substitution starting from
{P5, P5}-free perfect graphs and pentagons. In view of this, the bulk of this pa-
per focuses on prime {P5, P5, C5}-free graphs (equivalently: prime {P5, P5}-free
perfect graphs).
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3 Prime {P5, P5, C5}-free graphs

A graph is split if its vertex-set can be partitioned into a stable set and a clique.
Földes and Hammer [5, 6] gave the following characterization of split graphs (a
short proof is given in [8, p. 151]).

Theorem 3.1 ([5, 6]) A graph is split if and only if it is {C4, C4, C5}-free.

Lemma 3.2 In a {P5, P5, C5}-free graph G, let A and B be non-empty and
disjoint subsets of V (G), and let t be a vertex in V (G) \ (A ∪B) such that:

• t is anticomplete to A and complete to B,
• every vertex in B has a neighbor in A, and
• A is connected.

Then some vertex of A is complete to B.

Proof. Pick a vertex a in A with the maximum number of neighbors in B.
Suppose that a has a non-neighbor y in B. We know that y has a neighbor a′

in A. Since A is connected, there is a path P = a0-· · ·-ak in G[A] with k ≥ 1,
a0 = a′ and ak = a. Choose a′ such that k is minimal. So P is chordless and y
has no neighbor in P \ {a0}. Then k = 1, for otherwise t, y, a0, a1, a2 induce a
P5. By the choice of a, since y is adjacent to a′ and not to a, there is a vertex z
in B adjacent to a and not to a′. Then a, z, t, y, a′ induce a C5 or P5 (depending
on the pair y, z), a contradiction. Thus a is complete to B. �

We say that a set, or a graph, is big if it contains at least two vertices.

Theorem 3.3 Let G be a prime {P5, P5, C5}-free graph that contains a C4.
Then there are pairwise disjoint subsets X0, X1, . . . , Xm, Y0, Y1, . . . , Ym, with
m ≥ 2, whose union is equal to V (G), such that the following properties hold,
where X = X0 ∪X1 ∪ · · · ∪Xm and Y = Y0 ∪ Y1 ∪ · · · ∪ Ym:

(i) For each i ∈ {1, . . . ,m}, Xi is connected, |Xi| ≥ 2, X0 is a stable set, and
X0, X1, . . . , Xm are pairwise anticomplete to each other.

(ii) For each i ∈ {1, . . . ,m}, Yi 6= ∅, every vertex of Yi is mixed on Xi and
complete to X \ (Xi ∪X0), and Y0 is complete to X \X0.

(iii) Y0, Y1, . . . , Ym are pairwise complete to each other. (So each anticompo-
nent of Y is included in some Yi with i ∈ {0, . . . ,m}.)

(iv) No vertex of X \X0 is mixed on any anticomponent of Y .

(v) For each i ∈ {1, . . . ,m}, Xi contains a vertex that is complete to Y .

(vi) Every vertex of X0 is mixed on at most one anticomponent of Y .

(vii) For every big anticomponent Z of Y , the set XZ of vertices of X0 that are
mixed on Z is not empty. Moreover, if Z and Z ′ are any two distinct big
anticomponents of Y , then XZ ∩XZ′ = ∅.

(viii) Each big anticomponent Z of Y contains a vertex that is anticomplete
to XZ .
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(ix) If Y is not a clique, there is a big anticomponent Z of Y such that XZ is
anticomplete to all big anticomponents of Y \ Z.

Proof. Since G contains a C4, there is a subset X of V (G) such that G[X] has
at least two big components. We choose X maximal with this property. Let
X1, . . . , Xm (m ≥ 2) be the vertex-sets of the big components of G[X], and let
X0 = X \ (X1 ∪ · · · ∪Xm). So (i) holds. Let Y = V (G) \X. We claim that:

For every y ∈ Y and i ∈ {1, . . . ,m}, y has a neighbor in Xi. (1)

Proof. If y has no neighbour in Xi, then X ∪ {y} induces a subgraph of G
with at least two big components (one of which is Xi), which contradicts the
maximality of X. Thus (1) holds.

For every vertex y ∈ Y , there is at most one integer i in
{1, . . . ,m} such that y has a non-neighbor in Xi.

(2)

Proof. Suppose that y has a non-neighbor in two distinct components Xi and
Xj of X. For each h ∈ {i, j}, y has a neighbor in Xh by (1), and since Xh is
connected, there are adjacent vertices uh, vh ∈ Xh such that y is adjacent to
uh and not to vh. Then vi, ui, y, uj , vj induce a P5, a contradiction. Thus (2)
holds.
An immediate consequence of Claims (1) and (2) is the following.

For every vertex y ∈ Y , either y is complete to X \ X0,
or there is a unique integer i ∈ {1, . . . ,m} such that y is
complete to X \ (Xi ∪X0) and y is mixed on Xi.

(3)

For each i ∈ {1, . . . ,m}, let Yi = {y ∈ Y | y is mixed on Xi}, and let Y0 =
Y \(Y1∪· · ·∪Ym). By (3), the sets Y0, Y1, . . . , Ym are pairwise disjoint and their
union is Y . For each i ∈ {1, . . . ,m}, since G is prime, Xi is not a homogeneous
set, so there exists a vertex in V (G) \Xi that is mixed on Xi; by (i), any such
vertex is in Y , and so Yi 6= ∅. Thus (ii) holds.
Now we prove (iii). Let Z be an anticomponent of Y , and suppose that Z 6⊆ Y0.
So Z contains a vertex y from Yi for some i ∈ {1, . . . ,m}; say y ∈ Y1. Since X1

is connected, there are adjacent vertices u1 and v1 in X1 such that y is adjacent
to u1 and not to v1. Consider any non-neighbor z of y in Z. By (ii), z has a
neighbor x2 in X2, and y is complete to X2. If z is anticomplete to {u1, v1},
then z, x2, y, u1, v1 induce a P5. If z is complete to {u1, v1}, then the same five
vertices induce a P5. So z is mixed on X1, i.e., z ∈ Y1. Since Z is anticonnected,
we can repeat this argument along the edges of a spanning tree of G[Z], which
implies that Z ⊆ Y1. Thus (iii) holds.
Now we prove (iv). Suppose on the contrary, and up to symmetry, that a vertex
x in X1 is mixed on some anticomponent Z of Y . Since Z is anticonnected,
there are non-adjacent vertices y, z ∈ Z such that x is adjacent to y and not to
z. By (ii), z has a neighbor u in X1, so z ∈ Y1. Since X1 is connected, there is
a path u0-· · ·-uk in G[X1] with u0 = u, uk = x and k ≥ 1. Choose u such that k
is minimal. By (ii), y has a neighbor x2 in X2, and since z ∈ Y1, z is adjacent to
x2. If k = 1, then x, y, z, u, x2 induce a C5 or P5 (depending on the pair y, u).
So k ≥ 2. The minimality of k implies that z is not adjacent to u1 or u2, and u
is not adjacent to u2. Then x2, z, u, u1, u2 induce a P5, a contradiction.
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Now we prove (v). Observe that any vertex t from a big component of X \Xi

is complete to Yi and anticomplete to Xi, so we can apply Lemma 3.2 to Xi,
Yi and t. It follows that some vertex a of Xi is complete to Yi. By (ii), Xi is
complete to Y \ Yi. Thus a is complete to Y .
Now we prove (vi). Suppose that a vertex x in X0 is mixed on two anticompo-
ments Z1 and Z2 of Y . For each j ∈ {1, 2}, since Zj is anticonnected, there are
non-adjacent vertices yj and zj in Zj such that x is adjacent to yj and not to
zj . Then y1, z1, x, z2, y2 induce a P5, a contradiction.
Now we prove (vii). If Z is any big anticomponent of Y , then, since G is prime,
Z is not a homogeneous set, so there exists a vertex of V (G) \ Z that is mixed
on Z. The definition of Z and (iv) imply that any such vertex is in X0. So
XZ 6= ∅. The second sentence of (vii) follows directly from (vi).
Now we prove (viii). Let Z be a big anticomponent of Y . By (iii), Z is included
in one of Y0, Y1, . . . , Ym. By (ii), some vertex t of X \X0 is complete to Z and
anticomplete to XZ . Hence we can apply Lemma 3.2 to Z, XZ and t in the
complementary graph G, and we obtain that some vertex in Z is complete (in
G) to XZ .
Finally we prove (ix). Suppose that Y is not a clique, and choose a big anti-
component Z of Y that minimizes the number of big anticomponents of Y that
are not anticomplete to XZ . If this number is 1, then Z satisfies the desired
property. So suppose that this number is at least 2, that is, there is a vertex
x ∈ XZ and a big anticomponent Z ′ of Y \ Z that contains a neighbor of x.
There are non-adjacent vertices y, z ∈ Z such that x is adjacent to y and not to
z. By (vi), x is complete to Z ′. Consider any t ∈ XZ′ ; there are non-adjacent
vertices y′, z′ ∈ Z ′ such that t is adjacent to y′ and not to z′. If t has any
neighbor in Z, then, by (vi), t is complete to Z, and then z, x, t, z′, y′ induce
a P5, a contradiction. Since this holds for any t ∈ XZ′ , we obtain that XZ′

is anticomplete to Z. Now the choice of Z implies that there is a third big
anticomponent Z ′′ of Y (a big anticomponent of Y \ (Z ∪ Z ′)) such that some
vertex u of XZ′ has a neighbor y′′ in Z ′′ and XZ is anticomplete to Z ′′. There
are non-adjacent vertices a, b ∈ Z ′ such that u is adjacent to a and not to b.
Then a, b, u, x, y′′ induce a P5, a contradiction. This completes the proof. �

4 The split divide

A split divide of a graph G is a partition (A, B, C, L, T ) of V (G) such that:

• |A| ≥ 2, A is complete to B and anticomplete to C ∪ T , and some vertex
of A is complete to L;

• L is a non-empty clique, every vertex of L is mixed on A, and L is complete
to B ∪ C;

• |C| ≥ 2, some vertex of C is complete to B, and no vertex of C is mixed
on any anticomponent of B;

• T is a stable set and is anticomplete to C.

Note that the sets B and T may be empty. The split divide can be thought
of as a relaxation of the homogeneous set decomposition: a set X ⊆ V (G) is a
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homogeneous set in G if no vertex in V (G)\X is mixed on X; in the case of the
split divide, the set A is not homogeneous, but all the vertices that are mixed
on A lie in the clique L, and adjacency between L and the rest of the graph is
heavily restricted.

Theorem 4.1 Let G be a prime {P5, P5, C5}-free graph. Then either G is a
split graph or G or G admits a split divide.

Proof. By Theorem 3.1 and up to complementation, we may assume that G
contains a C4. Consequently G admits the structure described in Theorem 3.3,
and we use it with the same notation. All items (i) to (ix) refer to Theorem 3.3.
Suppose that Y is a clique. Let A = X1, L = Y1, B = Y \Y1, C = X2∪· · ·∪Xm

and T = X0. Then (A, B,C, L, T ) is a split divide of G; this follows immediately
from the definition of the partition X0, X1, . . . , Xm, Y0, Y1, . . . , Ym, the fact that
Y is a clique, and items (i)–(v).
Now suppose that Y is not a clique. By (ix), there is a big anticomponent Z of
Y such that XZ is anticomplete to all big anticomponents of Y \ Z. By (vii),
XZ 6= ∅. By (iii), and up to relabeling, we may assume that Z ⊆ Y0∪Y1. Hence
Z is complete to X2 ∪ · · · ∪Xm, and every vertex of X1 ∪ (X0 \XZ) is either
complete or anticomplete to Z. Let K be the union of all anticomponents of Y
of size 1. So K is a clique and is complete to Y \K. Let:

A = Z;
L = XZ ;
B = {x ∈ X1 ∪ (X0 \XZ) | x is anticomplete to Z};
C ′ = {x ∈ X1 ∪ (X0 \XZ) | x is complete to Z};
T = {k ∈ K | k has a neighbor in XZ};
C = X2 ∪ · · · ∪Xm ∪ (Y \ (Z ∪ T )) ∪ C ′.

We claim that:

No vertex of C is mixed on any component of B. (4)

For suppose that there is a vertex c ∈ C and adjacent vertices u, v ∈ B such that
c is adjacent to u and not to v. Since X0 is a stable set, we have u, v ∈ {x ∈ X1 |
x is anticomplete to Z}. Since c is adjacent to u, we have c ∈ (Y \(Z∪T ))∪{x ∈
X1 | x is complete to Z}. Pick any x ∈ XZ and any vertex z ∈ Z adjacent to
x. Then x, z, c, u, v induce a P5, a contradiction. Thus (4) holds.

T is complete to C. (5)

For suppose that there are non-adjacent vertices t ∈ T and c ∈ C. Since K
is complete to Y \ K and T ⊆ K, we have that c /∈ Y \ (Z ∪ T ). Thus,
c ∈ X2 ∪ · · · ∪ Xm ∪ C ′. By (ii), Y0 and Y1 are complete to X2 ∪ · · · ∪ Xm;
since Z ⊂ Y0 ∪ Y1, it follows that Z is complete to X2 ∪ · · · ∪ Xm. Thus,
X2 ∪ · · · ∪Xm ∪ C ′ is complete to Z, and so c is complete to Z. Further, since
X2 ∪ · · · ∪ Xm ∪ C ′ ⊆ X \ XZ and XZ is anticomplete to X \ XZ (because
XZ ⊆ X0), we know that c is anticomplete to XZ . By the definition of T , t
has a neighbor x in XZ . There are non-adjacent vertices y, z ∈ Z such that
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x is adjacent to y and not to z. Since t and c are complete to Z, we see that
t, c, y, z, x induce a P5, a contradiction. Thus (5) holds.
Now we observe that:

• |A| ≥ 2 (because Z is big), A is anticomplete to B (by the definition of
B), A is complete to C ∪T (by (ii)), and some vertex of A is anticomplete
to L (by (viii)).

• L is a non-empty stable set, every vertex of L is mixed on A, and L is
anticomplete to B ∪ C (by the definition of L, with L ⊆ X0).

• |C| ≥ 2 (because X2 ⊆ C), some vertex of C is anticomplete to B (every
vertex of X2 has this property), and no vertex of C is mixed on any
component of B (by (4)).

• T is a clique and is complete to C (by (5)).

These observations mean that (A, B, C,L, T ) is a split divide in G. This com-
pletes the proof. �

Let G be a graph that admits a split divide (A, B,C, L, T ) as above, let a0 be a
vertex of A that is complete to L, and let c0 be a vertex of C that is complete
to B. Let G1 = G[A ∪ B ∪ {c0} ∪ L ∪ T ] and G2 = G[{a0} ∪ B ∪ C ∪ L ∪ T ].
Then we consider that G is decomposed into the two graphs G1 and G2. Note
that G1 and G2 are induced subgraphs of G and each of them has strictly fewer
vertices than G since |A| ≥ 2 and |C| ≥ 2.

Split unification We can define a composition operation that “reverses” the
split divide decomposition. Let A, B, C,L, T be pairwise disjoint sets, and as-
sume that A and C are non-empty. Let a∗, c∗ be distinct vertices such that
a∗, c∗ /∈ A ∪B ∪ C ∪ L ∪ T .
Let G1 be a graph with vertex-set A∪B∪L∪T ∪{c∗} and adjacency as follows:

• L is a (possibly empty) clique;

• T is a (possibly empty) stable set;

• A is complete to B and anticomplete to T ;

• Some vertex a0 of A is complete to L;

• c∗ is complete to B ∪ L and anticomplete to A ∪ T .

Let G2 be a graph with vertex-set B∪C∪L∪T ∪{a∗} and adjacency as follows:

• G2[B ∪ L ∪ T ] = G1[B ∪ L ∪ T ];

• T is anticomplete to C;

• L is complete to B ∪ C;

• a∗ is complete to B ∪ L and anticomplete to C ∪ T ;
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• Some vertex c0 of C is complete to B, and no vertex of C is mixed on any
anticomponent of B.

Under these circumstances, we say that (G1, G2) is a composable pair. The
split unification of a composable pair (G1, G2) is the graph G with vertex-set
A ∪B ∪ C ∪ L ∪ T such that:

• G[A ∪B ∪ L ∪ T ] = G1 \ c∗;

• G[B ∪ C ∪ L ∪ T ] = G2 \ a∗;

• A is anticomplete to C in G.

Thus to obtain G from G1 and G2, we “glue” G1 and G2 along their common
induced subgraph G1[B ∪ L ∪ T ] = G2[B ∪ L ∪ T ], where L ∪ T induces a split
graph (hence the name of the operation).
We say that a graph G is obtained by split unification provided that there exists
a composable pair (G1, G2) such that G is the split unification of (G1, G2). We
say that G is obtained by split unification in the complement provided that G
is obtained by split unification. We now prove that every graph that admits a
split divide is obtained by split unification from smaller graphs.

Theorem 4.2 If a graph G admits a split divide, then it is obtained from a com-
posable pair of smaller graphs (each of them isomorphic to an induced subgraph
of G) by split unification.

Proof. Let G be a graph that admits a split divide. Let (A, B,C, L, T ) be a
split divide of G, let a0 be a vertex of A that is complete to L, and let c0 be a
vertex of C that is complete to B. Let G1 = G[A ∪ B ∪ L ∪ T ∪ {c0}]. Since
|C| ≥ 2, we have |V (G1)| < |V (G)|. Let G2 = G[B ∪ C ∪ L ∪ T ∪ {a0}]. Since
|A| ≥ 2, we have |V (G2)| < |V (G)|. Now (G1, G2) is a composable pair, and G
is obtained from it by split unification. �

The split unification can be thought of as generalized substitution. Indeed, we
obtain the graph G from G1 and G2 by first substituting G1[A] for a∗ in G2, and
then reconstructing the adjacency between A and L in G using the adjacency
between A and L in G1. We include T and c∗ in G1 in order to ensure that split
unification preserves the property of being {P5, P5, C5}-free. In fact, we prove
now something stronger than this: split unification preserves the (individual)
properties of being P5-free, P5-free, and C5-free.

Theorem 4.3 Let (G1, G2) be a composable pair and let G be the split unifica-
tion of (G1, G2). Then, for each H ∈ {P5, P5, C5}, G is H-free if and only if
both G1 and G2 are H-free.

Proof. We use the same notation as in the definition of the split unification
above. First suppose that G is H-free. Observe that G1 is isomorphic to the
induced subgraph G[A∪B ∪L∪T ∪{c0}], and G2 is isomorphic to the induced
subgraph G[B ∪C ∪L∪ T ∪ {a0}]. Hence G1 and G2 are H-free. Now suppose
that G1 and G2 are H-free and that G contains an induced copy of H. Let W
be a five-vertex subset of V (G) such that G[W ] ' H. We claim that W must
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contain two non-adjacent vertices b and c with b ∈W ∩B and c ∈W ∩ C. For
suppose the contrary. Then W ∩C is complete to W ∩ (L∪B) and anticomplete
to W ∩ (A ∪ T ). If |W ∩C| ≥ 2, then either |W ∩C| ≤ 4, so W ∩C is a proper
homogeneous set in G[W ] (a contradiction since H is prime), or W ⊆ C, so W
is isomorphic to an induced subgraph of G2 (a contradiction since G2 is H-free).
So |W ∩C| ≤ 1, and then W is isomorphic to an induced subgraph of G1 (where
c∗ plays the role of the vertex in W ∩C if there is such a vertex), a contradiction
since G1 is H-free. Therefore the claim holds. By a similar argument, W must
contain two non-adjacent vertices a and ` with a ∈ W ∩ A and ` ∈ W ∩ L.
Let w be the fifth vertex in W , so that W = {a, b, c, `, w}. By the definition of
the split unification, a, b, `, c induce a P4 with edges ab, b`, `c. Consequently we
must have one of the following two cases:
(i) W induces a P5 or C5. So w is anticomplete to {b, `} and has a neighbor in
{a, c}. Since w is anticomplete to {b, `}, it cannot be in A, B,L or C, so it is in
T . But then w should be anticomplete to {a, c}.
(ii) W induces a P5. So w is adjacent to a and c and has exactly one neighbor
in {b, `}. Since w is adjacent to a, it is not in C ∪ T , and since it is adjacent to
c, it is not in A. Moreover, since w is adjacent to exactly one of b and `, it is not
in L. So w ∈ B, and so it is adjacent to ` and, consequently, not to b. Hence b
and w lie in the same anticomponent of B, and c is adjacent to exactly one of
them, a contradiction (to the last axiom in the definition of a split unification).
�

5 The main theorem

In this section, we use Theorem 2.1 and the results of the preceding sections to
prove Theorem 5.1, the main theorem of this paper.

Theorem 5.1 A graph G is {P5, P5}-free if and only if at least one of the
following holds:

• G is a split graph;

• G is a pentagon;

• G is obtained by substitution from smaller {P5, P5}-free graphs;

• G or G is obtained by split unification from smaller {P5, P5}-free graphs.

Proof. We first prove the “if” part. If G is a split graph or a pentagon, then it is
clear that G is {P5, P5}-free. Since both P5 and P5 are prime, we know that the
class of {P5, P5}-free graphs is closed under substitution, and consequently, any
graph obtained by substitution from smaller {P5, P5}-free graphs is {P5, P5}-
free. Finally, if G or G is obtained by split unification from smaller {P5, P5}-free
graphs, then the fact that G is {P5, P5}-free follows from Theorem 4.3 and from
the fact that the complement of a {P5, P5}-free graph is again {P5, P5}-free.
For the “only if” part, suppose that G is a {P5, P5}-free graph. We may as-
sume that G is prime, for otherwise, G is obtained by substitution from smaller
{P5, P5}-free graphs, and we are done. If some induced subgraph of G is iso-
morphic to the pentagon, then by Theorem 2.1, G is a pentagon, and again we
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are done. Thus we may assume that G is {P5, P5, C5}-free. By Theorem 4.1,
we know that either G is a split graph, or one of G and G admits a split divide.
In the former case, we are done. In the latter case, Theorem 4.2 implies that
G or G is the split unification of a composable pair of smaller {P5, P5, C5}-free
graphs, and again we are done. �

As an immediate corollary of Theorem 5.1, we have the following.

Theorem 5.2 A graph is {P5, P5}-free if and only if it is obtained from pen-
tagons and split graphs by repeated substitutions, split unifications, and split
unifications in the complement.

Finally, a proof analogous to the proof of Theorem 5.1 (but without the use of
Theorem 2.1) yields the following result for {P5, P5, C5}-free graphs.

Theorem 5.3 A graph G is {P5, P5, C5}-free if and only if at least one of the
following holds:

• G is a split graph;

• G is obtained by substitution from smaller {P5, P5, C5}-free graphs;

• G or G is obtained by split unification from smaller {P5, P5, C5}-free
graphs.
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