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Abstract

Erdős and Hajnal [4] conjectured that, for any graph H, every graph on n vertices that does

not have H as an induced subgraph contains a clique or a stable set of size nε(H) for some

ε(H) > 0. The conjecture is known to be true for graphs H with |V (H)| ≤ 4. One of the two

remaining open cases on five vertices is the case where H is a four-edge path, the other case

being a cycle of length five. In this paper we prove that every graph on n vertices that does not

contain a four-edge-path or the complement of a five-edge-path as an induced subgraph contains

either a clique or a stable set of size at least n1/6.
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1 Introduction

All graphs in this paper are finite and simple. A clique is a set of pairwise adjacent vertices and a

stable set is a set of pairwise nonadjacent vertices. Let G be a graph. For a set of vertices X, we

denote by G|X the subgraph of G induced by X. For a graph H, we say that G contains H as an

induced subgraph if G has an induced subgraph that is isomorphic to H. Let Forb(X1, X2, . . . , Xk)

be the set of all graphs G such that, for all i ∈ {1, 2, . . . , k}, G does not contain Xi as an induced

subgraph. For a vertex v ∈ V (G), we let N(v) denote the set of vertices adjacent to v and M(v)

the subset of vertices of V (G)\{v} that are nonadjacent to v. We say that two sets X ⊆ V (G) and

Y ⊆ V (G) are complete to each other if every x ∈ X and y ∈ Y are adjacent. We say that X and

Y are anticomplete to each other if every x ∈ X and y ∈ Y are nonadjacent. We denote by Gc

the graph with vertex set V (G) and edge set {{u, v} ∈ V (G)2
∣∣ u ̸= v, uv ̸∈ E(G)}. We call Gc the

complement of G. For a set X ⊆ V (G), we denote by G \X the graph G|(V (G) \X). For k ≥ 0,

we denote by Pk the k-edge path (thus, |V (Pk)| = k + 1).

We say that a graph H has the Erdős-Hajnal property if there exists ε(H) > 0 such that every

graph on n vertices that does not have H as an induced subgraph contains either a clique or a

stable set of size at least nε(H). Clearly, if H has the property, then so does Hc. Erdős and Hajnal

[4] conjectured that all graphs have the property. It is known to be true for every graph H with

|V (H)| ≤ 4. In [1], it was shown that if two graphs H1 and H2 have the Erdős-Hajnal property,

then so does the graph constructed from H1 by replacing a vertex x ∈ V (H1) by H2 and making

V (H2) complete to the neighbors of x in H1 and anticomplete to the non-neighbors of x in H1 (this

operation is known as the substitution operation). Moreover, it was shown in [3] that the triangle

with two disjoint pendant edges (this graph is known as the bull) has the property. This leaves

the four-edge-path P4 and the cycle C5 of length five as the remaining open cases for graphs on at

most 5 vertices. This paper deals with the case where H is a four-edge path, where, in addition,

we exclude the complement of a five-edge path. To be precise, we will prove the following theorem:

Theorem 1.1. Every graph G ∈ Forb(P4, P
c
5 ) ∪ Forb(P c

4 , P5) contains a clique or a stable set of

size at least |V (G)|1/6.

For a graph G, let ω(G) denote the size of the largest clique in G and let χ(G) denote the chromatic

number of G. G is called perfect if χ(G′) = ω(G′) for every induced subgraph G′ of G. It was

shown in [2] that a graph G is perfect if and only if it does not contain an odd cycle of length at

least five or the complement of an odd cycle of length at least five as an induced subgraph.

We say that a function g : V (G) → R
+ is a covering function for G if

∑
p∈V (P ) g(p) ≤ 1 for every

perfect induced subgraph P ofG. For β ≥ 1, we say that a graphG is β-narrow if
∑

v∈V (G) g
β(v) ≤ 1

for every covering function g. Notice that since a graph is perfect if and only if its complement is

perfect, it follows that a graph is β-narrow if and only if its complement is β-narrow. It was shown

in [3] that bull-free graphs are 2-narrow. We will take a similar approach and prove that

Theorem 1.2. All graphs in Forb(P c
4 , P5) are 3-narrow.

This result suffices for proving Theorem 1.1, because of the following result:
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(1.3) Let G be a β-narrow graph. Then G has a clique or stable set of size at least |V (G)|1/2β.

Proof. Let P be the set of all perfect induced subgraphs of G. Let K = maxP∈P |V (P )|. Consider
the function g : V (G) → R

+ with g(v) = 1/K for all v ∈ V (G). Clearly,
∑

v∈V (P ) g(v) ≤ 1 for all

P ∈ P. Therefore, since G is β-narrow, it follows that g satisfies

1 ≥
∑

v∈V (G)

g(v)β =
|V (G)|
Kβ

.

Equivalently, we have K ≥ |V (G)|
1
β . Thus, G has a perfect induced subgraph H with |V (H)| ≥

|V (G)|
1
β . Since H is a perfect graph, H satisfies |V (H)| ≤ χ(H)α(H) = ω(H)α(H) and hence

max(ω(H), α(H)) ≥
√

|V (H)| ≥ |V (G)|1/2β. Therefore, H has a clique or stable set of size at

least |V (G)|1/2β. Since H is an induced subgraph of G, G has a clique or stable set of size at least

|V (G)|1/2β. This proves (1.3). □

Notice that the proof of (1.3) also shows that a graph G is 1-narrow if and only if G is perfect.

Jacob Fox [5] proved that the ‘converse’ of (1.3) is also true:

Theorem. Let H be a graph that has the Erdős-Hajnal property. Then, every graph in Forb(H) is

β(H)-narrow for some β(H) ≥ 1.

This implies that the Erdős-Hajnal conjecture is equivalent to the following conjecture:

Conjecture. For every graph H, there exists β(H) ≥ 1 such that every G ∈ Forb(H) is β(H)-

narrow.

This paper is organized as follows. In Section 2, we describe tools that we will use in the rest of

the paper. Section 3 deals with graphs in Forb(P c
4 , P5) for which we additionally require that they

have no induced copy of C6, the cycle of length six. Finally, in Section 4 we abandon this additional

requirement and finish the proof of Theorem 1.1.

2 Decompositions

We start with a number of graph decompositions and their relationship to the narrowness of graphs.

Lemma 2.1. Let G be a graph and let β ≥ 1. Suppose that for every v ∈ V (G), either

(i) G|N(v) is β-narrow and G|M(v) is (β + 1)-narrow, or

(ii) G|M(v) is β-narrow and G|N(v) is (β + 1)-narrow.

Then G is (β + 1)-narrow.

Proof. Let g be a covering function for G. Choose u ∈ V (G) with g(u) maximal. If g(u) = 1, then,

because every 2-vertex induced subgraph of G is perfect, g(u′) = 0 for all u′ ∈ V (G) \ {u} and thus∑
v∈V (G) g(v)

β+1 ≤ 1 trivially holds. So we may assume that g(u) < 1. Let M = M(u), N = N(u),
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GM = G|M and GN = G|N . Since β-narrowness is invariant under taking complements, we may,

possibly by passing to the complement, assume that GM is (β + 1)-narrow and GN is β-narrow.

Define fM : V (GM ) → R
+ by fM (v) = g(v)/

[
1 − g(u)

]
for each v ∈ V (GM ). Let P be a perfect

induced subgraph of GM . Since G|(V (P ) ∪ {u}) is perfect, it follows that
∑

v∈V (P ) fM (v) ≤ 1.

Since GM is (β + 1)-narrow, fM satisfies
∑

v∈M
[
fM (v)

]β+1 ≤ 1 and therefore∑
v∈M

[
g(v)

]β+1 ≤
[
1− g(u)

]β+1
.

By repeating the same argument for GN , since GN is β-narrow, it follows that∑
v∈N

[
g(v)

]β ≤
[
1− g(u)

]β
.

Moreover, we have, by the choice of u,∑
v∈N

[
g(v)

]β+1 ≤ g(u)
∑
v∈N

[
g(v)]

]β ≤ g(u)
[
1− g(u)

]β
.

Hence, ∑
v∈V (G)

[
g(v)

]β+1
=

[
g(u)

]β+1
+

∑
v∈M

[
g(v)

]β+1
+

∑
v∈N

[
g(v)

]β+1

≤
[
g(u)

]β+1
+ (1− g(u))β+1 + g(u)(1− g(u))β

=
[
g(u)

]β+1
+ (1− g(u))β ≤ 1,

where the last inequality follows from the fact that the function h(x) = xβ+1 + (1− x)β is strictly

convex and h(0) = h(1) = 1. This proves Lemma 2.1. □

Let G be a graph. We say that a set Z ⊆ V (G) is a homogeneous set in G if 1 < |Z| < |V (G)| and
V (G) \Z = A∪C where A is anticomplete to Z and C is complete to Z. In this case, we say that

(Z,A,C) is a homogeneous set decomposition of G. The following is a theorem from [6].

Lemma 2.2. Let G be a graph and let (Z,A,C) be a homogeneous set decomposition of G. Construct

G′ from G|(A ∪ C) by adding a vertex z that is complete to C and anticomplete to A. Let P1 be

a perfect induced subgraph of G′ with z ∈ V (P1) and let P2 be a perfect induced subgraph of G|Z.

Then G|((V (P1) ∪ V (P2)) \ {z}) is perfect.

It was shown in [3] that homogeneous set decompositions preserve β-narrowness. For our purposes,

we will need a more general decomposition. We say that a set Z ⊆ V (G) is a quasi-homogeneous

set in G if there exist disjoint sets A,C ⊆ V (G) \Z with union V (G) \Z that satisfy the following

properties:

(i) 1 < |Z| < |V (G)|.
(ii) Z is complete to C.
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(iii) Let G′ be obtained from G|(A ∪ C) by adding a vertex z that is anticomplete to A and

complete to C. Suppose that P1 is a perfect induced subgraph of G′ with z ∈ V (P1) and

suppose P2 is a perfect induced subgraph of G|Z. Then the graph P = G|((V (P1)∪V (P2))\
{z}) is perfect.

(iv) G contains G′ as an induced subgraph.

We say that the triple (Z,A,C) is a quasi-homogeneous set decomposition. In the light of Lemma 2.2,

it is easy to see that a homogeneous set decomposition is a special case of a quasi-homogeneous set

decomposition. Just like homogeneous set decompositions, quasi-homogeneous set decompositions

preserve β-narrowness:

Lemma 2.3. Let G be a graph and let (Z,A,C) be a quasi-homogeneous set decomposition of G.

Let H1 be the graph obtained from G|(A ∪ C) by adding a vertex z that is anticomplete to A and

complete to C and let H2 = G|Z. If H1 and H2 are β-narrow, then G is β-narrow.

Proof. The proof is essentially the same as the proof of 1.3 in [3], but we include it here for

completeness. Let g be a covering function for G. For i = 1, 2, let Pi be the set of perfect induced

subgraphs of Hi. Let K = maxP∈P2

∑
v∈V (P ) g(v). Define g1 : V (H1) → R

+ as follows. For

v ∈ A ∪ C, let g1(v) = g(v) and let g1(z) = K. Define g2 : V (H2) → R
+ by g2(v) = g(v)/K for

v ∈ V (H2). From the definition of a quasi-homogeneous set decomposition, it follows that for every

P1 ∈ P1 with z ∈ V (P1) and every P2 ∈ P2, G|((V (P1)∪V (P2)) \ {z}) is perfect. It follows that g1
is a covering function for H1. Since H1 is β-narrow, it follows that

1 ≥
∑

v∈V (H1)

[
g1(v)

]β
=

∑
v∈A∪C

[
g(v)]β +Kβ.

Clearly, g2 is a covering function for H2. Thus, since H2 is β-narrow, it follows that

1 ≥
∑

v∈V (H2)

[
g2(v)

]β
=

∑
v∈Z

[
g(v)

]β
Kβ

.

Therefore, ∑
v∈Z

[
g(v)

]β ≤ Kβ.

Finally, it follows that∑
v∈V (G)

[
g(v)

]β ≤
∑

v∈A∪C

[
g(v)

]β
+

∑
v∈Z

[
g(v)

]β ≤ (1−Kβ) +Kβ = 1.

This proves Lemma 2.3. □

(Observe that the proof of Lemma 2.3 still goes through even without assuming property (iv) of

a quasi-homogeneous set decomposition. This additional property is solely used for the inductive

arguments in Sections 3 and 4.)

Let G be a graph. We say that G admits a Σ-join if there exist disjoint sets X1, X2, N1, N2, C,A

with union V (G) such that
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• for i = 1, 2, |Xi| ≥ 2 and Xi is a stable set, and

• for {i, j} = {1, 2}, Xi is complete to C ∪Ni and anticomplete to A ∪Nj , and

• X1 is not anticomplete to X2.

We call (X1, X2, N1, N2, C,A) a Σ-join. The following lemma states that Σ-joins preserve narrow-

ness:

Lemma 2.4. Let G ∈ Forb(P c
4 , P5) and suppose that G admits a Σ-join (X1, X2, N1, N2, C,A).

Let G′ be obtained from G \ (X1 ∪ X2) by adding two adjacent vertices x1 and x2 such that, for

{i, j} = {1, 2}, xi is complete to C ∪Ni and anticomplete to A ∪Nj. Then, G′ ∈ Forb(P c
4 , P5) and

if, for some β ≥ 1, G′ is β-narrow, then G is β-narrow.

Proof. Notice first that since X1 is not anticomplete to X2, G contains G′ as an induced subgraph

and therefore G′ ∈ Forb(P c
4 , P5). Now suppose that G′ is β-narrow for some β ≥ 1. For an induced

subgraph P of G′ and {i, j} = {1, 2}, let

P (X1, X2) =

{
G|((V (P ) \ {xi}) ∪Xi) if xi ∈ V (P ) and xj ̸∈ V (P );

G|((V (P ) \ {x1, x2}) ∪X1 ∪X2) if x1, x2 ∈ V (P ).

We first claim the following:

(⋆) If P is a perfect induced subgraph of G′, then P (X1, X2) is a perfect induced subgraph of G.

Write P ′ = P (X1, X2). Suppose that P ′ is not perfect. Then, P ′ contains either a cycle of

odd length k ≥ 5 or the complement of a cycle of length k ≥ 5 as an induced subgraph. Since

P ′ is an induced subgraph of G, it follows that P ′ ∈ Forb(P c
4 , P5) and, thus, P

′ contains no

cycle of odd length at least seven and no complement of a cycle of odd length at least seven as

an induced subgraph. Thus, P ′ has an induced cycle of length five, say F = f1-f2- · · · -f5-f1.
Suppose that V (F ) ∩X1 = ∅. Then F is an induced subgraph of P (X1, X2) \X1. However,

it follows from Lemma 2.2 applied to G′ \ {x1}, P \ {x1} and X2 that P (X1, X2) \ X1 is

perfect, a contradiction. Thus, we may assume that V (F ) ∩ Xi ̸= ∅ for i = 1, 2. We may

assume that f1 ∈ X1, and either f2 ∈ X2 or f3 ∈ X2. First suppose that f3 ∈ X2. Because

f2 is complete to {f1, f3}, it follows from the definition of the Σ-join that f2 ∈ C. Because

f4 is anticomplete to {f1, f2} and adjacent to f3, it follows that f4 ∈ N2 and, symmetrically,

f5 ∈ N1. But now, x1-f4-f2-f5-x2 is an induced four-edge antipath in G′, a contradiction.

This proves that f3 ̸∈ X2 and hence f2 ∈ X2. We may also assume that no two nonadjacent

f, f ′ ∈ V (F ) satisfy f ∈ X1 and f ′ ∈ X2. Therefore, since f4 is anticomplete to {f1, f2}, it
follows that f4 ∈ A. This implies that f3 ∈ N2 and f5 ∈ N1. But now, x1-x2-f3-f4-f5-x1 is

an induced cycle of length five in P , contrary to the fact that P is perfect. This proves (⋆).

□

To prove that G is β-narrow, let g : V (G) → R+ be a covering function for G. Define g′ : V (G′) →
R+ as follows: for i = 1, 2, g′(xi) =

∑
v∈Xi

g(v), and g′(v) = g(v) for all v ∈ V (G′) \ {x1, x2}.
We claim that g′ is a covering function for G′. Let P be a perfect induced subgraph of G′. Since
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P (X1, X2) is a perfect induced subgraph of G by (⋆), it follows that∑
v∈V (P )

g′(v) =
∑

i∈{1,2}:
xi∈V (P )

g′(xi) +
∑

v∈V (P )
v ̸=x1,x2

g′(v)

=
∑

i∈{1,2}:
xi∈V (P )

∑
v∈Xi

g(v) +
∑

v∈V (P )
v ̸=x1,x2

g(v) =
∑

v∈V (P (X1,X2))

g(v) ≤ 1.

This proves that g′ is a covering function for G′. Since G′ is β-narrow, it follows that

∑
v∈V (G)

[
g(v)

]β ≤

∑
v∈X1

g(v)

β

+

∑
v∈X2

g(v)

β

+
∑

v∈V (G)\(X1∪X2)

[
g(v)

]β
=

∑
v∈V (G′)

[
g′(v)

]β ≤ 1,

where we have used the fact that for x, y ≥ 0 and β ≥ 1, xβ + yβ ≤ (x+ y)β. This proves that G

is β-narrow, thereby proving Lemma 2.4. □

3 Graphs in Forb(P c
4 , P5, C6)

We start by additionally excluding the cycle of length six, C6. Throughout the paper, we call an

induced subgraph of a graph G that is a cycle of length k a k-gon in G. We will often denote

the vertices of a k-gon H by, for example, h1, h2, . . . , hk in order. Any arithmetic involving the

subscripts of these vertices is modulo k. For a k-gon H, we say that v ∈ V (G) \ V (H) is a center

for H, if v is complete to V (H). Analogously, v is an anticenter for H if v is anticomplete to V (H).

We say that a graph G ∈ Forb(P c
4 , P5, C6) is composite if there exist a 5-gon B in G and a, c ∈

V (G) \ V (B) such that a is an anticenter for B and c is a center for B. We say that a graph

G ∈ Forb(P c
4 , P5, C6) is basic if G is not composite.

This section is organized as follows. We will first prove some basic properties of graphs in Forb(P c
4 , P5, C6).

Next, we will show that composite graphs admit a quasi-homogeneous set decomposition. Finally,

we will show that basic graphs satisfy the assumptions of Lemma 2.1 with β = 1. This will imply

that all graphs in Forb(P c
4 , P5, C6) are 2-narrow.

3.1 Elementary properties

We will repeatedly use the following lemmas:

(3.1) Let G ∈ Forb(P c
4 ) and let f1-f2-f3-f4 be an induced path. Then no vertex is complete to

{f1, f2, f4} and nonadjacent to f3.

Proof. Suppose for a contradiction that x is adjacent to f1, f2, and f4 and not to f3. Then

x-f3-f1-f4-f2 is a four-edge antipath, a contradiction. This proves (3.1). □
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For a 5-gon H in a graph G, we call a vertex x ∈ V (G) \ V (H) that has a neighbor in V (H) an

attachment of H. The following lemma deals with attachments of 5-gons.

(3.2) Let G ∈ Forb(P c
4 , P5) and let H be a 5-gon with vertices h1, h2, . . . , h5 in order. Let x ∈

V (G) \ V (H) be an attachment of H. Then, for some for some i ∈ {1, 2, . . . , 5}, one of the

following holds:

(1) x is complete to V (H) (“center”), or

(2) x is adjacent to hi and x has no other neighbor in V (H) (“leaf of type i”), or

(3) x is adjacent to hi+2, hi+3 and x has no other neighbor in V (H) (“hat of type i”), or

(4) x is adjacent to hi+4, hi+1, nonadjacent to hi+2, hi+3 and the adjacency between x and hi is

arbitrary (“clone of type i”).

Proof. If x is complete to V (H), then outcome (1) holds. From this and from the symmetry,

we may assume that x is adjacent to h1 and not to h2. First, suppose that x is adjacent to h3.

From (3.1) applied first to x and h1-h2-h3-h4 and then to x and h5-h1-h2-h3, it follows that x is

nonadjacent to h4 and h5 and thus outcome (4) holds. So we may assume that x is nonadjacent to

h3. If x is adjacent to h4, then outcome (4) holds. So we may assume that x is nonadjacent to h4.

If x is nonadjacent to h5, then outcome (2) holds. If x is adjacent to h5, then outcome (3) holds.

This proves (3.2). □

We call an attachment x of H a small attachment if x is a leaf or a hat for H. Let i ∈ {1, 2, . . . , 5}.
We call a pair of vertices (a, b) a pyramid of type i for H if a and b are adjacent, a is a leaf of type i

for H, and b is a hat of type i for H. We say that {a, b} is a pyramid if (a, b) or (b, a) is a pyramid.

It turns out that whenever two small attachments are adjacent, they are of the same type. The

following lemma deals with combinations of small attachments:

(3.3) Let G ∈ Forb(P c
4 , P5, C6) and let H be a 5-gon. Suppose that u and v are small attachments

of H. Then the following two statements hold:

(a) If u and v are adjacent, then, up to interchanging u and v, for some i ∈ {1, 2, . . . , 5}, either
(A1) u and v are leaves for H of type i; or

(A2) u and v are hats for H of type i; or

(A3) u is a leaf for H of type i, v is a hat for H of type i, and thus (u, v) is a pyramid of

type i for H.

(b) If u and v are nonadjacent, then, up to interchanging u and v, for some i ∈ {1, 2, . . . , 5},
either

(B1) u is a leaf of type i and v is a leaf of type j ∈ {i− 1, i, i+ 1}; or
(B2) u is a hat of type i and v is a hat of type j ∈ {i− 2, i, i+ 2}; or
(B3) u is a leaf of type i and v is a hat of type j ∈ {i− 2, i, i+ 2}.

Proof. Let h1, h2, . . . , h5 be the vertices of H in order. Since u and v are small attachments, each

of u, v is either a leaf or a hat for H.
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For part (a), suppose that u and v are adjacent. First assume that u is a leaf. From the symmetry,

we may assume that u is a leaf of type 1 and v is either a leaf of type 1, 2 or 3, or a hat of type 1,

4 or 5. If v is a leaf of type 1, then outcome (A1) holds. If v is a hat of type 1, then outcome (A3)

holds. If v is a leaf of type 2 or a hat of type 4, then u-v-h2-h3-h4-h5 is an induced five-edge path, a

contradiction. If v is a leaf of type 3 or a hat of type 5, then u-v-h3-h4-h5-h1-u is an induced cycle

of length six, a contradiction. This finishes the case when u is a leaf. So we may now assume that

both u and v are hats. From the symmetry, we may assume that u is a hat of type 1 and v is a

hat of type 1, 2 or 3. If v is a hat of type 1, then outcome (A2) holds. If v is a hat of type 2, then

u-v-h5-h1-h2-h3-u is an induced cycle of length six, a contradiction. If v is a hat of type 3, then

the adjacencies of v with respect to the path u-h4-h5-h1 contradict (3.1). This proves part (a).

For part (b), suppose that u and v are nonadjacent. First assume that u is a leaf. From the

symmetry, we may assume that u is of type 1 and v is either a leaf of type 1, 2 or 3, or a hat of

type 1, 4, 5. If v is a leaf of type 1 or 2, then (B1) holds. If v is a leaf of type 3 or a hat of type

5, then u-h1-h5-h4-h3-v is an induced five-edge path, a contradiction. If v is a hat of type 1 or 4,

then outcome (B3) holds. This finishes the case when u is a leaf. We may therefore assume that

u and v are both hats for H. From the symmetry, we may assume that u is a hat of type 1 and

v is a hat of type 1, 2 or 3. If v is a hat of type 1 or 3, then (B2) holds. If v is a hat of type 2,

then u-h3-h2-h1-h5-v is an induced five-edge path, a contradiction. This proves part (b), thereby

completing the proof of (3.3). □

(3.4) Let G ∈ Forb(P c
4 , P5). Let H be a 5-gon in G and suppose that x is a small attachment of

H. Then, every neighbor y ∈ V (G) \ V (H) of x is an attachment of H.

Proof. Suppose that y ∈ V (G) \ V (H) is adjacent to x but y has no neighbor in V (H). Let

h1, h2, . . . , h5 be the vertices ofH in order. We may assume that x is adjacent to h1 and anticomplete

to {h2, h3, h4}. Now y-x-h1-h2-h3-h4 is an induced five-edge path, a contradiction. This proves (3.4).

□

(3.5) Let G ∈ Forb(P c
4 , P5, C6) and let H be a 5-gon. Let (a, b) and (a′, b′) be two disjoint pyramids

for H. Then (a, b) and (a′, b′) are pyramids of the same type.

Proof. Let h1, h2, . . . , h5 be the vertices of H in order. From the symmetry, we may assume that

(a, b) is a pyramid of type 1 for H and (a′, b′) is a pyramid of type 1, 2 or 3 for H. If (a′, b′) is of

type 1, then the claim holds. If (a′, b′) is a pyramid of type 2 for H, then b is a hat of type 1 for H

and b′ is a hat of type 2 for H, contrary to (A2) and (B2) of (3.3). If (a′, b′) is a pyramid of type 3

for H, then a is a leaf of type 1 and a′ is a leaf of type 3 for H, contrary to (A1) and (B1) of (3.3).

This proves (3.5). □
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3.2 Composite graphs

Let G ∈ Forb(P c
4 , P5, C6) be a graph. Our goal is to produce a quasi-homogeneous set. In order

to do so, we need to understand how different 5-gons interact with each other. To this end, we

consider the following auxiliary graph. Let B be a 5-gon in G and let W be a graph with the

following properties:

(a) The vertices of W are 5-gons in G, and B is a vertex of W.

(b) Two 5-gons H and H ′ are adjacent if and only if one of the following holds:

(b1) |V (H)∩V (H ′)| = 4 and x ∈ V (H)\V (H ′) is a clone for H ′. In this case, we say that

H and H ′ are clone neighbors and we call the edge HH ′ a clone edge.

(b2) B ∈ {H,H ′}, |V (H) ∩ V (H ′)| = 3 and {x, y} = V (H) \ V (H ′) is a pyramid for H ′.

In this case, we say that H and H ′ are pyramid neighbors and we call the edge HH ′

a pyramid edge.

(c) W is connected.

We call such a graph W a C5-structure around B in G. Note that we do not require that all 5-gons

in G are vertices of W. Also note that the adjacency of two 5-gons is well-defined because property

(b) is symmetric. Further, observe that pyramid edges occur only between B and other 5-gons,

and not between two 5-gons different from B. We say that a C5-structure W is maximal if |V (W)|
is maximal. Let U(W) =

∪
H∈V (W) V (H) denote the set of vertices of G that are ‘covered’ by W.

We say that a vertex x ∈ V (G) \ U(W) is a center for W if x is complete to U(W).

Let H ∈ V (W) and let h1, h2, . . . , h5 be the vertices of H in order. Let i ∈ {1, 2, . . . , 5} and let x be

a clone of type i for H. We will write H/x = G|((V (H) \ {hi}) ∪ {x}) and we will say that H/x is

obtained from H by cloning hi and x is a clone in the position of hi. For two 5-gons F,H ∈ V (W),

let dist(F,H) be the number of edges in a shortest path from F to H in W.

Let us first prove a number of claims about C5-structures:

(3.6) Let G ∈ Forb(P c
4 , P5) and let B be a 5-gon in G. Let W be a C5-structure around B. Suppose

that H ∈ V (W) and H ′ ∈ V (W) are clone neighbors. If c is a center for H, then c is also a center

for H ′.

Proof. Let c be a center forH. From the definition of a clone edge, it follows that |V (H)∩V (H ′)| =
4. Since c is complete to V (H), it follows that c has at least four neighbors in V (H ′). Therefore,

it follows from (3.2) that c is complete to V (H ′). This proves (3.6). □

(3.7) Let G ∈ Forb(P c
4 , P5) and let B be a 5-gon in G. Let W be a maximal C5-structure around

B. Let c be a center for some 5-gon in V (W). Then either c is a center for every H ∈ V (W) or

c ∈ U(W).

Proof. If c is complete to all H ∈ V (W), then the claim holds. So we may assume that c is not

complete to at least one 5-gon in V (W). Let H1,H2 ∈ V (W) be such that c is complete to H1 but
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not to H2 and, subject to that, such that dist(H1,H2) is minimum. Clearly, since c is complete to

V (H1) and not to V (H2), it follows that H1 ̸= H2. Since dist(H1,H2) is minimum, it follows that

H1 and H2 are neighbors. It follows from (3.6) that H1 and H2 are pyramid neighbors. We may

write H1 = h1-h2-h3-h4-h5-h1 and H2 = h1-a-b-h4-h5-h1. Since c is complete to V (H1), it follows

that c has at least three neighbors in V (H2). Hence, since c is not complete to V (H2), it follows

from (3.2) that c is a clone for H2. Therefore, H2/c is a 5-gon. From the maximality of W, it

follows that H2/c ∈ V (W) and, thus, that c ∈ U(W). This proves (3.7). □

(3.8) Let G ∈ Forb(P c
4 , P5, C6) and let B be a 5-gon in G. Let W be a maximal C5-structure

around B. Suppose that H ∈ V (W) and H ′ ∈ V (W) are clone neighbors and let x be such that

H ′ = H/x. Let h1, h2, . . . , h5 be the vertices of H in order. Let i ∈ {1, 2, . . . , 5} and suppose that

(p, q) is a pyramid of type i for H. Then either

(1) (p, q) is also a pyramid of type i for H ′, or

(2) x is a clone of type j ∈ {i− 1, i+ 1} for H and x is complete to {p, q, hj}.

Proof. From the symmetry, we may assume that (p, q) is a pyramid of type 1 for H and x is

a clone of type 1, 2 or 3 for H. First assume that x is a clone of type 1 for H. It follows from

(3.2) applied to q and H ′ that x is not adjacent to q. Therefore, q is a hat for H ′. Since p is a

neighbor of q, it follows from (3.4) that p has a neighbor in V (H ′). It follows that p is adjacent

to x. Thus, (p, q) is a pyramid for H ′ and outcome (1) holds. Next, assume that x is a clone of

type 2 for H. Then it follows from (3.2) applied to x and h1-h2-h3-q-p-h1 that x is either complete

or anticomplete to {p, q}. If x is anticomplete to {p, q}, then (p, q) is a pyramid for H ′ and thus

outcome (1) holds. If x is complete to {p, q}, then it follows from (3.3) that x is adjacent to h2.

Hence, outcome (2) holds. So we may assume that x is a clone of type 3 for H. First suppose

that p is adjacent to x. From (3.2) applied to x and the 5-gon h1-h2-h3-q-p-h1, it follows that x is

anticomplete to {q, h3}. But now the adjacencies of q with respect to h3-h4-x-p contradict (3.1).

This proves that p is nonadjacent to x. But now, since p is a leaf of type 1 for H ′, q is a small

attachment of H ′, and p and q are adjacent, it follows from (3.3) that q is a hat of type 1 for H ′

and (p, q) is a pyramid for H ′. Hence, outcome (1) holds. This proves (3.8). □

(3.9) Let G ∈ Forb(P c
4 , P5, C6) and let B be a 5-gon. Let W be a maximal C5-structure around B.

If (a, b) is a pyramid for some H ∈ V (W), then {a, b} ⊂ U(W).

Proof. Let H∗ ∈ V (W) be a 5-gon in G for which (a, b) is a pyramid and, subject to that, such

that dist(H∗, B) is minimum. Let h1, h2, . . . , h5 be the vertices of H
∗ in order. From the symmetry,

we may assume that (a, b) is a pyramid of type 1 for H∗.

Let P be a shortest path from H∗ to B in W. It follows from the definition of a maximal C5-

structure that, if H∗ = B, then {a, b} ⊂ U(W). So we may assume that H∗ ̸= B and hence that

|E(P )| ≥ 1. Let H1 be the neighbor of H∗ in P . Since H∗ was chosen with dist(H∗, B) minimum,

it follows that {a, b} is not a pyramid for H1.
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First suppose that H1 is a clone neighbor of H∗. Let x be such that H1 = H∗/x. From (3.8) and

the fact that {a, b} is not a pyramid for H1, it follows that H1 is obtained from H∗ by cloning h2
or h5 and x is complete to {a, b}. But now, from the maximality of W, H1-H1/b-H1/b/a is a path

in W and hence {a, b} ⊂ U(W).

Therefore, we may assume that H1 is a pyramid neighbor of H∗. From the definition of a C5-

structure and the fact that H∗ ̸= B, it follows that H1 = B. Let {p, q} = V (B) \V (H∗). We claim

that either (p, q) or (q, p) is a pyramid of type 1 for H∗. If {p, q} ∩ {a, b} = ∅, then, since (a, b) is a

pyramid of type 1 for H∗, it follows from (3.5) that (p, q) or (q, p) is a pyramid of type 1 for H∗. If

{p, q} ∩ {a, b} ̸= ∅, then it follows from the definition of a pyramid that (p, q) or (q, p) is a pyramid

of type 1 for H∗. Hence, we may assume that V (H1) = V (B) = {h1, p, q, h4, h5}. This proves that
(p, q) or (q, p) is a pyramid of type 1 for H∗. Possibly by swapping p and q, we may assume that

(p, q) is a pyramid of type 1 for H∗.

If (a, b) = (p, q), then {a, b} ⊂ V (B) and hence {a, b} ⊂ U(W). If a ̸= p and b = q, then a is a

clone for B and b ∈ V (B) and, therefore, {a, b} ⊂ U(W). If a = p and b ̸= q, then b is a clone for

B and a ∈ V (B) and, therefore, {a, b} ⊂ U(W).

So we may assume that {a, b} ∩ {p, q} = ∅. Now first suppose that a is adjacent to q. Then

a is a clone for B and b is a clone for B/a. Hence, by the maximality of W, it follows that

B/a,B/a/b ∈ V (W) and, therefore, that {a, b} ⊂ U(W). Next, suppose that b is adjacent to p.

Then b is a clone for B and a is a clone for B/b. Hence, by the maximality of W, it follows that

B/b,B/b/a ∈ V (W) and, therefore, that {a, b} ⊂ U(W).

It follows that we may assume that the only possible edges between {a, b} and {p, q} are ap and

bq. If ap and bq are both edges, then a and b are hats of different types for B, contrary to (3.3). If

neither of ap and bq is an edge, then a and b are leaves of different types for B, contrary to (3.3).

Thus, exactly one of ap and bq is an edge and hence {a, b} is a pyramid for B. If a is adjacent to

p, then (b, a) is a pyramid of type 4 for B, contrary to (3.5). If b is adjacent to q, then (a, b) is

a pyramid of type 1 for B. By the maximality of W, it follows that {a, b} ⊂ U(W). This proves

(3.9). □

The goal in this section is to prove the following:

(3.10) Let G ∈ Forb(P c
4 , P5, C6) be a composite graph. Then G admits a quasi-homogeneous set

decomposition.

As a first step in this direction, we prove the following lemma which states that U(W) does not

contain both all centers and all anticenters of B. This is useful, because in order for U(W) to be a

quasi-homogeneous set, we should have |U(W)| < |V (G)|.

(3.11) Let G ∈ Forb(P c
4 , P5, C6) and let B be a 5-gon in G with both a center and an anticenter.

Let W be a maximal C5-structure around B. Then V (G) \ U(W) ̸= ∅.

Proof. We may assume that all centers and all anticenters for B are contained in U(W), because

otherwise the lemma holds.
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(i) B and every pyramid neighbor of B in W has a pyramid.

We first claim that B has a pyramid. For suppose not. Then, all edges in W are clone edges.

Let x be a center for B. Then it follows from (3.6) that x is a center for all H ∈ V (W).

In particular, for every H ∈ V (W), x ̸∈ V (H). Therefore, x ̸∈ U(W), contrary to our

assumption. Now let B′ be any pyramid neighbor of B. Clearly, {p, q} = V (B) \ V (B′) is a

pyramid for B′. This proves (i). □

Now let a be an anticenter for B. We first show that:

(ii) a is anticomplete to every pyramid (p, q) for B and a is an anticenter for every pyramid

neighbor of B in W.

Let (p, q) be a pyramid for B. Suppose that z ∈ {p, q} is adjacent to a. Since z is a

small attachment of B, it follows from (3.4) that a has a neighbor in V (B), contrary to the

assumption that a is an anticenter for B. Since every pyramid neighbor H of B satisfies

V (H) ⊆ (V (B)∪ {p′, q′}) for some pyramid {p′, q′} for B, it follows from the above that a is

an anticenter for every pyramid neighbor of B. This proves (ii). □

Since a ∈ U(W) there exists a 5-gon H∗ ∈ V (W) such that a ∈ V (H∗) and, subject to that,

such that dist(B,H∗) is minimum. Let P be a shortest path from H∗ to B in W and write

P = H∗-H1-H2- · · · -Hk, where Hk = B and k = dist(B,H∗). From the definition of a C5-

structure, it follows that all edges in P are clone edges, except possibly Hk−1-Hk.

(iii) H∗ = H1/a, k ≥ 2, and H1 is not a pyramid-neighbor of B in W.

First suppose that H1 = B. If H∗ and B are pyramid neighbors, then it follows from (ii)

that a is anticomplete to H∗, a contradiction. If H∗ and B are clone neighbors, then, since

|V (B) ∩ V (H∗)| = 4 and a has two neighbors in V (H∗), it follows that a has at least one

neighbor in B, contradicting the fact that a is an anticenter for B. This proves that H1 ̸= B

and, thus, that k ≥ 2. It follows from the definition of W that H∗-H1 is a clone edge. Since

a ∈ V (H∗) and a ̸∈ V (H1) by the minimality of k, it follows that H∗ = H1/a. Since a has a

neighbor in V (H1), it follows from (ii) that H1 is not a pyramid neighbor of B. This proves

(iii). □

(iv) a is not a clone for H i for i ≥ 2.

Suppose that a is a clone for H i. Then H i/a-H i-H i+1- · · · -Hk is a path between B and a

5-gon containing a that is shorter than P , contrary to the choice of H∗. This proves (iv). □

Let h1, h2, . . . , h5 be the vertices of H
1 in order. From the symmetry and from (iii), we may assume

that a is adjacent to h2 and h5, and possibly to h1. It follows from (iii) that we may now consider

H2. We claim that H1 and H2 are clone neighbors in W. For suppose to the contrary that H1 and

H2 are pyramid neighbors. It follows from the definitions of W and P that H2 = B. But now, H1

is a pyramid neighbor of B, contrary to (iii). Thus, H1 and H2 are clone neighbors.

(v) Up to symmetry, H2 is obtained from H1 by cloning h2. Let h′2 be such that H2 = H1/h′2.

Then h′2 is nonadjacent to a, and either (see Figure 1)
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(1) (2)

Figure 1: The outcomes of (v).

(1) ah1 and h2h
′
2 are both non-edges, or

(2) ah1 and h2h
′
2 are both edges.

Moreover, k ≥ 3 and H2 is not a pyramid neighbor of B in W.

We proved that H1 and H2 are clone neighbors. From the symmetry, we may assume that

H2 is obtained from H1 by cloning h1, h2, or h3. It follows from (iv) that H2 is not obtained

from H1 by cloning h1. Suppose next that H2 is obtained from H1 by cloning h3. Let h′3
be such that H2 = H1/h′3. It follows from (3.2) that a is a clone for H2, contradicting (iv).

Therefore, we may assume that H2 is obtained from H1 by cloning h2. Let h
′
2 be such that

H2 = H1/h′2. Because, from (iv), a is not a clone for H2, it follows that h′2 is nonadjacent

to a. If h′2 is adjacent to h2 and h1 is nonadjacent to a, then h2-h5-h
′
2-a-h1 is an induced

four-edge antipath, a contradiction. Likewise, if h′2 is nonadjacent to h2 and h1 is adjacent

to a, then h1-h3-a-h
′
2-h2 is a four-edge antipath, a contradiction. This proves that ah1 and

h2h
′
2 are either both edges or both non-edges.

Since a has a neighbor in H2, it follows that H2 ̸= B and hence that k ≥ 3. Using (ii), it

follows that H2 is not a pyramid neighbor of B. This proves (v). □

Let H2 and h′2 be as in (v). It follows from (v) that we may now consider H3. We claim that

H2 and H3 are clone neighbors in W. For suppose to the contrary that H2 and H3 are pyramid

neighbors. It follows from the definitions of W and P that H3 = B. But now, H2 is a pyramid

neighbor of B, contrary to (v). Thus, H2 and H3 are clone neighbors.

(vi) Up to symmetry, H3 is either (see Figure 2)

(1) obtained from H2 by cloning h5, h′5 ∈ V (H3) \ V (H2) is anticomplete to {a, h2, h5}, and

ah1, h
′
2h2 are non-edges; or

(2) obtained from H2 by cloning h5, h
′
5 ∈ V (H3) \ V (H2) is adjacent to h5 and anticomplete to

{a, h2}, and ah1, h
′
2h2 are edges, or

(3) obtained from H2 by cloning h1, h
′
1 ∈ V (H3) \ V (H2) is adjacent to h1 and anticomplete to

{a, h2}, and ah1, h
′
2h2 are edges.

Moreover, k ≥ 4 and H3 is not a pyramid neighbor of B.
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Since H1 and H2 are clone neighbors by (v), we may assume that H2 is obtained from H1

by cloning h2. It follows from (v) that h′2 is nonadjacent to a. H3 is not obtained from H2

by cloning h′2, because if it is, then H3 is adjacent to H1, contrary to the minimality of P .

Also note that H3 has no neighbor H ′ ∈ V (W) such that a is a clone for H ′. Because if so,

then H ′/a-H ′-H3-H4- · · · -Hk is a path between B and a 5-gon containing a that is shorter

than P , a contradiction.

There are four cases to consider:

(a) H3 is obtained from H2 by cloning h1. (see Figure 3.a.) Let h′1 be such that H3 =

H2/h′1. If h′1 is adjacent to h2, then H3 is adjacent to H3/h2 in W and a is a clone

for H3/h2, a contradiction. Therefore, h′1 is nonadjacent to h2. First suppose that H
2

satisfies outcome (1) of (v). Since h1-h3-h
′
1-h2-h

′
2 is not an induced four-edge antipath,

it follows that h′1 is nonadjacent to h1. If h′1 is nonadjacent to a, then a and h2 are

adjacent leaves of different types for H3, contrary to (3.3). Therefore, h′1 is adjacent

to a. But now h′1-h1-a-h
′
2-h5 is an induced four-edge antipath, a contradiction. Next

suppose that H2 satisfies outcome (2) of (v). From the fact that a-h′2-h5-h2-h
′
1 is not

an induced four-edge antipath, it follows that a is nonadjacent to h′1. It follows, from

the fact that h′2-h5-h2-h
′
1-h1 is not a four-edge antipath, that h′1 is adjacent to h1.

Hence, outcome (3) holds.

(b) H3 is obtained from H2 by cloning h3. (see Figure 3.b.) Let h′3 be such that H3 =

H2/h′3. Suppose that h′3 is adjacent to a. Then, it follows from (3.2) applied to a and

H2 that a is a clone for H3, contrary to (iv). Hence, h′3 is nonadjacent to a. It follows

that a is either a leaf of type 5 or a hat of type 3 for H3. If h′3 is adjacent to h2, then

H3 is adjacent to H3/h2 in W and a is a clone for H3/h3, a contradiction. Therefore,

h′3 is nonadjacent to h2. But now a and h2 are adjacent small attachments of H3 and

they have different types, contrary to (3.3).

(c) H3 is obtained from H2 by cloning h4. (see Figure 3.c.) Let h′4 be such that H3 =

H2/h′4. From (3.2) applied to h2 and H3, it follows that h′4 is nonadjacent to h2 and,

in particular, that h2 is a clone for H3. But now H3 is adjacent to H3/h2 in W and

(1) (2) (3)

Figure 2: The outcomes of (vi).
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a is a clone for H3/h2, a contradiction.

(d) H3 is obtained from H2 by cloning h5. (see Figure 3.d.) Let h′5 be such that H3 =

H2/h′5. From (3.2) applied to h2 and H3, it follows that h′5 is nonadjacent to h2 and,

in particular, that h2 is a clone for H3. Since a is not a clone for H3/h2, it follows that

a is nonadjacent to h′5. If H
2 satisfies outcome (1) of (v), then because h1-a-h

′
5-h2-h5

is not an induced four-edge antipath, it follows that h5 is nonadjacent to h′5 and hence

outcome (1) holds. If H2 satisfies outcome (2) of (v), then since h5-h
′
5-a-h4-h1 is not

an induced four-edge antipath, it follows that h5 is adjacent to h′5, and hence outcome

(2) holds.

Now suppose that H3 = B or H3 is a pyramid neighbor of B. Since a is an anticenter for B

and for every pyramid neighbor of B, it follows that H3 satisfies outcome (1). It follows from

(i) and (ii) that H3 has a pyramid (p, q) that is anticomplete to a. From the symmetry, we

may assume that (p, q) is a pyramid of type 1, 2, or 3 for H3. First suppose that (p, q) is a

pyramid of type 1 for H3. It follows from (3.8) that {p, q} is anticomplete to {h2, h5}. But

now h2 is a leaf for the 5-gon F = h1-p-q-h4-h
′
5-h1, a is adjacent to h2 and a has no neighbor

in F , contrary to (3.4). Next suppose that (p, q) is a pyramid of type 2 for H3. Then it

follows from (3.8) that p is nonadjacent to h5. Hence, a is a leaf of type 5 and p is a leaf

of type 2 for H3/h5, contrary to (3.3). So we may assume that (p, q) is a pyramid of type 3

for H3. It follows from (3.8) that p is nonadjacent to h5. Hence, a is a leaf of type 5 and p

is a leaf of type 3 for H3/h5, contrary to (3.3). This proves that H3 is not B or a pyramid

neighbor of B and therefore that k ≥ 4. This proves (vi). □

Let H3 be as in (vi). It follows from (vi) that we may now consider H4, which is a clone neighbor

of H3. Now, again, since P is a shortest path from a 5-gon that contains a to B, it follows that

there is no one- or two-edge path in W from H4 to a 5-gon for which a is clone.

First, suppose that H3 satisfies outcome (1) or (2) of (vi). Let h′5 be as in outcome (1) and (2) of

(vi). From the symmetry, we may assume that H4 is obtained from H3 by cloning h1, h
′
2, or h3.

We need to check a number of cases:

(a) (b) (c) (d)

Figure 3: Potential neighbors of H2 if H2 satisfies (1) of (vi).

The “wiggly” edges represent arbitrary adjacencies.
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(a) H4 is obtained from H3 by cloning h1. Let h′1 be such that H4 = H3/h′1. First suppose

that h′1 is nonadjacent to h2. It follows that h2 is a leaf of type 3 or a hat of type 5 for H4.

Since a is adjacent to h2, it follows from (3.4) that a is adjacent to h′1. But now a is a leaf

of type 1 for H4 and a is adjacent to h2, contrary to (3.3). Therefore, h′1 is adjacent to h2
and, from the symmetry, h′1 is adjacent to h5. But now the path H4-H4/h2-H

4/h2/h5 is a

two-edge path from H4 to a 5-gon for which a is clone, a contradiction.

(b) H4 is obtained from H3 by cloning h′2. Now H4-H4/h2-H
4/h2/h5 is a two-edge path from

H4 to a 5-gon for which a is clone, a contradiction.

(c) H4 is obtained from H3 by cloning h3. Let h
′
3 be such thatH4 = H3/h′3. From (3.2) applied

to h5 and H4, it follows that h′3 is nonadjacent to h5 and, in particular, that h5 is a clone

for H4. Since, by the minimality of P , a is a not a clone for H4/h5, it follows from (3.2)

that a is nonadjacent to h′3. If h
′
3 is adjacent to h2, then H4-H4/h2-H

4/h2/h5 is a two-edge

path from H4 to a 5-gon for which a is a clone, a contradiction. Hence, h′3 is nonadjacent to

h2 and therefore h2 is a small attachment of H4. Since a is adjacent to h2, it follows from

(3.4) that a is adjacent to h1 and hence that outcome (2) of (vi) holds. But now a is a leaf

of type 1 for H4, h2 is a hat of type 4 for H4, and a and h2 are adjacent, contrary to (3.3).

This proves that H3 does not satisfy outcome (1) or outcome (2) of (vi). So next suppose that H3

satisfies outcome (3) of (vi). We need to check a number of cases:

(a) H4 is obtained from H3 by cloning h′1. H
4-H4/h1-H

4/h1/h2 is a two-edge path from H4 to

a 5-gon for which a is clone, a contradiction.

(b) H4 is obtained from H3 by cloning h′2. Let h′′2 be such that H4 = H3/h′′2. Since a is

not a clone for H4, it follows that h′′2 is nonadjacent to a. If h′′2 is adjacent to h1, then

H4-H4/h1-H
4/h1/h2 is a two-edge path from H4 to a 5-gon for which a is clone, a contra-

diction. Therefore h′′2 is nonadjacent to h1. But now h1 is a hat of type 3 and a is a leaf of

type 5 for H4, and h1 and a are adjacent, contrary to (3.3).

(c) H4 is obtained from H3 by cloning h3. Let h′3 be such that H4 = H3/h′3. Since a is not a

clone for H4 by (iv), it follows that a is nonadjacent to h′3. From (3.2) applied to h1 and

H4, it follows that h′3 is nonadjacent to h1. If h′3 is nonadjacent to h2, then h2 and a are

leaves of type 2 and 5, respectively, for H4, and a and h2 are adjacent, contrary to (3.3).

Therefore, h′3 is adjacent to h2. But now H4-H4/h1-H
4/h1/h2 is a two-edge path from H4

to a 5-gon for which a is clone, a contradiction.

(d) H4 is obtained from H3 by cloning h4. Let h′4 be such that H4 = H3/h′4. By (3.2) applied

to h1 and H4, it follows that h′4 is nonadjacent to h1. By (3.2) applied to h2 and H4/h1, it

follows that h′4 is nonadjacent to h2. By (3.2) applied to a and H4/h1/h2, it follows that h
′
4

is nonadjacent to a. But now H4-H4/h1-H
4/h1/h2 is a two-edge path from H4 to a 5-gon

for which a is clone, a contradiction.

(e) H4 is obtained from H3 by cloning h5. Let h
′
5 be such thatH4 = H3/h′5. From (3.2) applied

to h2 and H4, it follows that h′5 is nonadjacent to h2. If h′5 is nonadjacent to h1, then h1
and h2 are hats of type 4 and 5, respectively, and h1 and h2 are adjacent, contrary to (3.3).
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Therefore, h′5 is adjacent to h1. Since h2 is a hat for H4 and a is adjacent to h2, it follows

from (3.4) that a is adjacent to h′5. But now H4-H4/h1-H
4/h1/h2 is a two-edge path from

H4 to a 5-gon for which a is clone, a contradiction.

This proves that H3 does not satisfy any of the outcomes of (vi), a contradiction. This completes

the proof of (3.11). □

Next, we are interested in how vertices in V (G)\U(W) can attach to U(W) where W is a maximal

C5-structure.

(3.12) Let G ∈ Forb(P c
4 , P5, C6) and let B be a 5-gon. Let W be a maximal C5-structure around

B. Let x ∈ V (G)\U(W) and assume that x is not a center for W. Let u and v be two nonadjacent

neighbors of x and assume that u ∈ U(W). Then, for every H ∈ V (W) such that u ∈ V (H), v is

a clone for H in the same position as u and, in particular, v ∈ U(W).

Proof. Let H ∈ V (W) such that u ∈ V (H) and let h1, h2, h3, h4, h5 be the vertices of H in order.

From the symmetry, we may assume that h1 = u. It follows from (3.7) and the assumption that x is

not a center for W that x is not complete to V (H). Moreover, since W is maximal and x ̸∈ U(W),

it follows that x is not a clone for H. Therefore x is either a leaf or a hat for H. Because v is

nonadjacent to u and adjacent to x, it follows that v ̸∈ V (H). From the symmetry, we may assume

that x is anticomplete to {h2, h3, h4}, but possibly adjacent to h5. Because x is a small attachment

of H and v is adjacent to x, it follows from (3.4) that v has at least one neighbor in V (H). Since u

and v are nonadjacent, v is not complete to H. Hence, it follows from (3.2) that v is either a small

attachment or a clone for H.

First suppose that v is a small attachment of H. Then, from (3.3) and the fact that u and v

are nonadjacent, it follows that {x, v} is a pyramid for H. But now, by (3.9), {x, v} ⊂ U(W),

contradicting the fact that x ̸∈ U(W).

So we may assume that v is a clone for H. If v is adjacent to h2 and h5, then the claim holds.

Therefore, we may assume that v is adjacent to at most one of h2, h5. Since u and v are nonadjacent,

it follows that v is a clone of type 3 or 4 for H. If v is a clone of type 3 for H, then it follows from

(3.2) that x is a clone for H/v and hence x ∈ U(W), a contradiction. If v is a clone type 4, then

again x is a clone for H/v and hence x ∈ U(W), a contradiction. This proves (3.12). □

We are now in a position to prove (3.10).

Proof of (3.10). Let B be a 5-gon with a center and an anticenter and let W be a maximal C5-

structure around B. Let Z = U(W), let C be the set of centers for W and let A be V (G)\ (Z ∪C).

It follows from (3.11) that A ∪ C ̸= ∅.
(i) There exists z ∈ Z that is anticomplete to A.

Let b1, b2, . . . , b5 be the vertices of B in order. Let K1,K2, . . . ,Kq be the components of

G|A. We may assume that V (B) ∩
∪

v∈AN(v) = V (B), because otherwise the claim holds.

It follows from (3.3) and the maximality of U(W) that, for j = 1, 2, . . . , q, every two vertices

u, v ∈ V (Kj) are either leaves of the same type or hats of the same type with respect to B.
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In particular, for each j = 1, 2, . . . , q, V (B) ∩ N(u) = V (B) ∩ N(v) for all u, v ∈ V (Kj).

Since V (B) ∩
∪

v∈AN(v) = V (B), it follows that there exist a stable set S ⊆ A such that

V (B) ∩
∪

v∈S N(v) = V (B). First suppose that some s1 ∈ S is a leaf for B. From the

symmetry, we may assume that V (B)∩N(s1) = b1. For i = 2, 5, let si ∈ S be a neighbor of bi.

It follows from (3.3) applied to s1 and s2 that s2 is either a leaf of type 2 for B, or a hat of type

4. This implies that V (B) ∩N(s2) ⊆ {b1, b2} and, symmetrically, V (B) ∩N(s5) = {b1, b5}.
But now, s2-b2-b3-b4-b5-s5 is an induced five-edge path, a contradiction. Thus, we may assume

that every vertex in S is a hat for B. Again, consider s1 ∈ S. From the symmetry, we may

assume that s1 is a hat of type 1 for B. For i = 2, 5, let si ∈ S be a neighbor of bi. It follows

from (3.3) applied to s1 and s2 that s2 is a hat of type 4 for B. Symmetrically, s5 is a hat

of type 3 for B. But now, s2 and s5 contradict (3.3). This proves (i). □

We claim that (Z,A,C) is a quasi-homogeneous set decomposition of G. Clearly, 1 < |Z| < |V (G)|
and C is complete to Z. Construct G′ from G|(A∪C) by adding a new vertex z that is complete to

C and anticomplete to A. It follows from (i) that there exists a vertex in Z that is complete to C

and anticomplete to A. Therefore, G contains G′ as an induced subgraph. This settles properties

(i), (ii), and (iv) of the quasi-homogeneous set decomposition. To prove property (iii), let P1 be

a perfect induced subgraph of G′ with z ∈ V (P1), let P2 be a perfect induced subgraph of G|Z,

and let P = G|(V (P1) ∪ V (P2) \ {z}). We need to show that P is perfect. So suppose that P is

not perfect. Since P is an induced subgraph of G, it does not have an induced four-edge antipath

or an induced five-edge path. It follows that P contains an induced cycle F of length five. Let

f1, f2, . . . , f5 be the vertices of F in order.

(ii) No edge of F has one endpoint in Z and one endpoint in C.

From the symmetry, we may assume that f1 ∈ Z and f2 ∈ C. Since C is complete to Z, and

f4 is nonadjacent to f1 and f2, it follows that f4 ∈ A. Moreover, since f5 is nonadjacent to

f2, it follows for the same reason that f5 ∈ A∪C. If f5 ∈ A, then (3.12) with x = f5, u = f1
and v = f4, implies that f4 ∈ Z, a contradiction. Therefore, we may assume that f5 ∈ C.

Because f3 is nonadjacent to f1 and f5, it follows that f3 ̸∈ C ∪ Z, and hence that f3 ∈ A.

But now z-f2-f3-f4-f5-z is an induced cycle of length five in P1, contradicting the fact that

P1 is perfect. This proves (ii). □

Let P ∗ be obtained from P by deleting all edges between A∩ V (P ) and Z ∩ V (P ). It follows from

Lemma 2.2 that P ∗ is perfect. Therefore, F is not an induced subgraph of P ∗. It follows that some

edge of F has one endpoint in Z and one endpoint in A, say f1 ∈ Z and f2 ∈ A.

Let H ∈ V (W) be such that f1 ∈ V (H). Let h1, h2, . . . , h5 be the vertices of H in order. We may

assume that f1 = h1.

(iii) No vertex w ∈ A is a clone or a center for H.

If w is a clone for H, then it follows from the maximality of W that w ∈ Z, a contradiction.

If w is a center for H, then it follows from (3.7) that w ∈ Z ∪C, a contradiction. This proves

(iii). □
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(iv) f3 is a clone of type 1 for H and {f3, f4, f5} ⊂ Z.

Since f1 is nonadjacent to f3, it follows from (3.12) that f3 ∈ Z and f3 is a clone in the same

position as f1 for H. It follows from (ii) that f5 ∈ A ∪ Z. Suppose that f5 ∈ A. Since f4
is nonadjacent to f1, it follows from (3.12) that f4 is also a clone of type 1 for H. If f5 is

adjacent to both h5 and h2, then it follows from (3.2) that f5 is a clone or a center for H,

contrary to (iii). Therefore, from the symmetry, we may assume that f5 is nonadjacent to

h2. But now h2-f5-f3-f1-f4 is an induced four-edge antipath, a contradiction. This proves

that f5 ∈ Z and, from the symmetry, that f4 ∈ Z, and hence this proves (iv). □

Since f5 is adjacent to f1, but not to f3, it follows that f5 ̸∈ V (H). Since f4 is adjacent to f3 but

not to f1, it follows that f4 ̸∈ V (H). It follows from (iii) that f2 is not a clone or a center for H

and hence that f2 is nonadjacent to h3 and h4.

We claim that {f4, f5} is anticomplete to {h2, h5}. For suppose not. From the symmetry, we may

assume that f4 is adjacent to h2. If f4 is nonadjacent to h5, then f3-f1-f4-h5-h2 is an induced

four-edge antipath, a contradiction. Therefore, f4 is adjacent to h5. If f2 is adjacent to both h2
and h5, then it follows from (3.2) that f2 is a clone or a center for H, contrary to (iii). Hence, from

the symmetry, we may assume that f2 is nonadjacent to h2. But now f3-f1-f4-f2-h2 is an induced

four-edge antipath, a contradiction. This proves that {f4, f5} is anticomplete to {h2, h5}.
It follows from (3.4) applied to h3, h4 and h2-f3-f4-f5-f1-h2 that there is at least one edge between

{h3, h4} and {f4, f5}. From the symmetry, we may assume that f5 is adjacent to h4. It follows

from (3.2) applied to h4 and h5-f3-f4-f5-f1-h5 that h4 is nonadjacent to f4. It follows from (3.2)

applied to f5 and H that f5 is nonadjacent to h3. By applying (3.4) to h4, h3 and F , h3 has a

neighbor in V (F ). Therefore, h3 is adjacent to f4. But now h3 and h4 are adjacent leaves for F

that have different types, contradicting (3.3). This proves (3.10). □

3.3 Basic graphs

In the previous section, we showed that composite graphs in Forb(P c
4 , P5, C6), i.e. graphs that have

a 5-gon with both a center and an anticenter, admit a quasi-homogeneous set decomposition. In

this section, we will analyze basic graphs. It turns out that if a graph does not contain a 5-gon

with both a center and an anticenter, then a ‘dual’ statement is also true: there is no vertex that

simultaneously serves as a center for some 5-gon in G and as an anticenter for some other 5-gon in

G (we will prove this shortly). In particular, this implies that for every v ∈ V (G), either G|N(v)

or G|M(v) is perfect (and, equivalently, 1-narrow).

(3.13) Let G ∈ Forb(P c
4 , P5, C6) and suppose that no 5-gon has both a center and an anticenter.

Then there do not exist v, A and B such that v ∈ V (G), A and B are 5-gons in B, and v is a

center for A and an anticenter for B.

Proof. Suppose that v is a center for a 5-gon A and an anticenter for a 5-gon B. Since v is

complete to V (A) and anticomplete to V (B), it follows that V (A) ∩ V (B) = ∅. Let a1, a2, . . . , a5
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and b1, b2, . . . , b5 be the vertices of A and B, respectively, in order.

(i) Every x ∈ V (B) is a small attachment of A and all x ∈ V (B) are of the same type.

It follows from (3.2) that x is either an anticenter, or a small attachment, or a clone, or a

center for A. Since G is basic, A does not have an anticenter and hence x is not an anticenter

for A. Now suppose that x is a clone for A. It follows from (3.2) applied to A/x that v is

adjacent to x, contradicting the fact that v is anticomplete to V (B). This proves that every

vertex in V (B) is either a small attachment or a center for A.

Suppose that some vertex in V (B) is complete to V (A). Since B has no center, not all

vertices in V (B) are centers for A. Therefore, there are adjacent y, z ∈ V (B) such that y is

complete to V (A) and z is not. Therefore, z is a small attachment of A. Let a ∈ V (A) be a

neighbor of z and let a′ ∈ V (A) be a non-neighbor of a. Since z is a small attachment of A,

it follows that a′ is nonadjacent to z. But now a-a′-z-v-y is an induced four-edge antipath,

a contradiction. This proves that every vertex in V (B) is a small attachment of A. Now

suppose that not all vertices of V (B) are of the same type with respect to A. Then there

exist adjacent b, b′ ∈ V (B) such that b and b′ are small attachments for A, but of different

types, contradicting (3.3). This proves (i). □

(ii) Let x ∈ V (A). Then x is either a clone or an anticenter for B.

Suppose that x is not a clone or an anticenter for B. Since G is basic, B does not have a

center and hence x is not complete to V (B). Then it follows from (3.2) that x is a small

attachment of B. But now v is a neighbor of a small attachment of B and v has no neighbor

in V (B), contrary to (3.4). This proves (ii). □

From (i) and the symmetry, we may assume that all b ∈ V (B) are of type 1 for A. That is, for

every b ∈ V (B), b is either adjacent to a1 and anticomplete to {a2, a3, a4, a5}, or b is adjacent to a3
and a4 and anticomplete to {a1, a2, a5}. Since B does not have a center, at least one of the vertices

of B is a leaf and at least one of them is a hat. From the symmetry, we may assume that b1 is a leaf

for A that is adjacent to a1. Since from (ii) every vertex of A is either a clone or an anticenter for

B, it follows that we may assume that a1 is adjacent to b4 and a1 is anticomplete to {b2, b3}. Since
a1 is anticomplete to {b2, b3}, it follows from (i) that b2 and b3 are complete to {a3, a4}. Because

b1 and b4 are leaves, it follows that {b1, b4} is anticomplete to {a3, a4}. Therefore, it follows from

(3.2) applied to a3 and B that a3 is a hat for B, contradicting (ii). This proves (3.13). □

We can now prove that

Theorem 3.14. Every graph G ∈ Forb(P c
4 , P5, C6) is 2-narrow.

Proof. We prove this by induction on |V (G)|. If G is perfect, then G is 1-narrow and there is

nothing to prove. So we may assume that G is not perfect. From the fact that G has no induced

four-edge antipath and no induced five-edge path, it follows that G contains a 5-gon. First suppose

that G contains a 5-gon with a center and an anticenter. Then, by (3.10), G admits a quasi-

homogeneous set decomposition (Z,A,C). Let G′ be the graph obtained from G|(A∪C) by adding
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a vertex z that is anticomplete to A and complete to C. Notice that G′ is an induced subgraph of G

by property (iv) of a quasi-homogeneous set decomposition, and hence G′ ∈ Forb(P c
4 , P5, C6). By

the induction hypothesis, G′ and G|Z are 2-narrow. It follows from Lemma 2.3 that G is 2-narrow.

So we may assume that G has no 5-gon that has both a center and an anticenter. Let v ∈ V (G).

It follows from the induction hypothesis that G|N(v) and G|M(v) are both 2-narrow. Moreover, it

follows from (3.13) that either G|N(v) or G|M(v) is perfect and hence 1-narrow. Since this is true

for every v ∈ V (G), it follows from Lemma 2.1 that G is 2-narrow. This proves Theorem 3.14. □

4 Graphs in Forb(P c
4 , P5)

In this section, we will prove that every graph in Forb(P c
4 , P5) is 3-narrow. Let G ∈ Forb(P c

4 , P5)

and suppose that G does not contain a 6-gon with a center. Then it follows that G|N(v) ∈
Forb(P c

4 , P5, C6) for every v ∈ V (G). So, we can conclude by Theorem 3.14 that G|N(v) is 2-

narrow for every v ∈ V (G). If G is a minimal counterexample to Theorem 1.2, then, by the

minimality of G, it follows that G|M(v) is 3-narrow for every v ∈ V (G) and hence G is 3-narrow by

Lemma 2.1 (for details, see the proof of Theorem 1.2 at the end of this section). Thus, it remains

to consider the case when G does contain a 6-gon with a center. We deal with this case in (4.2).

We will start with a lemma that deals with attachments of 6-gons.

(4.1) Let G ∈ Forb(P c
4 , P5) and let H be a 6-gon in G with vertices h1, h2, . . . , h6 in order. Let

v ∈ V (G) \ V (H) and suppose that v has a neighbor and a non-neighbor in V (H). Then, up to

symmetry, either

(x) v is complete to {h1, h3, h5} and v is anticomplete to {h2, h4, h6}, or
(y) v is complete to {h3, h6}, v is anticomplete to {h1, h2} and v is either complete or anticom-

plete to {h4, h5}, or
(z) v is complete to {h1, h3}, anticomplete to {h4, h5, h6}, and the adjacency between v and h2

is arbitrary.

Proof. We may assume that v is adjacent to h1 and nonadjacent to h2. Suppose that v is adjacent

to h3. Since h1-h2-h3-h4 is an induced path, and v is complete to {h1, h3} and nonadjacent to h2, it

follows from (3.1) that v is nonadjacent to h4. From the symmetry, it follows that v is nonadjacent

to h6. If v is adjacent to h5, then (x) holds. If v is nonadjacent to h5, then (z) holds. So we may

assume that v is nonadjacent to h3. If v is nonadjacent to h4, then, since v-h1-h2-h3-h4-h5 is not

an induced five-edge path, it follows that v is adjacent to h5 and (z) holds. So we may assume

that v is adjacent to h4. Because h4-h5-h6-h1 is an induced path and v is adjacent to h1 and h4, it

follows from (3.1) that v is either complete or anticomplete to {h5, h6}. Therefore, (y) holds. This
proves (4.1). □

Let G ∈ Forb(P c
4 , P5) and let H be a 6-gon in G. We call a vertex v ∈ V (G) \ V (H) an (x)-

vertex, (y)-vertex, or (z)-vertex for H if v satisfies (x), (y), or (z) of (4.1), respectively. Let

z ∈ V (G) \ V (H) be a (z)-vertex for H. Then, there exists a unique vertex h ∈ V (H) such that
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H ′ = G|((V (H) \ {h}) ∪ {z}) is a 6-gon. We say that H ′ is the 6-gon obtained from rerouting H

through z.

(4.2) Let G ∈ Forb(P c
4 , P5) and suppose that G contains a 6-gon with a center. Then G admits

either a quasi-homogeneous set decomposition, or a Σ-join.

Proof. Let H be a 6-gon with a center and let h1, h2, . . . , h6 be the vertices of H in order. Let C

be the set of vertices that are complete to V (H). Notice that C ̸= ∅. Let X, Y , and Z be the sets

of (x)-vertices, (y)-vertices, and (z)-vertices for H, respectively.

(i) C is complete to X ∪ Y ∪ Z and X is anticomplete to Y .

Let c ∈ C and z ∈ Z. Let H ′ be the 6-gon obtained from rerouting H through z. Then c

has at least five neighbors in V (H ′) and hence (4.1) implies that c is adjacent to z. This

proves that C is complete to Z. Now let x ∈ X. From the symmetry, we may assume

that x is complete to {h1, h3, h5} and anticomplete to {h2, h4, h6}. Since h6-h1-x-h3 is an

induced path and c is complete to {h1, h3, h6}, it follows from (3.1) that c is adjacent to

x. Hence, C is complete to X. Next, let y ∈ Y . We may assume that y is complete to

{h3, h6} and anticomplete to {h1, h2}. Then h1-h6-y-h3 is an induced path and c is complete

to {h1, h3, h6}. It follows from (3.1) that y is adjacent to c and hence that Y is complete to

C. This proves that C is complete to X ∪ Y ∪ Z.

Next, suppose that x ∈ X and y ∈ Y are adjacent. From the symmetry, we may assume

that x is complete to {h1, h3, h5} and anticomplete to {h2, h4, h6}, and that y is complete to

{h3, h6} and anticomplete to {h1, h2}. Now, h1-h2-h3-y is an induced path, x is complete to

{h1, h3, y} and x is nonadjacent to h2, contrary to (3.1). This proves (i). □

Let Y ′ be the set of vertices in V (G) \ (V (H) ∪ C ∪ X ∪ Y ∪ Z) with a neighbor in Y . Let X ′

be the set of vertices in V (G) \ (V (H) ∪ C ∪ X ∪ Y ∪ Z ∪ Y ′) with a neighbor in X. Let X ′′ be

the set of the vertices in V (G) \ (V (H) ∪ C ∪ X ∪ Y ∪ Z ∪ Y ′ ∪ X ′) with a neighbor in X ′. Let

A = V (G)\ (V (H)∪C ∪X ∪Y ∪Z ∪Y ′∪X ′∪X ′′). Since (A∪X ′∪X ′′∪Y ′)∩ (X ∪Y ∪Z ∪C) = ∅,
(4.1) implies that A ∪ Y ′ ∪X ′ ∪X ′′ is anticomplete to V (H). It follows from the definition of Y ′,

X ′, X ′′, and A that X ′ ∪ X ′′ ∪ A is anticomplete to Y , X is anticomplete to X ′′ ∪ A, and X ′ is

anticomplete to A.

(ii) Z is anticomplete to A∪X ′∪X ′′∪Y ′, Y ′ is anticomplete to A∪X ′∪X ′′, and A is anticomplete

to X ′′.

First, suppose that z ∈ Z is adjacent to a ∈ A ∪ X ′ ∪ X ′′ ∪ Y ′. Let H ′ be obtained from

rerouting H through z. Then it follows that a has exactly one neighbor in V (H ′), contrary

to (4.1). This proves that Z is anticomplete to A ∪X ′ ∪X ′′ ∪ Y ′.

Next, suppose that y′ ∈ Y ′ is adjacent to a ∈ A ∪X ′ ∪X ′′. Let y ∈ Y be a neighbor of y′.

We may assume that y is adjacent to h3 and not to h1 and h2. Now h1-h2-h3-y-y
′-a is an

induced five-edge path, a contradiction. This proves that Y ′ is anticomplete to A∪X ′ ∪X ′′.

Finally, suppose that x′′ ∈ X ′′ is adjacent to a ∈ A. Then let x′ ∈ X ′ be a neighbor of x′′

and let x ∈ X be a neighbor of x′. From the symmetry, we may assume that x is adjacent to
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h1 and not to h2. Then h2-h1-x-x
′-x′′-a is an induced five-edge path, a contradiction. This

proves that A is anticomplete to X ′′, thus proving (ii). □

The following two claims deal with the case when Y ̸= ∅.
(iii) Suppose that Y ̸= ∅. Then there do not exist x, p, q such that x ∈ X∪Y , p, q ∈ X ′∪X ′′∪Y ′,

and x-p-q is an induced path.

Suppose that Y ̸= ∅ and suppose that such x, p, q exist. First suppose that x ∈ Y . We may

assume that x is complete to {h3, h6} and anticomplete to {h1, h2}. Now h1-h2-h3-x-p-q is an

induced five-edge path, a contradiction. We may therefore assume that x ∈ X. Let y ∈ Y .

It follows from (i) that y is nonadjacent to x. From the symmetry, we may assume that x is

complete to {h1, h3, h5}, y is complete to {h3, h6} and y is anticomplete to {h1, h2}. Since

q-p-x-h1-h6-y is not an induced five-edge path, it follows that y is adjacent to at least one

of p and q. Because we already proved that no vertex in Y forms a two-edge induced path

with p and q, it follows that y is complete to {p, q}. But now x-h3-y-q is an induced path, p

is complete to {x, y, q}, and p is nonadjacent to h3, contrary to (3.1). This proves (iii). □

(iv) If Y ̸= ∅, then the lemma holds.

Suppose that Y ̸= ∅. We claim that X ′′ = ∅. For suppose that x′′ ∈ X ′′. Then let x′ ∈ X ′ be

a neighbor of x′′, and let x ∈ X be a neighbor of x′. Then x-x′-x′′ is an induced path with

x ∈ X and x′, x′′ ∈ X ′ ∪X ′′, contrary to (iii). This proves that X ′′ = ∅.
Let A′ be the union of all the components K of G|(X ′ ∪ Y ′) such that C is not complete to

K. Let N = A∪A′ and U = (V (H)∪X ∪ Y ∪Z ∪X ′ ∪ Y ′) \A′. We claim that (U,N,C) is

a quasi-homogeneous set decomposition of G.

Clearly, 1 < |U | < |V (G)|. Construct G′ from G|(N ∪ C) by adding a new vertex z that

is complete to C and anticomplete to N . First notice that any vertex in V (H) is complete

to C and anticomplete to N , and therefore G contains G′ as an induced subgraph. Next, it

follows from (i) and the definition of A′ that C is complete to U . This settles properties (i),

(ii), and (iv) of the quasi-homogeneous set decomposition.

To prove property (iii), let P1 be a perfect induced subgraph of G′ with z ∈ V (P1), let P2

be a perfect induced subgraph of G|Z, and let P = G|((V (P1) ∪ V (P2)) \ {z}). We need to

show that P is perfect. So suppose that P is not perfect. Since P is an induced subgraph of

G, it does not have an induced four-edge antipath or an induced five-edge path. It follows

that P contains an induced cycle F of length five. Let f1, f2, . . . , f5 be the vertices of F in

order. Let P ∗ be obtained from P by deleting all edges between U ∩V (P ) and N ∩V (P ). It

follows from Lemma 2.2 that P ∗ is perfect. Therefore, F is not an induced subgraph of P ∗.

It follows that some edge of F has one endpoint in U and one endpoint in N , say f1 ∈ U and

f2 ∈ N .

It follows from (ii) that A is anticomplete to U . Hence, because f1 and f2 are adjacent,

it follows that f2 ̸∈ A and therefore f2 ∈ A′. It follows from the definition of A′ that

f1 ̸∈ V (H) ∪ X ′ ∪ Y ′ ∪ Z and hence f1 ∈ X ∪ Y . Now let us consider f3. Since f3 is
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adjacent to f2, it follows that f3 ∈ X ∪ Y ∪ A′ ∪ C. If f3 ∈ A′, then f1-f2-f3 is an induced

path with f1 ∈ X ∪ Y and f2, f3 ∈ X ′ ∪ Y ′, contrary to (iii). Since f1 ∈ X ∪ Y , C is

complete to X ∪ Y , and f3 is nonadjacent to f1, it follows that f3 ̸∈ C, and therefore

f3 ∈ X ∪ Y . Now let us consider f4 and f5. If both f4 and f5 are in X ′ ∪ Y ′, then f3-f4-f5
is an induced path with f3 ∈ X ∪ Y and f4, f5 ∈ X ′ ∪ Y ′, contrary to (iii). Therefore, from

the symmetry, we may assume that f4 ̸∈ X ′∪Y ′. Since f4 is adjacent to f3, this implies that

f4 ∈ V (H)∪C ∪X ∪Y ∪Z. Since f4 is not adjacent to f1 and C is complete to f1, it follows

that f4 ̸∈ C. Therefore, (i) implies that f4 is complete to C. This proves that C is complete

to {f1, f3, f4}.
Let K ′ be the component of A′ that contains f2. We first claim that no vertex in X ∪ Y

has both a neighbor and a non-neighbor in K ′. For suppose otherwise. Then, there exist

x ∈ X ∪Y and adjacent k1, k2 ∈ K ′ such that x is adjacent to k1 and nonadjacent to k2. But

now f1-k1-k2 is an induced path that contradicts (iii).

Since f1 and f3 are adjacent to f2 ∈ K ′, it follows that f1 and f3 are complete to K ′. Next,

we claim that f4 is anticomplete to K ′. If f4 ∈ V (H) ∪ Z, then this follows from the fact

that V (H) ∪ Z is anticomplete to X ′ ∪ Y ′. If f4 ∈ X ∪ Y , then this follows from the above

and the fact that f4 is nonadjacent to f2 ∈ K ′. Thus, f4 is anticomplete to K ′.

Since K ′ is not complete to C by the definition of A′, we may choose f ′
2 ∈ K ′ and c ∈ C such

that f ′
2 is nonadjacent to c (perhaps by choosing f ′

2 = f2). It follows from the above that f ′
2

is adjacent to f1 and f3 and nonadjacent to f4. Therefore, f1-f
′
2-f3-f4 is an induced path. It

follows from the above that c is complete to {f1, f3, f4} and nonadjacent to f ′
2, contrary to

(3.1). This proves (iv). □

In view of (iv), we may from now on assume that no 6-gon with a center in G has a (y)-vertex.

(v) If Z ̸= ∅, then the lemma holds.

Suppose that Z ̸= ∅. From the symmetry, we may assume that there exists z ∈ Z such that

z is adjacent to h2 and h6. Let Z ′
1 be the set of vertices in Z that are adjacent to h2 and

h6 and let Z1 = Z ′
1 ∪ {h1}. It follows from the definition of Z1 that |Z1| ≥ 2. Let R be the

set of vertices in V (G) \ Z1 with a neighbor in Z1 and let S = V (G) \ (Z1 ∪ R). We claim

that (Z1, S,R) is a homogeneous set decomposition of G. For suppose not. Then there exist

v ∈ V (G) \ Z1 and x, y ∈ Z1 such that v is adjacent to x and nonadjacent to y. It follows

from the definition of Z1 that v ̸∈ V (H). Let H ′ = x-h2-h3- . . . -h6-x. It follows from (i) that

C is complete to Z1. Thus, H
′ has a center and, therefore, since no 6-gon with a center has

a (y)-vertex, H ′ has no (y)-vertex. It follows from (4.1) that v is either an (x)-vertex or a

(z)-vertex for H ′. It follows that v is nonadjacent to h4 and, since v ̸∈ Z1, v is adjacent to at

least one of h3, h5. From the symmetry, we may assume that v is adjacent to h3. It follows

from the fact that v is either an (x)-vertex or a (z)-vertex for H ′, that v is nonadjacent to

h6. Since y-h6-x-v-h3-h4 is not an induced five-edge path, it follows that x is adjacent to y.

If v is nonadjacent to h2, then x-h3-y-v-h2 is an induced four-edge antipath, a contradiction.

Thus, v is adjacent to h2 and hence v is a (z)-vertex for H ′, and v is nonadjacent to h5.

Now, the adjacency of v with respect to the 6-gon y-h2-h3- . . . -h6-y contradicts (4.1). This

24



proves that (Z1, R, S) is a homogeneous set decomposition, and hence a quasi-homogeneous

set decomposition, of G. This proves (v). □

In view of (v), we may from now on assume that Z = ∅. LetX1 andX2 be the vertices inX that are

complete to {h1, h3, h5} and {h2, h4, h6}, respectively. Now, ({h1, h3, h5}, {h2, h4, h6}, X1, X2, C,A∪
X ′ ∪X ′′) is a Σ-join. This proves (4.2). □

We are now in a position to prove Theorem 1.2:

Proof of Theorem 1.2. We prove the theorem by induction on |V (G)|. Let G ∈ Forb(P c
4 , P5).

Suppose first that G contains a 6-gon with a center. Then it follows from (4.2) that G admits

either a quasi-homogeneous set decomposition or a Σ-join. If G admits a quasi-homogeneous set

decomposition, then it follows from Lemma 2.3 and the induction hypothesis that G is 3-narrow.

Otherwise, G admits a Σ-join and it follows from Lemma 2.4 and the induction hypothesis that

G is 3-narrow. So we may assume that G contains no 6-gon with a center. Now let v ∈ V (G).

Clearly, G|N(v) does not have C6 as an induced subgraph. Therefore, G|N(v) ∈ Forb(P c
4 , P5, C6)

and hence, by Theorem 3.14, G|N(v) is 2-narrow. By the induction hypothesis, it follows that

G|M(v) is 3-narrow. Since this is true for every v ∈ V (G), it follows from Lemma 2.1 that G is

3-narrow. This proves Theorem 1.2. □
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[3] M. Chudnovsky and S. Safra. The Erdős–Hajnal Conjecture for Bull-Free Graphs. J. Comb.

Theory Ser. B, 98(6):1301–1310, 2008.
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