Bounding the Chromatic Number of Graphs that Do Not Contain an Induced Subdivision of the Bull

Irena Penev

Date Tuesday, April 20

Time 3 pm

Location 303 Mudd

Abstract A class \mathcal{G} of graphs is χ -bounded if there exists a function $f:\mathbb{N}\to\mathbb{N}$ such that for all $G\in\mathcal{G},\ \chi(G)\leq f(\omega(G))$. χ -bounded classes of graphs were introduced in 1987 by András Gyárfás as a generalization of the class of perfect graphs. Gyárfás conjectured that for any tree T, the class of graphs that do not contain T as an induced subgraph is χ -bounded. In 1997, Alex Scott proved a 'topological' version of this conjecture: for any tree T, the class of graphs that do not contain any subdivision of T as an induced subgraph is χ -bounded; he then conjectured that for every graph H, the class of graphs that do not contain any subdivision of H as an induced subgraph is χ -bounded. In this talk, we present two proofs of Scott's conjecture for the case when H is the bull (i.e. the 5-vertex graph that consists of a triangle and two pendant edges).

Joint work with Maria Chudnovsky, Alex Scott, and Nicolas Trotignon