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Abstract—Efficient operation of wireless networks and switches
requires using simple (and in some cases distributed) scheduling
algorithms. In general, simple greedy algorithms (known as
Greedy Maximal Scheduling - GMS) are guaranteed to achieve
only a fraction of the maximum possible throughput (e.g., 50%
throughput in switches). However, it was recently shown that in
networks in which the Local Pooling conditions are satisfied, GMS
achieves 100% throughput. Moreover, in networks in which the o-
Local Pooling conditions hold, GMS achieves 0% throughput. In
this paper, we focus on identifying the specific network topologies
that satisfy these conditions. In particular, we provide the first
characterization of all the network graphs in which Local Pooling
holds under primary interference constraints (in these networks
GMS achieves 100% throughput). This leads to a polynomial
time algorithm for identifying Local Pooling-satisfying graphs.
Moreover, by using similar graph theoretical methods, we show
that in all bipartite graphs (i.e., input-queued switches) of size up
to 7 x n, GMS is guaranteed to achieve 66% throughput, thereby
improving upon the previously known 50% lower bound. Finally,
we study the performance of GMS in interference graphs and
show that in certain specific topologies its performance is very
bad. Overall, the paper demonstrates that using graph theoretical
techniques can significantly contribute to our understanding of
greedy scheduling algorithms.

Index Terms—Local pooling, scheduling, throughput maxi-
mization, graph theory, wireless networks, switches.

I. INTRODUCTION

The effective operation of wireless and wireline networks
relies on the proper solution of the packet scheduling problem.
In wireless networks, the main challenge stems from the need
for a decentralized solution to a centralized problem. Even
when centralized processing is possible, as is the case in input-
queued switches, designing low complexity algorithms that
will enable efficient operation is a major challenge.

A centralized joint routing and scheduling policy that
achieves the maximum attainable throughput region was pre-
sented by Tassiulas and Ephremides [27]. That policy applies
to a multihop network with a stochastic packet arrival process
and is guaranteed to stabilize the network whenever the
arrival rates are within the stability region (i.e., it provides
100% throughput). The results of [27] have been extended
to various settings of wireless networks and input-queued
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switches (e.g., [1], [10], [23]). However, throughput-optimal
algorithms based on [27] require the repeated solution of a
global optimization problem, taking into account the queue
backlog information for every link. For example, even under
simple primary interference constraints', a maximum weight
matching problem has to be solved in every slot, requiring an
O(n?) algorithm.

Hence, there has been an increasing interest in simple
(potentially distributed) algorithms. One such algorithm is the
Greedy Maximal Scheduling (GMS) algorithm (also termed
Maximal Weight Scheduling or Longest Queue First - LQF).
This algorithm selects the set of served links greedily accord-
ing to the queue lengths [13], [21]. Namely, at each step, the
algorithm selects the heaviest link (i.e., with longest queue
size), and removes it and the links with which it interferes
from the list of candidate links. The algorithm terminates when
there are no more candidate links. Such an algorithm can be
implemented in a distributed manner [13], [18], [19].

It was shown that the GMS algorithm is guaranteed to
achieve 50% throughput in switches [8] and in general graphs
under primary interference constraints [21]. Moreover, it was
proved in [6] that under secondary interference constraints?
the throughput obtained by GMS may be significantly smaller
than the throughput under a centralized (optimal) scheduler
(e.g., 1/8 of the possible throughput).

Although in arbitrary topologies the worst case performance
of GMS can be very low, there are some topologies in
which 100% throughput is achieved. Particularly, Dimakis
and Walrand [9] presented sufficient conditions for GMS to
provide 100% throughput. These conditions are referred to as
Local Pooling (LoP) and are related to the structure of the
graph. Based on these conditions, it was shown that GMS
achieves maximum throughput in tree network graphs under
k-hop interference (for any k) [17], [30], in 2 x n switches
[5], and in a number of interference graph classes [30].

The LoP conditions were recently generalized to provide

'Primary interference constraints imply that each pair of simultaneously
active links must be separated by at least one hop (i.e., the set of active links
at any point of time constitutes a matching).

2Secondary interference constraints imply that each pair of simultaneously
active links must be separated by at least two hops (links). These constraints
are usually used to model IEEE 802.11 networks [6].



the o-Local Pooling (o-LoP) conditions under which GMS
achieves 0% throughput [16], [17] (the conditions were re-
formulated and refined in [20]). Using these conditions, lower
bounds on the guaranteed throughput in geometric graphs [17]
and in graphs under secondary interference constraints were
obtained [19]. Moreover, it was shown in [19] that GMS
achieves 100% in all graphs with up to 8 nodes under the
secondary interference constraints.

From a practical point of view, identifying graphs that
satisfy LoP and o-LoP can provide important building blocks
for partitioning a network (e.g., via channel allocation) into
subnetworks in which GMS performs well [5]. Another pos-
sible application is to add artificial interference constraints to
a graph that does not satisfy the LoP conditions in order to
turn it into a LoP-satisfying graph. Adding such constraints
may decrease the stability region but would enable GMS to
achieve a large portion of the new stability region.

While it is known that under primary interference some
graph families (mainly trees and 2 X n bipartite graphs) satisfy
LoP, the exact structure of networks that satisfy LoP was not
characterized. In this paper, we use graph theoretic methods
to obtain the structure of all the network graphs that satisfy
LoP under primary interference constraints (in these networks
GMS achieves 100% throughput). This allows us to develop an
algorithm that checks if a network graph satisfies LoP in O(n),
significantly improving over any other known method (the best
known method required solving an NP-Complete problem).
We note that although primary interference constraints may
not hold in many wireless networking technologies, the char-
acterization provides an important theoretical understanding
regarding the performance of simple greedy algorithms. It also
shows that the 2 x n switch is the largest switch for which
100% throughput is guaranteed.

We then focus on graphs in which GMS does not achieve
100% throughout. We first consider bipartite network graphs
(i.e., input-queued switches) and, in particular, show that for
bipartite graphs of size k x n, where k < 7 and n is not
bounded, GMS achieves at least 66% throughput. Namely, for
switches with up to 7 inputs or 7 outputs, the throughput under
GMS is lower bounded by 66%. This significantly improves
upon the well known 50% lower bound [8] and confirms
many simulation studies (e.g., [11]) in which it was shown
that greedy algorithms perform relatively well in switches. To
show that this result does not extend to all bipartite graphs,
we show that there exists a 10 x 10 bipartite graph for which
o = 0.6.

Finally, we consider interference graphs® and categorize dif-
ferent graph families according to their o values. In particular,
we show that all co-strongly perfect graphs satisfy LoP. This
class encapsulates all the classes of perfect LoP-satisfying
interference graphs that were identified before (i.e., interfer-
ence graphs of trees, chordal graphs, etc.). The observation

3 Although it has been recently shown that in some cases the interference
graph does not fully capture the wireless interference characteristics [24], it
still provides a reasonable abstraction. Extending the results to general SINR-
based constraints is a subject for further research.

increases the number of graphs known to satisfy LoP by an
order of magnitude. Regarding o-LoP we show that there are
graphs with arbitrarily low o. Since the worst case specific
graph identified up to now had o = 0.6 [16] and the lowest
lower bound known for a graph family was 1/6 [17], [19], this
provides an important insight regarding graphs in which GMS
may have bad performance. We conclude with describing a
simulation study in which we compared the performance of
GMS to the optimal algorithm in graphs with low o.

To conclude, the main contributions of this paper are two-
fold: (i) a characterization of all network graphs in which
Local Pooling holds under primary interference constraints (in
these network graphs Greedy Maximal Scheduling is guaran-
teed to achieve 100% throughput) and (ii) improved lower
bounds on the throughput performance of Greedy Maximal
Scheduling in small switches. Overall, the paper demonstrates
that using graph theoretical techniques can significantly con-
tribute to our understanding of greedy scheduling algorithms.

This paper is organized as follows. In Section II we present
the model. We characterize all graphs that satisfy LoP under
primary interference constraints in Section III. In Section IV
we show that GMS achieves 66% throughput in switches
with up to 7 inputs. We study the performance of GMS in
interference graphs in Section V and we conclude and discuss
open problems in Section VI. Due to space constraints, some
of the proofs are omitted and can be found in [2].

II. MODEL AND DEFINITIONS

In this section we first present definitions of our network
model under primary interference, and then extend them for
general interference graphs.

A. Network Graphs

Consider a network graph G = (V,E), where V =
{1,...,n} is the set of nodes, and E C {ij :4,j € V,i # j}
is a set of links indicating pairs of nodes between which data
flow can occur.

Following the model of [5], [9], [16], [27], assume that
time is slotted and that packets are of equal size, each packet
requiring one time slot of service across a link. The model
considers only single-hop traffic. A queue is associated with
each edge in the network. We assume that the stochastic
arrivals to edge 7j have long term rates \;; and are independent
of each other. We denote by X the vector of the arrival rates
Ai; for every edge ij. For more details regarding the queue
evolution process under this model, see [5], [9], [16].

For a graph G, let M(G) be a 0-1 matrix with |E(G)| rows,
whose columns represent the maximal matchings of G. A
scheduling algorithm selects a set of edges to activate at each
time slot, and transmits packets on those edges. Since they
must not interfere under primary interference constraints, the
selected edges form a matching. In other words, the scheduling
algorithm picks a column 7r(¢) from the maximal matching
matrix M(G) at every time slot ¢. If 71, (¢) = 1, one of the two
nodes along edge e can transmit, and the associated queue is



decreased by one. We define the stability region (or capacity
region) of a network as follows.

Definition 2.1 (Stability region [27]): The stability region
of a network G is defined by

A" = {X IX <@ for some @ € Co(M(Q)), },

where Co(M(G)) is the convex hull of the columns of
M(QG) (inequality operators are taken element-wise when their
operands are vectors).

A stable scheduling algorithm (which we also refer to as
a throughput-optimal algorithm or an algorithm that achieves
100% throughput) is defined as an algorithm for which the
Markov chain that represents the evolution of the queues is
positive recurrent for all arrivals X € A*. It was shown in
[27] that the Maximum Weight Matching algorithm that selects
the matching with the largest total queue sizes at each slot is
stable. The efficiency ratio v* of an algorithm indicates the
fraction of the stability region for which the algorithm is stable
(in simple words, the queues are bounded for all arrival rates
A€ y*AY).

We briefly reproduce the definitions of Local Pooling (LoP)
presented in [5], [9].* In the following, e denotes the vector
having each entry equal to one.

Definition 2.2 (Subgraph Local Pooling - SLoP): A net-
work graph G satisfies SLoP, if there exists o € |0, 1]‘E | such
that &TM(G) = eT.

This definition corresponds also to associating a weight,
denoted a(e), to all edges e € E, such that

Z a(e) =1 for every maximal matching Z in G.
e€”Z

If a vector av satisfies the above condition, we will say that it
is a good edge weighting.

Definition 2.3 (Overall Local Pooling - OLoP): A
network graph G satisfies OLoP, if every subgraph S
of G satisfies SLoP.

In [9], Dimakis and Walrand proved that if a graph satisfies
OLoP, GMS achieves 100% throughput. In networks in which
OLoP is not satisfied, o-Local Pooling [16], [17] provides a
way of estimating the efficiency ratio v* of GMS. Below, we
provide a different definition called o-SLoP that is equivalent
to the original one from [16], [17].

Definition 2.4 (0-SLoP - Xi et. al. [20]): A network
graph G satisfies o-SLoP, if and only if there exists a vector
a € [0, 1] such that

cel < aTM(G) <el.
This definition can also be written in the following form:

o< Z a(e) <1 for every maximal matching Z in G.
ee”Z

Clearly, if a graph satisfies o-SLoP, it also satisfies ¢’-SLoP
for every ¢’ < o. Therefore, it is sufficient to focus on the

4This definition slightly differs from that in [5] by setting the sum equal
to e instead of ceT, where c is a positive constant.

largest value of o such that G satisfies o-SLoP. This value is
denoted by o(G):

o(G) := max {o | G satisfies -SLoP} . (1)

This definition can also be written as a Linear Program whose
solution yields the o(G) for a given graph G [20].

(@) =

max o 2
subject to oe’ < a’M(G) < e’.

We say that a graph satisfies 0-OLoP if all of its subgraphs
satisfy o-SLoP. We can then define the local pooling factor
o* as follows:

Definition 2.5 (Joo et. al. [16]): The local pooling factor
o*(G) of a network graph G is the smallest value of o for
which o-SLoP is satisfied for all subgraphs.

This definition can also be written in terms of o(G):

0*(G) := min{c(S) | for all subgraphs S of G}. (3)

It was proved in [16] that the local pooling factor o* of
a graph is equal to the efficiency ratio v* of GMS in that
graph. For instance, if a graph has a local-pooling factor of
2/3, GMS is stable for all arrival rates Xe 2A* and therefore
achieves 66% throughput. Note that 0*(G) = 1, if and only
if G satisfies the OLoP condition.

In the following, we use the above definitions to present a
non-trivial lower-bound on ¢(G) [19]. Define

v(G) = max{|Z| : Z is a maximal matching in G},

#(G) =min{|Z| : Z is a maximal matching in G}.
Lemma 2.1 (Leconte et al. [19]): For any graph G,
o(G) =2 u(G)/v(G).

Using Definition 2.4, we provide an alternative proof to this
lemma in [2].

To demonstrate the benefits of the o-OLoP definition, we
provide a very simple proof to the fact that GMS achieves
50% throughput in any network graph G (shown in different
methods in [8], [21]). First, note that the size of any maximal
matching is at least half the size of a maximum matching [25],
which means that ;1(G) > v(G)/2, for all G. By Lemma 2.1
and (3), it follows that o*(G) > 1/2 for every graph G, and
therefore, that v* > 1/2.

B. Interference Graphs

We now generalize the model by introducing interference
graphs. Based on the network graph and the interference
constraints, the interference between network links can be
modeled by an inferference graph (or a conflict graph)
G; = (Vi, Ey) [15]. We assign V; = E. Thus, each edge
er in the network graph is represented by a node v; in
the interference graph, and an edge v;v; in the interference
graph indicates a conflict between network graph links e;
and e; (i.e., transmissions on e; and e; cannot take place
simultaneously). Under primary interference, the interference
graph Gj corresponds to the line graph of G . When network
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(a) Dg’7 (b) Dg’E’ (c) Petersen graph

Fig. 1.  Graphs (a) and (b): examples of graphs from the family Dz’q,
all of which fail OLoP under primary interference. Graph (c): the Petersen
graph. This graph does ot satisfy OLoP [16] because it contains, among
other graphs, Cs and Di”5 (bold edges) as subgraphs.

and interference graphs are used concurrently, we will use G
for the former in order to emphasize their distinction.

The model and the LoP theory described so far extend to
interference graphs. The nodes of G correspond to queues
to which packets arrive according to a stochastic process at
every time slot. A scheduling algorithm must pick an inde-
pendent set at each slot so that neighboring nodes will not be
activated simultaneously. Each column of the matrix M(Gy)
corresponds to a maximal independent set of G ;. An algorithm
which selects the independent set with the largest weights (i.e.,
solves the Maximum Weight Independent Set) is stable. SLoP
corresponds to finding a vector o € [0,1]!V! that assigns a
weight a(u) to each node u such that 7 _; c(u) = 1 for
every maximal independent set I in G;. If such a vector exists,
we will call it a good node weighting. For OLoP to be satisfied,
SLoP must be satisfied by all induced subgraphs (i.e., with
respect to node removals). o-SLoP, 0-OLoP and Lemma 2.1
extend to this case in a very similar way.

III. NETWORK GRAPHS THAT SATISFY OLOP UNDER
PRIMARY INTERFERENCE

Only a small collection of network graphs have been shown
to satisfy OLoP under primary interference. Among the known
cases are trees [5], [17], and 2 x n bipartite graphs [5]. The
main result of this section is a description of the structure of all
network graphs that satisfy OLoP under primary interference.
This structure shows that such graphs are relatively easy to
construct and, moreover, they can be recognized in linear time.

Define the following families of graphs. For k£ > 3, let
Cj be a cycle with k edges (or, equivalently, k£ nodes). For
k > 0 and p,q € {5,7}, let D;"? be the graph formed by
the union of two cycles of size p and ¢ joined by a k-edge
path (where k& > 0). If £ = 0, the cycles share a common
node (see Fig. 1-(a) and 1-(b)). Let F = {C} ‘ k>6k+#
7} U{D}? | k > 0;p,q € {5,7}}. For two graphs G and H,
we say that G contains H as a subgraph if G has a subgraph
that is isomorphic to H. We will say that a graph G is F-free
if it does not contain any graph F' € F as a subgraph.

The results in this section are three-fold. First, in Subsection
III-B, we will give a structural description of all F-free graphs.
Second, in Subsection III-C, we will use this description to
prove the following theorem:

Theorem 3.1: A network graph G satisfies OLoP under
primary interference if and only if G is F-free.

Theorem 3.1 shows that if a network graph G does not
satisfy OLoP under primary interference, then G contains

some F' € F as a subgraph. For example, it was previously
known that the Petersen graph (Fig. 1-(c)) fails OLoP [16].
Using Theorem 3.1 we can immediately see this from the fact
that it contains, for example, Cg and Df’5 as a subgraph.
Testing whether a network graph satisfies SLoP previously
required enumerating all maximal matchings (of which there
are an exponential number) and solving a Linear Program [9].
To test the OLoP condition, this procedure had to be repeated
for every subgraph. A weakness of that approach is that it does
not give any insight into the reason why a network fails OLoP.
Theorem 3.1 allows us to determine whether a given graph
satisfies OLoP by solely examining its structural properties.
Another weakness of the Linear Programming approach is
its large computational effort. In Subsection III-D, we present
the third result, which uses the structure of F-free graphs to
construct an algorithm that decides in linear time whether a
graph satisfies OLoP, as described in the following theorem:
Theorem 3.2: It can be decided in O(]V(G)]|) time whether
a network graph G satisfies OLoP under primary interference.

A. Definitions and notation

We will need some definitions, notation and facts from
graph theory. For details, we refer to [12], [28].

Let G be a graph. For v € V(G), we will write N(v) for
the set of all nodes in V(G) that are incident with v. Let
deg(v) = |N(v)| denote the degree of v. For x,y € V(G),
we say that x is a clone of y if N(z) = N(y). For z € V(QG),
we denote by G — x the graph obtained from G by deleting
x and all edges incident with it.

We say that G is connected if there exists a path in G
between every two distinct nodes u and v. A connected
component of G is a maximal connected induced subgraph of
G. We will focus on connected graphs, because it is easy to
see that a graph satisfies OLoP if and only if all its connected
components satisfy OLoP. So we may assume without loss of
generality that all graphs in this section are connected graphs.

Finally, for n > 1, we let K,, denote the complete graph
on n nodes. For n > 1,t > 1, we let K, denote the t x n
complete bipartite graph.

B. The structure of F-free graphs

We will start with a structural description of F-free graphs.
The reason for our interest in F-free graphs is the fact (which
will be shown in Subsection III-C) that the class of F-free
graphs is precisely the class of network graphs that satisfy
OLoP under primary interference.

We will describe the structure of F-free graphs in terms
of the so-called ‘block decomposition’. Let G be a connected
graph. We call z € V(G) a cut-node of G if G — is not con-
nected. We call a maximal connected induced subgraph B of G
such that B has no cut-node a block of G. Let By, Ba, ..., B,
be the blocks of G. We call the collection {B1, Bs, ..., By}
the block decomposition of G. It is known that the block
decomposion is unique and that E(B;), E(Bs),...,E(By)
forms a partition of F(G) (e.g., [28]). Furthermore, the node



sets of every two blocks intersect in at most one node and this
node is a cut-node of G.

Block decompositions give a tree-like decomposition of a
graph in the following sense. Construct the block-cutpoint
graph of G by keeping the cut-nodes of G and replacing each
block B; of G by a node b;. Make each cut-node v adjacent
to b; if and only if v € V(B;). It is known that the block-
cutpoint graph of G forms a tree (e.g., [28]). With this tree-like
structure in mind, we say that a block B; is a leaf block if it
contains at most one cut-node of G. Clearly, if ¢ > 2, then
{B;}{_, contains at least two leaf blocks.

It turns out that the block decomposition of an F-free graph
is relatively simple in the sense that there are only two types
of blocks. The types are defined by the following two families
of graphs. Examples of these families appear in Fig. 2.

B1: Construct B as follows. Let H be a graph with V(H) =
{Cl, Coyen vy Ck}, with k € {5, 7}, such that

1) c1-co----- ci-c1 is a cycle;

2) if k = 5, then the other adjacencies are arbitrary; if
k = 7, then all other pairs are non-adjacent, except
possibly {c1,cs}, {c1,¢5} and {cq, c7}.

Then, H € B;.

Now iteratively perform the following operation. Let
H' € By and let © € V(H') with deg(z) = 2.
Construct H” from H’ by adding a node z’ such that
N(2') = N(x). Then, H"” € B;. We say that a graph is
of the B type if it is isomorphic to a graph in Bj.

BQZ Let BQ = {KQ,Kg,K4} @] {KZ,tyK;t | t Z 2}, where
K ; ; 1s constructed from K5 ; by addiﬁg an edge between
the two nodes on the side that has cardinality 2. We say
that a graph is of the By type, if it is isomorphic to a
graph in Bs.

In plain English, graphs of the B3; type are constructed by
starting with a cycle of length five or seven. Then we may add
some additional edges between nodes of the cycle, subject to
some constraints. Finally, we may iteratively take a node = of
degree 2 and add a clone z’ of . It will turn out that F-free
graphs have at most one block of the B type, and all other
blocks are of the By type. This means that F-free graphs can
be constructed by starting with a block that is either of the B,
or of the By type, and then iteratively adding a block of the
B, type by ‘glueing’ it on an arbitrary node.

Fig. 2 shows an example of an F-free graph. The tree-like
structure is clearly visible. The graph has one block of the
By type with k = 7. Clearly, this block consists of a cycle of
length 7 together with two clones. The other blocks are of the
B, type. Some of them are attached to the block of the 3; type
through a cut-node, others are attached to other blocks of the
B; type. Notice that trees and 2 x n complete bipartite graphs,
which were previously known to satisfy OLoP [5], [17], are,
as should be expected, subsumed by this structure.

The goal of this subsection is to prove the following formal
version of the characterization given above:

Theorem 3.3: Let G be a connected graph and let
{B1,Ba,...,B,} be the block decomposition of G. Then G

Block of the B; type

Fig. 2. An example of an F-free graph (the dashed edges may or may not
be present). The ellipses show the blocks of the graph.

is F-free if and only if there is at most one block that is of
the BB; type and all other blocks are of the Bj type.

The proof of the ‘if” direction is straightforward. Here, we
will give a proof sketch of the ‘only-if” direction in a number
of steps. For a block B in an F-free graph, its type depends
on the size of the longest cycle in B. It will turn out that if
B contains a cycle of length 5 or 7, then B is of the 5; type.
Otherwise, B is of the B2 type. We have the following result
on blocks that have a cycle of length five or seven. The proof
can be found in [2].

Lemma 3.1: Let G be an F-free graph and let B be a block
of G. Let F be a cycle in B that has maximum length. If
|[V(F)| > 5, then B is of the B; type.

Next, we deal with blocks that do not contain a cycle of
length 5 or 7. It follows from the definition of F-free graphs
that such blocks do not have cycles of length at least 5.
Maffray [22] proved the following theorem:

Theorem 3.1 (Maffray [22]): Let G be a graph. Then the
following statements are equivalent:

(1) G does not contain any odd cycle of length at least 5.
(2) For every connected subgraph G’ of G, either G’ is
isomorphic to Ky, or G’ is a bipartite graph, or G’ is
isomorphic to K;f , for some ¢ > 1, or G’ has a cut-node.
Theorem 3.1 implies the following lemma, the proof of which
can be found in [2].

Lemma 3.2: Let G be an F-free graph and let B be a block
of GG. Suppose that B contains no cycle of length at least 5.
Then B is of the B5 type.

We are now ready to prove Theorem 3.3:

Proof of Theorem 3.3: Let G be an F-free graph and
let {By,Bs, ..., B} be the block decomposition of G. For
every i € {1,2,...,m}, if B; contains a cycle of length 5
or 7, it follows from Lemma 3.1 that B; is of the B; type.
Otherwise, it follows from from Lemma 3.2 that B; is of the
B> type. Now suppose that there are ¢ # j and p,q € {5,7}
such that B; contains a cycle T of length p and B; contains
a cycle 75 of length ¢. Since G is connected, there exists a
path P of length £ > 0 from a node in 73 to a node in T5.
Since T3 and 75 are subgraphs of different blocks, 77 and 15



share at most one node. If they share a node, then £ = 0.
Now the edges of T3, T5, P form a graph isomorphic to D},
a contradiction. This proves Theorem 3.3. ]

C. Network graphs satisfy OLoP under primary interference
if and only if they are F-free

Now that we have described the structure of all F-free
graphs, we use this structure to prove Theorem 3.1 which
states that a network graph satisfies OLoP under primary
interference if and only if it is F-free. It was shown in [5]
(Theorems 2 and 3) that all cycles of length k£ > 6, k # 7 fail
SLoP. 3 Therefore, such cycles do not appear as subgraphs in
graphs that satisfy OLoP. The following lemma shows that the
same is true for the graphs DY, Its proof is in [2].

Lemma 3.3: D{? fails SLoP for all p,q € {5,7}, k > 0.

The results from [5] together with Lemma 3.3 imply the
following result:

Corollary 3.1: Graphs that satisfy OLoP are F-free.

Proof: Let G be a graph that satisfies OLoP. By the
definition of OLoP, every subgraph H of G satisfies SLoP.
Since every graph in F fails SLoP, it follows that G does not
contain any graph in F as a subgraph. ]

Corollary 3.1 settles the ‘only-if” direction of Theorem 3.1.
To prove the ‘if” direction, we will start with a useful lemma.
We will give the idea of the proof, the full proof is in [2].

Lemma 3.4: Let G be a graph and z, 2’ € V(G) such that
deg(x) = 2 and 2’ is a clone of x. Then G satisfies SLoP.

Proof idea: Let {z1,22} = N(z). Define o € [0, 1]
by letting a(e) = 1/2 if e is incident with z; or z5, and
€ # 2129, a(z120) = 1 if 2129 € E(G), and a(e) = 0 for all
other edges e. Now every maximal matching uses either two
edges e, ea with a(er) = a(ez) = 1/2, or edge z1 2. [ |

The following lemma is the crucial step in settling the ‘only-
if” direction of Theorem 3.1. Again, we will give the idea of
the proof, the full proof is in [2].

Lemma 3.5: Every connected F-free satisfies SLoP.

Proof idea: Let G be a connected F-free graph and let
{B1, By, ..., By} be the block decomposition of G. It follows
from Theorem 3.3 that there is at most one block B; that is
of the B; type, and all other blocks are of the B2 type. We
will construct a good edge weighting « for G.

Suppose first that G has a leaf block B; of the By type. If
g = 2, then let « be the cut-node of G in V(B;). If ¢ =1, let
x € V(B;) be arbitrary. There are four cases:

(1) B; is isomorphic to Ks: let , v denote the nodes of B;.
Let ae(e) = 1 for all edges incident with 2 and a(e) = 0 for
every other edge e.

(2) B; is isomorphic to K3: let a(e) = 1 for all e € E(B;)
and a(e) = 0 for every other edge e.

(3) B; is isomorphic to Ky: let x, vy, va, v3 denote the nodes
of B; and let a(viv2) = a(v1v3) = a(vavs) = 1 and ax(e) =
0 for all e € (E(G) \ {v1va,v1v3,v2v3}).

||

5Although the case considered in the reference pertains to interference
graphs, the network case is identical since the interference graph (under
primary interference) of a cycle is a cycle of the same length.

(4) B; is isomorphic to Ky ; or K;ft for some ¢t > 2: let
V(B;) = V1 UV, such that |V;| = 2 and V3 is an independent
set. Let Vi1 = {y1,92} and let Vo = {21, 29,...,2:}. If B; is
isomorphic to Kj 5 and = € Vs, then assume that z = 2z
and set a(y122) = a(yaze) = a(y1y2) = 1. Otherwise, B;
contains nodes p, p’ such that deg(p) = deg(p’) = 2 and p’ is
a clone of p, and hence the result follows from Lemma 3.4.

Thus, we may assume that G does not have a leaf block of
the B type. Since if ¢ > 2, G has at least two leaf blocks, and
hence at least one leaf block of the Bs type, we may assume
that ¢ = 1 and G = Bj is of the B; type. Let H, k be as in
the definition of ;. It follows from the definition of H that
|V(H)| = k. First suppose that V(G) \ V(H) # 0. Then it
follows from the definition of B; that there exist two nodes
x, 2" such that deg(xz) = deg(2’) = 2 and 2’ is a clone of .
It follows from Lemma 3.4 that G satisfies SLoP. So we may
assume that V(G) = V(H). If k = 5, then every maximal
matching has size two and hence we may set a(e) = 1/2 for
all e € E(G). If k = 7, then every maximal matching has size
three and hence we may set a(e) = 1/3 for all e € E(G).
This proves Theorem 3.1. [ ]

We are now in a position to prove Theorem 3.1:

Proof of Theorem 3.1: Corollary 3.1 is the ‘only-if” part
of the theorem. For the ‘if’ part, since every subgraph of G
is F-free, it follows from Lemma 3.5 that every subgraph of
G satisfies SLoP. Therefore, GG satisfies OLoP. |

D. Recognizing network graphs that satisfy OLoP under pri-
mary interference

Having described the structure of graphs that satisfy OLoP,
we provide an efficient algorithm for testing whether a given
network graph satisfies OLoP under primary interference. A
useful observation is the following (see [2] for the proof).

Lemma 3.6: |E(G)| < 2|V(G)| for every F-free graph G.

This puts us in a position to prove Theorem 3.2. Again, we
will give a proof idea, the details can be found in [2].

Proof idea of Theorem 3.2: We may assume that G is
connected. By Theorem 3.1 and Theorem 3.3, it suffices to
check whether G admits the structure described in Theorem
3.3. We propose the following algorithm. Let n = |V (G)| and
m = |E(G)|. First we check that m < 2n, because otherwise
G is not F-free by Lemma 3.6 and we stop immediately.
Now, construct the block decomposition {Bi, Ba, ..., B,} of
G. Since m < 2n, this can be done in O(n +m) = O(n)
time (see e.g. [12]). For each block B;, we test in O(|V(B;)])
time whether B; is of the Bs type. If G has more than one
block that is not of the B; type, then G is not F-free and we
stop. If we encounter no such block, then G is F-free and
we stop. Next, we check whether B* is of the B; type using
multiple applications of Bodlaender’s algorithm [3] which, for
fixed k, finds a cycle of length at least k£ in a given graph H,
if it exists, in O(k!2¥|V (H)|) time. Checking this can be done
in O(|V(B)|) time. Therefore, the overall complexity of the
algorithm is O(n). [ |



Fig. 3. The Desargues graph D. It satisfies o(D) = 0.6 and it is a subgraph
of KlO,lO, showing that o* (K10,10) <0.6.

IV. t X n SWITCHES WITH ¢t < 7 SATISFY 0* > 2/3

In the previous section, we characterized the full set of
graphs that satisfy OLoP. It is only natural to ask the question:
what happens to graphs that do not satisfy OLoP? In this
section, we will show that every bipartite graph G that has
one side with at most 7 nodes satisfies o*(G) > 2/3.

This result will enable us to prove that every complete
bipartite graph G with at least three nodes on each side, and
one side with at most seven nodes, satisfies o*(G) = 2/3 (i.e.,
0*(K¢pn) =2/3 for 3 <t <7,n>3). This is close to best
possible in a sense. Consider the so-called Desargues graph D
in Fig. 3. D is a graph on 20 nodes with 30 edges. By solving
the Linear Program (2) corresponding to that graph, we find
that o(D) = g Since D is a subgraph of Kig 10, this implies
that o* (K¢ ,) < 2 for all ¢ > 10,n > 10.

So let us concentrate on subgraphs of K; , witht < 7,n >
1. We will start with some easy observations that help give a
lower bound on o(G).

Lemma 4.1: Let G be a graph.

(a) If there exists v € V/(G) such that every maximal

matching in G covers v, then o(G) = 1.

(b) If deg(v) =1 for some v € V(G), then o(G) = 1.
(c) If deg(v) = 2 for some v € V(G), then o(G) > 2/3.

Proof: Part (a): let a(e) = 1 for all edges incident with
v and a(e) = 0 for all other edges. Clearly, every maximal
matching Z satisfies ) __, a(e) = 1. This proves (a). Part
(b) follows immediately because if deg(v) = 1, then every
maximal matching covers the unique neighbor u of v. Part
(c): let a, b be the neighbors of v. Let at(av) = a(bv) = 2/3,
a(ab) = 1 if ab € E(G), a(e) = 1/3 for all edges e ¢
{ab,bv, av} that are incident with a or b, and a(e) = 0 for
all other edges. It is not hard to see that ) __, a(e) > 2/3
for every maximal matching Z in G. This proves (c), thus
proving Lemma 4.1. u

By using the conditions given in Lemma 4.1 and Lemma
2.1, we are able to prove the following lemma, the proof of
which is in [2].

Lemma 4.2: Let G be a bipartite graph with u(G) < 4.
Then o(G) > 2/3.

Lemma 4.2 has the following corollaries:

Corollary 4.1: Every bipartite graph G with v(G) < 7
satisfies 0*(G) > 2/3.

Proof: Let H be a subgraph of G (perhaps H = G).
Clearly, v(H) < v(G) < 7. If p(H) < 4, then it follows
from Lemma 4.2 that o(H) > 2/3. Otherwise, p(H) > 5 and
hence it follows from Lemma 2.1 that o(H) > 5/7 > 2/3.
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Fig. 4. Throughput guarantees (lower bounds on ¢*) for various graph

families: ECyc - cycles C), with n even and n > 6, OCyc - cycles C), with
n odd and n > 9, LBip - line graphs of bipartite graphs, MK - Mobius-Kantor
graph, Sub6 - graphs obtained by cycle substitution.

Therefore, o(H) > 2/3 for all subgraphs H of G. It follows
that o*(G) > 2/3. This proves Lemma 4.2. [ |
It is already known that o* (K, ,) = 1 for t € {1,2}. For
3 <t <7, we obtain:
Corollary 4.2: 0*(Ky ) =2/3 forall 3<t¢<7,n>3.
Proof: Let 3 <t <7, n > 3. It follows from Corollary
4.1 that o*(K,,) > 2/3. Since K, contains Cs as a
subgraph and ¢(Cg) = 2/3, it follows that o*(K, ) = 2/3.
This proves Lemma 4.2 [ ]

V. INTERFERENCE GRAPHS AND THEIR ¢* VALUES

Our focus so far has been on network graphs and primary
interference constraints. We now consider general interference
graphs that represent various transmission constraints [15].
The results of this section are summarized in Fig. 4 which
illustrates throughput guarantees of several graph families.

Under general interference constraints, a scheduling algo-
rithm has to select an independent set from the interference
graph at each slot. An algorithm that solves the Maximum
Weight Independent Set problem at every slot is stable [27].
Since this is an NP-complete problem, we are interested in
the low-complexity GMS algorithm which greedily picks the
nodes with the largest weight (this algorithm is also referred
to as the Maximal Weighted Independent Set algorithm).

In the following, we denote by 7(G) and fi(G) the sizes
of a maximum independent set (independence number) and a
minimum maximal independent set, respectively.

A. OLoP-satisfying Interference Graphs

We first show that the OLoP condition holds in a large
subclass of perfect graphs which we will call co-strongly
perfect graphs. A graph G is strongly perfect if every induced
subgraph H of GG contains an independent set that intersects
every maximal clique in H. We will say that a graph G is co-
strongly perfect if and only if the complement of G is strongly
perfect. The definition of strongly perfectness implies that a
graph G is co-strongly perfect if every induced subgraph H of
G contains a clique that intersects every maximal independent
set of H. An equivalent, and for our purposes more useful
definition, is the following.



Definition 5.1 (Co-strongly perfect graph): A graph G is
co-strongly perfect if for every induced subgraph H of G there
exists o = a(H) € {0, 1}V such that a”M(H) = e

It follows from this definition, and from the interference
graph counterparts of Definitions 2.2 and 2.3 that every graph
that is co-strongly perfect satisfies OLoP. Note from the above
weighting that co-strongly perfect graphs satisfy OLoP with
an integer vector cx. An open question is whether all perfect
graphs that satisfy OLoP do so with integer weights ac.. This is
not true for imperfect graphs, because Cj is an imperfect graph
that satisfies OLoP, but the unique optimal solution to the
Linear Program (2) satisfies a(v) = 1/2 for all v € V(C5).

It is an open problem as to whether all OLoP-satisfying
perfect graphs are co-strongly perfect. Therefore in Fig. 4, co-
strongly perfect graphs appear in a dashed circle that almost
covers the entire OLoP-satisfying perfect graph region.

The co-strongly perfect class includes a very large number
of perfect graph families (some of them were identified indi-
vidually in [4]). To provide some context about the magnitude
of this result, consider the set of simple graphs with 10 nodes.
There are 3,063,185 such co-strongly perfect graphs. This can
be compared to the 126,768 chordal graphs with 10 nodes (the
chordal graphs family is one of the largest previously known
families satisfying OLoP) and to the 106 trees.

The family of weakly chordal graphs that was left un-
resolved in [30] is now known not to be entirely OLoP-
satisfying, as we have a counter-example that is weakly
chordal, but not co-strongly perfect (Fig. 42 in [14]).

B. o*-value for Various Graphs

We now examine the o* values of interference graphs that
fail OLoP. The contour lines in Fig. 4 indicate a lower bound
on the o* values of the families that are included in them.
For instance, the results on bipartite network graphs from
Section IV are shown in the figure as the LBip classes (line
graphs of bipartite graphs). Line graphs of subgraphs of K; ,
with ¢ < 7 have o* > 2/3, while there exist line graphs of
subgraphs of K, ,, with t,n > 9 and ¢* < 2/3. We proved in
Section II that o*(G) >= 1/2 for every line graph G.

The graphs that appear in this subsection are all symmetric.
For symmetric graphs, Lemma 2.1 has the following stronger
counterpart (the proof of a stronger version is in [2]):

Lemma 5.1: o(G) = % for every symmetric graph G.

Cycles: The throughput efficiency of the 6-cycle has been
examined in [9], [16]. It has also been shown that large
cycles (n > 8) fail OLoP [30]. The following lemma provides
the o* of cycles, thereby establishing a lower bound on the
throughput efficiency of all cycles.

Lemma 5.2: For n > 3, 0*(C,) = [n/3]/[n/2].

Proof: Let n > 3. Since every proper induced subgraph
of C,, is a forest, we have o(H) = 1 for every proper induced
subgraph H of G. Now consider C,, itself. A maximum
independent set in C, can be constructed by choosing nodes
alternatingly on the cycle. This implies that 7(G) = |n/2].
A smallest maximal independent set can be constructed by
choosing nodes skipping two nodes at a time. This implies

(a) (b)

Fig. 5. Graphs that have low o* values: (a) Mdbius-Kantor graph (b) Cg
substituted for every node of Cg.

that (G) = [n/3]. Since C,, is symmetric, it follows from
Lemma 5.1 that o(G) = [n/3]/|n/2]. From this and the
above, the result follows from the definition of o*(G). |

To the best of our knowledge, this is the first time an entire
family’s throughput has been characterized this precisely. This
result is shown in Fig. 4 as the classes OCyc and ECyc for
odd and even cycles, respectively. Since [n/3]/[n/2] > 2/3
for all n > 3, Lemma 5.2 has the following corollary.

Corollary 5.1: The efficiency ratio of all cycles is v* > 2/3.

Low ¢* values: The current knowledge of o* values is
limited to a handful graphs in which GMS achieves a large
portion of the stability region. The lowest o*-value of a
specific graph (the Petersen graph, Fig. 1-(c)) is o* = 0.6 [16].
In [17], it was shown that there exists geometric graphs for
which ¢* < 1/3. We now present a specific graph in which
o* is very low, as obtained by the Linear Progam (2). We
also provide a method through which it is possible to create
networks with arbitrarily low ¢* values.

Consider the graph shown in Fig. 5-(a). It is a generalised
Petersen graph with factors GP(8,3), also known as the
Mobius-Kantor graph. Despite its relatively small size of 16
nodes, we showed by solving (2) that * = 0.5. Hence, GMS
can only guarantee 50% throughput.® Being a bipartite graph,
the M&bius-Kantor allows us to assert that bipartite graphs can
have o* values as low as 0.5, as illustrated in Fig. 4. Whether
bipartite graphs can have o* < 0.5 is still an open question.

Now consider the following family. Let F; be a 6-cycle
and, for k > 2, construct F}, from Fj_; by substituting a 6-
cycle for each node v € V(Fy). Here by substituting Cg for
a node zx of the original graph, we mean that we replace = by
a 6-cycle H and we make every v € V(H) adjacent to every
neighbor of x. For example, F5 is shown in Fig. 5-(b), (where
the hexagons represent 6-gons). Using Lemma 5.1 and the fact
that the F} are symmetric, we can prove the following:

Observation 5.1: o*(Fy) < (2)" for all k > 1.

Since we may choose k arbitrarily large, it follows that there
exist graphs with arbitrarily small c*. A graph generated by
this method appears in Fig. 4 as Subé6.

C. Simulation results

When GMS guarantees only low throughput efficiency v*,
there may exist a specific arrival rate outside of v*A* for
which GMS is not stable. In real-life arrival processes, it
is sometimes unlikely that such an arrival process would

%Note that since this graph contains a claw (i.e., a complete bipartite graph
K1,3), it cannot be the interference graph of any network under primary
interference constraints.
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the optimal algorithm. The results obtained via simulation in a 12-cycle and
a Mobius-Kantor graph.

occur. Hence GMS may behave better than predicted. We used
Matlab simulations in order to evaluate the performance of
GMS in graphs with low o* identified in Section V-B.

We consider i.i.d uniform arrivals to every node at each time
slot for a range of normalized loads within the stability region.
We tested the GMS and the stable algorithm that solves the
Maximum Weight Independent Set problem’. For each arrival
rate, the simulation was run for 10,000 iterations. For each
graph and arrival rate value, the average queue occupancies
appear in Fig. 6. The cycle C15 has o* = 2/3. In the figure, we
see that in a cycle, the queues under GMS become unstable at
around load level of 0.85. Although the Mdbius-Kantor graph
has a 0* = 1/2, GMS performs similarly.

VI. CONCLUSION

The Local Pooling (LoP) conditions provide a new tool
for better understanding the performance of Greedy Maximal
Scheduling (GMS) algorithms. In this paper, we identified
all the network graphs in which these conditions hold under
primary interference constraints (in these graphs Greedy Max-
imal Scheduling achieves 100% throughput). In addition, we
showed that in all bipartite graphs of size up to 7 x n, GMS
is guaranteed to achieve 66% throughput. Finally, we studied
the performance of GMS in interference graphs and showed
that ¢* can be arbitrarily low.

We emphasize that our objective in this paper is to obtain
a better theoretical understanding of LoP that will assist
the development of future algorithms. As such, the paper
demonstrates that using graph theoretical methods can signifi-
cantly contribute to our understanding of greedy scheduling
algorithms. From the graph theoretical point of view, LoP
raises many interesting open problems. For example, three
of the authors [7] are currently working on extending some
of the results to the so-called claw-free graphs, which are a
generalization of the interference graphs of networks under
primary interference. From the networking point of view, there
remain many open problems. For example, generalizing the
interference model to a model based on SINR and deriving
the corresponding LoP conditions remain a major subject for
future research.

7 Although the problem is NP-complete, we obtained numerical solutions
in small graphs.
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