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Abstract

Let H be a tournament, and let ¢ > 0 be a real number. We call ¢ an “Erdés-Hajnal coefficient”
for H if there exists ¢ > 0 such that in every tournament G with |V(G)| > 1 not containing H
as a subtournament, there is a transitive subset of cardinality at least ¢|V(G)|¢. The Erdés-Hajnal
conjecture asserts, in one form, that every tournament H has a positive Erdés-Hajnal coefficient.
This remains open, but recently the tournaments with Erdés-Hajnal coefficient 1 were completely
characterized. In this paper we provide an analogous theorem for tournaments that have an Erdds-
Hajnal coefficient larger than 5/6; we give a construction for them all, and we prove that for any
such tournament H there are numbers ¢, d such that, if a tournament G with |V(G)| > 1 does not
contain H as a subtournament, then V(G) can be partitioned into at most c(log(|V (G)|))¢ transitive
subsets.
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1 Introduction

A tournament is a loopless digraph such that for every pair of distinct vertices u, v, exactly one of
uv,vu is an edge. A transitive set is a subset of V(G) that can be ordered {x1, ...,z } such that x;z;
is an edge for 1 <i < j < k. A colouring of a tournament G is a partition of V(G) into transitive
sets, and the chromatic number x(G) is the minimum number of transitive sets in a colouring. If
G, H are tournaments, we say that G is H-free if no subtournament of G is isomorphic to H.

There are some tournaments H with the property that every H-free tournament has chromatic
number at most a constant (depending on H). These are called heroes, and they were all explicitly
found in an earlier paper [4]. In this paper, we turn to the question: which are the most heroic non-
heroes? It turns out that for some non-heroes H, the chromatic number of every H-free tournament
G is at most a polylog function of the number of vertices of GG, and all the others give nothing better
than a polynomial bound. More exactly, we will show the following (we will often write |G| instead
of |V(G)|, when G is a graph or tournament):

1.1 Every tournament has exactly one of the following properties:
e for some ¢, every H-free tournament has chromatic number at most ¢ (the heroes)

e for some c,d, every H-free tournament G with |G| > 1 has chromatic number at most c(log(|G|))?,
and for all ¢, there are H-free tournaments G with |G| > 1 and with chromatic number at least

c(log(|G|))"/?

e for all ¢, there are H-free tournaments G with |G| > 1 and with chromatic number at least
c|GI'/S,

This is one of our main results. The other is an explicit construction for all tournaments of the
second type, which we call pseudo-heroes.

This research is closely connected with, and motivated by, the Erdés-Hajnal conjecture. P. Erdés
and A. Hajnal [7] made the following conjecture in 1989 (it is still open):

1.2 (The Erdds-Hajnal conjecture.) For every graph H there exists a number € > 0 such that
every graph G that does not contain H as an induced subgraph contains a clique or a stable set of
size at least |G|°.

If G is a tournament, a(G) denotes the cardinality of the largest transitive subset of V(G). It
was shown in [1] that the conjecture 1.2 is equivalent to the following:

1.3 (Conjecture.) For every tournament H there exists a number € > 0 such that every H-free
tournament G satisfies a(G) > |G|°.

Let us say that € > 0 is an EH-coefficient for a tournament H if there exists ¢ > 0 such that every
H-free tournament G satisfies o(G) > ¢|G|°. Thus, the Erdés-Hajnal conjecture is equivalent to the
conjecture that every tournament has a positive EH-coefficient. (We introduce ¢ in the definition
of the Erdés-Hajnal coefficient to eliminate the effect of tournaments G of bounded order; now,
whether € is an EH-coefficient for H depends only on arbitrarily large tournaments not containing
H.) If € is an EH-coefficient for H, then so is every smaller non-negative number; and thus a natural



invariant is the supremum of the set of all EH-coefficients for H. We call this the EH-supremum for
H, and denote it by {(H). The EH-supremum for H is not necessarily itself an EH-coefficient for H;
indeed, most of this paper concerns finding the tournaments H with {(H) = 1 for which 1 is not an
EH-coefficient.

While we have nothing to say about the truth of 1.3 in general, a more tractable problem is: for
which tournaments is some given € > 0 an EH-coefficient? In an earlier paper [4], we completely
answered this for € = 1; and in this paper one goal is a similar result for € > 5/6.

Before we go on, let us state the result of [4] properly; and to do so we need some more definitions.
We denote by T}, the transitive tournament with k vertices. If G is a tournament and X, Y are disjoint
subsets of V((G), and every vertex in X is adjacent to every vertex in Y, we write X = Y. We write
v=Y for {v} =Y, and X = v for X = {v}. If G is a tournament and (X,Y, Z) is a partition of
V(G) into nonempty sets satisfying X = Y, Y = Z, and Z = X, we call (X,Y,Z) a trisection of
G. If A, B,C,G are tournaments, and there is a trisection (X,Y, Z) of G such that G|X,G|Y,G|Z
are isomorphic to A, B, C respectively, we write G = A(A, B,C). It is convenient to write k for T
here, so for instance A(1,1,1) means A(T1,71,T1), and A(H, 1, k) means A(H, Ty, Ty).

A tournament is a celebrity if 1 is an EH-coefficient for it; that is, for some ¢ > 0, every H-free
tournament G satisfies a(G) > ¢|G|. The main result of [4] is:

1.4 The following hold:
o A tournament is a hero if and only if it is a celebrity.
o A tournament is a hero if and only if all its strong components are heroes.

e A strongly-connected tournament with more than one vertex is a hero if and only if it equals
A(1,H, k) or A(1,k,H) for some hero H and some integer k > 0.

In this paper, we study the tournaments H which are “almost” heroes, in the sense that all H-free
tournaments have chromatic number at most a polylog function of their order. More precisely, we
say a tournament H is

e a pseudo-hero if there exist ¢,d > 0 such that every H-free tournament G with |G| > 1 satisfies
X(G) < c(log(IG]))?

e a pseudo-celebrity if there exist ¢ > 0 and d > 0 such that every H-free tournament G with
|G| > 1 satisfies a(G) > cm.

Logarithms are to base two, throughout the paper. The conditions |G| > 1 are included just to
ensure that log(|G|) > 0.) The next result is an analogue of 1.4:

1.5 The following hold:
o A tournament is a pseudo-hero if and only if it is a pseudo-celebrity.
e A tournament is a pseudo-hero if and only if all its strong components are pseudo-heroes.

o A strongly-connected tournament with more than one vertex is a pseudo-hero if and only if
either



— it equals A(2,k,l) for some k,l > 2, or
— it equals A(1, H, k) or A(1,k, H) for some pseudo-hero H and some integer k > 0.
More generally, let 0 < e < 1; we say that a tournament H is
e an e-hero if there exist ¢,d > 0 such that every H-free tournament G with |G| > 1 satisfies
X(G) < c|G|'~log(|G)?%; and
e an e-celebrity if there exist ¢ > 0 and d > 0 such that every H-free tournament G with |G| > 1
satisfies a(G) > ¢ |G| log(|G]) 4.

Thus, a 1-hero is the same thing as a pseudo-hero, and a 1-celebrity is the same as a pseudo-celebrity.
We will prove:

1.6 For all e with 0 <e<1:

e a tournament is an e-hero if and only if it is an e-celebrity
e a tournament is an e-celebrity if and only if its strong components are e-celebrities
e if H is an e-celebrity and k > 1, then A(1, H, k) and A(1,k, H) are e-celebrities.
(Much of 1.5 is implied by setting e = 1 in 1.6.) In addition, we will prove:
1.7 Every tournament H with {(H) > 5/6 is a pseudo-hero and hence satisfies {(H) = 1.

Thus, if £(H) > 5/6 then every H-free tournament has chromatic number at most a polylog
function of its order. We do not know if 5/6 is best possible; but the polylog behaviour is best
possible, in the following sense:

1.8 For every real d with 0 < d < % and all sufficiently large integers n (depending on d), there is
a tournament G with n vertices such that

o a(G) < n(log(n))~%, and

e cuvery pseudo-hero contained in H is a hero.

This last is a corollary of a result of [4]; let us see that now. Since every pseudo-hero that is not
a hero contains A(2,2,2), by 1.4 and 1.5, it follows that 1.8 is implied by the following result of [4]:

1.9 For every real d with 0 < d < %, and all sufficiently large integers n (depending on d), there is

a tournament G with n vertices, not containing A(2,2,2), such that

a(G) <

n
(log(n))®"

(More precisely, the result of [4] asserts this with log(n) replaced by In(n); we leave the reader to
check the equivalence.) The paper is organized as follows:

e in sections 2,3 and 4 we prove the first, second and third assertion of 1.6 respectively;

e in section 5 we prove that for all k,1 > 2, A(2,k,1) is a pseudo-celebrity, and indeed there exists
¢ > 0 such that every A(2, k,1)-free tournament G with |G| > 1 satisfies a(G) > ¢|G|/log(|G|);

e in section 6 we prove the “only if” part of the third statement of 1.5, and thereby finish the
proof of 1.5; and we also prove 1.7.



2 e-celebrities are e-heroes

In this section we prove the first statement of 1.6. Let us say a function ¢ is round if for each integer
n > 2, ¢(n) is a real number, at least 1 and (non-strictly) increasing with n. We need:

2.1 Let ¢ be round. Suppose that G is a tournament with |G| > 1, and for alln > 1, every n-vertex
subtournament of G has a transitive set of cardinality at least n/¢p(n). Then x(G) < ¢(|G|) log(|G]).

Proof. We proceed by induction on |G|. Let n = |G|. By hypothesis, G has a transitive set X of
cardinality = say, where x > n/¢(n) > 0. Thus 1 < ¢(n)log(n) (since ¢(n) > 1, and logarithms are
to base 2), and so we may assume that x(G) > 2. In particular, x <n — 1, and so n — 1 > n/¢p(n).
Consequently ¢(n) > n/(n — 1) > 2/log(n), and so 2 < ¢(n)log(n). Hence we may assume that
X(G) > 3. In particular, G \ X has at least two vertices, and therefore we may apply the inductive
hypothesis to G\ X. Since x(G) <1+ x(G \ X), we deduce that

X(G) <1+ ¢(n—z)log(n —z) <1+ ¢(n)log(n — x).

Now
log(1 — 2/n) < In(1 - a/n) < —a/n < —(¢(n)) ™,

and so 1 + ¢(n)log(l — x/n) < 0. Consequently
X(G) <14 ¢(n)log(n —x) = 1+ ¢(n)log(l — z/n) + ¢(n)log(n) < ¢(n)log(n).
This proves 2.1. |

Sometimes the previous result can be improved:

2.2 Let G be a tournament with |G| > 0, and for each integer n with 1 < n < |G|, let ¢(n) be a
positive real number, and let € be a real number with 0 < € < 1, such that

o cvery subtournament H of G with |H| > 0 has a transitive set of cardinality at least |H|/$(|H|),
and

o o(n)/dp(m) > (n/m) for all m,n with 1 <m <n <|G|.
Let ¢ =2°— 1. Then x(GQ) < ¢ 1¢(|G)).

Proof. We proceed by induction on |G|. Let n = |G|. From the hypothesis, there is a transitive
subset with cardinality at least n/¢(n) > 2¢7n/¢(n). Let us choose X1,..., X C V(G), pairwise
disjoint and each transitive with cardinality at least 2°~!'n/¢(n), with k maximal; it follows that
kE>1. Let X1U---UX, =W, and let G\ W = G, and |G'| =n’. Let x = n’/n. Now W includes k
disjoint subsets of cardinality at least 2¢7'n/@(n), and so

n— ! = W] > k2 n/d(n),
that is, k < (1 — 2)¢(n)2!7¢. If n’ = 0, then

X(G) <k < p(n)2' < 'e(G)),



as required. Thus we may assume that n’ > 0. Now G’ has no transitive set of cardinality at least
2¢71n/¢(n) by the maximality of k, and yet by hypothesis, it has a transitive set of cardinality at
least n'/¢(n’). Tt follows that n'/¢(n’) < 2¢71n/¢(n), that is,

¢(n')/¢(n) > 2"z

By hypothesis, ¢(n')/¢(n) < ¢, and so 2!~z < 2¢, that is, z < 1/2. From the inductive hypothesis,
xX(G") < c7Lo(n'). Since x(G) < x(G') + k, and k < (1 — z)p(n)217¢, we deduce that

X(G) < clo(n) + (1 — 2)p(n)2' .
Since ¢(n') < ¢(n)z€, it follows that
X(G)/6(G) < 2+ (1 - m)21 .

Now the function (1 —z¢)/(1 — x) is minimized for 0 < z < 1/2 when & = 1/2, and its value then is
21=¢¢; and so (1 — 2¢)/(1 — z) > 21 ¢, that is,

€+ (1—z)2c< 1.
It follws that cx(G)/¢(G) < 1. as required. This proves 2.2. |

Thus if ¢ grows sufficiently quickly then we can avoid the extra log factor introduced by 2.1.
Curiously, it was proved in [4] that the same is true when ¢ is constant. We do not know whether
it is also true in the cases in between, when ¢ is not constant but only grows slowly. Unfortunately,
these are the cases of most interest to us in this paper, and for them we have to make do with 2.1.

We deduce the first statement of 1.6, namely:

2.3 For 0 <e <1, a tournament is an e-hero if and only if it is an e-celebrity.

Proof. Let H be an e-celebrity, and choose ¢ > 0 and d > 0 such that every H-free tournament
G with |G| > 1 satisfies a(G) > ¢ G|log(|G])~¢. We may assume that ¢ > 1. Define ¢(n) =
cn'~¢(log(n))? for n > 2. Thus ¢ is round, and every H-free tournament G with |G| > 1 satisfies
a(G) > |G|/¢(|G|). Then if G is H-free and |G| > 1, the hypotheses of 2.1 are satisfied, and so

X(G) < 6(|G|) log(IG|) < ¢ G| “(log(|G])) ",

and therefore H is an e-hero. (Note that, if € < 1, we could apply 2.2 here instead, and avoid the
extra log factor.)

For the converse, let H be an e-hero. Thus there exist ¢,d > 0 such that every H-free tournament
G with |G| > 1 satisfies x(G) < c|G|'*~¢(log(|G|))?. But every non-null tournament G has a transitive
set of cardinality at least |G|/x(G) (take the largest set of the partition given by the colouring).
Consequently, every H-free tournament G with |G| > 1 has a transitive set of cardinality at least
¢ G|¢(log(|G]))~®. Tt follows that H is an e-celebrity. This proves 2.3. |



3 e-celebrities that are not strongly connected
In this section we prove the second statement of 1.6, the following.

3.1 For 0 < € < 1, a tournament is an e-celebrity if and only if all its strong components are
e-celebrities.

Let T be a tournament and let X,Y C V(T) be disjoint. We denote by ex y the number of edges
zy where z € X and y € Y. If X, Y # (), the density from X to Y is

ex,y
d(X,Y) = XY
(XY
Note that d(X,Y) =1—d(Y, X), since T is a tournament.
We need the following theorem of [3].

3.2 For every tournament H and every real A\ > 0 there exists a real ¢ > 0 with the following
property. For every H-free tournament G there exist disjoint subsets X,Y C V(G) with | X|,|Y| =
[c|V(G)|], such that d(X,Y) < A.

Let Hi, Hy be tournaments. Let G be a tournament such that there is a partition (V7,V3) of
V(G) with Vi = V3, where for i = 1,2, the subtournament of G with vertex set V; is isomorphic
to H;. We denote such a tournament G by H; = Hs. For two sets of tournaments /7 and Fo, we
denote by F1 = F» the set consisting of all tournaments (up to isomorphism) of the form H; = H»
for some Hy € F; and Hs € F5. For a set F of tournaments, we say that a tournament T is F-free
if no subtournament of T is isomorphic to a member of 7. We need the following lemma.

3.3 Let h > 1 be an integer, and let F1 and Fo be two sets of tournaments, where each tournament
in F1 U Fy has at most h vertices. Then there exists C > 0 with the following property. Let ¢ be
round, such that for i = 1,2, every F;-free tournament T' of order n > 1 satisfies a(T) > n/p(n).
Then every (F1 = Fa)-free tournament T' of order n > 1 satisfies a(T) > Cn/¢p(n).

Proof. If one of F; and F3 is empty, the result is trivial, so we assume both are non-empty, and
hence F; = F> is nonempty. Choose one of its members, Hy say. Choose ¢ > 0 satisfying 3.2, taking
H = Hy and \ = (4h)7L. Let C = ¢/2. We will show that C satisfies the theorem.

Let T be an (F; = Fa)-free tournament with n > 1 vertices. By 3.2, there exist disjoint
Vi, Vo C V(G) with |Vi], [Va| > ¢|V(T)| such that d(Va, V1) < (4h)~!. Let X be the set of all vertices
in V4 with at least (1 — (2h)~1)|V2| out-neighbours in Va. Every vertex in V4 \ X is adjacent from at
least (2h)~!|V3| members of Vz, and so

Vi \ X|(2h)7|Va| < (4h) V4[| Val,

that is, | X| > |V1]/2.

Now |Vi| > en. Suppose that T'|X is Fj-free. From the hypothesis, X includes a transitive subset
of cardinality at least |X|/¢(|X|); but ¢(|X|) < ¢(n), and | X| > ¢n/2, and so a(T) > Cn/p(n) as
required. Thus we may assume that there exists X’ C X such that T|X’ is isomorphic to some
member H; of Fy. For each z € X', at most (2h)~!|Vz| vertices in V5 are adjacent to x, since z € X;



and since | X'| < h, it follows that at most |V5|/2 vertices in V3 are adjacent to a vertex in X’. Let
Y be the set of all y € V5 that are adjacent from every vertex in X'; then Y| > |V3]/2. Since T is
(F1 = Fo)-free, it follows that T|Y is Fo-free; and so from the hypothesis, Y includes a transitive
subset of cardinality at least |Y|/¢(]Y]). But ¢(|Y]) < ¢(n), and

¥|> [Val/2 > en/2 = Cn,
and so a(G) > Cn/¢(n). This proves 3.3. |

Proof of 3.1. Since every subtournament of an e-celebrity is an e-celebrity, the “only if” part of
3.1 is clear. The “if” part is implied by 3.3, taking ¢(n) = cn'~¢(log(n))¢ for appropriate c,d. This
proves 3.1. |

4 Adding handles

To complete the proof of 1.6, we need to show the following, which is proved in this section:

4.1 For 0 <e <1, let H be an e-hero, and let k > 1 be an integer. Then A(H,1,k) and A(k,1,H)
are e-heroes.

We prove, more generally:

4.2 Let H be a tournament, and let ¢ be round, such that every H-free tournament G satisfies
X(G) < ¢(|G]). Let k > 1 be an integer. Then there exists ¢ > 0 such that every A(H,1,k)-free
tournament G satisfies x(G) < c¢¢(G)log(|G|), and the same for A(k,1, H).

We remark that if ¢ grows sufficiently quickly to satisfy the hypotheses of 2.2 we could use the latter
to avoid the extra log factor.

Let H, K be tournaments, and let a > 1 be an integer. An (a, H, K)-jewel in a tournament G is
a subset X C V(@) such that |X| = a, and for every partition (A, B) of X, either G|A contains H
or G|B contains K. An (a, H, K)-jewel-chain of length ¢ is a sequence Y1,...,Y; of (a, H, K)-jewels,
pairwise disjoint, such that Y; = Y;;1 for 1 <14 < ¢t. We need the following lemma, proved in [4]:

4.3 Let H, K be tournaments, and let a > 1 be an integer. Then there are integers A1, A\ > 0 with
the following property. For every A(H, 1, K)-free tournament G, if

e ¢y is such that every H-free subtournament of G has chromatic number at most c1, and every
K-free subtournament of G has chromatic number at most c1, and

e ¢y is such that every subtournament of G containing no (a, H, K)-jewel-chain of length four
has chromatic number at most co,

then G has chromatic number at most A\ic1 + Aaca.



Proof of 4.2, 4.1 and 1.6. Let K be a transitive tournament with k vertices; from the symmetry,
it suffices to show the result for A(H, 1, K). Let ¢ be as in the hypothesis of the theorem. We may
assume that ¢(2) > 2%, by scaling ¢. Let a = 2¥|V(H)|, and let A1, A2 > 0 be as in 4.3.

(1) If G is a tournament with |G| > 1, not containing an (a, H, K)-jewel, then x(G) < a¢(|G]).

Choose pairwise vertex-disjoint subtournaments Hi,..., H; of GG, each isomorphic to H, with ¢
maximum, and let the union of their vertex sets be W. If t > 2*, then since every tournament with
at least 2¥ vertices has a transitive subset of cardinality k, it follows that V(Hy) U --- U V(Hqx)
is an (a, H, K)-jewel, a contradiction. Thus ¢t < 2¥. Consequently x(G|W) < |[W| < a, and
X(G\W) < o(|G|—|W]) < ¢(|G]) since G\ W is H-free. It follows that x(G) < a+¢(|G|) < ad(|G|)
since a, ¢(|G|) > 2. This proves (1).

(2) There exists C > 0 such that if G is a tournament with |G| > 1, not containing an (a, H, K)-
jewel-chain of length four, then x(G) < Cé(G)log(|G]).

By (1), if G is a tournament with n > 1 vertices, not containing an (a, H, K)-jewel, then a(G) >
a~'n/¢(n). By 3.3 applied twice, there exists C' > 0 such that every tournament G of order n > 1
containing no (a, H, K )-jewel-chain of length four satisfies a(G) > C~'n/¢(n). By 2.1, every such
G satisfies x(G) < C¢(n)log(n). This proves (2).

Let ¢ = A\1+X2C; we claim that ¢ satisfies the theorem. For let G be a A(H, 1, K)-free tournament,
with n > 1 vertices. Let ¢; = ¢(n). Then every H-free subtournament of G' has chromatic number at
most c1; and so does every K-free subtournament of GG, since every K-free tournament has at most
2% vertices and hence has chromatic number at most 28 < ¢(2) < ¢(n) = ¢;. Let co = C¢(n)log(n);
then every subtournament of G not containing an (a, H, K )-jewel-chain of length four has chromatic
number at most ¢z, by (2). By 4.3,

X(G) < Arer + Aacz = A1g(n) + A2C¢(n) log(n) < (A1 + A20)d(n) log(n).
This proves 4.2, and hence 4.1, and therefore finishes the proof of 1.6. |

That completes all we have to say about e-heroes in general.

5 Excluding A(2,k,1)

Now we return to the case e = 1 and the proof of 1.5. So far we have proved the first two statements
of 1.5, and part of the “if” half of the third statement, all as corollaries of 1.6. In this section we
complete the proof of the “if” half of the third statement of 1.5, by proving the following.

5.1 For all k,1 > 2, there exists ¢ > 0 such that every A(2,k,1)-free tournament G with |G| > 1
satisfies a(G) > c|G|/log(|G]).

This follows immediately from 5.3 and 5.4, proved below. We need the “bipartite Ramsey theo-
rem”, proved by Beineke and Schwenk [2], the following. If X,Y are disjoint subsets of the vertex
set of a graph G, we say X is complete to Y if every vertex in X is adjacent to every vertex in Y,
and X is anticomplete to Y if there are no edges between X and Y.



5.2 For all integers | > 0 there exists K > 0, such that for every graph with bipartition (A, B) where
|Al,|B| > K, there exist X C A andY C B with | X| = |Y| =, such that either X is complete to' Y
or X is anticomplete to Y .

The smallest K satisfying the statement of 5.2 will be denoted by K(I).

If G is a tournament and wv is an edge, we say that w is adjacent to v and v is adjacent from
u. Let (v1,...,v,) be an enumeration of the vertex set of a tournament G (thus, with n = |V(G)]).
We say that an edge v;v; of G is a backedge under this enumeration if 7 > j. If £ > 0 is an integer,
an enumeration (vy,...,v,) of V(G) is said to be t-forward if for every two sets X,Y C V(G) with
| X| = |Y| =t, there exist v; € X and v; € Y such that either ¢ > j, or v;v; is an edge of G.

5.3 For all integers k > 2, there exists ¢ > 0 such that, if G is a A(2,k, k)-free tournament with
|G| > 1 that admits a 2*-forward enumeration, then a(G) > |G|/ log(|G]).

Proof. Let M = 2*K(2%) and ¢ = 1/(4M). We will show that c satisfies the theorem. For let G be
a A(2, k, k)-free tournament with |G| > 1, and let (vy, ..., v,) be a 2¥-forward enumeration of V(G).
For 1 < i < n, we define ¢(v;) = i. A backedge vu of G is left-active if there is no set A C V(G)
such that:

o |Al = K(2F)
o for each a € A, ¢(u) < ¢(a) < (p(u) + ¢(v))/2
e cach a € A is adjacent from v and from v.
Similarly, a backedge vu is right-active if there is no set B C V(G) such that:
o |B| = K(2F)
o for each b € B, (¢(u) + ¢(v))/2 < ¢(b) < ¢p(v)
e cach b € B is adjacent to u and to v.

(1) Every backedge vu is either left-active or right-active.

For suppose that vu is a backedge that is neither left-active nor right-active. Thus there exists
sets A and B as above. Let J be the graph with bipartition (A, B), in which a € A and b € B are
adjacent if ba is an edge (and hence a backedge) of G. By 5.2, there exist X C A and Y C B such
that | X| = |Y| = 2¥, and X is either complete or anticomplete to Y in .J. Since the enumeration is
2k_forward, and ¢(x) < (é(u) + ¢(v))/2 < é(y) for all z € X and y € Y, it follows that there exists
x € X and y € Y such that yx is not a backedge of G, and thus z,y are not adjacent in J; and
consequently X is anticomplete to Y in J, and so every vertex in y is adjacent in G from every vertex
in X. Since |X| = |Y| = 2¥, there are transitive subsets X’ of X and Y’ of Y, both of cardinality k
(by a theorem of [8]). But then the subtournament of G with vertex set X’ UY’U{u, v} is isomorphic
to A(2,k, k), a contradiction. This proves (1).

For a backedge vu, we call ¢(v) — ¢(u) its length.

(2) There do not exist M log(n) left-active edges in G with the same tail v.



Suppose there do exist such edges. Since their lengths are all between 1 and n — 1, it follows
that for some integer t with 0 <t <log(n), there are M left-active edges all with tail v and all with
length between 2¢ and 271 — 1. Let them be vu; (1 <4 < M), numbered such that ¢(u;) < ¢(u;)
for1<i<j< M. Forl<i<j<M,since

¢(v) — ¢(uz) > 2" > (¢(v) — (us))/2,

it follows that ¢(u;) < (u;) < (¢(ui) + ¢(v))/2. Let X = {u; : 1 <i <2} and YV = {u; : 28 <i <
M?}. For each u; € X, vu; is left-active, and so u; is adjacent in G to at most (K (2¥) — 1) members
of Y. Consequently there are at least |Y| — | X|(K(2%) — 1) > 2¥ members of Y that are adjacent in
G to each member of X, contradicting that the enumeration is 2¥-forward. This proves (2).

By (2) there are at most Mnlog(n) left-active edges in G, and similarly at most Mnlog(n)
right-active. By (1), it follows that there are at most 2Mnlog(n) = (2¢) 'nlog(n) backedges.
Let J be the graph with vertex set V(G) in which u,v are adjacent for each backedge vu. Thus
|E(J)| < (2¢)"!nlog(n). By Turan’s theorem [5], applied to J, we deduce that J has a stable set of
cardinality at least cn/log(n), and so a(G) > cn/log(n). This proves 5.3. |

5.4 For all integers k > 2 there exists ¢ > 0 such that every A(2,k,k)-free tournament G has a
subtournament with at least ¢|G| vertices that admits a 2F-forward enumeration.

Proof. Let b =2k + 1, and d = (12k — 1)b. Let ¢ > 0 be the real number satisfying
log(c) = —240b227%,

We will show that c satisfies the theorem.
Let G be a A(2, k, k)-free tournament. Let us say a chain is a sequence A, ..., A, of subsets of
V(G) with the following properties:

o Ay,..., A, are pairwise disjoint
e for 1 <i<m,|A;| =bd and A; is transitive

o for 1 <1i < j < m, each vertex in A; is adjacent to at most d vertices in A;, and each vertex
in A; is adjacent from at most d vertices in A;.

(1) We may assume that G admits a chain Ay, ..., Ay, with m > 4.

For if n < 2%? then the theorem holds, since ¢ < 274 and so any one-vertex subtournament
of G satisfies the theorem (and if G is null then G itself satisfies the theorem). Thus we assume
that n > 2% and so G contains a transitive set of cardinality 4bd. But then there is a chain
Ay, Ay, A3, Ay. This proves (1).

Let Aq,..., A, be a chain with m maximum. Define A = A U---UA,,. For 1 <1i <m, let B;
be the set of all v € V(G) \ A such that there exists Y C A; and Z C A;4; with |Y| = |Z| =k and
{v}=Y=2Z= {v}. Lt B=B1jU---UBp,_1,and C =V (G) \ (AU B).
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(2) |B| < m(bd)?".

For suppose not. Then |B;| > (bd)?* for some i with 1 < i < m. For each v € B;, choose Y, C A;
and Z, C Y; such that |Y,| = |Z,| = k and {v} = Y, = Z, = {v}. Since there are at most (bd)%*
possibilities for the pair (Y, Z,), there exist distinct u,v with Y,, =Y, and Z, = Z,. But then the
subtournament of G' with vertex set {u,v} UY, U Z, is isomorphic to A(2, k, k), a contradiction.

(3) For each v € C, there is no i with 1 < ¢ < m such that v has at least k out-neighbours in
A; and at least (d+ 1)k in-neighbours in A;+1. Also, there is no i with 1 <i < m such that v has at
least (d + 1)k out-neighbours in A; and at least k in-neighbours in A;y1. In particular, there is no i
with 1 <4 < m such that v has at least bd/2 out-neighbours in A; and at least bd/2 in-neighbours in
Aiyr.

For the first claim, suppose that Y C A; and Z C A;y with |Y| = k and |Z] > (d + 1)k , and
v is adjacent to every vertex in Y and adjacent from every vertex in Z. Now each vertex in Y has
at most d in-neighbours in Z, and so at most dk vertices in Z have an out-neighbour in Y. Conse-
quently, there exists Z’ C Z with |Z'| = k, such that Y = Z’. But then Y, Z’ show that v € B; C B,
a contradiction. This proves the first claim, and the second follows from the symmetry. The third
follows since bd/2 > k and bd/2 > (d + 1)k. This proves (3).

For 1 <i < m let C; be the set of all vertices v € C such that v has at least bd/2 in-neighbours in
A; and at least bd/2 out-neighbours in A;;. (Note that bd is odd, so equality is not possible here.)
Let Cy be the set of all v € C' with at least bd/2 out-neighbours in A;, and let C), be the set of all
v € C with at least bd/2 in-neighbours in A,,. By (3), it follows that Cp, C1,...,Cy, are pairwise
disjoint and have union C'.

(4) Let 0 < i < m and let v € C;. Then for 1 < h < i, v has at most k — 1 out-neighbours in
Ap; and fori+1<j <m, v has at most k — 1 in-neighbours in A;.

For v has at least bd/2 in-neighbours in A;, and since v ¢ B, it follows from (3) that v has at
least bd/2 in-neighbours in each of Aj,..., A;. In particular, v has at least bd/2 in-neighbours in
Apt1. By (3), v has at most k£ — 1 out-neighbours in Ay. This proves the first assertion. The second
follow by the symmetry. This proves (4).

For2<i<mlet Ly =A1U---UA;_ 9, and for 0 <i<m—2let R; = Aj43U---UA,,. Let
Lo, L1, Ry—1, Ry, all be the null set.

(5) Let 0 < i < m, and let u,v € L; be distinct. Then there is no transitive set Z C C; with
|Z| = k such that Z — {u,v}, and consequently there are at most 2F vertices in C; that are adjacent
to both u and v. Similarly, for 0 < i < m, if u,v € R; then there is no transitive set Z C C; with
|Z| = k such that {u,v} = Z, and hence there are at most 2% vertices in C; that are adjacent from
both v and v.

For let 0 < i < m, and let u,v € L; (thus ¢ > 3), and suppose that there exists a transitive
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set Z C C; with |Z] = k such that every vertex in Z is adjacent to both u,v. By (4), each member
of Z has at most k — 1 out-neighbours in A;_1. Also, u,v each have at most at in-neighbours in
A;_1. Consequently there is a subset Y of A,_; with |Y| = k such that {u,v} = Y = Z, since
bd — (k—1)k —2d > k. But then the subtournament of G with vertex set {u,v}UY U Z is isomorphic
to A(2,k, k), a contradiction. This proves the first assertion, and the second follows by symmetry.
This proves (5).

(6) For 0 < i < m, and all w € L; and v € R;, there are fewer than 27bd yertices in C; that
are adjacent to u and from v.

For since L;, R; # 0, it follows that 3 < i < m — 3. Suppose that there are at least 27°¢ ver-
tices in C; adjacent to u and from v; then they include a transitive set Y of cardinality 7bd. Choose
a chain Y7,...,Y7 of subsets of Y such that Y}, = Y; for all h,j with 1 < h < j < 7. By (5), every
vertex in L; \ {u} has at most £k — 1 < d in-neighbours in Y, and every vertex in R; \ {v} has at
most d out-neighbours in Y. Also, each vertex in Y has at most k£ — 1 < d out-neighbours in Ay for
1 < h <i-—2, and at most d in-neighbours in A; for i +2 < j <m, by (4). Choose h,j with u € A,
and v € Aj. Then

Al; s aAh—17Ah+17 s 7Ai727Y17 Y27 s 7YT77 Ai+3> s 7Aj717 Aj+17 s aAm
is a chain with m + 1 terms, contrary to the maximality of m. This proves (6).

(7) Let 0 < i < m, and let Z C C; be transitive. Let p be an integer such that |Z| < bdp and
2b(k — 1)p < d. Then there are fewer than 2bp vertices in L; that are adjacent from at least d mem-
bers of Z.

For suppose that there exists W C L; with |W| = 2bp such that each member of W is adjacent
from at least d members of Z. Each member of W has at least d in-neighbours in Z, and yet
every two distinct members of W have at most £k — 1 common in-neighbours in Z, by (5). Hence
|Z| > dW]| — (k — 1)|[W|?/2. Since |Z| < bdp and |W| = 2bp, it follows that 2(k — 1)bp > d, a
contradiction. Thus there is no such W. This proves (7).

(8) For 0 <i<m and allv € R;, if Y C C; is transitive and v = Y then |Y| < 12b- 274,

It follows that ¢ < m — 3. Choose a maximal subset Z of Y such that every vertex in L; is ad-
jacent from at most d members of Z. Suppose that |Z| > 6bd, and choose a chain Z1,..., Zg of
subsets of Z such that Z, = Z; for 1 < h < j < 6. By (2), every vertex of R; different from v is
adjacent to at most k — 1 < at members of Y. Let v € A;. By (4), if i > 2 then

Ao Aio, 2y Zisy Aigsy - Aj1, Ay oo A
is a chain with m + 1 terms, contrary to the maximality of m; while if ¢ < 1 then the chain
Ziyey 2y Aigsy oo Ajm1, Ajyas oo Am

gives a contradiction similarly. Thus |Z| < 6bd.

12



We say u € L; is saturated if u is adjacent from exactly d members of Z. Since |Z| < 6bd and
12(k — 1)b < d, it follows from (7) with p = 6 that there are fewer than 12b saturated vertices in L;.
But every vertex in Y \ Z is adjacent to a saturated vertex in L;, from the maximality of Z. Since
every saturated vertex in L; is adjacent from at most 27°¢ members of Y, by (6), and hence from at
most 27%¢ — d members of Y\ Z, it follows that |Y \ Z| < 12b(27%¢ — d), and so

Y| < 126(27 — d) 4 6bd < 12b - 27
This proves (8).
(9) For 0 <i < m, there is no transitive subset Y of C; with |Y| > 240622704,

Let Y C C; be transitive. Choose a maximal subset Z of Y such that every vertex of L; is ad-
jacent from at most d members of Z, and every vertex in R; is adjacent to at most d members of
Z. Suppose that |Z]| > 5bd, and choose a chain Z,..., Z5 of subsets of Z such that Z, = Z; for
1<h<j<5 If2<i<m—2then by (4),

Ay Ao, 2y, Dy Airsy e A
is a chain with m 4+ 1 terms, a contradiction; while if ¢ < 1 then
Ziyeey Zs, Aigsy ooy A
gives a contradiction, and if ¢ > m — 1 then
A, .. A9, 24, ..., 75

gives a contradiction. Thus |Z| < 5bd.

We say u € L; is saturated if it is adjacent from exactly d members of Z; and v € R; is saturated if
it is adjacent to exactly d members of Z. Since |Z| < 5¢, and 10(k —1)b < d, it follows from (7) with
p = 5 that there are at most 10b saturated vertices in L;, and similarly at most 10b saturated vertices
in R;. From the maximality of Z, every vertex of Y'\Z is adjacent to at least one of the saturated
vertices in L; or from at least one of the saturated vertices in R;. But by (8), each saturated vertex
in L; is adjacent from at most 12627%¢ members of Y and hence from at most 12627 — d members
of Y\ Z, and similarly every saturated vertex in R; is adjacent to at most 12627 — d members of
Y \ Z. We deduce that

Y| < 206(1262™ — d) + 5bd < 24067277,

This proves (9).
(10) |A| > 2¢|G| where c is as defined in the statement of the theorem.

From (9), each C; has cardinality at most 22400"2™"=1 and so |C| < (m + 1)22400°2"~1 " Gince
m > 2 (and hence m + 1 < 2m), and |B| < m(bd)?* by (2), and |A| = mbd, we deduce that

G| < (2240027 L (pd) 2k 4+ bd)ym < (22400°27 ¢ (bd)2F + bd)| A|/(bd).

It follows that |A| > 2¢|G| where c is as defined in the statement of the theorem. This proves (10).
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Let V be the union of all 4; with 1 < ¢ < m and 7 odd. Then |V| > |A|/2 > ¢/G|. Number
the members of V' as {v1,..., v} say, where for 1 <r < s <t if 2, € A; and x5 € Aj then i < j,
and either i < j or z, is adjacent to xs. (This is possible since each A; is transitive.) We claim
that this order is 2¥-forward. For let Y, Z be disjoint subsets of V with |Y| = |Z| = 2¥, such that
for 1 <r,s <t ifz, €Y and x5 € Z then r < s. We must show that there exists y € Y and
z € Z such that y is adjacent to z. Suppose not. Choose ¢ with 1 < ¢ < m and 7 odd, maximum
such that A; NY # (. It follows that Ay, NZ =0 for all h <i. If ZNA; # 0, let v, € A;NY and
vg € A; N Z; it follows that r < s from the choice of the numbering, and so v, is adjacent to v,
a contradiction. Thus Z N A; = (). It follows that 7 > i + 2 for each j with 1 < j < m such that
2N A; # 0. Since |Y| = 2%, there exists Y/ C Y with |Y| = k such that Y is transitive, and similarly
there exists a transitive Z' C Z with |Z’| = k. Now each member of Y’ is adjacent from at most
d members of A;11, and so there are at most dk vertices in A;,1 adjacent to some member of Y’;
and similarly at most dk are adjacent from some member of Z’'. Since bd > 2dk + 2, there are two
vertices u,v € A;+1 such that Y = {u,v} and {u,v} = Z’. But then the subtournament of G' with
vertex set {u,v} UY’ U Z’ is isomorphic to A(2, k, k), a contradiction. This proves that the order is
2F_forward, and so completes the proof of 5.4. |

Proof of 5.1. This follows immediately from 5.3 and 5.4. |

6 Strongly-connected pseudo-heroes

In this section we complete the proof of 1.5, and also prove 1.7. As a biproduct of the remainder
of the proof of 1.5, we are able to identify all the minimal tournaments that are not pseudo-heroes
(there are six). Here they are:

e Let H; be the tournament with five vertices vy, ..., vs, in which v; is adjacent to v; 11 and v;49
for 1 <14 <5 (reading subscripts modulo 5).

e Let Hy be the tournament obtained from H; by replacing the edge vsvy by an edge vyvs.

e Let H3 be the tournament with five vertices v1,...,v5 in which v; is adjacent to v; for all 4, j
with 1 <i < j <4, and vy is adjacent to v1,v3 and adjacent from v, vy4.

e Let Hy be the tournament A(1,A(1,1,1),A(1,1,1))
e Let Hj be the tournament A(2,2,A(1,1,1))
e Let Hg be the tournament A(3,3,3).

First, we prove they are not pseudo-heroes, but also it is helpful to give the best upper bounds
on their £-values that we can. We begin with:

6.1 If H is a strongly-connected tournament with more than one vertex that does not admit a

trisection, then &(H) < 1/log(3). In particular, {(H;) < 1/1og(3) fori=1,2,3, and so Hy, Ha, Hs
are not pseudo-heroes.
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Proof. Let Dy be the one-vertex tournament, and for ¢ > 1 let D; = A(D;—1,D;—1,D;—1). Thus
|D;| = 3%. For i > 0, no transitive subtournament of D; intersects all three parts of the trisection of
D;, so a(D;) = 2a(D;_1); and consequently a(D;) = 2° = |D;|'/1°63) We claim that for all i > 0,
D; does not contain H; for suppose D; contains H for some value of i, and choose the smallest.
Then i > 1 since |V (H)| > 2, and so D; admits a trisection (A4, B, C') where D;|A, D;|B, D;|C are all
isomorphic to D;_1. Choose a subtournament 1" of D; isomorphic to H. From the minimality of i,
V(T) is not a subset of any of A, B,C, and therefore has nonempty intersection with at least two of
them; and since H is strongly-connected, V(7T') has nonempty intersection with all three of A, B, C.
But then T admits a trisection, a contradiction.

This proves that no D; contains H. Let € be an EH-coefficient for H, and choose ¢ > 0 such that
every H-free tournament G satisfies a(G) > ¢|G|°. In particular, taking G = D; implies that

|Dif /1% = a(D;) > ¢| D,

for all ¢ > 0. It follows that 1/log(3) > €. Since this holds for all EH-coefficients ¢, it follows that
¢(H) < 1/log(3). This proves 6.1. |

6.2 {(Hy) <1/2, and hence Hy is not a pseudo-hero.

Proof. For k > 1, let D}, be the tournament with k2 vertices vy, . .., vz, in which for 1 < i < j < k2,
v; is adjacent to v; if k does not divide j — i, and otherwise v; is adjacent to v;. (This construction is
due to Gaku Liu, in private communication.) For 1 <i <k, let C; = {vi, Vi ks Vit2ks - - - » Vi (h—1)k ) -
Then (4, ..., Cy are disjoint and have union V' (Dy).

(1) a(Dy) < 2k — 1.

Let X C V(D) induce a transitive tournament. For 1 < i < k, if X N C; # 0, let p; be the
smallest value of j such that v; € X N C;, and g; the largest; and let I; be {vj p < j < g} If
XNC;=0,let I; = 0. Note that if v; € X N I; then j € Cj; because otherwise {vp,,vq,,v;} would
induce a cyclic triangle, contradicting that X is transitive. This has two consequences:

e Foreachi e {1,... k}, | X NI <1+ (|L;| —1)/k, since between any two members of X in I;
there are k — 1 members of C; \ X. Summing over i, we deduce that | X| <k —1+ . |L|/k.

e The sets I; (1 <i < k) are pairwise disjoint, and so Y, |I;| < k.
Combining these, we deduce that |X| < 2k — 1. This proves (1).

(2) Dy does not contain Hy.

For 1 < j < k2, let ¢(v;) be the value of i € {1,...,k} with v; € C;. Thus, let a,b,c € V(D)
be distinct:

(P) if {a,b,c} induces a cyclic triangle in Dy, then [{¢(a), ¢(b), ¢(c)}| = 2; and

(Q) if ab, ac, be are edges and ¢(a) = ¢(c) then ¢(b) = ¢(a).
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(R) if {a,b,c} induces a cyclic triangle and d is some other vertex such that d = {a,b,c} or

d <= {a,b, c} then ¢(d) # ¢(a), ¢(b), ¢(c)-

(The third condition above follows easily from the other two, but we use it enough to give it a
separate name.) For X C V(Dy), ¢(X) denotes {¢(v) v € X). Suppose that Dy, contains Hy, and
let A, B, C be the trisection of Hy with |A| = |B| = 3; let A = {a1,a2,a3}, and B = {b1,bs, b3}, and
C = {c}. Thus from property P applied to A, |¢(A4)| = 2, and similarly |¢(B)| = 2; by property R
applied to A and each member of B, ¢(A) and ¢(B) are disjoint; and by property R applied to A
and ¢, ¢(c) ¢ ¢(A) and similarly ¢(c) ¢ ¢(B). Choose a € A and b € B; then ¢(a), d(b), p(c) are all
distinct, contrary to property P. This proves (2).

Let € be an EH-coefficient for Hy, and choose ¢ > 0 such that every Hy-free tournament G satisfies
a(G) > ¢|G|¢. In particular, for each k > 1, a(Dy,) > ¢|Dy|¢, and so from (1), 2k — 1 > ck?. Since
this holds for all £ > 1, we deduce that € < 1/2, and so £(Hy) < 1/2. This proves 6.2. |

The above is not the easiest way to prove that H, is not a pseudo-hero, but it gives the best
bound on &(Hy).
Next we need a lemma proved in [6], the following:

6.3 The vertex set of every tournament H can be ordered such that the set of backward edges of
every non-null subtournament S of H has cardinality at most (|S| — 1)(£(H)) ™.

We deduce
6.4 {(Hs5) <5/6, and so Hs is not a pseudo-hero.

Proof. Let H = Hs, and let V(H) = AU B U C, where
o A={ay,a2}, B={b1,b2}, and C = {c1,c2,c3}
e A B=>C=A
e c1-co-c3-c1 is a directed cycle.

Suppose there is an ordering of V(H) such that no cycle of the backedge graph has length at most
six; let X be the set of backedges in this ordering, and let Y = E(H) \ X. We have two properties:

(P) For every directed cycle of H, at least one of its edges in in X.

(Q) For every undirected cycle of H of length at most six, at least one of its edges is in Y.

Since every undirected graph with seven vertices and eight edges has a cycle of length at most
six (indeed, at most five), it follows that | X| < 7. Suppose first that a;1b1, ag2bs € Y. From property
P applied to the directed cycle c;-a;-bj-c;, at least one of c;a;, bjc; is in X, fori = 1,2,3 and j = 1, 2.
Thus there are at least six edges in X between AU B and C. By property P applied to H|C, some
edge of X has both ends in C. Since | X| < 7, it follows that all edges from A to B belong to Y’; and
so by property P, for i = 1,2, 3 either c;a1, c;as € X, or bic;, bac; € X. Thus from the symmetry we
may assume that ciai, cras, caa1, caas € X. But these four edges form a cycle contrary to property

Q.
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Thus not both a1bi,a2b6o € Y, and similarly not both aibs,asb1 € Y. Suppose next that
a1by,a1by € Y. Thus asbi, asbs € X. By property Q applied to the cycle as-b1-c;-ba-ao, for i =1,2,3
not both bic;, baoc; € X. By property P applied to the directed cycles c;-a1-bi-¢; and c¢;-aq-bo-c; it
follows that c;a; € X, for i = 1,2,3. But some edge of X has both ends in C, contrary to property
Q.

It follows that not both aibi,asbs € Y, and so from the symmetry, at most one edge from A
to B belongs to Y. By property Q, not all four of these edges are in X, so we may assume that
a1by € Y, and agby, aibe, azbs € X. From property P, some edge of H|C belongs to X, say cjco.
Now by property P again, for ¢ = 1,2 at least one of c;a1,bi1c; € X. But then there are six edges in
X each with both ends in V(H) \ {¢3}, contrary to property Q.

It follows that in every ordering of V(H), some cycle of the backedge graph has length at most
six. From 6.3, we deduce that £(H) < 5/6. This proves the first assertion of the theorem, and the
second follows. |

Finally:
6.5 £(Hg) < 3/4, and so Hg is not a pseudo-hero.
Proof. Let H = Hg, and let V(H) = AU BUC, where
o A={ay,a2,a3},B ={b1,b2,b3}, and C = {c1, 2,3}
e A= B=>C=A
e A B,C are all transitive.

Suppose there is an ordering of V(H) such that no cycle of the backedge graph has length at most
four; let X be the set of backedges in this ordering, and let Y = E(H)\ X. We have two properties:

(P) For every directed cycle of H, at least one of its edges in in X.

(Q) For every undirected cycle of H of length at most four, at least one of its edges is in Y.

If there is a three-edge matching of members of Y between A, B, and also between B, C' and between
C, A, then the union of these three matchings uncludes a directed cycle of H, contrary to property
P. So we may assume there is no three-edge matching of members of ¥ between A and B. By
Hall’s theorem, there are two vertices z,y € AU B such that every edge in Y between A and b is
incident with one of z,y. If x € A and y € B, and x = a3,y = bs say, then a1b1,a1b2, asb1, asbs
are all in X, contrary to property Q. Thus we may assume that x,y € A; say z = a1,y = as.
Hence agby,asbo,a3b3 € X. Let 1 < k < 3. We claim that cpai,cras € X. For suppose that
cray € Y say. From property Q at most one of the edges aiby,a1bs, a1bs is in X (otherwise there is
a cycle of edges in X of length four passing through as); say a1b1,a1b2 € Y. Now from property P
applied to aq-bj-ci-a1, it follows that bjc;, € X for j = 1,2, contrary to property Q. This proves that
cpal, cpas € X, for k =1,2,3; but again this contradicts property Q. This proves 6.5. |

17



Now we complete the proof of 1.5; all that remains is to prove the “only if” half of the third
statement of 1.5, which is the equivalence of the first two statements of the following.

6.6 Let H be a strongly-connected tournament with more than one vertex. Then the following are
equivalent:

e H is a pseudo-hero

e cvery strong component of H is isomorphic to A(2,k,l) for some k,l > 2, or to A(1,P,T) or
A(1, T, P) for some pseudo-hero P and some nonempty transitive tournament T

e H contains none of Hy,...,Hg.

Proof. The first statement implies the third, by 6.1, 6.2, 6.4 and 6.5, since every subtournament of
a pseudo-hero is a pseudo-hero. By 5.1 and 4.1 with e = 1, and 3.1 with € = 1, the second statement
implies the first. It remains to show that the third implies the second, and we proceed by induction on
|V(H)|. Thus, let H contain none of Hy, ..., Hg. If H is not strongly-connected, then inductively we
may assume that all its strong components are pseudo-heroes, and hence so is H, by 3.1 with ¢ = 1.
If H is strongly-connected, then by a theorem of Gaku Liu, proved in [4], since H contains none of
Hy, Hy, Hs, it admits a trisection (A, B,C). We may assume that |C| < |A[,|B|. If |C| = 1 then
since H does not contain Hy, it follows that at least one of A, B is transitive, and so H = A(1, P,T)
or H = A(1,T, P) for some pseudo-hero P and some nonempty transitive tournament 7', and the
theorem holds. If |C| > 2, then since H does not contain Hs and |A|, |B| > 2 it follows that A, B, C
are all transitive, and therefore |C| = 2 since H does not contain Hg; but then H = A(2,k,1) for
some k,l > 2, and the theorem holds. This proves 6.6, and hence completes the proof of 1.5. |

Proof of 1.7. If H is not a pseudo-hero then from 6.6, H contains one of Hi,..., Hg, and so
¢(H) < max(&(Hy),...,&(Hg)). But by 6.1, 6.2, 6.4 and 6.5, this maximum is at most 5/6. This
proves 1.7. |
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