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Abstract

A graph G is a quasi-line graph if for every vertex v, the set of neighbors of v can be
expressed as the union of two cliques. The class of quasi-line graphs is a proper superset
of the class of line graphs. A theorem of Shannon’s implies that if G is a line graph then
it can be properly colored using no more than %w(G) colors, where w(G) is the size of
the largest clique in G. In this paper we extend this result to all quasi-line graphs. We
also show that this bound is tight.

1 Introduction

Let G be a finite graph. We denote the set of its vertices by V(G) and the set of its edges
by E(G). For an integer k, a function ¢ : V(G) — {1,...,k} is a k-coloring of G. A proper
coloring is a coloring such that no two adjacent vertices have the same color. The chromatic
number of G, denoted x(G), is the smallest k for which there exists a proper k-coloring of G.
Similarly, a function ¢ : E(G) — {1,...,k} is a k-edge coloring of G. A proper edge coloring
is an edge coloring such that no two distinct edges that share a vertex have the same color.
A clique in G is a set of vertices that are all pairwise adjacent. The maximum size of a clique
in G is denoted by w(G). For v € V(G), we denote the set of neighbors of v in G by Ng(v).

The line graph of a graph G, denoted by L(G), is a graph whose vertices are the edges of
G, and if u,v € E(G) then uwv € E(L(G)) if u and v share a vertex in G. In 1948, Shannon [4]
proved that the edges of any graph can be properly colored using no more than %A(G) colors,
where A(G) is the maximum degree of a vertex in G. This of course immediately implies that
if G is a line graph then x(G) < 3w(G).

A question that arises is whether Shannon’s Theorem can be extended to larger classes of
graphs that include line graphs as a proper subset. One natural class of graphs to consider
is the family of “claw-free” graphs. We say that X C V(G) is a claw if the subgraph of G
induced on X, denoted by G|X, is isomorphic to the complete bipartite graph K; 3. A graph
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G is then claw-free if no subset of V(G) is a claw. Clearly, all line graphs are claw-free, but
as it turns out, there are claw-free graphs whose structure is very different from that of line
graphs [1]. In a recent work, the first author and Seymour [1] showed that a result similar to
Shannon’s can be proved for all claw-free graphs, namely x(G) < 2w(G), and the constant 2
is best possible.

In this paper, we consider a class of graphs that is a proper subset of all claw-free graphs
and a proper superset of line graphs, the set referred to as quasi-line graphs. A graph G is a
quasi-line graph if for every vertex v, the set of neighbors of v can be expressed as the union
of two cliques. Note that this is a partition of the vertex set of the neighborhood of G. The
main result of this paper is the following:

Theorem 1.1. Let G be a quasi-line graph. Then x(G) < 3w(G).

In fact, we show that the bound in the theorem is tight. Our proof of Theorem 1.1
uses a structure theorem for quasi-line graphs that appears in [1]. The structure theorem
asserts that every quasi-line graph belongs to one of two classes: the first is the class of the so-
called “fuzzy circular interval graphs”, and the second is “compositions of fuzzy linear interval
strips”, which is a generalization of line graphs. The word “fuzzy” in both cases refers to the
presence of a certain structure in a graph, that is called a “non-trivial homogeneous pair”
(we give precise definitions in the next section). The remainder of this paper is organized
as follows. In Section 2 we state the structure theorem for quasi-line graphs and all of the
necessary definitions. In Section 3 and Section 4 we prove Theorem 1.1 for circular interval
graphs and compositions of linear interval strips, respectively (those are precisely the quasi-
line graphs that have no non-trivial homogeneous pairs). In Section 5 we use the results of
the two previous sections and deal with non-trivial homogeneous pairs, to complete the proof
of Theorem 1.1.

2 Structure theorem for quasi-line graphs

We start this section by introducing some definitions from [2] and [1] and then state the
structure theorem of [1].

Let ¥ be a circle and let Fi,..., F} be subsets of ¥, each homeomorphic to the closed
interval [0, 1]. Let V be a finite subset of 3, and let G be the graph with vertex set V' in which
v1, V9 € V are adjacent if and only if vy, v € F; for some 7. Such a graph is called a circular
interval graph. A linear interval graph is constructed in the same manner except we take X
to be a line instead of a circle. It is easy to see that all linear interval graphs are also circular
interval graphs.

The structure theorem that we use states that there are two types of quasi-line graphs.
The first subclass is a generalization of the class of circular interval graphs and we proceed to
describe it below. Once again, we start with a few definitions.

Let X,Y be two subsets of V(G) with X NY = (). We say that X and Y are complete
to each other if every vertex of X is adjacent to every vertex of Y, and we say that they are



anticomplete if no vertex of X is adjacent to a member of Y. Similarly, if A C V(G) and
v e V(G)\ A, then v is A-complete if it is adjacent to every vertex in A, and A-anticomplete
if it has no neighbor in A. A pair A, B of disjoint subsets of V(G) is called a homogeneous
pair in G if for every vertex v € V(G) \ (AU B), v is either A-complete or A-anticomplete
and either B-complete or B-anticomplete.

Let G be a circular interval graph with V(G) = {vy,...,v,} in order clockwise. An edge
joining v; to vy, is called a mazimal edge if v; and vy, are ends of every interval including both
of them. In this case v; and v, can be replaced by two cliques A and B, such that every
member of A has the same neighbors as v; and every member of B has the same neighbors as
v in V(G) \ {v;, v}, and the edges between A and B are arbitrary. The pair (A, B) is then
a homogeneous pair of cliques. Let H be a graph obtained from a circular interval graph by
choosing a matching of maximal edges and replacing each of them by a homogeneous pair of
cliques as described above. Then H is called a fuzzy circular interval graph.

Let (A, B) be a homogeneous pair of cliques in a circular interval graph. We say that
(A, B) is non-trivial if there exists an induced 4-cycle in G with exactly two vertices in A and
exactly two vertices in B. It is easy to see that a fuzzy circular interval graph is not a circular
interval graph if and only if it has a non-trivial homogeneous pair.

We proceed with the construction of graphs that belong to the second subclass of quasi-line
graphs. A vertex v € V(G) is simplicial if the set of neighbors of v is a clique. A claw-free
graph S together with two distinguished simplicial vertices a, b is called a strip (S, a,b), with
ends a and b. If S is a linear interval graph with V(S) = {vy,...,v,} in order and with n > 1,
then vy, v, are simplicial, and so (.S, vy, v,) is a strip, called a linear interval strip. Since linear
interval graphs are also circular interval graphs we can define fuzzy linear interval strips by
introducing homogeneous pairs of cliques in the same manner as before.

Let (S, a,b) and (S',a’,V') be two strips . Then they can be composed as follows. Let A, B
be the set of neighbors of a,b in S respectively, and define A’, B’ analogously. Consider the
disjoint union of S'\ {a, b} and S\ {a’, '}, and make A complete to A" and B complete to B'.

This method of composing two strips described above can be used as follows. Let Sy be
a graph which is the disjoint union of complete graphs with [V (S)| = 2n. We arrange the
vertices into pairs (ay, by),. .., (an,b,). For i =1,...,n, let (S!, a,b;) be a strip and let S; be
the graph obtained by composing (S;_1, a;,b;) and (S}, a}, ;). The resulting graph S,, is then
called a composition of the strips (5%, al, tf).

We are finally ready to state the structure theorem for quasi-line graphs [1] that we will
use to prove our main results.

Theorem 2.1. Let G be a connected, quasi-line graph. Then G is either a fuzzy circular
interval graph or a composition of fuzzy linear interval strips.

3 Circular interval graphs

We begin the proof of Theorem 1.1 by proving the result for circular interval graphs.



Theorem 3.1. If G is a circular interval graph then x(G) < 3w(G).

Proof. Let V(G) = {vy,vs,...,v,} in order clockwise, and let n = k (mod w), where 0 < k <
w and w = w(G). The proof breaks into three cases depending on the values of k and n. Note
that in order for a coloring to be proper it suffices to show that every consecutive w vertices
on the circle have distinct colors. For an integer 4, let (i) = ¢ (mod w) if 7 is not divisible by
w, and let r(i) = w otherwise.

(1) If £ < %, then the theorem holds.
Let the function ¢ : V(G) — N be defined as

c\v;) = wH+i—-—nm+k for n—k<i<n

It can be easily verified that any w consecutive vertices on the circle all have distinct colors.

So ¢ describes a proper coloring of G and since & < § we have used no more than 39 colors.

2
This proves (1).
(2) If k> % and n > 2w, then the theorem holds.

We define the function ¢ : V(G) — N as

i for i<k |2
c(v;)=¢ r(i—k+[%]) for k+ ¥ <i<n—[¥]
i+ %] -n for i>n—|%]

Since n > 2w, it follows that
(=5 -+ 5 2n—k-w>w

Therefore, every w consecutive vertices on the circle all have distinct colors. Once again, we

have used no more than 2 colors so this proves (2).

It remains to prove that if n < 2w then the theorem holds. Let v € V(G) and suppose
that |Ng(v)| < 3w. Inductively, G \ {v} can be properly colored with 2w(G \ {v}) colors.
Since w(G \ {v}) < w, this coloring of G\ {v} can be extended to a proper coloring of G using
no more than %w colors.

Therefore, we may assume that |[Ng(v)| > 3w. Since the set of vertices S = Ne(v) U {v}
can be expressed as the union of two cliques, the complement of the graph G|S is bipartite.
Therefore, G|S is perfect as shown in [3] and so can be properly colored using at most w
colors. Furthermore, since n < 2w it follows that the set of non-neighbors of v has no more

than $ elements and hence can be properly colored using no more than % colors. Therefore
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G can be properly colored using no more than 2w colors. This completes the proof of the

2
theorem.
O

4 Compositions of linear interval strips

In this section we prove Theorem 1.1 for compositions of linear interval strips (meaning that
every strip is a linear interval graph rather than a fuzzy linear interval graph). We call a strip
that is also a line graph a line graph strip. We begin with the following two lemmas.

Lemma 4.1. The composition of two line graph strips is a line graph.

Proof. Let (S1,a1,b1) and (S, as, by) be two line graph strips, let Ry, Ry be graphs such that
L(Ry) = S; and L(Ry) = Sy. Suppose that a; = ujv; € E(R;). Let A be the set of edges of
Ry incident with both uq,v1, let B be the set of edges of Ry incident with u; but not with vy,
and let C' be the set of edges of R; incident with v; but not with u;.

Since the set of neighbors of a; is a clique, every two edges in A U B U C share a vertex.
Suppose that both B and C' are non-empty, then there exists a vertex x such that every edge
in BUC is incident with . Let R} be the graph obtained from R; by deleting all the edges of
B and adding |B| new edges between v; and x. Then Sy = L(R)). We may therefore assume
that B is empty.

We proceed to compose the graphs R; and Ry as follows. Let a; = uv; € E(R;), and let
b; = s;t; € E(R;) . The argument of the previous paragraph shows that we may assume that
every edge of R; incident with w; is also incident with v;, and every edge of R; incident with
s; is also incident with ¢;. Let R, = R; \ {a;,b;} and let R be the graph obtained from the
disjoint union of R; and R, by identifying v; with vy and t; with t5. Then the composition of
the strips (S, a1,b1) and (S, as, by) is the line graph of R, and this completes the proof. [

Before we proceed with the proof of the second lemma, we need to introduce one more
concept. Distinct vertices u,v of a graph G are called twins if they are adjacent and have
exactly the same neighbors in V(G) \ {u,v}. A set of twins in G is a set of vertices all of
which are pairwise twins. If S is a set of twins in G, by reducing S we mean deleting all but
one of the elements of S. Notice that if G = L(H) we may assume that every pair of twins
in GG is a pair of parallel edges in H. Now reducing all twins in G is equivalent to deleting all
parallel edges in H. Hence, after such a reduction, G still remains a line graph.

Lemma 4.2. Let (S,a,b) be a linear interval strip. Let A = Ng(a) and B = Ng(b). Then
there exists a graph R that with the following properties:

1. (R,z,y) is a line graph strip, |Ng(z)| = |A|, and |Ngr(y)| = | B|
2. w(R) <w(9)



E=L(F)

Figure 1:

3. For every proper coloring cg of R there exists a proper coloring cs of S with at most
w(S) colors such that cr(Ng(x)) = cs(A) and cr(Nr(y)) = cs(B)

Proof. First, note that S can be properly colored using at most w(S) colors since S is a linear
interval graph, and therefore has at least one simplicial vertex. Let ¢ be a proper coloring
of S with at most w(.S) colors. By permuting the colors of ¢, we may assume that for some
1 <m <w(S),eachof 1,...,mappears in both A and B, and each of m+1,...,w(S) appears
in at most one of A, B. Let A’, B’ be the subsets of A, B, respectively, such that the elements
of B" and the elements of A" have colors 1,...,m. Let A” denote the set A\ A" and B” denote
the set B\ B'.

Let R be a graph with V(R) = {z,y} U K U L U M such that |K| = m, |L| = |A”|, and
|M| = |B"|, KULUM is a clique, x is K U L-complete, y is K U M-complete, and there are
no other edges in the graph. We claim that R satisfies (1), (2), and (3).

To prove (1), we show that (R,z,y) is a line graph strip. Since Ng(z) = K U L and
Ngr(y) = K UM are both cliques, it follows that R is a strip. To show that R is a line graph
we notice that by reducing all maximal sets of twins in R, we obtain a graph that is an induced
subgraph of the graph E in Figure 1. Since E is the line graph of the graph F' shown in the
same figure, (1) follows.

To show that (2) holds we notice that the maximal cliques of R are ¢y = K U L U {z},
Qg =KUMU {y} and Qg = KULUM. But |Q1| S |Q3| and |Q2| S |Q3|; and |Q3| =
|A| + |B| — m < w(S). Hence, w(R) < w(S).

To prove (3), let cg be a proper coloring of R. Since {xr} UK UL, {y}UKUM, KULUM
are cliques it follows that [cgp({z} UK UL)| = m+|A"|+1, [cr({y} UK UM)| = m+|B"|+1,
and that cgr(K), cr(L),cr(M) are pairwise disjoint. We can therefore permute the colors of ¢
to obtain a coloring cg of S satisfying (3). This completes the proof of Lemma 4.2.

U

For a strip (S, a, b) we call a line graph strip (R, z,y) as in Lemma 4.2 the line graph image
of (S, a,b). We are now ready to prove the main result of this section.

Theorem 4.3. Let G be a connected, quasi-line graph that is a composition of linear interval
strips. Then x(G) < 3w(G).



Proof. Let n > 0 be an integer and let S be a family of strips (5;, a;, b;) with 1 < i < n such
that G is a composition of the members of S. Let & be the number of members of S which
are not line graph strips. The proof is by induction on k.

If £ = 0 the result follows from Lemma 4.1 and Shannon’s theorem. So we may assume
k > 0 and (S1,a1,b1) is not a line graph strip. Let (R,z,y) be the line graph image of
(S1,a1,b1). Let H be the graph obtained from G by deleting V' (.S7) and adding two new vertices
a, b, such that a is complete to Ng(ay), b is complete to Ng(b;), and there are no other edges
in H incident with a or b. Then (H, a, b) is a strip. Let F' be the composition of (H, a,b) with
(R,x,y). Since by Lemma 4.2 |Ng(z)| = |Ns,(a1)|, |Nr(y)| = |Ng, (b1)], and w(R) < w(S1),
it follows that w(F) < w(G). Since F is a composition of linear interval strips at most
k — 1 of which are not line graph strips, it follows inductively that x(F) < 3w(F) < 3w(G).
Let ¢y be a proper coloring of H with at most %w(H ) colors. By Lemma 4.2, there exists
a proper coloring cg, of S; with < w(S;) colors such that ¢y (Ng(z)) = cs,(Ng,(a1)) and
ca(Ngr(y)) = cs,(Ng, (b1)). Let ¢ be a coloring of G defined as follows: for v € V(G) NV (F)
let cq(v) = cy(v) and for v € V(G) NV (Sy) let cg(v) = cs,(v). Then c¢g is a proper coloring
of G with at most 3w(G) colors. This completes the proof of Theorem 4.3. O

5 Quasi-line graphs with non-trivial homogeneous pairs

Theorems 3.1 and 4.3 establish the result of 1.1 for circular interval graphs and graphs that are
compositions of liner interval strips. In order to complete the proof of Theorem 1.1, we need
to handle non-trivial homogeneous pairs in quasi-line graphs. To do that, we use induction
on the number of non-trivial homogeneous pairs in a graph, and theorems 3.1 and 4.3 serve
as the base case of the induction.

Lemma 5.1. Let G be a quasi-line graph and let (A, B) be a non-trivial homogeneous pair of
cliques. Then there exists a graph H with the following properties:

1. H is a quasi-line graph with one fewer non-trivial homogeneous pair than G.
2. w(H) <w(G).

3. For every proper coloring of H there is a proper coloring of G with the same number of
colors.

Proof. By Theorem 2.1 G is either a fuzzy circular interval graph or a composition of fuzzy
linear interval strips; and in the latter case, A and B are included in the vertex set of some strip,
which is a fuzzy linear interval graph. Let C be the set of vertices of G that are A-complete
and B-complete, D be the set of vertices of G that are A-complete and B-anticomplete, E
the set of vertices of G that are A-anticomplete and B-complete, and F' the set of vertices of
G that are A-anticomplete and B-anticomplete.

Since the elements of C' are complete to both A and B, it follows from the structure of
fuzzy circular interval graphs and fuzzy linear interval strips that C' is a clique. Moreover,
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AUC is a clique and so X = AU B U C is the union of two cliques. This means that the
complement of G|X is bipartite, and so G|X is perfect as shown in [3]. Let ¢ be a proper
coloring of G|X with w(G|X) colors. This implies that for some 1 < m < w(G|X), we may
assume by permuting the colors, that each of the colors 1,...,m appear in both A, B and
each of the colors m+1, ..., w(G|X) appear in at most one of A, B. Let A’, B’ be the subsets
of A, B, respectively, so that the elements of A’ and the elements of B’ have colors 1,...,m.

We construct the graph H as follows. Let V(H) = V(G) and E(H) = E\UE,;UE;UE,UE}
where

E, = EG|(CUDUEUF))

Ey = {e=w|u#vandue A,v e Aoru € B,v € B}
Fy = {e=w|ue A\A,veBorue B\ B',ve A}
Ey, = {e=wl|ueAveCuUD}

E; = {e=w|ue Bve CUE}

We claim that for every v € V(H), Ny (v) is the union of two cliques in H. If v € CUFEUF,
then G|Ng(v) = H|Ny(v), and therefore the Ny (v) is the union of two cliques in H, and the
claim holds. If v € A, then Ny(v) C AUC U DU B, and since both AU D and BU C are
cliques, the claim follows. Similarly, the claim holds for v € B, and so we may assume that
v € C. Since (A, B) is a non-trivial homogeneous pair in G, there exist vertices a € A and
b € B that are non-adjacent in GG. Since a, b, f are not three pairwise non-adjacent vertices
in Ng(v) for any f € F, it follows that v is anticomplete to F' in G, and therefore in H. Let
D" = Ng(v) N D and E' = Ng(v) N E. Then, since C'is a clique,

Ng(v) = Ng(v) = AUBU(C\ {v})UD'UEFE"

If some vertex ¢ € C' has both a non-neighbor d € D’ and a non-neighbor e € E’, then ¢, d, e
are three pairwise non-adjacent vertices in Ng(v), contrary to the fact that G is a quasi-line
graph. Therefore, every vertex of C is either complete to D" or to E’. Let C; be the vertices
of C' that are complete to D', let Cy = C'\ (C; U {v}); and let K1 = AU D' U Cy and
Ky = BUE'UCs. Then both K; and K are cliques in both H and G, and Ny (v) = K7 U K.
This completes the proof of the claim.

The claim in the previous paragraph implies that H is a quasi-line graph. However, (A, B)
is no longer a non-trivial homogeneous pair. Hence, H has the same non-trivial homogeneous
pairs as G except (A, B), and (1) holds.

To verify (2) we just need to check that the edges of H that were not present in G' do not
increase the size of the maximum clique. The only such edges are those between A\ A’ and B
and between B\ B’ and A, which create the new cliques AUCU(B\ B’) and BUCU(A\ A").
But both of these cliques have at most w(G) members since they were colored using no more
than w(G|X) < w(G) colors. Hence w(H) < w(G).

Finally we need to verify that every proper coloring of H can be used to obtain a proper
coloring of G using the same number of colors. Let ¢y be a coloring of H. The only edges
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that are present in GG and not present in H are those between the members of A’ and the
members of B’. Recall that these two sets were chosen so that G|(A” U B’) can be properly
colored with m = |A’| = |B’| colors. Since A" and B’ are both cliques, it follows that every
proper coloring of H|(A"U B’), and in particular ¢y, must use at least m colors. Also, since
permuting colors between the members of A’ or B’ does not affect the coloring of the rest of
the graph, we can permute the colors of ¢ that appear on A’U B’ so that it becomes a proper
coloring of G|(A" U B’). Keeping the colors of the vertices of V(G) \ (A’ U B’) unchanged, we
obtain a proper coloring of GG, with the same number of colors as used by cg. Thus (3) holds
and this completes the proof of the lemma. O

Now we are ready to prove the main theorem.

Proof of Theorem 1.1. Let G be a quasi-line graph. The proof is by induction on the number
of non-trivial homogeneous pairs in G. We may assume that G is connected. If G has no
non-trivial homogeneous pairs then, by theorem 2.1, GG is either a circular interval graphs, or a
composition of liner interval strips, and the result follows from Theorem 3.1 and Theorem 4.3.
Otherwise, let (A, B) be a non-trivial homogeneous pair in G. Let H be a graph as in
Lemma 5.1. Inductively, since H has one fewer non-trivial homogeneous pair than G, H
can be properly colored with at most %w(H ) colors. It now follows from Lemma 5.1 that
w(H) < w(G) and that G can be properly colored with at most 3w(H) colors. Therefore,
X(G) < 3w(G). This completes the proof. O

Finally, we provide an infinite family of quasi-line graphs for which the bound in Theo-
rem 1.1 is tight. Let £ € N be even and let G be a circular interval graph with |V (G)| = 3k—1,
such that for every k consecutive vertices on the circle there is an interval containing all of
these vertices and no others. Then it is easy to verify that w(G) = k. Furthermore, let ¢ be
a proper coloring of G using m colors. Notice that for every three vertices of G, at least two
of them are less than w(G) — 1 vertices apart on the circle, and therefore lie in some com-
mon interval and are adjacent. Hence, no three vertices can have the same color. Therefore,
m > [ = [34,(@) — 1] and so x(G) > 3w(G). Then by Theorem 1.1 x(G) = 3w(Q).

2 2 2 2
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