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Abstract

Given k pairs of vertices (s;,t;) (1 <1i < k) of a digraph G, how can we test whether there exist k
vertex-disjoint directed paths from s; to t; for 1 < ¢ < k7 This is NP-complete in general digraphs,
even for k = 2 [2], but for k = 2 there is a polynomial-time algorithm when G is a tournament (or
more generally, a semicomplete digraph), due to Bang-Jensen and Thomassen [1]. Here we prove that
for all fixed k there is a polynomial-time algorithm to solve the problem when G is semicomplete,
and indeed for a much more general class of digraphs.



1 Introduction

Let sq,t1,..., sk, tx be vertices of a graph or digraph G. The k wvertex-disjoint paths problem is
to determine whether there exist vertex-disjoint paths Pp,..., Py (directed paths, in the case of a
digraph) such that P; is from s; to t; for 1 < ¢ < k. For undirected graphs, this problem is solvable
in polynomial time for all fixed k; this was one of the highlights of the Graph Minors project of
Robertson and Seymour [4]. The directed version is therefore a natural and important question, but
it was shown by Fortune, Hopcroft and Wyllie [2] that, without further restrictions on the input G,
this problem is NP-complete for digraphs, even for k = 2. This motivates the study of subclasses of
digraphs for which the problem is polynomial-time solvable.

In this paper, all graphs and digraphs are finite, and without loops or parallel edges; thus if u, v
are distinct vertices of a digraph then there do not exist two edges both from u to v, although there
may be edges uv and vu. Also, by a “path” in a digraph we always mean a directed path. A digraph
is a tournament if for every pair of distinct vertices u, v, exactly one of uv,vu is an edge; and a
digraph is semicomplete if for all distinct u,v, at least one of wv,vu is an edge. It was shown by
Bang-Jensen and Thomassen [1] that

e the k vertex-disjoint paths problem (for digraphs) is NP-complete if k is not fixed, even when
G is a tournament;

e the two vertex-disjoint paths problem is solvable in polynomial time if G is semicomplete.

We shall show:

1.1 For all fired k > 0, the k vertex-disjoint paths problem is solvable in polynomial time if G is
semicomplete.

In fact we will prove a result for a wider class of digraphs, that we define next. Let P be a path of
a digraph G, with vertices v1,...,v, in order. We say P is minimal if j < i+ 1 for every edge v;v; of
G with 1 <14,7 <n. Let d > 1; we say that a digraph G is d-path-dominant if for every minimal path
P of G with d vertices, every vertex of G either belongs to V(P) or has an out-neighbour in V' (P) or
has an in-neighbour in V' (P). Thus a digraph is 1-path-dominant if and only if it is semicomplete;
and 2-path-dominant if and only if its underlying simple graph is complete multipartite. We will
show:

1.2 For all fizred d,k > 1, the k vertex-disjoint paths problem is solvable in polynomial time if G is
d-path-dominant.

We stress here that we are looking for vertex-disjoint paths. One can ask the same for edge-
disjoint paths, and that question has also been recently solved for tournaments, and indeed for
digraphs with bounded independence number [3], but the solution is completely different. We do
not know a polynomial-time algorithm for the two vertex-disjoint paths problem for digraphs with
independence number two.

We can actually solve a more general question, as follows.

1.3 For all d,k > 1, there is a polynomial-time algorithm as follows:



e Input: A d-path-dominant digraph G, vertices s1,t1,..., Sk, tr of G, and integers x1,...,xy >
1.

e Output: Decides whether there exist pairwise vertex-disjoint directed paths Py,...,P. of G
such that for 1 <i <k, P; is from s; to t; and has at most x; vertices.

Let s1,t1,..., Sk, ti be vertices of a digraph G. We call (G, s1,t1,...,Sk,tx) a problem instance.
A linkage in a digraph G is a sequence L = (P, : 1 < ¢ < k) of vertex-disjoint paths, and L is
a linkage for a problem instance (G, sy, t1,...,s t;) if P; is from s; to ¢; for each i. (With a slight
abuse of notation, we shall call k£ the “cardinality” of L, and Py, ..., P its “members”. Also, every
subsequence of (P; : 1 <1i < k) is a linkage L', and we say L “includes” L. ) If z = (x1,..., ) is
a k-tuple of integers, we say a linkage (P; : 1 <14 < k) is an x-linkage if each P; has x; vertices. We
say a k-tuple of integers x = (x1,...,xk) is a quality of (G, s1,t1,..., sk, t) if there is an x-linkage
for (G,s1,t1,...,stg). o= (x1,...,2) and y = (y1,...,Yk), wesay x <y if x; <y; for 1 <i < k;
and z < y if ¢ <y and x # y. We say a quality z of (G, s1,t1,..., sk, tr) is key if there is no quality
y with y < z. Our main result is the following:

1.4 For all d, k, there is an algorithm as follows:
e Input: A problem instance (G, s1,t1,..., Sk, tx) where G is d-path-dominant.
e Output: The set of all key qualities of (G, s1,t1,..., Sk, tk).
e Running time: O(n') where t = 6k?d(k + d) + 13k.

The idea of the algorithm for 1.2 is easy described. We define an auxiliary digraph H with two
special vertices sg, tg, and prove that there is a path in H from sg to t( if and only if there is a linkage
for (G, s1,t1,...,5,t;). Thus to solve the problem of 1.2 it suffices to construct H in polynomial time.

The more general question of 1.4 is solved similarly, by assigning appropriate weights to the edges
of H.

2 A useful enumeration

If P is a path of a digraph G, its length is |E(P)| (every path has at least one vertex); and s(P), t(P)
denote the first and last vertices of P, respectively. If F' is a subdigraph of G, a vertex v of G\ V(F))
is F-outward if no vertex of F is adjacent from v in G; and F-inward if no vertex of F' is adjacent to
vin G. If F is a digraph and v € V(F'), F' \ v denotes the digraph obtained from F' by deleting v;
if X C V(F), F|X denotes the subdigraph of F' induced on X; and F'\ X denotes the subdigraph
obtained by deleting all vertices in X.

Now let L = (P; : 1 < i< k) be alinkage in G. We define V(L) to be V(P )U---UV(P). A
vertex v is an internal vertex of L if v € V(L), and v is not an end of any member of L. A linkage
L is internally disjoint from a linkage L’ if no internal vertex of L belongs to V(L’) (note that this
does not imply that L’ is internally disjoint from L); and we say that L, L’ are internally disjoint
if each of them is internally disjoint from the other (and thus all vertices in V(L) N V(L) must be
ends of paths in both L and L')

Let @, R be vertex-disjoint paths of a digraph G. A planar (Q, R)-matching is a linkage (M; :
1 < j <n) for some n > 0, such that



e My,..., M, each have either two or three vertices
o s(My),...,s(M,) are vertices of @, in order in @
o t(M),...,t(M,) are vertices of R, in order in R.

Fix d,k > 1, and let L = (Py,..., P;) be a linkage in a d-path-dominant digraph G. A subset
B C V(L) is said to be acceptable (for L) if

o for 1 < j < k, if uv is an edge of P; and v € B then v € B (and so Q); = P;|B and
R; = Pj|(V(G) \ B) are paths if they are non-null)

e for 1 <i,j <k, there is no planar (Q;, R;)-matching of cardinality (k — 1)d + k* 4 2 internally
disjoint from L.

Thus () and V(L) are acceptable.

2.1 Let (G,s1,t1,...,8k tk) be a problem instance, where G is d-path-dominant, let x be a key
quality, and let L = (P,..., Pg) be an z-linkage for (G, s1,t1,..., Sk, tr). Suppose that B C V(L) is
acceptable for L and B # V(L). Then there exists v € V(L) \ B such that B U {v} is acceptable for
L.

Proof. Let A=V(G)\ B. For 1 < j <k, let Q; = Pj|B and R; = Pj|A. Let gj,7; be the last
vertex of @); and the first vertex of R;, respectively (if they exist).

(1) For 1 < j < k, P;j is a minimal path of G. In particular, the only edge of G from V(Qj;)
to V(R;) (if there is one) is qjrj. Moreover, every three-vertex path from V(Q;) to V(R;) with
internal vertez in V(G) \ V(L) uses at least one of q;,r;. Consequently, there is no planar (Q;, R;)-
matching of cardinality three internally disjoint from L.

For suppose there is an edge uv of G such that u,v € V(P;) and u is before v in Pj, and there
is at least one vertex of P; between u and v. If we delete from P; the vertices of P; strictly between
u and v, and add the edge uv, we obtain a path from s; to ¢; disjoint from every member of L
except Pj, and with strictly fewer vertices than P;, contradicting that x is key. Thus P; is induced.
Similarly there is no three-vertex path from V(Q;) to V(R;) with internal vertex in V(G) \ V(L)
containing neither of ¢;j,7;. The final assertion follows. This proves (1).

From (1), the theorem holds if k¥ = 1, so we may assume that k > 2.

(2) We may assume that for all © € {1,...,k}, if R; is non-null then for some j € {1,...,k}
with j # i, there is a (Q;, Rj \ rj)-planar matching of cardinality (k — 1)d + k? internally disjoint
from L.

For suppose that some ¢ does not satisfy the statement of (2). Thus R; is non-null, and there
is no j as in (2). Since R; is non-null, it follows that r; exists. We may assume that B U {r;}
is not acceptable. Consequently, one of the two conditions in the definition of “acceptable” is not
satisfied by B U {r;}. The first is satisfied since r; is the first vertex of R;. Thus the second is



false, and so for some 4’,j € {1,...,k}, there is a planar (Py|(B U {r;}), Pj|(A \ {ri}))-matching of
cardinality (k — 1)d + k* + 2 internally disjoint from L. Since there is no planar (Q;, R;)-matching
of cardinality (k — 1)d + k? + 2 internally disjoint from L, and P;|(A \ {r;}) is a subpath of R;, it
follows that Py|(B U {r;}) # Qu, and so ¢ = i. Since only one vertex of P;|(B U {r;}) does not
belong to Q;, it follows that there is a planar (Q;, R; \ r;)-matching of cardinality (k—1)d+ k? inter-
nally disjoint from L. Since (k—1)d+k* > 4 (because k > 2), (1) implies that j # i. This proves (2).

(3) We may assume that for some p > 2, and for all i with 1 < i < p, there is a planar (Q;, Riy1 \
Tit1)-matching of cardinality (k —1)d+ k* internally disjoint from L, and there is a planar (Qp, R1 '\
r1)-matching of cardinality (k — 1)d + k? internally disjoint from L.

For by hypothesis, there exists i € {1, ..., k} such that R; is non-null. By repeated application of (2),
there exist distinct h1,...,h, € {1,...,k} such that for 1 < i < p there is a planar (Qp,, Rp,,, \"hi, . )-
matching of cardinality (k — 1)d + k? internally disjoint from L, where h,.1 = h1; and p > 2 by (1).
Without loss of generality, we may assume that h; =i for 1 < i < p. This proves (3).

Let us say a planar (Q, R)-matching is s-spaced if no subpath of @) with at most s vertices meets
more than one member of the matching, and no subpath of R with at most s vertices meets more
than one member of the matching.

(4) We may assume that for some p > 2, and for all i with 1 < i < p, there is a planar (Q;, Ri+1 \
Tit1)-matching L;, and there is a planar (Qp, R1 \ m1)-matching Ly, such that

o Li,...,L, all have cardinality k

o they are pairwise internally disjoint

e cach of L1, ..., L, is internally disjoint from L, and
e cach of Ly,...,Ly is (d+ 1)-spaced.

For let L. be a planar (Q;, Ri41 \ 7i+1)-matching of cardinality (k — 1)d + k? internally disjoint
from L, for 1 < i < p, and let L, be a planar (Qp, R1 \ r1)-matching of cardinality (k — 1)d + k2
internally disjoint from L. We choose L; C L/ inductively. Suppose that for some h < p, we have
chosen Lq,..., Ly, such that

e [y,..., Ly all have cardinality k

e they are pairwise internally disjoint

e each of Ly,..., Ly is internally disjoint from L, and
e cach of Ly,..., Ly is (d + 1)-spaced.

We define L, 11 as follows. The union of the sets of internal vertices of L1, ..., Ly has cardinality at
most hk < k(k — 1), and so L}, includes a planar (Qpn41, Rut2 \ 7hq2)-matching (or (Qp, Ry \ r1)-
matching, if h = p — 1) of cardinality (k—1)d +k* —k(k —1) = 1+ (k— 1)(d + 1), internally disjoint
from each of Lq,..., L. By ordering the members of this matching in their natural order, and taking



only the ith terms, where i = 1,1+ (d+1),1+2(d+ 1) ..., we obtain a (d 4+ 1)-spaced matching of
cardinality k. Let this be L. This completes the inductive definition of L1, ..., L,, and so proves

(4).

For1 <i<p,let L; = {Mil, .. ,Ml-k}, numbered in order; thus, if qlh and TZhH denote the first
and last vertices of Mih, then ¢}, ... ,qf are distinct and in order in @;, and ri+1,ri1+1, . ,rfﬂ are
distinct and in order in R;y1 (or in Ry if i = p). For 1 <i < pand 2 < h < k, let Q" be the
subpath of P, with d vertices and with last vertex qzh. (Thus qf-‘_l does not belong to Q? since L;
is d-spaced, and indeed (d + 1)-spaced.) Since P; and hence Q” is a minimal path of G, and G is
d-path-dominant, it follows that for 1 <7 < pand 2 < h <k, 7‘?‘1 is adjacent to or from some
vertex v of Qh Since 7‘ VL, (1) 1mphes that rh 1is not adjacent from any vertex of Q?; and so
there is a path R? ! from 7‘;‘ L to qZ of length at most d, such that all its internal vertices belong to
Q?. For1 <i<p,and 1 < h <k, let Szh be the path

h h+1
q@ Mz z+1 Rz-i—l qz—l—l ’

or
h Rh h+1

if ¢ = k; then Sl-h is a path from qlh to qffll (or to q{”’l if 1 = k), of length at most d + 2. Thus
(reading subscripts modulo p) concatenating Sil, SZ-2+1, . Sﬁk 5 and M "1 glves a path 7] from ql
to r¥ of length at most (k — 1)(d + 2) + 2. The subpath T; of P; from g} to 7’ has length at least
2(k —1)(d +1) + 2, since L;_1, L; are (d+ 1)-spaced and 7; is different from 7} and so T; has length
strictly greater than that of T/. Let P/ be obtained from P; by replacing the subpath T; by T}, for
1 <i<p,andlet Py = P, for p+1 <4 < k. Then {P{,..., P/} is a linkage for (G, s1,t1,...,s,tx),
contradicting that x is key. This proves 2.1. |

We deduce:

2.2 Let (G,s1,t1,...,8k tr) be a problem instance where G is d-path-dominant, let x be a key
quality, and let L = (Py, ..., P) be an z-linkage for (G, s1,t1,..., 8k t;). Let c = (k—1)d + k% + 2.
Then there is an enumeration (v1,...,v,) of V(L), such that

o for1 <h<kandl<p,q<n, ifvyu, is an edge of P, then p < q

o for1 < h,i <k and 0 < p < n, and every cd-vertex subpath Q of Py|{vi,...,vp}, and every
cd-vertex subpath R of Pil{vp11,...,vn}, there are at most c(2k + 1) vertices of G that are both
Q-outward and R-inward.

Proof. Since () is acceptable for L, by repeated application of 2.1 implies that there is an enumer-
ation (vy,...,v,) of V(L), such that {vi,...,v,} is acceptable for 0 < p < n. We claim that this
enumeration satisfies the theorem. For certainly the first bullet holds; we must check the second.
Thus, let 1 <p <n, and let B = {v1,...,v,} and A = {vp41,...,v,}. For 1 <h <k, let Q) = P,|B
and R, = Py|A. Now let 1 < h,i < k, and let @, R be cd-vertex subpaths of @y, R; respectively.
Let X be the set of all vertices of G that are both @-outward and R-inward. We must show that
| X| < e(2k+1).



(1) If x1,...,2. € X are distinct, then there exist yi,...,y. € V(Q), distinct and in order in
Q, such that y;x; is an edge for 1 < j < c.

For @ has cd vertices; let its vertices be ¢i,...,qcq in order. Let 1 < j < ¢. The subpath of @
induced on {gs : (j — 1)d < s < jd} has d vertices, and since () is a minimal path of G and G is
d-path-dominant, and X N V(Q) = 0, it follows that z; is in- or out-adjacent to a vertex of this
subpath, say y;. Since z; € X and hence is Q-outwards, it follows that x;y; is not an edge, and so
yjx; is an edge. But then yi,...,y. satisfy (1). This proves (1).

(2) The sets X \ V(L), X NV (Qg)

(1<g<k)and XNV(Ry) (1 < g < k) all have cardinal-
ity at most ¢ — 1, and hence | X| < (2k+1)(c—1

).

For suppose that there exist distinct z1,...,2. € X \ V(L). By (1) there exist distinct y1,...,y. €
V(Q), in order in @, such that y;z; is an edge for 1 < j < ¢; and similarly there exist z1,...,2. €
V(R), in order in R, such that z;z; is an edge for 1 < j < c¢. But then the ¢ paths y;-z;-z; (1 < j <¢)
form a planar matching from @, to R; of cardinality ¢, internally disjoint from L, contradicting that
{vi,...,vp} is acceptable. Thus |X \ V(L)| < ¢ — 1. Now suppose that for some g € {1,...,k},
there exist distinct z1,...,2. in X N V(R,), numbered in order in R,. Choose y1,...,y. as in (1);
then the paths y;z; (1 < j < ¢) form a planar matching from Qp to R4 of cardinality ¢, internally
disjoint from L, contradicting that {v1,...,v,} is acceptable. Thus [ XNV (Ry)| < ¢—1, and similarly
IXNV(Qg)| <c—1, for 1 < g <k. This proves (2).

From (2), the theorem follows. |

3 Confusion and the auxiliary digraph

Let (G, s1,t1,...,8k,tx) be a problem instance, and let L = (Mq,..., My) be a linkage in G' (not
necessarily a linkage for (G, s1,t1,..., sk, tx)). Let A(L) be the set of all vertices in V/(G)\ V(L) that
are M; \ t(M;)-inward for some j € {1,...,k} such that t(M;) # t; and let B(L) be the set of all
vertices in V(G) \ V(L) that are M; \ s(Mj)-outward for some j € {1,...,k} such that s(M;) # s;.
We call |A(L) N B(L)| the confusion of L ; and it is helpful to keep the confusion small, as we shall
see.

A (k,m,c)-rail in a problem instance (G, s1,t1,..., Sk, tx) is a triple (L, X,Y"), where

e Lisalinkage in G consisting of k paths (M, ..., M) (not necessarily a linkage for (G, s1,t1,. .., Sk, tx))

o for 1 < j < k, M; has at most 2m vertices, and if it has fewer than 2m vertices then M either
has first vertex s; or last vertex t;

L has confusion at most ¢

X,Y are disjoint subsets of V(G) \ V(L)
e X CA(L),Y CB(L), and X UY = A(L) U B(L).



3.1 Forallk,m,c >0, if (G,s1,t1,...,Sk, tr) is a problem instance and G has n vertices then there
are at most 2°n?*™(2km)* (k,m, c)-rails in (G,s1,t1,..., 8k tr). Moreover, for all fized k,m,c > 0,
there is an algorithm which, with input a problem instance (G, s1,t1,. .., Sk, tx), finds all its (k,m,c)-
rails in time O(n?™m+1) where n = |V(G)].

Proof. First, if L is a linkage with k& paths each with at most 2m vertices, then |V (L)| < 2km,
and so the number of such linkages is at most n?*™(2km)*, as is easily seen. Now fix a linkage L
satisfying the first two bullets in the definition of (k,m,c)-rail; let us count the number of pairs
(X,Y) such that (L, X,Y) is a (k,m, c)-rail. There are none unless |A(L) N B(L)| < ¢; and in that
case, there are at most 2¢ possibilities for the pair (X,Y"), since X consists of A(L) \ B(L) together
with some subset of A(L) N B(L), and Y = (A(L) U B(L)) \ X.

For the algorithm, we first find all linkages L with k paths each with at most 2m vertices, by
examining all ordered 2km-tuples of distinct vertices of G. For each such L, we check whether it
satisfies the first three bullets in the definition of (k,m,c)-rail (this takes time O(n)); if not we
discard it and otherwise we partition A(L) N B(L) into two subsets in all possible ways, and output
the corresponding (k,m, ¢)-rails. The result follows. |

Let (L, X,Y) and (L', X', Y”) be distinct (k,m,c)-rails in G, and let L = (Py,...,P;) and L' =
(Pf,...,P;). We write (L, X,Y) — (L', X", Y’) if the following hold:

o for 1 <i <k, P,UP/is a path from the first vertex of P; to the last vertex of P/
o for 1<i<k V(P)CV(P)UX,and V(B)C V(P))UY’, and
e X'CX,andY CY".

Let (G,s1,t1,...,8k tr) be a problem instance, and let 7 be the set of all (k,m,c)-rails in
(G, s1,t1,...,8k, tr). Take two new vertices sg,tp, and let us define a digraph H with vertex set
T U {so,to} as follows. Let u,v € V(H). If u,v € T are distinct, then uv € E(H) if and only if
u—v Ifu=spandveT,let v=(L,X,Y) where L = (M, ..., My); then uv € E(H) if and only
if M; has first vertex s; for all j € {1,...,k}. Similarly, if w € 7 and v = ¢y, let v = (L, X,Y") where
L = (M,...,My); then uv € E(H) if and only if M; has last vertex ¢; for all j € {1,...,k}. This
defines H. We call H the (k,m,c)-tracker of (G, s1,t1,..., Sk, tk).

We shall show that with an appropriate choice of m, ¢, when G is d-path-dominant we can reduce
our problems about linkages for (G, s1,t1,..., Sk, t;) to problems about paths from sy to tg in the
(k,m, c)-tracker. Let (G,s1,t1,...,Sk,tx) be a problem instance, let (Pp,...,P;) be a linkage for
(G, s1,t1,..., 8k tk), and let P be a path from sy to ¢y in the (k, m,c)-tracker. Let P have vertices

50, (L1, X1, Y1), .., (L, X0, Y, to

in order, and let L, = (Mp1,..., Myy) for 1 < p <n. We say that P traces (Pi,...,Py) if P; is the
union of M j,..., M, forall j € {1,... k}.

3.2 Let k,m,c > 0 be integers, and let (G, s1,t1,...,Sk,tx) be a problem instance, with (k,m,c)-
tracker H. Every path in H from sg to ty traces some linkage for (G, s1,t1,..., Sk, tk).



Proof. Let P be a path of H, with vertices
50, (L1, X1, Y1), .+, (Ln, X, Yn), to

in order, and let L, = (Mp1,...,Mpy) for 1 <p<mn. For 1 <p<nand1l<j <k, let P,; be the
union of My j,..., M, ;.

(1) For 1 <p<mnand 1l < j <k, every vertex of P, ; belongs to Y, UV (M, ;).

We prove this by induction on p. If p = 1 the claim is true, since then P; ; = M; ;. We assume then
that p > 1 and the result holds for p — 1. Let v € V/(P, ;). If v € V(M) ;) then the claim is true, so
we assume not. Since v € V(P,;), and P, ; = P,_1; UM, ;, it follows that v € V(P,_1;), and so
from the inductive hypothesis, v € Y,—1 UV (M,_1 ;). But since (Lp—1, Xp—1,Yp-1) = (Lp, Xp, Yp),
we deduce that Y,_1 C Y, and V(M,_; ;) C V(M, ;) UY,, and so v € V(M, ;) UY,. This proves
(1).

(2) For1<p<nandl <j<k, P,jis apath from s, to the last vertex of M, ;.

The claim holds if p = 1; so we assume that p > 1 and the claim holds for p — 1. Thus P,_; ;
is a path from s, to the last vertex of M,_, j; and also, M, _q ; UM, ; is a path, from the first vertex
of M,_1 ; to the last vertex of M), ;, since (Lp—1,Xp—1,Yp—1) — (Lp, X}, Yp). We claim that every
vertex v that belongs to both of P,_1 ;, M, ; also belongs to M,_; j. For suppose not; then by (1),
v € Y,y since v € V(Py_1;) \ V(Mp_1;), and v € X1, since v € V(M ;) \ V(M,_1 ;). This is
impossible since X,_1 NY,_; = (. This proves that every vertex that belongs to both of P,_; j, M, ;
also belongs to M,,_; ;. Since M,_1 ; is non-null, we deduce that P,_; ; U M, ; is a path from s, to
the last vertex of M, ;. This proves (2).

(3) For 1 <p <mn, the paths P, 1, ..., P, are pairwise vertex-disjoint.

For again we proceed by induction on p, and may assume that p > 1 and the result holds for
p — 1. Suppose that v belongs to two of the paths P,1,...,F,, say to P, and F,2. From
the inductive hypothesis, v does not belong to both of P,_1; and P,_12, so we may assume that
v e V(Mp,1). Now v ¢ V(M,2), because L, is a linkage, and so v € V(P,_12). From (1) we deduce
that v € Y, UV (Mp_12). But Y1 C Y, and V(M,_12) \ V(Mp,2) C Y, and so v € Y); but
Y, NV (L,) = 0 since (L, X,,Y,) is a (k,m, ¢)-rail, a contradiction. This proves (3).

From (2) and (3) we deduce that (P, 1,...,P,) is a linkage L for (G, s1,t1,. .., Sk, t). Thus P
traces L. This proves 3.2. |

The next result is a kind of partial converse; but we have to choose m, ¢ carefully, and we need
G to be d-path-dominant, and the proof only works for linkages that realize a key quality.

3.3 Let d,k > 1 be integers, and let

c = ((k—1)d+k +2)(2k + 1)k
m = ((k—1)d+k +2)d+1.



Let (G, s1,t1,...,Sk, tx) be a problem instance where G is d-path-dominant, let = be a key qual-
ity, and let (Py,...,Pg) be an x-linkage for (G,si,t1,...,Sk,tr). Let H be the (k,m,c)-tracker of
(G, s1,t1,. .., 8k, tg). Then there is a path in H from sq to ty tracing (Pi,..., P).

Proof. Let L = (Py,...,Pg). By 2.2, there is an enumeration (vy,...,v,) of V(L), such that
o for 1 <j<kand1l<p,q<n,if vy, is an edge of P; then p < ¢

o for 1 <i,j < kand 1l <p <mn, and every m-vertex subpath @Q of P;|{vi,...,v,}, and every
(m — 1)-vertex subpath R of Pj|{vpt1,...,v,}, there are at most ((k — 1)d + k? + 2)(2k + 1)
vertices of G that are both Q-outward and R-inward.

For each v € V(L), let ¢(v) = i where v = v;; thus ¢ is a bijection from V(L) onto {1,...,n}.

For all p € {0,...,n} and all j € {1,...,k}, if ¢(s;) < p, let @, ; be the maximal subpath of P;
with at most m vertices and with last vertex v,, where ¢ < p is maximum such that v, € V(P;). If
®(s5) > p, let Qp ; be the null digraph. Similarly, if ¢(t;) > p, let R, ; be the maximal subpath of P;
with at most m vertices and with first vertex v,, where r > p is minimum such that v, € V(F;). If
¢(t;j) < p, let R, ; be the null digraph. Thus, if @, ;, R, j are both non-null, then t(Q,, ;) and s(R, ;)
are consecutive in P;.

For all p € {0,...,n} and all j € {1,...,k}, let M), ; be the subpath of P; defined as follows: if
both @, ;, R, ; are non-null, M), ; consists of Q) ;U R,, ; together with the edge of P; from ¢(Q, ;) to
s(Rp, ), while if one of @y, ;, R, ; is null, M, ; equals the other (not both can be null). We see that,
for all p, j, M), ; has at most 2m vertices; and either it has exactly 2m, or its first vertex is s;, or its
last vertex is t;. For all p € {0,...,n}, let L, be the linkage (M, 1,..., Mp).

(1) For allp € {0,...,n}, L, has confusion at most c.

Let v € A(Ly) N B(Ly), where A(Ly), B(L,) are as in the definition of confusion. Thus there exists
Jj € {1,...,k} such that v is M, ; \ t(M, ;)-inward and t(M) ;) # t;. Since t(M, ;) # t;, it follows
from the choice of R, ; that R, ; has exactly m vertices. Moreover, v is R, ; \ t(R,, j)-inward, since v
is My, j\t(M,, ;)-inward. Similarly, there exists i € {1,...,k} such that vis Qp;\ s(Qp,:)-outward and
Qp.i has m vertices. For each choice of i, j € {1,...,k}, there are at most ((k — 1)d + k? +2)(2k + 1)
vertices that are both Q) ;\ s(Qp,;)-outward and R, ; \t(R, ;)-inward, from the choice of the enumera-
tion (vy,...,v,). Consequently in total there are only ¢ possibilities for v, and so |A(L,)NB(Ly)| < c.
This proves (1).

(2) For 0 < p < n and each v € V(L) \ V(Lp), if ¢(v) > p then v € A(L,), and if ¢(v) < p
then v € B(Lyp).

For let v € V(P;) say. Assume first that ¢(v) > p. Since v ¢ V(L,), it follows that M, ; does
not have last vertex ¢;; and since x is key, v is not adjacent from any vertex in M), ; except possibly
t(Mp, ;). Consequently v is My, ; \ t(M,, ;)-inward, and hence belongs to A(L;). Similarly, if ¢(v) < p
then v € B(L,). This proves (2).

For all p € {0,...,n}, define X,,Y), as follows:

Xy = {veV(D)\V(Ly) : 6(v) > p} U (A(Lp) \ B(Lyp))
Yy = (A(Lp) UB(Lyp)) \ Xp.



(3) For allp € {0,...,n}, (Lp, Xp,Y)) is a (k, m,c)-rail.

From (1), it suffices to check that
e X,,Y, are disjoint subsets of V(G) \ V(L,),
o X, CA(Ly), Y, C B(Ly), and
o X,UY, = A(L,) UB(L,).

Certainly they are disjoint, and have union A(L,) U B(L;,). Moreover, from (2), X, C
remains to show that Y, C B(Ly). Let v € Y},. Thus v € A(L,) UB(Lp); and v ¢ A(Lp) \ B(Lp),
since v ¢ X,,. Consequently v € B(L,,) as required. This proves (3).

(4) For allp€{0,...,n—1}, and all j € {1,...,k}, My ;U M,11; is a path from the first vertex of
M, ; to the last vertex of My ;.

For M, ;, M1 j are both subpaths of P;, and we may assume they are distinct, and so v,11 € V(FP;).
Hence, since m > 0, vp41 is the first vertex of R, ;, and the last vertex of Q11 ;; and so M, ;UM 1 ;
is a path. Moreover, it follows from the definition of the paths M, ; that M, ; U M, ; is a path
from the first vertex of M, ; to the last vertex of M, ;. This proves (4).

(5) For all p € {0,...,n —1}, and all j € {1,...,k}, A(Lp+1) € A(Lp) UV(L) and B(L,) C
B(Lpt+1) UV (L).

For let v € A(Lp4+1). We need to prove that v € A(L,)UV (L), and so we may assume that v ¢ V(L).
Choose j with 1 < j < k such that v is M1 ; \ t(Mp41,j)-inward and ¢(My,41,;) # tj. Consequently
t(Mp ;) # tj, and so if v is M, ; \ t(M, ;)-inward then v € A(L,) as required, so we may assume
that v is adjacent from some vertex of M, ;. In particular, M, ; # Mp;1; and so vp41 € V(P)),
and vp11 = s(Rp ;) = t(Qp+1,5)- Moreover, since s(Mp, ;) is the only vertex of M, ; that may not
belong to M1 j, we deduce that s(M, ;) is adjacent to v, and s(M, ;) does not belong to M1 ;.
Consequently s(Mp41;) # s;, and so Qp41,; has m vertices. Since v is Mpy1; \ t(Mp11,j)-inward,
and G is d-path-dominant, and M1 ; \ t(Mp41,;) is a minimal path of G, and it has m —1 > d+ 2
vertices, there is a subpath of M, ; \ t(Mp41,;) with d vertices, not containing the first or second
vertex of Mpy1; \ t(Mp41,5); and so v is adjacent to some vertex w of M1 \ t(Mpy1,;) different
from its first and second vertices. But v is adjacent from u, so by replacing the subpath of P; be-
tween u and w by the path u-v-w, we contradict that x is key. This proves that v € A(L,), and so
A(Lpt1) € A(Lp) UV(L). Similarly B(Ly) € B(Lp+1) U V(L). This proves (5).

(6) For allp e {0,...,n—1}, Xp41 € X, and Y, C Ypiq.

Let v € X, 11. Suppose first that v ¢ V(L). Then v € A(Lp41)\B(Lp+1). By (5), v € A(Lp) \ B(Ly),
and so v € X, as required. Thus we may assume that v € V(L). Since v € X,41, it follows that
either ¢(v) > p+ 1, or v ¢ B(Lpy1). If ¢(v) > p + 1, then since v ¢ V(Lyy1), it follows that
v ¢ V(Lp), and hence v € X, from the definition of X,. Thus we may assume that ¢(v) < p+1 and
v ¢ B(Lpy1), contrary to (2). This proves that X, C X,,.
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For the second inclusion, let v € Y,. Suppose first that v ¢ V(L). Then v € B(L,); and so
v € B(Lpy1) by (5), and hence v € Y, as required. Thus we may assume that v € V(L). Since
v €Y, it follows that ¢(v) < p. Now v ¢ V(L,), and therefore v ¢ V(L,11). But ¢(v) <p+1, and
so by (2), v € B(Lp+1), and consequently v ¢ X,,11. Thus v € Y41, as required. This proves that
Y, C Y, 11, and so proves (6).

(7) For allp € {0,...,n =1}, and all j € {1,...,k}, V(Ppi1,;) € V(Pp;) UX,, and V(P,;) C
V(Bpi14) U Ypta-

To prove the first assertion, let v € V/(Ppi1,5) \ V(Pp,;). It follows that ¢(v) > p; but then v € X,
from the definition of X,,. For the second assertion, let v € V(Pp ;) \ V(Pp+1,5); then ¢(v) <p+1,
and so v € B(Lp4+1) by (2). Consequently v ¢ X,,11, and so v € Y,y as required. This proves (7).

(8) For (lllp € {07 ceey 1}a (L;IHX]MYED) - (Lp—l-lep-i-le;H-l)‘

This is immediate from (4), (6) and (7).

Now (L1, X1,Y7),...,(Ly, Xy, Y,) are not necessarily all distinct. But we have:

(9) For all p,r with0 <p <r <mn, if (Lp, X}, Yp) = (Lr, X, Yy), then (Lpy, X, Y,) = (Lg, Xq,Yq) for
all g withp < g <r.

For (6) implies that X, C X,, and X, C X,, and so X, = X,, and similarly Y}, = Y,. If some
vertex v belongs to V(Lg) \ V(Lp), then by (7) and (6), v € X, = X, a contradiction. Similarly, if
v e V(Ly) \ V(Lg) then v € Y, =Y, a contradiction. This proves (9).

(10) For all j € {1,...,k}, Mo ; has first vertex sj, and M, ; has last vertex t;.

This follows from the definitions of My ; and M, ;.

We recall that H is the (k,m,c)-tracker, with two special vertices sg,tg. Now (10) implies that
so is adjacent to (L1, X1,Y1) in H, and (L,, X,,,Y,,) is adjacent to tg. From (8) and (9), there is a
subsequence of the sequence

S0, (L17X17 Y1)7 ey (LnaXn7Yn)at07

which lists the vertex set in order of a path of H from sg to tg. By 3.2, this path traces some linkage
L' for (G,s1,t1,..., sk tg). But forall j € {1,...,k}, My, Mi;,..., M,  are all subpaths of P;;
and since their union is a path from s; to t;, it follows that their union is P;. Hence L' = L. This
proves 3.3. |

4 The algorithm

Next, we need a polynomial algorithm to solve a kind of vector-valued shortest path problem. If
n > 0 is an integer, K,, denotes the set of all k-tuples (x1,...,xx) of nonnegative integers such that
T+ -+ xp < n.
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4.1 There is an algorithm as follows:

e Input: A digraph H, and distinct vertices so,tg € V(H); an integer n > 0; and for each edge
e of H, a member l(e) of K,,.

e Output: The set of all minimal (under component-wise domination) vectors I(P), over all
paths P of H from sq to to; where for a path P with edge set {ei1,... ey}, I(P) =1(e1)+-- -+
l(ep)-

e Running time: O(n*|V (H)||E(H)|).

Proof. Let Qo(so) = {(0,...,0)}, and let Qg(v) = () for every other vertex v of D. Inductively, for
1 <i<|V(H)|, let Q;(v) be the set of minimal vectors in K,, that either belong to Q;_1(v) or are
expressible in the form [(e) 4+ x for some edge e = uv of H and some = € Q;_1(u).

Now here is an algorithm for the problem:

e Fori=1,...,|V(H)| in turn, compute @Q;(v) for every v € V(H).
o Output Qv (m) (to)-

It is easy to check that this output is correct, and we leave it to the reader. To compute Q;(v)
at the ith step takes time O(n*)d~(v), where d~(v) is the in-degree of v in H (since K, has at most
(n + 1)* members), and so the ith step in total takes time O(n*|E(H)|). Thus the running time is
O(n*|V (H)|[E(H))). 1

Finally, we can give the main algorithm, 1.4, which we restate.
4.2 For all d,k > 1, there is an algorithm as follows:
e Input: A problem instance (G, s1,t1,..., Sk, tx) where G is d-path-dominant.
e Output: The set of all key qualities of (G, s1,t1,..., Sk, tk).
¢ Running time: O(n!) where t = 6k%d(k + d) + 13k.
Proof. Here is the algorithm.
e Compute the (k,m,c)-tracker H, where
c = ((k—1)d+E +2)(2k + 1)k

m = ((k—1)d+k+2)d+1.

e For each edge e = uv of H, define I(e) as follows:

—ifu=spand v=(L,X,Y) where L = (My,..., M), let l(e) = (|V(M1)|,..., |V (Mg)])
— ifu=(L,X,Y) where L = (My,..., M), and v = (L', X", Y’) where L' = (M{, ..., M]),
let I(e) = ([V(M)\V(Mi)],....|[V(M) \ V(Mg)))

—if v =ty let I(e) = (0,...,0).
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e Run the algorithm of 4.1 with input H, sg, tg, (.
e Output its output.

To see its correctness, we must check that every key quality is in the output, and everything in the
output is a key quality. We show first that every vector in the output is a quality. For let x be in
the output, and let P be a path in H from sy to ¢ty with {(P) = . By 3.2, P traces some linkage
L= (P,...,P) for (G,s1,t1,...,8k tx); and so (|V(P)|,|V(P)|,...,|V(Px)|) = I(P) = x. Hence
x is a quality.

Next, we show that every key quality is in the output. For let x be a key quality. Let L be an
a-linkage for (G, s1,t1,..., sk, tr). By 3.3, there is a path P of H from sq to tg tracing L; and hence
[(P) = z (where [(P) is defined as in the statement of 4.1). Thus the output of 4.1 contains a vector
dominated by x. But & does not dominate any other quality, since it is key; and since every member
of the output is a quality, it follows that z belongs to the output.

Third, we show that every member of the output is key. For let z be in the output, and suppose
it is not key. Hence x dominates some other quality, and hence dominates some other key quality y
say. Consequently ¥ is in the output. But no two members of the output dominate one another, a
contradiction. This proves that every member of the output is key, and so completes the proof that
the output of the algorithm is as claimed.

Finally, for the running time: by 3.1, we can find all (k, m, ¢)-rails in time O(n ; and since
there are at most O(n?*™) of them (by 3.1), we can compute H and the function [ in time O(n*™).
Then running 4.1 takes time O(n*|V(H)|?), and hence time at most O(nS*™+¥) Thus the total
running time is O(n%™+*). Since m = ((k — 1)d + k? + 2)d + 1, the running time is O(n') where

2km+1)

t = 6k(k — 1)d? + 6k(k* 4+ 2)d + Tk = 6k*d® + 6k3d + 12kd + Tk — 6kd> < 6k*d(k + d) + 13k

as claimed. This proves 4.2. |
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