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Abstract

Hadwiger’s conjecture states that every graph with chromatic number χ has a clique
minor of size χ. In this paper we prove a weakened version of this conjecture for the class
of claw-free graphs (graphs that do not have a vertex with three pairwise nonadjacent
neighbors). Our main result is that a claw-free graph with chromatic number χ has a
clique minor of size ⌈2

3χ⌉.

1 Introduction

In 1943, Hadwiger [9] conjectured that for every loopless graph G and every integer t ≥ 0,
either G is t-colorable, or G has a Kt+1-minor (we define colorability and minors later in
this section). Since then, Hadwiger’s conjecture has received a lot of attention and is now
considered by many to be one of the most interesting problems in graph theory. Currently,
Hadwiger’s conjecture has been proved for t ≤ 5 and remains open for t > 5. The cases where
t ≤ 3 were proved by Hadwiger in [9] and the case t = 4 was shown by Wagner [14] to be
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equivalent to the four color theorem [1], [2]. Finally, the case t = 5 was proved in 1993 by
Robertson, Seymour, and Thomas [13] using the four color theorem.

Hadwiger’s conjecture has also been proved for some special classes of graphs. The line
graph of a graph G, denoted by L(G), is a graph whose vertices are the edges of G, and if
u, v ∈ E(G) then uv ∈ E(L(G)) if and only if u and v share a vertex in G. Please note that in
this definition the graph G may have parallel edges. In 2004, Reed and Seymour [12] proved
Hadwiger’s conjecture for line graphs. A graph G is a quasi-line graph if for every vertex v,
the set of neighbors of v can be expressed as the union of two cliques. Note that this is a
partition of the vertex set of the neighborhood of v. It is easy to verify that the class of line
graphs is a proper subset of the class of quasi-line graphs. In a recent work [5], the authors
have shown that Hadwiger’s conjecture holds for quasi-line graphs.

In this paper we prove a weakened version of Hadwiger’s conjecture for a class of graphs
known as claw-free graphs, a proper superset of the class of quasi-line graphs. A graph is
claw-free if it does not contain a claw, that is a K1,3, as an induced subgraph. The main result
of this paper is the following:

1.1 Let G be a claw-free graph with chromatic number χ. Then G has a clique minor of size
⌈2

3
χ⌉.

Our proof of 1.1 uses a structure theorem for claw-free graphs that appears in [7]. We
describe this theorem in the next section. However, before we do that we must set up some
notation that will be useful in the rest of the paper.

Let G be a finite loopless graph. Denote the set of vertices of G by V (G) and the set of
edges of G by E(G). A k-coloring of G is a map c : V (G) → {1, . . . , k} such that for every
pair of adjacent vertices v, w ∈ V (G), c(v) 6= c(w). We may also refer to a k-coloring simply
as a “coloring”. The chromatic number of G, denoted by χ(G), is the smallest integer such
that there is a χ(G)-coloring of G.

For v ∈ V (G), we denote the set of neighbors of v in G by NG(v) (so v 6∈ NG(v)) and
for X ⊆ V (G), we denote the set (

⋃
x∈X NG(x)) \ X by NG(X). For X, Y ⊆ V (G), we say

that X dominates Y if Y ⊆ NG(X) ∪ X. For X ⊂ V (G), let G|X denote the subgraph of
G induced on X and let G \ X denote the subgraph of G induced on V (G) \ X. We define
a path P in G to be an induced connected subgraph of G such that either P is a one-vertex
graph, or two vertices of P have degree one and all the others have degree two. The length
of P is the number of edges in P . The complement of G is the graph G, on the same vertex
set as G, and such that two vertices are adjacent in G if and only if they are nonadjacent in
G. A clique in G is a set of vertices of G that are all pairwise adjacent. A stable set in G is
a clique in G. A triad is a stable set of size 3. The clique number of G, denoted by ω(G), is
the size of a maximum clique in G. The stability number of G, denoted by α(G), is the size
of a maximum stable set in G. The complete graph on t vertices, denoted by Kt, is a graph
such that |V (Kt)| = t and V (Kt) is a clique. A component is a maximal connected subgraph
of G; an anticomponent is a maximal connected subgraph of G. A set S ⊂ V (G) is a cutset
if G \ S has more components than G. We say that S is a clique cutset if it is both a clique
and a cutset.
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We say that two subgraphs S1, S2 of G are adjacent if there is an edge between V (S1)
and V (S2). A graph H is said to be a minor of a graph G if a graph isomorphic to H can
be obtained from a subgraph of G by contracting edges. Let H be a graph with V (H) =
{v1, . . . , vn}. Then H is a minor of G if and only if there are |V (H)| non-null connected
subgraphs A1, . . . , An of G, such that V (Ai) ∩ V (Aj) = ∅, and Ai and Aj are adjacent if vi is
adjacent to vj . We say that a graph G has a clique minor of size t if Kt is a minor of G.

This paper is organized as follows. In the next section we state (a corollary of) the structure
theorem for claw-free graphs that appears in [7]. Section 3 contains some lemmas about claw-
free graphs that are used in later proofs. In Section 4 we deal with a certain structure that
may be present in a claw-free graph (called a “non-reduced W-join”), and conclude that a
minimal counterexample to 1.1 admits no such structure. Sections 5—8 are devoted to dealing
with the different outcomes of the structure theorem of [7]; in each of the sections we prove
that a minimal counterexample to 1.1 does not fall into the particular class of graphs that
section is concerned with. Finally, in the end of Section 8, we collect all these results to
prove 1.1. Section 9 describes what we know about proving Hadwiger’s conjecture itself for
claw-free graphs (and not just the weakening 1.1); it also points out the difficult cases that
we were unable to deal with.

2 Structure theorem for claw-free graphs

The goal of this section is to state and describe the structure theorem for claw-free graphs
appearing in [7] (or, more precisely, its corollary). We begin with some definitions which are
modified from [7].

Let X, Y be two subsets of V (G) with X ∩ Y = ∅. We say that X and Y are complete
to each other if every vertex of X is adjacent to every vertex of Y , and we say that they
are anticomplete to each other if no vertex of X is adjacent to a member of Y . Similarly, if
A ⊆ V (G) and v ∈ V (G) \ A, then v is A-complete if v is adjacent to every vertex in A, and
A-anticomplete if v has no neighbor in A.

Let F ⊆ V (G)2 be a set of unordered pairs of distinct vertices of G such that every vertex
appears in at most one pair. Then H is a thickening of (G,F ) if for every v ∈ V (G) there
is a nonempty subset Xv ⊆ V (H), all pairwise disjoint and with union V (H) satisfying the
following:

• for each v ∈ V (G), Xv is a clique of H

• if u, v ∈ V (G) are adjacent in G and {u, v} 6∈ F , then Xu is complete to Xv in H

• if u, v ∈ V (G) are nonadjacent in G and {u, v} 6∈ F , then Xu is anticomplete to Xv in
H

• if {u, v} ∈ F then Xu is neither complete nor anticomplete to Xv in H .

Here are some classes of claw-free graphs that come up in the structure theorem.
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• Graphs from the icosahedron. The icosahedron is the unique planar graph with
twelve vertices all of degree five. Let it have vertices v0, v1, . . . , v11, where for 1 ≤ i ≤
10, vi is adjacent to vi+1, vi+2 (reading subscripts modulo 10), and v0 is adjacent to
v1, v3, v5, v7, v9, and v11 is adjacent to v2, v4, v6, v8, v10. Let this graph be G0. Let G1

be obtained from G0 by deleting v11 and let G2 be obtained from G1 by deleting v10.
Furthermore, let F ′ = {{v1, v4}, {v6, v9}} and let F ⊆ F ′.

Let G ∈ T1 if G is a thickening of (G0, ∅), (G1, ∅), or (G2, F ) for some F .

• Fuzzy long circular interval graphs. Let Σ be a circle, and let F1, . . . , Fk ⊆ Σ be
homeomorphic to the interval [0, 1], such that no two of F1, . . . , Fk share an endpoint,
and no three of them have union Σ. Now let V ⊆ Σ be finite, and let H be a graph with
vertex set V in which distinct u, v ∈ V are adjacent precisely if u, v ∈ Fi for some i.

Let F ′ ⊆ V (H)2 be the set of pairs {u, v} such that u, v are distinct endpoints of Fi

for some i. Let F ⊆ F ′ such that every vertex of G appears in at most one member
of F . Then G is a fuzzy long circular interval graph if for some such H and F , G is a
thickening of (H,F ).

Let G ∈ T2 if G is a fuzzy long circular interval graph.

• Fuzzy antiprismatic graphs. A graph K is antiprismatic if for every X ⊆ V (K)
with |X| = 4, X is not a claw and there are at least two pairs of vertices in X that are
adjacent. Let H be a graph and let F ⊆ V (H)2 be a set of pairs {u, v} such that every
vertex of H is in at most one member of F and

– no triad of H contains u and no triad of H contains v, or

– there is a triad of H containing both u and v and no other triad of H contains u
or v.

Thus F is the set of “changeable edges” discussed in [6]. The pair (H,F ) is antiprismatic
if for every F ′ ⊆ F , the graph obtained from H by changing the adjacency of all the
vertex pairs in F ′ is antiprismatic. We say that a graph G is a fuzzy antiprismatic graph
if G is a thickening of (H,F ) for some antiprismatic pair (H,F ).

Let G ∈ T3 if G is a fuzzy antiprismatic graph.

Next, we define what it means for a claw-free graph to admit a “strip-structure”.
A hypergraph H consists of a finite set V (H), a finite set E(H), and an incidence relation

between V (H) and E(H) (that is, a subset of V (H) × E(H)). For the statement of the
structure theorem, we only need hypergraphs such that every member of E(H) is incident
with either one or two members of V (H) (thus, these hypergraphs are graphs if we allow
“graphs” to have loops and parallel edges). For F ∈ E(H), F denotes the set of all h ∈ V (H)
incident with F .

Let G be a graph. A strip-structure (H, η) of G consists of a hypergraph H with E(H) 6= ∅,
and a function η mapping each F ∈ E(H) to a subset η(F ) of V (G), and mapping each pair
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(F, h) with F ∈ E(H) and h ∈ F to a subset η(F, h) of η(F ), satisfying the following condi-
tions.

(SD1) The sets η(F ) (F ∈ E(H)) are nonempty and pairwise disjoint and have union V (G).

(SD2) For each h ∈ V (H), the union of the sets η(F, h) for all F ∈ E(H) with h ∈ F is a
clique of G.

(SD3) For all distinct F1, F2 ∈ E(H), if v1 ∈ η(F1) and v2 ∈ η(F2) are adjacent in G, then
there exists h ∈ F1 ∩ F2 such that v1 ∈ η(F1, h) and v2 ∈ η(F2, h).

There is also a fourth condition, but it is technical and we will not need it in this paper.
Let (H, η) be a strip-structure of a graph G, and let F ∈ E(H), where F = {h1, . . . , hk}.

Let v1, . . . , vk be new vertices, and let J be the graph obtained from G|η(F ) by adding
v1, . . . , vk, where vi is complete to η(F, hi) and anticomplete to all other vertices of J . Then
(J, {v1, . . . , vk}) is called the strip of (H, η) at F . A strip-structure (H, η) is nontrivial if
|E(H)| ≥ 2.

Next, we list some strips (J, Z) that we will need for the structure theorem.

Z1: Let H be a graph with vertex set {v1, . . . , vn}, such that for 1 ≤ i < j < k ≤ n,
if vi, vk are adjacent then vj is adjacent to both vi, vk. Let n ≥ 2, let v1, vn be
nonadjacent, and let there be no vertex adjacent to both v1 and vn. Let F ′ ⊆
V (H)2 be the set of pairs {vi, vj} such that i < j, vi 6= v1 and vj 6= vn, vi is
nonadjacent to vj+1, and vj is nonadjacent to vi−1. Furthermore, let F ⊆ F ′

such that every vertex of H appears in at most one member of F . Then G is a
fuzzy linear interval graph if for some H and F , G is a thickening of (H,F ) with
|Xv1

| = |Xvn
| = 1. Let Xv1

= {u1}, Xvn
= {un}, and Z = {u1, un}.

Z2: Let n ≥ 2. Construct a graph H as follows. Its vertex set is the disjoint
union of three sets A,B,C, where |A| = |B| = n + 1 and |C| = n, say A =
{a0, a1, . . . , an}, B = {b0, b1, . . . , bn}, and C = {c1, . . . , cn}. Adjacency is as fol-
lows. A,B,C are cliques. For 0 ≤ i, j ≤ n with (i, j) 6= (0, 0), let ai, bj be adjacent
if and only if i = j, and for 1 ≤ i ≤ n and 0 ≤ j ≤ n, let ci be adjacent to aj, bj
if and only if i 6= j 6= 0. All other pairs not specified so far are nonadjacent. Now
let X ⊆ A ∪ B ∪ C \ {a0, b0} with |C \X| ≥ 2. Let H ′ = H \X and let G be a
thickening of (H ′, F ) with |Xa0

| = |Xb0| = 1 and F ⊆ V (H ′)2 (we will not specify
the possibilities for the set F because they are technical and we will not need them
in our proof). Let Xa0

= {a′0}, Xb0 = {b′0}, and Z = {a′0, b
′

0}.

Z3: Let H be a graph, and let h1-h2-h3-h4-h5 be the vertices of a path of H in order,
such that h1, h5 both have degree one in H , and every edge of H is incident with
one of h2, h3, h4. Let H ′ be obtained from the line graph of H by making the edges
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h2h3 and h3h4 of H (vertices of H ′) nonadjacent. Let F ⊆ {{h2h3, h3h4}} and
let G be a thickening of (H ′, F ) with |Xh1h2

| = |Xh4h5
| = 1. Let Xh1h2

= {u},
Xh4h5

= {v}, and Z = {u, v}.

Z4: Let H be the graph with vertex set {a0, a1, a2, b0, b1, b2, b3, c1, c2} and adjacency as
follows: {a0, a1, a2}, {b0, b1, b2, b3}, {a2, c1, c2}, and {a1, b1, c2} are cliques; b2, c1 are
adjacent; and all other pairs are nonadjacent. Let F = {{b2, c2}, {b3, c1}} and let
G be a thickening of (H,F ) with |Xa0

| = |Xb0| = 1. Let Xa0
= {a′0}, Xb0 = {b′0},

and Z = {a′0, b
′

0}.

Z5: Let H be the graph with vertex set {v1, . . . , v12}, and with adjacency as follows.
v1- · · · -v6-v1 is an induced cycle in G of length 6. Next, v7 is adjacent to v1, v2; v8 is
adjacent to v4, v5; v9 is adjacent to v6, v1, v2, v3; v10 is adjacent to v3, v4, v5, v6, v9;
v11 is adjacent to v3, v4, v6, v1, v9, v10; and v12 is adjacent to v2, v3, v5, v6, v9, v10.
No other pairs are adjacent. Let H ′ be a graph isomorphic to H \ X for some
X ⊆ {v11, v12} and let F ⊆ {{v9, v10}}. Let G be a thickening of (H ′, F ) with
|Xa0

| = |Xb0| = 1. Let Xv7
= {v′7}, Xv8

= {v′8}, and Z = {v′7, v
′

8}.

We are now ready to state a structure theorem for claw-free graphs that is an easy corollary
of the main result of [7].

2.1 Let G be a connected claw-free graph. Then either

• G is a member of T1 ∪ T2 ∪ T3, or

• V (G) is the union of three cliques, or

• G admits a nontrivial strip-structure such that for each strip (J, Z), 1 ≤ |Z| ≤ 2, and if
|Z| = 2, then either

– |V (J)| = 3 and Z is complete to V (J) \ Z, or

– (J, Z) is a member of Z1 ∪ Z2 ∪ Z3 ∪ Z4 ∪ Z5.

3 Tools

In this section we prove a few preliminary results about minimal counterexamples to our main
theorem. In particular, we prove that a minimal counterexample to 1.1 does not admit a
clique cutset and has χ(G) ≤ ⌈n

2
⌉. We also prove that if G is a minimal counterexample

to 1.1 and K1, K2 are two cliques in G, then there exist min(|K1|, |K2|) vertex disjoint paths
between K1 and K2 in G. We found these results to be useful tools in the proof of 1.1.

3.1 Let G be a graph which does not have a clique minor of size ⌈2
3
χ(G)⌉, and assume that

every proper induced subgraph G′ of G has a clique minor of size ⌈2
3
χ(G′)⌉. Then G does not

admit a clique cutset.
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Proof. Suppose that G admits a clique cutset S. Then there exists a partition (X1, X2) of
V (G)\V (S) such that there are no edges between X1 andX2. For i = 1, 2, let Gi = G|(Xi∪S).
We claim that max(χ(G1), χ(G2)) ≥ χ(G). For suppose not. Then there exist colorings of
G1, G2 with fewer than χ(G) colors. We can permute the colors of these colorings so that
they agree on S and from this obtain a coloring of G with fewer than χ(G) colors, which is a
contradiction. This proves the claim.

Without loss of generality, suppose that χ(G1) ≥ χ(G2). Since G1 is a proper induced
subgraph of G, it follows that G1 has a clique minor of size ⌈2

3
χ(G1)⌉ ≥ ⌈2

3
χ(G)⌉. Hence, G

has a clique minor of size ⌈2
3
χ(G)⌉, a contradiction. This proves 3.1.

3.2 Let G be a graph which does not have a clique minor of size ⌈2
3
χ(G)⌉, and assume

that every proper induced subgraph G′ of G has a clique minor of size ⌈2
3
χ(G′)⌉. Then G is

connected.

Proof. Suppose that G is not connected. Then there exists a partition (X1, X2) of V (G) such
that X1, X2 are nonempty and every member of X1 is adjacent to every member of X2 in G.
For i = 1, 2, let Gi = G|Xi. Then χ(G) = χ(G1) + χ(G2), and Gi has a clique minor of size
⌈2

3
χ(Gi)⌉ for i = 1, 2. But then G has a clique minor of size ⌈2

3
χ(G1)⌉+ ⌈2

3
χ(G2)⌉ ≥ ⌈2

3
χ(G)⌉,

a contradiction. This proves 3.2.

3.3 Let G be a claw-free graph with |V (G)| = n which does not have a clique minor of size
⌈2

3
χ(G)⌉, and assume that every proper induced subgraph G′ of G has a clique minor of size

⌈2
3
χ(G′)⌉. Then χ(G) ≤ ⌈n

2
⌉.

Proof. Suppose that χ(G) > ⌈n
2
⌉. It follows that G has no matching of size ⌊n

2
⌋. For a

set X, let o(X) be the number of odd components of G \ X. Let µ be the size of a largest
matching in G. Then by the Tutte-Berge formula [3], there exists a set X ⊆ V (G) such that
o(X) = |X|+n−2µ. Since there is no matching of size ⌊n

2
⌋ in G, it follows that n−2µ > 1 and

so o(X) > 1. Therefore, |X| > 0, since by 3.2 G is connected. We claim that α(G \X) = 2.
For suppose otherwise. Then some anticomponent, say C, of G contains a triad {v1, v2, v3}
(since anticomponents are complete to each other by definition). Let v4 ∈ V (G)\ (X ∪V (C)).
Then G|{v1, v2, v3, v4} is a claw, a contradiction. This proves the claim.

Let C1, . . . , Ck be the anticomponents of G \X. Then

χ(G \X) ≥
k∑

i=1

⌈
Ci

2
⌉ =

n− |X| + o(X)

2
=
n− |X| + |X| + n− 2µ

2
= n− µ ≥ χ(G).

But G \ X is a proper induced subgraph of G, and so G \ X has a clique minor of size
⌈2

3
χ(G \X)⌉ = ⌈2

3
χ(G)⌉ and consequently so does G. This proves 3.3.
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3.4 Let G be a claw-free graph which does not have a clique minor of size ⌈2
3
χ(G)⌉, and

subject to that with |V (G)| minimum. Let K1, K2 be two cliques in G. Then there exist
min(|K1|, |K2|) vertex disjoint paths between K1 and K2 in G.

Proof. Suppose not. Let S be a smallest cutset separating K1 and K2. Then Menger’s
Theorem [11] implies that |S| < min(|K1|, |K2|). It follows that there exists a partition
(X1, X2) of V (G) \ V (S) such that Ki ⊂ Xi ∪ S and there are no edges between X1 and
X2. Let Gi be the graph obtained from G|(Xi ∪ S) by adding an edge s1s2 for every pair of
nonadjacent vertices s1, s2 ∈ S.

(1) max(χ(G1), χ(G2)) ≥ χ(G).

Suppose not. Then there exist colorings of G1, G2 with fewer than χ(G) colors. We can
permute the colors of these colorings so that they agree on S and from this obtain a coloring
of G with fewer than χ(G) colors, which is a contradiction. This proves (1).

(2) For all v ∈ S, v has a neighbor in X1 and in X2.

Without loss of generality, suppose there exists v ∈ S with no neighbor in X1. Then if
v 6∈ K1 we can add v to X2 and obtain a smaller cutset, S \ {v}, separating K1 and K2,
contradicting the minimality of S. So v ∈ S ∩ K1, and since v is anticomplete to X1 and
K1 ⊆ X1 ∪ S, it follows that K1 ⊆ S. But |S| < min(|K1|, |K2|), which is a contradiction.
This proves (2).

(3) Gi is a claw-free graph for i = 1, 2.

For v ∈ Xi, v has the same neighbors in Gi as in G and the edges between the neighbors
in Gi are a superset of those in G. Hence, the neighbors of v in Gi still do not contain a
triad. For v ∈ S, we claim that the set of neighbors of v in Xi is a clique. For suppose v
has two neighbors x1, x

′

1 ∈ X1 that are nonadjacent to each other. By (2), v has a neighbor
x2 ∈ X2. But now x1, x

′

1, x2 are three pairwise nonadjacent vertices in the neighborhood
of v in G, contrary to the fact that G is a claw-free graph. This proves the claim. Since
NGi

(v) = (NG(v) ∩Xi) ∪ S, it follows that Gi is claw-free. This proves (3).

Without loss of generality, let χ(G1) ≥ χ(G2). Let S = {s1, . . . , sn} and let P =
{P1, . . . , Pn} be |S| vertex disjoint paths between S and K2 in G2 such that si ∈ Pi. Such
paths exist by Menger’s Theorem [11] and the minimality of S. Let φ : S → P be a bijection
defined by φ(si) = Pi.

By the minimality of |V (G)|, there exists a set S of ⌈2
3
χ(G1)⌉ connected disjoint subgraphs

of G1 that are pairwise adjacent in G1. For H ∈ S define ψ(H) by

ψ(H) = (H \ S) ∪
⋃

s∈V (H)∩S

φ(s).
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Then ψ(H) is a subgraph of G. Define Q = {ψ(H) : H ∈ S}. Then Q is a set of ⌈2
3
χ(G1)⌉ ≥

⌈2
3
χ(G)⌉ connected disjoint subgraphs of G. We claim that the members of Q are pairwise

adjacent. Suppose not. Choose Q1, Q2 ∈ Q that are not adjacent. For i = 1, 2, let Hi be the
member of S such that Qi = ψ(Hi). Since K2 is a clique in G, it follows that not both V (Q1)
and V (Q2) contain a vertex of K2, and therefore, not both V (H1) and V (H2) contain a vertex
of S. Since H1 and H2 are adjacent, we deduce that there exist h1 ∈ V (H1) and h2 ∈ V (H2)
such that not both h1, h2 are in S and h1h2 is an edge of G1. But now by the definition of ψ
and G1, h1 ∈ V (Q1), h2 ∈ V (Q2) and h1h2 is an edge of G, contrary to the fact that Q1 and
Q2 are nonadjacent. This proves the claim. Hence G has a clique minor of size ⌈2

3
χ(G)⌉, a

contradiction. This completes the proof of 3.4.

4 W-joins

Let (A,B) be disjoint subsets of V (G). The pair (A,B) is called a homogeneous pair in G

if A,B are cliques, and for every vertex v ∈ V (G) \ (A ∪ B), v is either A-complete or A-
anticomplete and either B-complete or B-anticomplete. A W -join (A,B) is a homogeneous
pair in which A is neither complete nor anticomplete to B. We say that a W -join (A,B) is
reduced if we can partition A into two sets A1 and A2 and we can partition B into B1, B2

such that A1 is complete to B1, A2 is anticomplete to B, and B2 is anticomplete to A. Note
that since A is neither complete nor anticomplete to B, it follows that both A1 and B1 are
non-empty and at least one of A2, B2 is non-empty. We call a W -join that is not reduced a
non-reduced W -join.

Let H be a thickening of (G,F ) and let {u, v} ∈ F . Then we notice that (Xu, Xv) is a
W -join in H . If for every {u, v} ∈ F we have that (Xu, Xv) is a reduced W -join then we say
that H is a reduced thickening of G.

In this section we prove that a minimal counterexample G to 1.1 does not admit a non-
reduced W -join (and hence if G is a thickening of (H,F ) for some claw-free graph H and
F ⊆ V (H)2, then it is a reduced thickening). We start with a preliminary result, that appears
in [7], but we include its proof here, for completeness.

4.1 Let G be a claw-free graph and let (A,B) be a W -join. Let H be a graph obtained from
G by arbitrarily changing the adjacency between some vertices of A and some vertices of B
(all the other adjacencies remain unchanged). Then H is claw-free.

Proof. Let C be the set of vertices of G that are A-complete and B-complete, D be the set
of vertices of G that are A-complete and B-anticomplete, E the set of vertices of G that are
A-anticomplete and B-complete, and F the set of vertices of G that are A-anticomplete and
B-anticomplete. Observe that since G is claw-free, both D and E are cliques. Let v ∈ V (H).
We need to show that the set NH(v) does not contain a stable set of size three. We do so by
considering the following cases:

9



1. v ∈ D ∪ E ∪ F . In this case H|(NH(v)) = G|(NG(v)) and hence H|(NH(v)) does not
contain a stable set of size three since G is a claw-free graph.

2. v ∈ A ∪ B. From the symmetry, we may assume that v ∈ A. Let B(v) = NH(v) ∩ B.
Suppose there is a triad T in NH(v). Since T is not a triad in NG(v) it follows that
T ∩B(v) 6= ∅. Since B(v) is a clique we deduce that |T ∩B(v)| = 1, let t be the unique
vertex of T ∩ B(v). Since T is a triad, it follows that T \ {t} ⊆ A ∪D. But A ∪D is a
clique, contrary to the fact that |T \ {t}| = 2.

3. v ∈ C. First, we note that v has no neighbors in F . Suppose v has a neighbor f ∈ F .
Since A is not complete to B, there exist a ∈ A and b ∈ B that are nonadjacent. But
then f, a, b are three pairwise nonadjacent vertices in NG(v), contrary to the fact that G
is claw-free. This implies that NH(v) ⊆ A∪B∪C ∪D∪E. Suppose that NH(v) contains
three pairwise nonadjacent vertices, say v1, v2, v3. We claim that {v1, v2, v3} ⊆ C∪D∪E.
For suppose v1 ∈ A ∪ B, say v1 ∈ A. Since {v1, v2, v3} is a triad, it follows that
{v2, v3} ⊆ B ∪ E, contrary to the fact that B ∪ E is a clique. This proves the claim.
But H|(C ∪D∪E) = G|(C ∪D∪E) and hence v1, v2, v3 are three pairwise nonadjacent
vertices in the neighborhood of v in G, contrary to G being claw-free.

This proves 4.1.

Next we prove a result that allows us to handle non-reduced W -joins. We remark that
this is a slight strengthening of a lemma from [5] and the proof is basically the same.

4.2 Let G be a claw-free graph and suppose that G admits a non-reduced W -join. Then there
exists a subgraph H of G with the following properties:

1. H is a claw-free graph, |V (H)| = |V (G)| and |E(H)| < |E(G)|.

2. χ(H) = χ(G).

Proof. Let (A,B) be a non-reduced W -join of G. Let C be the set of vertices of G that
are A-complete and B-complete, D be the set of vertices of G that are A-complete and B-
anticomplete, E the set of vertices of G that are A-anticomplete and B-complete, and F the
set of vertices of G that are A-anticomplete and B-anticomplete. We note that both D and E
are cliques. Let J = G|(A∪B). Then J is bipartite. Let M be a maximum matching in J and
let |M | = m. We claim that we can color J with |A| + |B| −m colors. This follows from the
fact that we can color the vertices of M with m colors and |(A∪B)\V (M)| = |A|+ |B|−2m.

By König’s Theorem [10], |M | equals the minimum size of a vertex cover of J , that is, the
minimum number of vertices hitting all edges of J . Let X be a minimum vertex cover of J .
Then A \X is complete to B \X in G.

Let A′ = A∩X and B′ = B∩X. Let H be the graph obtained from G by deleting the edges
between the members of A′ and the members of B and the edges between the members of B′

and the members of A. Then since (A,B) is a non-reduced W -join in G, |E(H)| < |E(G)|
and by 4.1, H is a claw-free graph, and thus the first assertion of the theorem holds.
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To prove the second assertion of the theorem, it is enough to show that every coloring of
H can be used to obtain a coloring of G using the same number of colors. Let cH be a coloring
of H . Now since (A \ A′) ∪ (B \B′) is a clique in H and |A′ ∪ B′| = m, it follows that every
coloring of H|(A∪B), and in particular cH , uses at least |A|+ |B|−m colors. Hence, at most
m colors appear on both A and B. We construct a coloring of G as follows. We use each of
the colors of cH that appears on both A and B to color the vertices of V (M) (using each color
for two vertices of M that are matched to each other in M). We use the rest of the colors of
cH which appear on A for the remaining vertices of A, and the rest of the colors of CH that
appear on B for the rest of the vertices of B. This yields a coloring of J . We keep the colors
of the vertices of V (G) \ (A ∪ B) unchanged. The coloring just defined is a proper coloring
of G, and it uses the same number of colors as cH . This proves the second assertion of the
theorem and completes the proof of 4.2.

4.2 implies the following:

4.3 Let G be a claw-free graph that does not have a clique minor of size ⌈2
3
χ(G)⌉. Assume

that for every claw-free graph G′ with |V (G′)| = |V (G)| and |E(G′)| < |E(G)|, G′ has a clique
minor of size ⌈2

3
χ(G′)⌉. Assume also that G is a thickening of (H,F ) for some claw-free graph

H and F ⊆ V (H)2. Then G is a reduced thickening of (H,F ).

5 The icosahedron

5.1 Let G ∈ T1. Suppose that every claw-free graph G′ such that either |V (G′)| < |V (G)|, or
|V (G′)| = |V (G)| and |E(G′)| < |E(G)| has a clique minor of size ⌈2

3
χ(G′)⌉. Then G has a

clique minor of size ⌈2
3
χ(G)⌉.

Proof. We begin with an observation.

(1) Suppose there exists an induced 5-edge path P = w1- · · · -w6 of G such that for 1 ≤ i ≤ 6
there exist pairwise disjoint Ywi

⊆ V (G) with wi ∈ Ywi
satisfying the following properties:

1. For 1 ≤ i ≤ 6, Ywi
is a clique

2. For 1 ≤ i ≤ 6, NG(Ywi
) ⊆ NG(wi)

3. Yw1
∪ Yw2

is anticomplete to Yw5
∪ Yw6

4. S1 = {w1, w2, w3} dominates V (G)\(Yw5
∪Yw6

) and S2 = {w4, w5, w6} dominates V (G)\
(Yw1

∪ Yw2
)

5. For i = 2, 3, wi is complete to Ywi−1
and for i = 4, 5, wi is complete to Ywi+1

.
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Then the theorem holds.

Let G′ = G \ V (P ). Since P is 2-colorable, χ(G′) ≥ χ(G) − 2. By assumption, G′ has a
clique minor of size ⌈2

3
χ(G′)⌉ ≥ ⌈2

3
(χ(G)− 2)⌉ ≥ ⌈2

3
χ(G)⌉− 2. This means that there exists a

set S of ⌈2
3
χ(G)⌉ − 2 connected, disjoint subgraphs of G′ that are pairwise adjacent. Suppose

that no member of S is a subgraph of G|(Yw1
∪Yw2

) or G|(Yw5
∪Yw6

). Then, since S1 dominates
V (G) \ (Yw5

∪ Yw6
), S2 dominates V (G) \ (Yw1

∪ Yw2
), and G|S1 is adjacent to G|S2, it follows

that S ∪{G|S1, G|S2} is a set of ⌈2
3
χ(G)⌉ connected, disjoint subgraphs of G that are pairwise

adjacent.
Hence, we may assume that some member of S is a subgraph of G|(Yw1

∪Yw2
) or G|(Yw5

∪
Yw6

). From symmetry, we may assume that there exists T ∈ S such that V (T ) ⊆ Yw1
∪ Yw2

.
Note that this implies that no member of S is a subgraph of G|(Yw5

∪ Yw6
) since Yw1

∪ Yw2

is anticomplete to Yw5
∪ Yw6

. Suppose that no member of S is a subgraph of G|Yw1
. Let

S ′

1 = {w1, w2} and S ′

2 = {w3, w4, w5, w6}. Then, since S ′

2 dominates V (G) \ Yw1
, and NG(T ) \

S ′

1 ⊆ NG(S ′

1), and G|S ′

1 is adjacent to G|S ′

2, it follows that S∪{G|S ′

1, G|S
′

2} is a set of ⌈2
3
χ(G)⌉

connected, disjoint subgraphs of G that are pairwise adjacent.
Hence, we may assume that some member of S is a subgraph of G|Yw1

. So there exists
T ∈ S such that V (T ) ⊆ Yw1

. Let S ′′

1 = {w1} and S ′′

2 = {w2, w3, w4, w5, w6}. Then, since S ′′

2

dominates V (G) and NG(T ) \ S ′′

1 ⊆ NG(S ′′

1 ), and G|S ′′

1 is adjacent to G|S ′′

2 , it follows that
S ∪ {G|S ′′

1 , G|S
′′

2} is a set of ⌈2
3
χ(G)⌉ connected, disjoint subgraphs of G that are pairwise

adjacent. This proves (1).

Let v0, v1, . . . , v11 be as in the definition of the icosahedron. Further let G0, G1, G2, and
F be as in the definition of T1. Then G is a thickening of either (G0, ∅), (G1, ∅), or (G2, F ) for
F ⊆ {(v1, v4), (v6, v9)}. By 4.3, G is a reduced thickening. For 0 ≤ i ≤ 11, let Xvi

be as in the
definition of thickening (where Xv11

is empty when G is a thickening of (G1, ∅) or (G2, F ), and
Xv10

is empty when G is a thickening of (G2, F )). If G is a thickening of (G0, ∅) or (G1, ∅),
then for i = 0, 2, 4, 6, 8, 9, let ui ∈ Xvi

. If G is a thickening of (G2, F ), then for i = 0, 2, 4, 6, 8, 9
choose ui ∈ Xvi

such that u4 has a neighbor in Xv1
, u6 and u9 are nonadjacent, and subject

to that NG(u9) is maximal.
Let P = G|{u0, u2, u4, u6, u8, u9}. Note that P is a 5-edge path in G. For i = 0, 2, 4, 8,

let Yui
= Xvi

. Let Yu6
consist of those members of Xv6

that are nonadjacent to u9, and let
Yu9

consist of those members of Xv9
that are nonadjacent to u6. Notice that because the

thickening is reduced, u4 has a neighbor in Xv1
, and u9 was chosen with maximal neighbors,

it follows that NG(Yu4
) ⊆ NG(u4), NG(Yu6

) ⊆ NG(u6) and NG(Yu9
) ⊆ NG(u9). Then it is easy

to check that P and {Yui
} satisfy the five conditions of (1) and so this proves 5.1.

6 Three cliques

In this section we prove 1.1 for graphs G such that V (G) is the union of three cliques.
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6.1 Let G be a claw-free graph such that V (G) is the union of three cliques. Then G has a
clique minor of size ⌈2

3
χ(G)⌉.

Proof. Let n = |V (G)|. We may assume that every proper induced subgraph G′ of G has a
clique minor of size ⌈2

3
χ(G′)⌉. By 3.3, χ(G) ≤ ⌈n

2
⌉. It follows that ⌈2

3
χ(G)⌉ ≤ ⌈n

3
⌉ + 1. Let

V (G) = A∪B ∪C where A,B,C are cliques. Without loss of generality, we may assume that
|A| ≥ |B| ≥ |C|. Then |A| ≥ ⌈n

3
⌉. If |A| > ⌈n

3
⌉ then we are done. Otherwise, let

S = (
⋃

a∈A

{G|{a}}) ∪ {G|(B ∪ C)}.

Then |S| = ⌈n
3
⌉+1 and we claim that the members of S are connected, disjoint, and pairwise

adjacent. It suffices to check that G|(B ∪ C) is connected and every member of A has a
neighbor in B ∪ C. Since by 3.1 A is not a clique cutset in G, it follows that G|(B ∪ C) is
connected; and since A\ {a} is not a clique cutset for every a ∈ A, it follows that every a ∈ A

has a neighbor in B ∪ C. This proves the claim and therefore G has a clique minor of size
⌈n

3
⌉ + 1 ≥ ⌈2

3
χ(G)⌉. This proves 6.1.

7 Antiprismatic graphs

7.1 Let G be a claw-free graph which does not have a clique minor of size ⌈2
3
χ(G)⌉, and

assume that every proper induced subgraph G′ of G has a clique minor of size ⌈2
3
χ(G′)⌉. Then

α(G) > 2.

Proof. Clearly, we may assume that α(G) ≥ 2. Let n = |V (G)|. Suppose that α(G) = 2.
By 3.3, χ(G) ≤ ⌈n

2
⌉. Since χ(G) ≥ ⌈ n

α(G)
⌉, it follows that χ(G) = ⌈n

2
⌉. Then ⌈2

3
χ(G)⌉ ≤ ⌈n+1

3
⌉.

We prove by induction on n that every graph with α = 2 has a clique minor of size at least
⌈n+1

3
⌉. This clearly holds when n = 1. If G does not have a path of length 2, then G is the

disjoint union of at most two cliques and so it follows that G has a clique minor of size at
least ⌈n

2
⌉ ≥ ⌈n+1

3
⌉. So we may assume that G has a path P of length 2. Then G \ V (P ) has

a clique minor of size at least ⌈n−2
3
⌉. Since P dominates V (G) \ V (P ), it follows that we can

add P to the list of connected subgraphs of G \ V (P ) forming a clique minor of size ⌈n−2
3
⌉,

and so G has a clique minor of size at least ⌈n−2
3
⌉+1 = ⌈n+1

3
⌉. This proves the inductive step

and completes the proof of 7.1.

Next, we prove a few basic facts about antiprismatic graphs.

7.2 Let G be an antiprismatic graph such that G does not have two disjoint triads. Then
there exists a vertex v ∈ V (G) meeting all triads of G.
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Proof. Suppose not. If α(G) ≤ 2, then 7.2 holds vacuously for any vertex v ∈ V (G). So we
may assume that α(G) = 3. Let {v1, v2, v3} be a triad of G. Since v1 does not meet all triads,
it follows that there exists a triad T disjoint from v1. Since there are no two disjoint triads,
T contains at least one of v2, v3, and because the graph is antiprismatic it does not contain
both. Without loss of generality, we may assume that v2 ∈ T . Let T = {v2, v4, v5}. Since v2

does not meet all triads, if follows that there exists a triad T ′ disjoint from v2. Because there
are no two disjoint triads, T ′ contains one of v1, v3 and one of v4, v5. However, because G is
antiprismatic, {v1, v3} is complete to {v4, v5}, a contradiction. Hence, we conclude that some
vertex of G meets all triads and this proves 7.2.

7.3 Let G be an antiprismatic graph and let P = v1-v2-v3 be a two-edge path in G. Let
X ⊆ V (G) be the set of vertices not dominated by V (P ). Then |X| ≤ 1, and if no triad of G
contains both v1 and v3 then |X| = 0.

Proof. Suppose first that no triad of G contains both v1 and v3. Then V (P ) dominates
V (G) and so |X| = 0. Hence, we may assume that there exists a triad T = {v1, v3, x}
in G. Then, since G is antiprismatic, it follows that V (P ) does not dominate x. Let y ∈
V (G) \ {v1, v2, v3, x}. Then since G is antiprismatic, y has two neighbors in T . In particular,
y is adjacent to at least one of v1, v3 and hence y is dominated by V (P ). It follows that
|X| = 1 and this proves 7.3.

7.4 Let G be a fuzzy antiprismatic graph such that every claw-free graph G′ with either
|V (G′)| < |V (G)| or |V (G′)| = |V (G)| and |E(G′)| < |E(G)| has a clique minor of size
⌈2

3
χ(G′)⌉. Then G has a clique minor of size ⌈2

3
χ(G)⌉.

Proof. If α(G) ≤ 2 then the result follows from 7.1. So we may assume that α(G) ≥ 3.
Let H be a graph and let F ⊆ V (H)2 such that the pair (H,F ) is antiprismatic, and G is a
thickening of (H,F ). By 4.3, G is a reduced thickening of (H,F ). For v ∈ V (H) let Xv be as
in the definition of a thickening.

(1) Let {x, y} ∈ F , such that x is adjacent to y in H, and let H ′ be obtained from H by
deleting the edge xy. Then for every {u, v} ∈ F , either

• no triad of H ′ contains u and no triad of H ′ contains v, or

• there is a triad of H ′ containing both u and v and no other triad of H ′ contains u or v;

and the pair (H ′, F ) is antiprismatic.

Since every vertex of H belongs to at most one pair of F , to prove the first assertion of (1),
it is enough to check that either

• no triad of H ′ contains x and no triad of H ′ contains y, or
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• there is a triad of H ′ containing both x and y and no other triad of H ′ contains x or y.

Let T be a triad of H ′ such that x ∈ T . First we observe that since x is adjacent to y in H ,
and since the pair (H,F ) is antiprismatic, it follows that T is not a triad of H , and therefore
y ∈ T . Let T = {x, y, w}. We need to show that no other triad of H ′ contains x or y. Suppose
T ′ is another triad of H ′ containing x. Applying the observation above to T ′, we deduce
that y ∈ T ′. Let T ′ = {x, y, w′}. But now only one pair of vertices of the set {x, y, w, w′} is
adjacent in H ′, which is a contradiction since (H,F ) is antiprismatic and H ′ is obtained from
H by changing the adjacency of a vertex pair in F . This proves the first assertion of (1). The
second assertion follows immediately from the fact that the pair (H,F ) is antiprismatic. This
proves (1).

In view of (1), we may assume that if {u, v} ∈ F , then u is nonadjacent to v in H .

(2) If H has two disjoint triads, then 7.4 holds.

Let {v1, v2, v3} and {u1, u2, u3} be two disjoint triads of H . Then, since H is antiprismatic,
H|{v1, v2, v3, u1, u2, u3} is an induced cycle of length 6, and without loss of generality we may
assume that for i = 1, 2, 3, vi is adjacent to ui and ui+1 (where the subscripts are read modulo
3). It follows from the definition of a fuzzy antiprismatic graph that for i = 1, 2, 3, Xvi

is
complete to Xui

and Xui+1
(where the subscripts are read modulo 3), and that at most one

of the pairs {v1, v2}, {v2, v3}, {v1, v3} and at most one of the pairs {u1, u2}, {u2, u3}, {u1, u3}
belong to F . In view of that, for i = 1, 2, 3, we can choose v′i ∈ Xvi

such that {v′1, v
′

2, v
′

3} is
a triad and subject to that NG(v′1) is maximal, and u′i ∈ Xui

such that {u′1, u
′

2, u
′

3} is a triad
and subject to that NG(u′3) is maximal. Let Yv1

⊆ Xv1
be the set of those elements that are

nonadjacent to v′2 and v′3, and let Yu3
⊆ Xu3

be the set of those elements that are nonadjacent
to u′1 and u′2.

Let S1 = {v′1, u
′

1, u
′

2}, S2 = {v′2, v
′

3, u
′

3} and let G′ = G \ (S1 ∪ S2). Since G|(S1 ∪ S2) is
2-colorable, χ(G′) ≥ χ(G)−2. Then G′ has a clique minor of size ⌈2

3
χ(G′)⌉ ≥ ⌈2

3
(χ(G)−2)⌉ ≥

⌈2
3
χ(G)⌉−2. This means that there exists a set S of ⌈2

3
χ(G)⌉−2 connected, disjoint subgraphs

of G′ that are pairwise adjacent.
By 7.3, {u1, u2, v1} dominates V (H) \ {u3} in H . Now, since if {u, v} ∈ F then u is

nonadjacent to v, it follows that S1 dominates V (G)\Yu3
. Similarly, S2 dominates V (G)\Yv1

.
Suppose that no member of S is a subgraph of G|Yv1

or G|Yu3
. Since G|S1 is adjacent to

G|S2, it follows that S ∪ {G|S1, G|S2} is a set of ⌈2
3
χ(G)⌉ connected, disjoint subgraphs of G

that are pairwise adjacent, and so G has the desired clique minor.
Hence, we may assume that some member T of S is a subgraph of G|Yv1

or G|Yu3
. From

symmetry, we may assume that V (T ) ⊆ Yv1
. It follows from the definition of a fuzzy antipris-

matic graph that Yv1
is anticomplete to Yu3

, and therefore no member of S is a subgraph of
G|Yu3

. Let S ′

1 = {v1} and S ′

2 = {v′2, v
′

3, u
′

2, u
′

3}. Then S ′

2 dominates V (G) since Xu2
is complete

to Yv1
. Since NG′(T ) ⊆ NG(S ′

1) andG|S ′

1 is adjacent to G|S ′

2, it follows that S∪{G|S ′

1, G|S
′

2} is
a set of ⌈2

3
χ(G)⌉ connected, disjoint subgraphs ofG that are pairwise adjacent. This proves (2).
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In view of (2), we may assume that there are no two disjoint triads in H . Then by 7.2,
there is a vertex v meeting all triads of H . We claim that v can be chosen so that no member
of F contains v. If there is more than one triad in H , then v is in more than one triad, and
the claim follows from the fact that (H,F ) is antiprismatic. So we may assume that there is
a unique triad {x, y, z} in H . But then, again since (H,F ) is antiprismatic, it follows that
if for some pair {u, v} ∈ F and {u, v} ∩ {x, y, z} 6= ∅, then {u, v} ⊆ {x, y, z}. Now, since
every vertex of H is in at most one pair of F , we deduce that at least one of x, y, z does not
belong to any member of F . This proves the claim. Thus we may assume that no member of
F contains v.

Let N = NH(v), and let M = V (H) \ (N ∪ {v}). Since α(G) > 2, and since if {u, w} ∈ F

then u is nonadjacent to w in H , it follows that there exist nonadjacent m1, m2 ∈ M . It
follows from the claim that

⋃
n∈N Xn is a cutset in G, and so 3.1 implies that

⋃
n∈N Xn is not

a clique of G. Since if {u, w} ∈ F then u is nonadjacent to w in H , it follows that N is not a
clique of H .

Since H is antiprismatic, every vertex ofN is adjacent to exactly one ofm1, m2, and no pair
{n,m1} or {n,m2}, where n ∈ N , belongs to F . For i = 1, 2, let Ni be the set of neighbors of
mi in N . Then N1 is anticomplete to m2, and N2 is anticomplete to m1. Since H|(N1∪{m2})
contains no triad, it follows that N1, and similarly N2, is a clique of H . Therefore, for i = 1, 2,
Yi =

⋃
n∈Ni

Xn is a clique of G, and Yi is complete to Xmi
. Since by 4.3, we may assume

that G is a reduced thickening of (H,F ), it follows that we may assume from the symmetry
that there exist m′

1 ∈ Xm1
that is anticomplete to Xm2

. Since Y1 ∪ (Xm1
\ {m′

1}) is a clique
of G, 3.1 implies that m′

1 has a neighbor in V (G) \ (Y1 ∪ (Xm1
\ {m′

1})), and consequently
M 6= {m1, m2}. Let m3 ∈ M . Since (H,F ) is antiprismatic, it follows that m3 is adjacent to
both m1, m2. Since N is not a clique of H , and since both N1, N2 are cliques, it follows that
there exist n1 ∈ N1 and n2 ∈ N2 nonadjacent.

Let v′ ∈ Xv, for i ∈ {1, 2}, let vi ∈ Xni
and ui ∈ Xmi

, and let w ∈ Xm3
, such that

v1 is nonadjacent to v2, and u1 is nonadjacent to u2. Then v1 is nonadjacent to u2, and
v2 to u1. Let S1 = {v′, v1, v2}, S2 = {u1, u2, w}, and G′ = G \ (S1 ∪ S2). It follows that
G|(S1 ∪ S2) is 3-colorable, and so χ(G′) ≥ χ(G) − 3. By assumption, G′ has a clique minor
of size ⌈2

3
χ(G′)⌉ ≥ ⌈2

3
(χ(G) − 3)⌉ ≥ ⌈2

3
χ(G)⌉ − 2. This means that there exists a set S of

⌈2
3
χ(G)⌉ − 2 connected, disjoint subgraphs of G′ that are pairwise adjacent. By 7.3, since no

triad of H contains n1 and n2, it follows that {n1, n2, v} dominates V (H), and {m1, m2, m3}
dominates V (H) \ {v}. Since if {u, v} ∈ F then u is nonadjacent to v in H , we deduce that
S1 dominates V (G), and S2 dominates V (G) \ Xv. Thus, if no member of S is a subgraph
of G|Xv, then, since G|S1 is adjacent to G|S2, it follows that S ∪ {G|S1, G|S2} is a set of
⌈2

3
χ(G)⌉ connected, disjoint subgraphs of G that are pairwise adjacent. So we may assume

that some member T of S is a subgraph of G|Xv. Let S ′

1 = {v′} and S ′

2 = {v1, v2, u1, u2, w}.
Then S ′

2 dominates V (G). Since NG(T ) ⊆ NG(S ′

1) and G|S ′

1 is adjacent to G|S ′

2, it follows
that S ∪{G|S ′

1, G|S
′

2} is a set of ⌈2
3
χ(G)⌉ connected, disjoint subgraphs of G that are pairwise

adjacent. This proves 7.4.
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8 Nontrivial strip-structures

In this section we prove 1.1 for graphs G that admit non-trivial strip structures and appear
in 2.1.

8.1 Suppose that G admits a nontrivial strip-structure such that |Z| = 1 for some strip (J, Z)
of (H, η). Then either G is a clique or G admits a clique cutset.

Proof. Let F ∈ E(H) such that the strip (J, Z) of (H, η) at F has |Z| = 1. Then |F | = 1,
so let F = {h}.

(1) If η(F ) 6= η(F, h), then 8.1 holds.

Let v ∈ η(F ) \ η(F, h). Suppose that v has a neighbor u that is not in η(F ). Then u ∈ η(F ′)
for some F ′ 6= F . By (SD3) there exists h′ ∈ F ∩F ′ such that v ∈ η(F, h′) and u ∈ η(F ′, h′).
But h is the only member of F and so it follows that v ∈ η(F, h), a contradiction. Hence,
NG(v) ⊆ η(F ) and so by (SD2) η(F, h) is a clique cutset. This proves (1).

So we may assume that η(F ) = η(F, h). Let v ∈ η(F, h). Then by (SD3), v is adjacent
only to members of η(F ′, h) for F ′ with h ∈ F ′. Hence by (SD2), NG(v) is a clique and so
either G is a clique or G admits a clique cutset. This proves 8.1.

Let (J, Z) be a strip. We say that (J, Z) is a line graph strip if |V (J)| = 3, |Z| = 2 and Z
is complete to V (J) \ Z.

8.2 Let G be a graph that admits a nontrivial strip-structure (H, η) such that for every
F ∈ E(H), the strip of (H, η) at F is a line graph strip. Then G is a line graph.

Proof. Since |Z| = 2 for every strip (J, Z) of (H, η), it follows that H is a graph. Since all
strips of (H, η) are line graph strips, it follows that |η(F )| = 1 for every F ∈ E(H). Moreover,
η(F ) = η(F, h) for every F ∈ E(H) and h ∈ F . We claim that G is the line graph of H . We
need to show that there exists a bijection φ : E(H) → V (G) such that for F1, F2 ∈ E(H),
φ(F1) is adjacent to φ(F2) in G if and only if F1, F2 share an end in H . Let F ∈ E(H) and
let v be the unique vertex of η(F ). We define φ(F ) = v. Clearly φ is a bijection.

Let F1, F2 ∈ E(H). Then, η(Fi, h) = η(Fi) for i = 1, 2 and h ∈ Fi. Now (SD2) and
(SD3) imply that there exists h ∈ F1 ∩F2 if and only if η(F1)∪ η(F2) is a clique in G, which
means that φ(F1) is adjacent to φ(F2). This proves 8.2.

For two disjoint subsets U,W of V (G) and a coloring c of G, let mc(U,W ) denote the
number of repeated colors on U and W (the number of colors i such that i ∈ c(U) ∩ c(W )).
We can now prove the main result of this section.
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8.3 Let G be a connected, claw-free graph with chromatic number χ. Assume that for every
claw-free graph G′ with either |V (G′)| < |V (G)|, or |V (G′)| = |V (G)| and |E(G′)| < |E(G)|,
G′ has a clique minor of size ⌈2

3
χ(G′)⌉. Suppose that G admits a nontrivial strip-structure

(H, η) such that for each strip (J, Z) of (H, η), 1 ≤ |Z| ≤ 2, and if |Z| = 2 then either
|V (J)| = 3 and Z is complete to V (J) \ Z, or (J, Z) is a member of Z1 ∪ Z2 ∪ Z3 ∪ Z4 ∪ Z5.
Then G has a clique minor of size ⌈2

3
χ⌉.

Proof. Suppose that G admits a nontrivial strip-structure (H, η) such that for each strip
(J, Z) of (H, η), 1 ≤ |Z| ≤ 2. Further suppose that |Z| = 1 for some strip (J, Z). Then by 8.1
either G is a clique or G admits a clique cutset; in the former case 8.3 follows from 7.1, and
in the latter case 8.3 follows from 3.1. Hence we may assume that |Z| = 2 for all strips (J, Z).

Let k be the number of strips of (H, η) that are not line graph strips. If k = 0, the result
follows from [12] and 8.2. So we may assume k > 0 and some strip (J1, Z1) is not a line
graph strip. Let Z1 = {a1, b1}. Let A1 = NJ1

(a1), B1 = NJ1
(b1), A2 = NG(A1) \ V (J1), and

B2 = NG(B1) \ V (J1). Let C1 = V (J1) \ (A1 ∪B1) and C2 = V (G) \ (V (J1)∪A2 ∪B2). Then
V (G) = A1 ∪ B1 ∪ C1 ∪ A2 ∪B2 ∪ C2.

(1) If C2 = ∅ and A2 = B2, then 8.3 holds.

Note that V (G) = A1 ∪ B1 ∪ C1 ∪ A2. Since |Z1| = 2 and (J1, Z1) is not a line graph
strip, it follows that (J1, Z1) is a member of Z1 ∪ Z2 ∪ Z3 ∪ Z4 ∪ Z5. We consider the cases
separately:

1. (J1, Z1) is a member of Z1. In this case J1 is a fuzzy linear interval graph and so G is a
fuzzy long circular interval graph and 8.3 follows from [5].

2. (J1, Z1) is a member of Z2,Z3, or Z4. In all of these cases, A1, B1, and C1 are all cliques
and so V (G) is the union of three cliques, namely A1∪A2, B1, and C1. Hence, 8.3 follows
from 6.1

3. (J1, Z1) is a member of Z5. Let v1, . . . , v12, X,H,H
′, F be as in the definition of Z5 and

for 1 ≤ i ≤ 12 let Xvi
be as in the definition of a thickening. Then A2 is complete to

Xv1
∪Xv2

∪Xv4
∪Xv5

. Let H ′′ be the graph obtained from H ′ by adding a new vertex
a2, adjacent to v1, v2, v4 and v5. Then H ′′ is an antiprismatic graph. Moreover, no triad
of H ′′ contains v9 or v10. Thus the pair (H ′, F ) is antiprismatic, and G is a thickening
of (H ′, F ), so 8.3 follows from 7.4.

This proves (1).

Therefore, we may assume that either C2 6= ∅, or A2 6= B2. For i = 1, 2, let Gi =
G|(Ai ∪ Bi ∪ Ci).

Let n be the maximum size of a clique minor in G. Then n < ⌈2
3
χ⌉. Without loss of

generality, we may assume that |A1 ∪ A2| ≤ |B1 ∪ B2|. Then, by 3.4, there exist |A1 ∪ A2|
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vertex disjoint paths between A1 ∪ A2 and B1 ∪ B2 in G. From the definitions of A1, A2, B1,
and B2 it follows that for i = 1, 2, |Ai| ≤ |Bi| and that there exist |Ai| vertex disjoint paths
from Ai to Bi in Gi.

Let G′

1 be the graph obtained from G|(A1 ∪B1 ∪ C1 ∪A2) by making A2 complete to B1.
Then since there exist |A2| vertex disjoint paths between A2 and B2 in G2, it follows that G′

1

is a minor of G. We claim that G′

1 is a claw-free graph. For v ∈ C1, G|(NG(v)) = G′

1|(NG′

1
(v)),

and so there is no triad in NG′

1
(v). For v ∈ A1, NG(v) = NG′

1
(v), and if two vertices of NG′

1
(v)

are adjacent in G, then they are also adjacent in G′

1. Therefore there is no triad in NG′

1
(v).

Next let v ∈ B1, and suppose that in G′

1 there is a triad {x, y, z} among the neighbors of
v. Since G is claw-free, we may assume that x ∈ A2. Consequently, y, z ∈ C1. Let b ∈ B2.
Now, {b, y, z} is a triad among the neighbors of v in G, contrary to the fact that G is claw-
free. Finally, for v ∈ A2, the set of neighbors of v in G′

1 is the union of two cliques, namely
A1 ∪A2 \ {v} and B1. This proves the claim that G′

1 is a claw-free graph.
Similarly, let G′

2 be the graph obtained from G|(A2∪B2∪C2∪A1) by making A1 complete
to B2. Then G′

2 is also a claw-free graph and a minor of G. Since (S1, a1, b1) is not a line-
graph strip, it follows that |V (G′

2)| < |V (G)|; and since either C2 6= ∅, or A2 6= B2, it follows
that |V (G′

1)| < |V (G)|. Since G′

1 and G′

2 are minors of G, it follows that they contain no
clique minors of size greater than n, and since for i = 1, 2, |V (G′

i)| < |V (G)|, it follows that
⌈2

3
χ(G′

1)⌉, ⌈
2
3
χ(G′

2)⌉ ≤ n < ⌈2
3
χ(G)⌉.

Let n′ = max(χ(G′

1), χ(G′

2), |B1| + |B2|). Since B1 ∪ B2 is a clique of G, we may assume
that that n′ < χ(G). Next we show that G can be properly colored with n′ colors, thus
obtaining a contradiction.

For i = 1, 2, let c′i be an n′-coloring of G′

i. Further, let mi = mc′
i
(Ai, Bi), ai = |Ai|−mi, and

bi = |Bi|−mi. Then m1 +a1 +b1 + |A2| = m1 +a1+b1 +m2 +a2 ≤ n′ and m2 +a2 +b2 + |A1| =
m2 + a2 + b2 +m1 + a1 ≤ n′.

Suppose that b1 ≤ a2. Then since a1 ≤ b1 and a2 ≤ b2, it follows that a1 ≤ b2. Notice that
c′2 induces an n′-coloring c2 of G2 with mc2(A2, B2) = m2. Let T = {1, . . . , n′}. Without loss
of generality, c2(V (G2)) ⊆ T . Construct the following coloring c of G. For v ∈ A2∪B2∪C2 let
c(v) = c2(v). Next, use m1 colors of T \ c(A2 ∪ B2) on both A1 and B1 (this is possible since
|c(A2 ∪B2)| = a2 + b2 +m2 and a2 + b2 +m1 +m2 ≤ n′). Next, use a1 colors of c(B2) \ c(A2)
on the remaining vertices of A1 and b1 colors of c(A2) \ c(B2) on the remaining vertices of B1

(this is possible because b1 ≤ a2 and a1 ≤ b2). Now since mc′
1
(A1, B1) = m1 it follows that the

coloring constructed so far can be extended to an n′-coloring of G1 using the colors of T . We
see that c(A2) is disjoint from c(A1) and c(B2) is disjoint from c(B1). Thus c is an n′-coloring
of G, a contradiction.

Hence, b1 > a2. Similarly, the argument of the previous paragraph with the roles of G′

1 and
G′

2 reversed shows that b2 > a1. Let T be as before. We construct the following coloring c of
G. We use |B1|+ |B2| distinct colors of T on B1 ∪B2. Next, we use m1 colors of c(B1) and a1

colors of c(B2) to color A1. Then we use m2 colors of c(B2)\c(A1) and a2 colors of c(B1)\c(A1)
to color A2 (this is possible because b2 > a1 and b1 > a2). Now since mc′

1
(A1, B1) = m1 we

can extend c to an n′-coloring of G1 using the colors of T and since mc′
2
(A2, B2) = m2 we can

extend c to an n′-coloring of G2 using the colors of T . Once again we see that c(A2) is disjoint
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from c(A1) and c(B2) is disjoint from c(B1). But now c is an n′-coloring of G, a contradiction.
This proves 8.3.

We are now ready to prove the main result of this paper.

Proof of 1.1. Let G be a claw-free graph. We may assume that if G′ is a claw-free graph,
and either |V (G′)| < |V (G)|, or |V (G′)| = |V (G)| and |E(G′) < |E(G)|, then G′ has a clique
minor of size ⌈2

3
χ(G′)⌉. Consequently, we may assume that G is connected. If V (G) is the

union of three cliques, the result follows from 6.1. If G admits a nontrivial strip-structure as
in 2.1, then the result follows from 8.3. So by 2.1, we may assume that G is a member of
T1 ∪ T2 ∪ T3. If G is a member of T1 ∪ T2, then the result follows from 5.1 and 7.4. Hence, we
may assume that G is a fuzzy long circular interval graph. But fuzzy long circular interval
graphs are quasi-line graphs and so the result follows from [5]. This completes the proof of 1.1.

9 Conclusion

The natural question to ask at this point is how far are we from proving the full Hadwiger’s
conjecture for claw-free graphs. One thing to note is that all graphs with α = 2 are claw-free
and there has been much research and multiple papers written on the subject of Hadwiger’s
conjecture for this class of graphs with only minimal progress [4, 8]. So the next best thing
would be to prove Hadwiger’s conjecture for all claw-free graphs with α > 2. However, even
that seems very difficult since most of our proofs are by induction and graphs with α = 2
often appear in the base case.

We were however able to make some progress towards proving Hadwiger’s conjecture for
claw-free graphs. Many of the results in this paper proving that certain classes of graphs
are not minimal counterexamples to 1.1 can be minimally modified to show that these same
classes are not minimal counterexamples to Hadwiger’s conjecture. In particular, the proofs
showing that graphs from the icosahedron and graphs that admit non-trivial strip structures
both belong to this category. Also, Hadwiger’s conjecture for fuzzy long circular interval
graphs has been proved in [5]. This leaves antiprismatic graphs (which include graphs with
α = 2) and graphs whose vertex sets are the union of three cliques. But even in these cases we
can say a lot about what a possible minimal counterexample could look like. In particular, for
antiprismatic graphs we can prove that a minimal counterexample does not have two disjoint
triads and for graphs whose vertex sets are the union of three cliques we can likewise narrow
the possibilities for the minimal counterexample based on where the triads are.
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