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Abstract

Ramsey’s theorem says that for every clique H1 and for every graph H2 with no edges, all graphs
containing neither of H1, H2 as induced subgraphs have bounded size. What if, instead, we exclude
a graph H1 with a vertex whose deletion gives a clique, and the complement H2 of another such
graph? This no longer implies bounded size, but it implies tightly restricted structure that we
describe. There are also several related subproblems (what if we exclude a star and the complement
of a star? what if we exclude a star and a clique? and so on) and we answer a selection of these.



1 Introduction

One of the nice features of minor containment is that there are theorems describing the structure of
the graphs that do not contain as a minor some graph of a given type; and they are necessary and
sufficient in the sense that the structure is implied by excluding a graph of this type, and implies
the exclusion of another (bigger) graph of this type. We have in mind the theorem [2] that for every
planar graph H, there exists k such that all graphs not containing H as a minor have tree-width
at most k; and conversely, for every k there is a planar graph H such that all graphs of tree-width
at most k do not contain H as a minor. There are many other theorems of the same kind for
minor containment. (This paper is not about minors or tree-width, so we omit their definitions; the
discussion here is just for motivation.)

In this paper we are concerned with induced subgraph containment; and we look for theorems,
again necessary and sufficient for excluding a graph of a given type. Surprisingly, there are no such
results at all. The most obvious places to look are, presumably:

• What structure is equivalent to excluding a clique? Here nothing non-trivial is known, and
perhaps nothing non-trivial can be said.

• What structure is equivalent to excluding a star? (A star is a complete bipartite graph Ks,t for
some s, t with s ≤ 1.) Here at least there is a chance of some non-trivial result “explaining”
the graphs without big stars in terms of graphs without big stable sets, but it is not known.

• What structure is equivalent to excluding a graph with one edge? This is equivalent to saying
that every two maximal stable sets have bounded intersection, but that does not count as a
“structure”, and we do not see how to turn it into one.

Things go much better if we exclude a pair of graphs instead of just one. For instance, Ramsey’s
theorem says that for every clique H1 and every anticlique H2, there exists k such that every graph
containing neither of H1, H2 as an induced subgraph has at most k vertices; and the converse is
trivial, that for every k there is a clique H1 and an anticlique H2 such that every graph with at
most k vertices does not contain H1 or H2. (An anticlique is a graph with no edges.) Thus, this is
analogous to the tree-width result mentioned above, except that we exclude two graphs instead of
one.

Before we go on, let us clarify what we mean by “analogous to the tree-width result”. We need
to make more precise the statement “necessary and sufficient for excluding a graph of a given type”.
The theorem says that for every planar H there exists k such that every graph not containing H as a
minor has tree-width at most k, so it says something about the graphs not containing a given planar
graph H. It is not necessary and sufficient for the exclusion of H, yet it is necessary and sufficient
in some sense.

Let us say a class of graphs is an ideal if it is closed under an appropriate containment relation
and isomorphism. Thus, the class of all planar graphs is a minor ideal. A minor ideal might have
bounded tree-width (meaning that there exists k such that all its members have tree-width at most
k) or it might not; and the property of having bounded tree-width is closed under taking subideals.
We can therefore ask for the excluded subideals for this property; the minimal ideals (under subideal
containment) that do not have bounded tree-width. The tree-width theorem says there is just one:
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1.1 A minor ideal has bounded tree-width if and only if it does not include the ideal of all planar
graphs.

Thus, the tree-width theorem can be regarded, perhaps most naturally, not as an excluded minor
theorem, but as an excluded minor ideal theorem. Ramsey’s theorem too is an excluded ideal
theorem:

1.2 An induced subgraph ideal has bounded order (meaning there is a bound on the order of its
members) if and only if it includes neither of the ideal of all cliques and the ideal of all anticliques.

Thus, here there are two excluded ideals instead of one in 1.1; but they are still uniquely determined
by the property we wish to characterize by excluded subideals. Expressing results in the language
of ideals sometimes helps clarify what is going on, but is a little cumbersome, so in what follows we
only resort to it when it helps.

Let us look for other structure theorems for induced subgraph containment, analogous to the
tree-width theorem, but now excluding pairs of graphs. Again, there are very few already known,
but there are some to be discovered, and that is the topic of this paper. First, here is an easy result
of this type (presumably already known, and we leave it to the reader):

1.3 For every clique H1 and every star H2, there exists k such that every graph containing neither
of H1, H2 as an induced subgraph has maximum degree at most k. Conversely, for every integer k,
there is a clique H1 and a star H2 such that every graph with maximum degree at most k contains
neither of H1, H2.

Thus, an induced subgraph ideal has a bound on the maximum degree of its members if and only if
it includes neither of the ideal of all cliques and the ideal of all stars.

There is another theorem of this type recently proved by two of us, in [1], as follows. Let us say
a graph G is k-split, where k ≥ 1, if its vertex set is the union of two sets A, B, where G|A has clique
number at most k and G|B has stability number at most k. A multiclique is a graph such that each
component is a clique, and a complete multipartite graph is the complement of a multiclique.

1.4 For every multiclique H1 and every complete multipartite graph H2, there exists k such that
every graph containing neither of H1, H2 as an induced subgraph is k-split. Conversely, for every
integer k, there is a multiclique H1 and a complete multipartite graph H2 such that every k-split
graph contains neither of H1, H2.

Thus, an induced subgraph ideal has bounded “splitness” if and only if it includes neither of the
ideal of all multicliques and the ideal of all complete multipartite graphs.

In this paper we present some relatives of 1.3. We study the structure that results from excluding
a “substar” (a graph such that, if it has a vertex, then it has a vertex incident with all edges) and
the complement of one; and also the structure equivalent to excluding a substar of various types,
and the complement of one. (There are many possible combinations here, and we just did those that
seemed to us most interesting.)
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2 Layouts

All graphs in this paper are finite, and have no loops or parallel edges. Let us say a graph H is a
dash if it has at most one edge. H is an antidash or antistar or antisubstar if its complement G is a
dash or star or substar respectively. Thus a graph with a vertex is a substar if deleting some vertex
gives an anticlique. ∆(G) denotes the maximum degree of the vertices of G. (In what follows, if X
is a clique or anticlique, we shall sometimes regard it as a graph, and sometimes as a set of vertices,
and hope this causes no confusion.)

Let G be a graph, and let c1, c2, c3 ≥ 0 be integers or ∞. Let F be a set of subsets of V (G), with
the following properties:

• |A ∩B| ≤ c1 for all distinct A, B ∈ F ,

• ∆(G|A) ≤ c2, for each A ∈ F , and

• for each v ∈ V (G), there are at most c3 vertices u in G such that u, v are non-adjacent and
there is no A ∈ F containing both u, v.

We call such a set F a (c1, c2, c3)-layout, and we say G admits F . Thus G admits a (0, 0, 0)-layout
if and only if it is complete multipartite. In the theorems that follow, the structures will involve a
(c1, c2, c3)-layout for some choice of c1, c2, c3, sometimes with additional restrictions, such as:

• V (G) = ∪A∈FA; we call this a covering layout

• each v ∈ V (G) belongs to at most c4 members of F ; we call this a layout with degree at most c4

• |F| ≤ c5.

We begin by proving that certain kinds of substars and antisubstars do not admit certain kinds of
layouts.

2.1 For all integers c ≥ 0, if H is a clique with at least c2 + c + 1 vertices, then H does not admit
a covering (∞, c,∞)-layout with cardinality at most c.

Proof. If H admits a covering (∞, c,∞)-layout F of cardinality at most c, then since |V (H)| ≥
c2 + c + 1 and |F| ≤ c, some A ∈ F contains at least c + 2 vertices of H, which is impossible since
∆(H|A) ≤ c. Thus H admits no such layout. This proves 2.1.

2.2 For all integers c ≥ 0, if H is a dash with at least c3 + 2c + 3 vertices and with |E(H)| = 1,
then H does not admit a (c, 0, c)-layout with degree at most c.

Proof. Suppose that H admits a (c, 0, c)-layout F with degree at most c. Let uv be the unique edge
of H, and let X = V (H) \ {u, v}. Now for each A ∈ F containing u, and each B ∈ F containing v,
it follows that v /∈ A since A is an anticlique, and so A 6= B, and therefore |A∩B| ≤ c. In particular
|X ∩ A ∩ B| ≤ c. Since this holds for all choices of A and B, and since there are at most c choices
of A containing u and at most c choices of B containing v, it follows that at most c3 members of
X belong to a member of F containing u and to a member of F containing v. But by hypothesis,
since each vertex in X is non-adjacent to u, at most c such vertices are not contained in members
of F containing u, and the same for v. We deduce that |X| ≤ c3 + 2c, a contradiction. This proves
2.2.
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2.3 For all integers c ≥ 0, if H is an antistar with at least (c + 1)2 + 1 vertices that is not a clique,
then H does not admit a (c, c, c)-layout with degree at most c.

Proof. Suppose that H admits a (c, c, c)-layout F with degree at most c. Let v be the vertex of
H with degree zero, and let X be the set of vertices u different from v such that some member of
F contains both u, v. If A ∈ F with v ∈ A, then since A \ {v} is a clique and ∆(H|A) ≤ c, it
follows that |A \ {v}| ≤ c + 1; and since v is contained in at most c members of F , it follows that
|X| ≤ c(c + 1). But since v is non-adjacent to every other vertex of H, there are at most c vertices
not in X ∪ {v}; and so |V (H)| ≤ (c + 1)2, a contradiction. This proves 2.3.

2.4 For all integers c ≥ 1, if H is a substar in which some vertex v has at least c2 + 1 neighbours
and at least c3 + 2c + 1 non-neighbours, then H does not admit a (c, c, c)-layout with degree at most
c.

Proof. Since v has degree at least two and H is a substar, it follows that v is incident with all
edges of H. Suppose that H admits a (c, c, c)-layout F with degree at most c. Let N be the set of
vertices of H \ v adjacent to v, and let M be the set that are non-adjacent to v. Let X(v) be the set
of vertices u different from v such that some member of F contains both u, v. If A ∈ F with v ∈ A,
then since ∆(H|A) ≤ c, it follows that |N ∩A| ≤ c, and since v belongs to at most c members of F ,
we deduce that |N ∩X(v)| ≤ c2. Hence there exists w ∈ N \X(v). Let X(w) be the set of vertices u
different from w such that some member of F contains both u, w. Now for each A ∈ F containing v,
and each B ∈ F containing w, since A 6= B (because w /∈ X(v)) it follows that |A∩B| ≤ c; and since
v, w are each contained in at most c members of F , we deduce that |X(v) ∩X(w)| ≤ c3. But since
v, w are both non-adjacent to all members of M , it follows that |M \X(v)| ≤ c, and |M \X(w)| ≤ c;
and so |M | ≤ c3 + 2c, a contradiction. This proves 2.4.

3 The main result

The main result of this paper is a theorem describing the structure implied by excluding a general
antisubstar and a general substar; but before that we prove several other results describing the
structure implied by excluding some special kinds of antisubstar and some special kinds of substar.
Some of these results are needed for lemmas towards the main theorem, and others are included for
their own sake. We will study the following combinations, in theorems 3.1, 3.3, 3.4, 3.5, 3.7, 3.8, and
3.9 respectively:

• antistar and star

• clique and dash

• antidash and dash

• antistar and dash

• clique and substar
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• antistar and substar

• antisubstar and substar.

The first of these is easy, and does not need layouts:

3.1 For every antistar H1 and star H2 there exists c ≥ 0 such that for every graph G containing
neither of H1, H2 as an induced subgraph, one of ∆(G), ∆(G) ≤ c. Conversely, for every integer
c ≥ 0, there is an antistar H1 and a star H2 such that every graph G with one of ∆(G), ∆(G) ≤ c
contains neither of H1, H2.

Proof. For the first assertion, by enlarging H1, H2, we may assume that H1, H2 are both isomorphic
to some star H with h ≥ 1 vertices, not an anticlique. Suppose that G contains a clique A with
|A| = 2h, and an anticlique B with |B| = 2h, with A∩B = ∅. If there are at least 2h2 edges between
A and B, then some vertex in A has at least h neighbours in B, and G contains H, a contradiction.
Otherwise some vertex in B has at least h non-neighbours in A, and G contains H, a contradiction.
It follows that either G contains no clique of cardinality 2h + 1, or G contains no anticlique of
cardinality 2h + 1, and in either case the result follows from 1.3. For the second assertion, observe
that for all c, every sufficiently large star H satisfies ∆(H), ∆(H) > c. This proves 3.1.

We need the following lemma.

3.2 Let d, t ≥ 0 be integers, let G be a graph, and let A1, . . . , At ⊆ V (G), such that

• |Ai| > d(t− 1) for 1 ≤ i ≤ t,

• |Ai ∩Aj | ≤ d for 1 ≤ i < j ≤ t, and

• each vertex in Ai \Aj has at most d non-neighbours in Aj for 1 ≤ i < j ≤ t.

Then there is a clique with cardinality t included in A1 ∪ · · · ∪At.

Proof. Choose j ≤ t maximal such that there exist vi ∈ Ai for 1 ≤ i ≤ j, distinct and pairwise
adjacent, where each vi belongs to none of Ai+1, . . . , At. Suppose that j < t. For 1 ≤ i ≤ j there are
at most d vertices in Aj+1 that are non-adjacent to vi, since vi /∈ Aj+1; and for j + 1 < k ≤ t there
are at most d vertices of Aj+1 that belong to Ak; and so there are at least

|Aj+1| − jd− (t− j − 1)d > 0

vertices in Aj+1 that are adjacent to all of v1, . . . , vj and belong to none of Aj+2, . . . , At, contrary to
the maximality of j. Consequently j = t. This proves 3.2.

The Ramsey number R(s, t) is the least integer n such that every graph with at least n vertices
has either a clique of cardinality s or an anticlique of cardinality t.

3.3 For every clique H1 and dash H2, there is an integer c ≥ 0 such that every graph containing
neither of H1, H2 as an induced subgraph admits a covering (c, 0, c)-layout of cardinality at most c.
Conversely, for all integers c ≥ 0, there is a clique H1 and a dash H2 such that every graph admitting
a covering (c, 0, c)-layout of cardinality at most c contains neither of H1, H2.
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Proof. For the first statement, we may assume that H1, H2 both have h ≥ 1 vertices, and |E(H2)| =
1. Let m = R(h, h2), and let c = h + m. We claim c satisfies the theorem.

For suppose that G contains neither of H1, H2. Let F0 be the set of all maximal anticliques of
cardinality at least h2.

(1) If A ∈ F0, and v ∈ V (G)\A, then v has at most h−3 non-neighbours in A. Consequently, every
two members of F0 have at most h− 3 vertices in common.

Since A is maximal, v has a neighbour in A, and if it also has h − 2 non-neighbours, then G
contains H2, a contradiction. This proves (1).

(2) |F0| ≤ h− 1.

For suppose that A1, . . . , Ah ∈ F0 are distinct. By 3.2 (with d, t replaced by h− 3, h), since each Ai

has cardinality more than (h− 3)(h− 1), it follows that G contains H1, a contradiction. This proves
(2).

Let Z be the set of vertices of G not in any member of F0.

(3) |Z| ≤ m; and for every vertex v, there are at most m vertices u in G such that u, v are non-
adjacent and there is no A ∈ F0 containing both u, v.

For G|Z has no clique of cardinality h and no anticlique of cardinality h2 (since the latter would
be a subset of a member of F0), so |Z| < m. This proves the first assertion. For the second, let
v ∈ V (G), and let X be the set of vertices u such that u, v are non-adjacent and there is no A ∈ F
containing both u, v. It follows that X has no anticlique of cardinality h2 − 1 (because then adding
v would give an anticlique of cardinality h2 containing v, and that could be extended to a member
of F0), and no clique of cardinality h, and so |X| < m. This proves (3).

Let F be the union of F0 and the set {{v} : v ∈ Z}. Then by (2) and (3), |F| ≤ h + m. Thus F
is a covering (c, 0, c)-layout of cardinality at most c. This proves the first assertion of the theorem.
The second follows from 2.1 and 2.2. This proves 3.3.

3.4 For every antidash H1 and dash H2, there is an integer c ≥ 0 such that for every graph G
containing neither of H1, H2 as an induced subgraph, one of G, G admits a covering (c, 0, c)-layout
of cardinality at most c. Conversely, for all integers c ≥ 0, there is an antidash H1 and a dash H2

such that every graph admitting a covering (c, 0, c)-layout of cardinality at most c contains neither
of H1, H2.

Proof. We may assume that H1, H2 both have h ≥ 3 vertices, and H1 has a non-edge, and H2 has
an edge. Suppose that G has a clique A and an anticlique B, disjoint and both with 2h vertices.
There is at most one vertex in A with no neighbour in B (because it there were two, they would be
adjacent, and together with an appropriate subset of B would form a copy of H2); and every vertex
in A with a neighbour in B has at most h−3 non-neighbours in B (because G does not contain H2).
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It follows that there are at least (2h− 1)(h + 3) > 2h2 edges between A and B. But similarly there
are more than 2h2 edges of G between A and B, a contradiction. It follows that either G contains
no clique of cardinality 2h + 1, or no anticlique of cardinality 2h + 1, so the first assertion of the
theorem follows from 3.3. The second follows from 2.1 and 2.2 (since a large antidash contains a
large clique).

3.5 For every antistar H1 and every dash H2, there is an integer c ≥ 0 such that every graph
containing neither of H1, H2 as an induced subgraph admits a (c, 0, c)-layout with degree at most c.
Conversely, for all integers c ≥ 0, there is an antistar H1 and a dash H2 such that every graph
admitting a (c, 0, c)-layout of degree at most c contains neither of H1, H2.

Proof. We may assume that H1, H2 both have h ≥ 1 vertices, and H1 is not a clique, and H2 has
an edge. Let c = R(h, h2). Now let G be a graph containing neither of H1, H2. Let F be the set of
all maximal anticliques of G with cardinality at least h2. As in the proof of 3.3 we have

(1) If A ∈ F , and v ∈ V (G) \ A, then v has at most h − 3 non-neighbours in A. Consequently,
every two members of F have at most h− 3 vertices in common.

(2) Every vertex belongs to at most h− 2 members of F .

For if A1, . . . , Ah−1 are distinct members of F , all containing some vertex v, then by 3.2 (with
t, d replaced by h − 1, h − 3), the union of the sets A1 \ {v}, . . . , Ah−1 \ {v} includes a clique with
h− 1 vertices, and so G contains H1, a contradiction. This proves (2).

(3) For every vertex v, there are at most c vertices u in G such that u, v are non-adjacent and
there is no A ∈ F containing both u, v.

Let v ∈ V (G), and let X be the set of vertices u such that u, v are non-adjacent and there is
no A ∈ F containing both u, v. It follows that X has no anticlique of cardinality h2 − 1 (because
then adding v would give an anticlique of cardinality h2 containing v, and that could be extended to
a member of F), and no clique of cardinality h, and so |X| < c. This proves (3).

From (1), (2) and (3) it follows that F is a (c, 0, c)-layout of degree at most c. This proves the
first assertion of the theorem, and the second follows from 2.3 and 2.2. This proves 3.5.

The proofs of the next two results have a great deal in common, and we have extracted the
common part in the following lemma.

3.6 Let H1 be an antistar with h vertices, and let H2 be a substar with h vertices. Let m = R(h, h),
k = h(h + 2)m, and c = R(h, k). Let G be a graph containing neither of H1, H2, and let F be the set
of all maximal subsets A ⊆ V (G) such that |A| ≥ k and ∆(G|A) ≤ m. Then the following hold:

• If A ∈ F then ∆(G|A) < m.

• If A ∈ F and v ∈ V (G) \A then v has at most (h + 1)m non-neighbours in A.
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• If A, B ∈ F are distinct, then |A ∩B| ≤ (h + 2)m.

• For every vertex v, there are fewer than R(h, k) vertices u such that u, v are non-adjacent and
no member of F contains u, v.

Proof. We remark that in this lemma, H1 is permitted to be a clique. For the first assertion, let
A ∈ F , and suppose that some v ∈ A has exactly m neighbours in A. This set of neighbours includes
a set X of cardinality h which is either a clique or an anticlique. Let Z be the set of all vertices in
A \ (X ∪ {v}) with no neighbour in X ∪ {v}. At most (h + 1)m vertices in A \X have neighbours
in X ∪ {v}, and so |Z| ≥ m. Consequently X is not a clique since G does not contain H1. Now
Z includes a set Y of cardinality h that is either a clique or an anticlique. If Y is a clique, then
G|(Y ∪ {v}) contains H1, while if Y is an anticlique then G|(X ∪ Y ∪ {v}) contain H2, in either case
a contradiction. This proves the first assertion.

For the second, let A ∈ F and v ∈ V (G) \ A. From the maximality of A it follows that
∆(A ∪ {v}) > m, and from the first assertion, v has more than m neighbours in A. Consequently
there is a clique or anticlique X ⊆ A of cardinality h such that v is adjacent to every vertex in X.
Let M be the set of non-neighbours of v in A, and suppose that |M | ≥ (h + 1)m. Each vertex in X
has at most m neighbours in M , and so there is a subset Z ⊆M with |Z| = m with no neighbours in
X∪{v}. Hence X is not a clique, since G does not contain H1. Now Z includes a clique or anticlique
Y of cardinality h, and that gives a copy of H1 (if Y is a clique) or of H2 (if Y is an anticlique), a
contradiction. This proves the second assertion.

For the the third assertion, let A, B ∈ F be distinct. Let v ∈ B\A. Since ∆(G|B) ≤ m, it follows
that v has at most m neighbours in A ∩ B; and by the second assertion, v has at most (h + 1)m
non-neighbours in A ∩B. Consequently, |A ∩B| ≤ (h + 2)m. This proves the third assertion.

For the fourth, let v ∈ V (G), and let Z be the set of all vertices u such that u, v are non-adjacent
and no member of F contains u, v. Suppose that |Z| ≥ R(h, k) ; then Z includes either a clique of
cardinality h or an anticlique of cardinality k. The first gives a copy of H1 (with v) and the second,
with v, extends to a member of F containing v and a member of Z, in either case a contradiction.
This proves the fourth assertion, and hence completes the proof of 3.6.

3.7 For every clique H1 and every substar H2, there is an integer c ≥ 0 such that every graph that
contains neither of H1, H2 as an induced subgraph admits a covering (c, c, c)-layout of cardinality at
most c. Conversely, for all integers c ≥ 0, there is a clique H1 and a substar H2 such that every
graph admitting a covering (c, c, c)-layout of cardinality at most c contains neither of H1, H2.

Proof. We may assume that H1, H2 both have h ≥ 1 vertices. Let m = R(h, h), k = h(h + 2)m,
and c = R(h, k). Now let G be a graph containing neither of H1, H2, and let F0 be the set of all
subsets A ⊆ V (G) such that |A| ≥ k and ∆(G|A) ≤ m. By 3.6, the four assertions of 3.6 hold (with
F replaced by F0.)

(1) |F0| < h.

For if A1, . . . , Ah ∈ F0 are distinct, then by 3.2 (with t, d replaced by h, (h + 2)m) it follows that G
contains H1, a contradiction. This proves (1).
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Let Z be the set of all vertices of G that are not in any member of F0.

(2) |Z| < R(h, k).

For Z includes no clique with cardinality h, because G does not contain H1, and Z includes no
anticlique with cardinality k, because such an anticlique could be extended to a member of F0

containing a vertex of Z. This proves (2).

Let F be the union of F0 and {{v} : v ∈ Z}. From (1), (2) and 3.6 we deduce that F is a
covering (c, c, c)-layout of cardinality at most c. This proves the first assertion of the theorem, and
the second follows from 2.1 and 2.4. This proves 3.7.

3.8 For every antistar H1 and substar H2 there is an integer c ≥ 0 such that every graph containing
neither of H1, H2 admits a (c, c, c)-layout with degree at most c. Conversely, for all integers c ≥ 0,
there is an antistar H1 and a substar H2 such that every graph admitting a (c, c, c)-layout of degree
at most c contains neither of H1, H2.

Proof. We may assume that H1, H2 both have h ≥ 1 vertices. Let m = R(h, h), k = h(h + 2)m,
and c = R(h, k). Now let G be a graph containing neither of H1, H2. Let F be the set of all maximal
subsets A ⊆ V (G) such that |A| ≥ k and ∆(G|A) ≤ m. By 3.6, the four assertions of 3.6 hold.

(1) Every vertex v is contained in at most h− 1 members of F .

For suppose that A1, . . . , Ah are distinct members of F , all containing some vertex v. For 1 ≤ i ≤ h
let Bi be the set of vertices in Ai \ {v} that are non-adjacent to v. Thus each Bi has cardinality
at least h(h + 2)m − m > (h − 1)(h + 2)m. By 3.2 (with t, d replaced by h, (h + 2)m), it follows
that B1 ∪ · · · ∪Bh includes a clique with h vertices, and hence G contains H1, a contradiction. This
proves (1).

From (1) and 3.6, F is a (c, c, c)-layout with degree at most c. This proves the first assertion of
the theorem, and the second follows from 2.3 and 2.4. This proves 3.8.

3.9 For every antisubstar H1 and every substar H2 there is an integer c such that for every graph G
containing neither of H1, H2 as an induced subgraph, one of G, G (say G′) admits a partition (P1, P2)
of V (G′), and a covering (c, c, c)-layout F1 of G′|P1 of cardinality at most c, and a (c, c, c)-layout F2

of G′|P2 with degree at most c, with the following properties:

• for each v ∈ P1 and each A ∈ F2, either v has at most c neighbours in A or it has at most c
non-neighbours in A;

• for each v ∈ P2 and each A ∈ F1, either v has at most c neighbours in A or it has at most c
non-neighbours in A; and

• for each v ∈ P1, there exists F ′ ⊆ F2 with |F ′| ≤ c, such that every non-neighbour of v in P2

belongs to ∪A∈F ′A.
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Conversely, for all integers c ≥ 0 there is an antisubstar H1 and a substar H2 such that every graph
G for which one of G, G admits a partition (P1, P2) as above contains neither of H1, H2.

Proof. We may assume that H1, H2 are equal, say both equal to a substar H with h ≥ 1 vertices.
Let t = h(h+2), and let J be the graph consisting of the disjoint union of t cliques each of cardinality
h. By 1.4, there exists k such that every graph containing neither of J, J as an induced subgraph is
k-split, and we may choose k ≥ h.

Choose an integer c′ ≥ 2 such that

• 3.7 holds (with c replaced by c′) for a (k + 1)-vertex clique and the substar H, and

• 3.8 holds (with c replaced by c′) for an h-vertex antistar and H,

and let c = c′(c′ + 1)h). We claim that c satisfies the theorem. For let G be a graph containing
neither of H,H. We observe first:

(1) If A, B ⊆ V (G) are disjoint, and ∆(G|A) ≤ d, and ∆(G|B) ≤ d, then every vertex in B
has either at most (2d + 1)h neighbours in A, or at most (2d + 1)h non-neighbours in A. Also, every
vertex in A has either at most (2d + 1)h neighbours in B, or at most (2d + 1)h non-neighbours in
B.

For let v ∈ B, and let X,Y be the sets of neighbours and non-neighbours of v in A, respectively.
We assume that |X|, |Y | ≥ (2d + 1)h. Since each vertex in A has at most d neighbours in A, X is
(d + 1)-colourable, and so includes an anticlique X ′ with h vertices. Each vertex in X ′ has at most
d neighbours in Y , and so there are at least |Y | − dh ≥ (d + 1)h vertices in Y with no neighbours in
X ′; and by the same argument, this set includes an anticlique of cardinality h. But then G contains
H, a contradiction. The second statement follows by taking complements. This proves (1).

If G contains neither of J, J , then it is k-split by 1.4; let (P1, P2) be a partition of V (G) where
P1 includes no clique of cardinality k + 1 and P2 includes no anticlique of cardinality k + 1. By
3.7 applied to G|P1, G|P1 admits a covering (c′, c′, c′)-layout of cardinality at most c′; and by 3.7
applied to G|P2, G|P2 admits a covering (c′, c′, c′)-layout of cardinality at most c′. From (1), since
c ≥ (2c′ + 1)h, the result holds in this case.

Thus we may assume that G contains one of J, J ; and since the result we are proving is symmetric
between G, G, we may assume that G contains J , by replacing G by G if necessary. Thus, we assume
that there are t disjoint cliques Z1, . . . , Zt, each of cardinality h, with no edges between them. Let
Z = Z1 ∪ · · · ∪ Zt. Let P1 be the set of vertices v ∈ V (G) \ Z such that v has a non-neighbour in at
most h of Z1, . . . , Zt, and let P2 = V (G) \ P1.

(2) For every vertex v ∈ P2, v has a neighbour in at most h of Z1, . . . , Zt.

If v ∈ Z this is true, so we assume that v /∈ Z. Let I be the set of i ∈ {1, . . . , t} such that v
has a neighbour in Zi, and J the set of i where v has a non-neighbour in Zi. Since v /∈ P2, it follows
that |J | ≥ h. Suppose also that |I| ≥ h. Now |I ∪ J | = t ≥ 2h, and hence there exists I ′ ⊆ I and
J ′ ⊆ J , with |I ′| = |J ′| = h, and with I ′ ∩ J ′ = ∅. But then G contains H, a contradiction. This
proves (2).
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(3) G|P1 has no clique with cardinality h.

For suppose that X ⊆ P1 is a clique with cardinality h. For each v ∈ X, there are at most h of
Z1, . . . , Zt in which v has a non-neighbour; and since t ≥ h2 + 2, there exist distinct i, j ∈ {1, . . . , t}
such that every vertex in X is adjacent to every vertex in Zi ∪ Zj . Choose v ∈ Zj ; then v has h
neighbours and h non-neighbours in the clique X ∪ Zi, and so G contains H, a contradiction. This
proves (3).

(4) G|P2 has no h-vertex star.

For suppose that X ⊆ P2 with |X| = h, and G|X is a star. For each v ∈ X, v has neighbours
in at most h of Z1, . . . , Zt; and since t ≥ h2 + h, there are h values of i ∈ {1, . . . , t} such that no
vertex in X has a neighbour in Zi. By choosing one vertex from each such Zi, we obtain an anticlique
Y ⊆ Z with |Y | = h such that no vertex in X has a neighbour in Y ; but then G contains H, a
contradiction. This proves (4).

From (2) and 3.7, G|P1 admits a covering (c′, c′, c′)-layout F1 of cardinality at most c′. By (3)
and 3.8 applied to G|P2, G|P2 admits a (c′, c′, c′)-layout F2 with degree at most c′. We claim they
satisfy the theorem, and so must check they satisfy the three conditions. The first two follow from
(1). For the third, we observe

(5) If v ∈ P1, there exists F ′ ⊆ F2 with |F ′| ≤ c′(c′ + 1)h, such that every non-neighbour of v
in P2 belongs to ∪A∈F ′A.

Choose X ⊆ P2 maximal such that v has no neighbours in X and no member of F2 contains
more than one member of X. Suppose that |X| ≥ (c′ + 1)h. Since F2 is a (c′, c′, c′)-layout of G|P2,
it follows that each vertex in X is adjacent to at most c′ other members of X, and so X includes an
anticlique X ′ of cardinality h. Now v has non-neighbours in at most h of Z1, . . . , Zt, and each x ∈ X ′

has neighbours in at most h of Z1, . . . , Zt, and since t ≥ (h + 2)h, there are h values of i ∈ {1, . . . , t}
such that every vertex of Zi is adjacent to v and has no neighbour in X ′. But then G contains H, a
contradiction. This proves that |X| < (c′ + 1)h. Since F2 is a (c′, c′, c′)-layout with degree at most
c′, it follows that there are at most c′|X| members of F2 that contain a vertex of X; but from the
maximality of X, every non-neighbour of c in P2 belongs to a member of F2 containing a member
of X. This proves (5).

From (5), this completes the proof of the first assertion of 3.9. For the second assertion, let
c ≥ 0, let h = (c + 1)3, and let H be a substar with 2h + 1 vertices, in which some vertex v has
h neighbours and h non-neighbours. Let N be the set of neighbours of v in H, and M the set of
vertices in V (H) \ {v} non-adjacent to v. Let G be a graph, satisfying the following:

• (P1, P2) is a partition of V (G);

• F1 is a covering (c, c, c)-layout of G|P1 of cardinality at most c;

• F2 is a (c, c, c)-layout of G|P2 with degree at most c;
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• for each v ∈ P1 and each A ∈ F2, either v has at most c neighbours in A or it has at most c
non-neighbours in A;

• for each v ∈ P2 and each A ∈ F1, either v has at most c neighbours in A or it has at most c
non-neighbours in A; and

• for each v ∈ P1, there exists F ′ ⊆ F2 with |F ′| ≤ c, such that every non-neighbour of v in P2

belongs to ∪A∈F ′A.

By replacing G by its complement if necessary, it suffices to show that G contains neither of H,H
as an induced subgraph. We observe first:

(6) For every anticlique Z of G, if Z ∩ P1 6= ∅ then |Z ∩ P2| ≤ c2 + c.

For let z ∈ Z ∩ P1. Now for each B ∈ F2, since every vertex in B is non-adjacent to at most c
other members of B, it follows that |B ∩ Z| ≤ c + 1. But from the final statement above, there
exists F ′ ⊆ F2 with |F ′| ≤ c, such that every non-neighbour of w in P2 belongs to a member of F ′.
Consequently |Z ∩ P2| ≤ c(c + 1). This proves (6).

Suppose that H is an induced subgraph of G and v ∈ P1. Since ∆(G|A) ≤ c for each A ∈ F1, and
|F1| ≤ c, it follows that |N ∩ P1| ≤ c2. By (6), since M ∪ {v} is an anticlique, |M ∩ P2| ≤ c(c + 1).
Since |M | > c(c + 1), there exists w ∈ M ∩ P1. Since N ∪ {w} is an anticlique, (6) implies that
|N ∩ P2| ≤ c(c + 1); and so |N | ≤ 2c2 + c, a contradiction.

Next suppose that H is an induced subgraph of G and v ∈ P2. By 2.3 (applied to G|P2), it
follows that |N ∩P2| < (c + 1)2. Consequently |N ∩P1| > h− (c + 1)2 ≥ c(c + 1)2, and since |F1| ≤ c
and F1 is covering, there exists A ∈ F1 with |N ∩A| > c(c + 1). Consequently |A ∩M | < c. Choose
w ∈ A ∩ N . Now M ∪ {w} is an anticlique, so by (6), |M ∩ P2| ≤ c(c + 1). Since |A ∩M | < c,
there exists u ∈ M ∩ P1 with u /∈ A. Now u is non-adjacent to all members of N , and in particular
to all the members of N ∩ A. Let X be the set of vertices x ∈ A such that some member of F1

contains u, x. Since u /∈ A, it follows that each A′ ∈ F1 containing u satisfies |A ∩A′| ≤ c; and since
|F1| ≤ c, we deduce that |X| ≤ c2. But there are at most c vertices in A \X non-adjacent to u, and
so |N ∩A| ≤ c2 + c, a contradiction.

Next suppose that H is an induced subgraph of G. By 2.1, |(M ∪ N) ∩ P1| ≤ c2 + c. If
v ∈ P2, then by 2.4 applied to G|P2, it follows that either |N ∩ P2| ≤ c2 or |M ∩ P2| ≤ c3 + 2c, in
either case a contradiction, since |M |, |N | ≥ h and |(M ∪ N) ∩ P1| ≤ c2 + c. Thus v ∈ P1. Since
|N ∩P2| ≥ h−c2−c > c3 +c2, and there exists F ′ ⊆ F2 with |F ′| ≤ c such that N ∩P2 ⊆ ∪A∈F ′A, it
follows that there exists A ∈ F2 such that |N ∩A| > c2 + c. Consequently |M ∩A| ≤ c, and so there
exists u ∈ (M ∩ P2) \ A. Let X be the set of vertices x ∈ A such that some member of F2 contains
both x, u. Since there are at most c members of F2 that contain u, and each of them contains at
most c vertices of A (since x /∈ A), it follows that |X| ≤ c2. But at most c members of N ∩ A do
not belong to X, since they are all adjacent to u; and so |N ∩ A| ≤ c2 + c, a contradiction. This
completes the proof of 3.9.
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