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Abstract: Markov random fields (MRFs) provide a flexible framework to
describe a wide range of problems, and have been used extensively in fields
including speech recognition, computer vision and error-correcting codes. A
discrete MRF is specified by a set of variables X = {X1, . . . , Xn} with an
associated probability distribution, p(x) := P (X = x) where x = (x1, . . . , xn),
which factorizes as

p(x) =
1

Z

∏
c∈C

ψc(xc).

C is a collection of hyperedges xc of the variables in X, and Z is a normalizing
constant called the partition function that ensures probabilities sum to 1.

Here we are interested in Maximum a Posteriori (MAP) inference, which is
the discrete optimization task of solving for a most probable configuration, i.e.
an assignment x = x∗ such that p(x) is maximized. This is NP-hard in general,
leading to much interest in identifying cases where efficient exact solutions or
good approximations may be obtained.

The MAP inference task is equivalent to finding

x∗ = arg max
x

∑
c∈C

logψc(xc).

Problems of this form can be reduced to finding a maximum weight stable set
(MWSS) in a weighted graph we construct, called a nand Markov random field
(NMRF), based on the original model.

In this talk, we explain this approach and discuss when it leads to efficient
solutions of the original MAP problem. Typically this is when the resulting
NMRF is a perfect graph. We shall pay particular attention to binary pairwise
models, i.e. cases where all Xi variables are binary and all hyperedges have
cardinality at most 2.

Joint work with Tony Jebara.
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