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Abstract

Gyárfás conjectured in 1985 that for all k, l, every graph with no clique of size more than k and no
odd hole of length more than l has chromatic number bounded by a function of k, l. We prove three
weaker statements:

• Every triangle-free graph with sufficiently large chromatic number has an odd hole of length
different from five;

• For all l, every triangle-free graph with sufficiently large chromatic number contains either a
5-hole or an odd hole of length more than l;

• For all k, l, every graph with no clique of size more than k and sufficiently large chromatic
number contains either a 5-hole or a hole of length more than l.



1 Introduction

All graphs in this paper are finite, and without loops or parallel edges. A hole in a graph G is an
induced subgraph which is a cycle of length at least four, and an odd hole means a hole of odd length.
(The length of a path or cycle is the number of edges in it, and we sometimes call a hole of length n
an n-hole.) A famous conjecture of A. Gyárfás [1] from 1985 asserts:

1.1 Conjecture: For all integers k, l there exists n(k, l) such that every graph G with no clique of
cardinality more than k and no odd hole of length more than l has chromatic number at most n(k, l).

We might as well assume that k ≥ 2, and l ≥ 3 and is odd; and in a recent paper [3], two of us
proved that this is true for all pairs (k, l) when l = 3. No other cases have been settled, and the
cases when k = 2 are presumably the simplest to attack next. Here we settle the first open case,
when k = 2 and l = 5. That asserts that all pentagonal graphs have bounded chromatic number,
where we say a graph is pentagonal if every induced odd cycle in it has length five (and in particular,
it has no triangles). Pentagonal graphs might all be 4-colourable as far as we know (the 11-vertex
Grötzsch graph is pentagonal and not 3-colourable), but at least they do indeed all have bounded
chromatic number. The following is our main result:

1.2 Every pentagonal graph is 82200-colourable.

The proof of 1.2 occupies almost the whole paper. (Much of the proof needs just that G is
triangle-free and has no odd hole of length more than l, for any fixed l, and so we have written it in
this generality wherever we could.) We prove:

• if G has no triangle and no odd hole of length more than l, and for every vertex v the set of
vertices with distance at most three from v has chromatic number at most some k, then χ(G)
is bounded by a function of k and l;

• if G is pentagonal, and χ(G) is large, then there is an induced subgraph with large chromatic
number in which for every vertex v the set of vertices with distance at most three from v has
chromatic number at most 20.

Together these imply that every pentagonal graph has bounded chromatic number. Both of these
are consequences of a lemma, a variant of a theorem of [3], asserting roughly that for all l, if G is
triangle-free and has no odd hole of length more than l, and χ(G) is large, then there is an induced
subgraph H such that for some vertex v0 of H, if we partition V (H) by distance in H from v0, then
all these “level sets” are stable except for one with large χ. We prove this lemma first, and then
apply it to prove the two bulleted statements in later sections.

Gyárfás’ conjecture 1.1 has a number of other interesting special cases that still remain open; for
instance

• Conjecture: For all l every triangle-free graph G with sufficiently large chromatic number
has an odd hole of length more than l;

• Conjecture: For all k, l every graph with no clique of size more than k and sufficiently large
chromatic number has a hole of length more than l.
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At the end of this paper, we prove that both these statements are true if in addition we assume that
G contains no 5-hole. More precisely, we prove the next two results, where ω(G) denotes the size of
the largest clique of G:

1.3 Let l ≥ 2 be an integer, and let G be a triangle-free graph with no 5-hole and no odd hole of
length more than 2l + 1. Then χ(G) ≤ (l + 1)4l−1.

1.4 Let l ≥ 3 be an integer, and let G be a graph with no 5-hole and no hole of length more than l.
Then

χ(G) ≤ (2l − 2)2
ω(G)

.

The last was proved (but not published) by the second author some time ago, and improves on [2].

2 Lollipops

In [1], Gyárfás gave a neat proof that for any fixed path P , all graphs with no induced subgraph
isomorphic to P and with bounded clique number also have bounded chromatic number, and in this
section we use basically the same proof for a lemma that we need later. If X ⊆ V (G), the subgraph
of G induced on X is denoted by G[X], and we sometimes write χ(X) for χ(G[X]) when there is no
danger of ambiguity. If x ∈ V (G) and Y ⊆ V (G), the distance in G of x from Y (or of Y from x) is
the length of the shortest path containing x and a vertex in Y . Let us say a lollipop in a graph G is
a pair (C, T ) where C ⊆ V (G) and T is an induced path with vertices t1- · · · -tk in order, say, with
k ≥ 2, satisfying:

• V (T ) ∩ C = ∅;

• G[C] is connected;

• tk has a neighbour in C; and

• t1, . . . , tk−1 have no neighbours in C.

The cleanliness of a lollipop (C, T ) in G is the maximum l such that t1, . . . , tl all have distance (in
G) at least three from C (or 0 if t1 has distance two from C). We call t1 the end of the lollipop.
If (C, T ) and (C ′, T ′) are lollipops in G, we say the second is a licking of the first if C ′ ⊆ C, and
they have the same end, and T is a subpath of T ′, and V (T ′) ⊆ V (T ) ∪ C (and consequently the
cleanliness of (C ′, T ′) is at least that of (C, T )). We observe first:

2.1 Let (C, T ) be a lollipop in G, and let C ′ ⊆ C be non-null, such that G[C ′] is connected. Then
there is a path T ′ of G such that (C ′, T ′) is a licking of (C, T ).

Proof. Let T be t1- · · · -tk, where (C, T ) has end t1. Since tk has a neighbour in C, there is a path
P of G with one end tk, and with V (P ) ⊆ C ∪ {tk}, such that the other end of P has a neighbour
in C ′. Choose a minimal such path P . Then V (P ) ∩ C ′ = ∅, and P ′ = T ∪ P is an induced path.
No vertex of P ′ has a neighbour in C ′ except its last, and so (C ′, T ∪ P ) is a licking of (C, T ) as
required. This proves 2.1.
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For a vertex v of G, we denote the set of neighbours of v in G by N(v) or NG(v), and for r ≥ 1,
we denote the set of vertices at distance exactly r from v by N r(v) or N r

G(v). We need the following:

2.2 Let h, κ ≥ 0 be integers. Let G be a graph such that χ(N2(v)) ≤ κ for every vertex v; and let
(C, T ) be a lollipop in G, with χ(C) > hκ. Then there is a licking (C ′, T ′) of (C, T ), with cleanliness
at least h more than the cleanliness of (C, T ), and such that χ(C ′) ≥ χ(C)− hκ.

Proof. We proceed by induction on h. If h = 0 we may take (C ′, T ′) = (C, T ); so we assume that
h > 0, and that the result holds for h− 1. Let (C, T ) have cleanliness c say (where possibly c = 0),
and let T have vertices t1- · · · -tk in order, where t1 is the end. Thus ti has distance at least three
from C for 1 ≤ i ≤ c, and so k ≥ c+ 2. Since χ(N2(tc+1)) ≤ κ, it follows that

χ(C \N2(tc+1)) ≥ χ(C)− κ > (h− 1)κ ≥ 0,

and so there is a component C ′′ of C \ N2(tc+1) with χ(C ′′) > (h − 1)κ. By 2.1, there is a licking
(C ′′, T ′′) of (C, T ). Since tc+1 has distance at least three from C ′′, it follows that (C ′′, T ′′) has
cleanliness at least c + 1. From the inductive hypothesis, there is a licking (C ′, T ′) of (C ′′, T ′′) and
hence of (C, T ) that satisfies the theorem. This proves 2.2.

3 Stable levelling

Let G be a graph. A levelling L in G is a sequence L0, L1, . . . , Lk of disjoint subsets of V (G), with
the following properties:

• |L0| = 1;

• for each i with 1 ≤ i ≤ k, every vertex in Li has a neighbour in Li−1; and

• for 0 ≤ i, j ≤ k with |j − i| > 1, there are no edges between Li and Lj .

The levelling L is called stable if each of the sets L0, . . . , Lk−1 is stable (we do not require Lk to
be stable). For 1 ≤ i ≤ k, a parent of v ∈ Li is a neighbour u of v in Li−1 (and we also say v is a
child of u).

The next result is a variant of a theorem proved in [3]; we could use that theorem directly, but
the modification here works better numerically. Let the odd hole number of G be the length of the
longest induced odd cycle in G (or 1, if G is bipartite). If L0, . . . , Lk is a stable levelling, we call Lk

its base.

3.1 Let G be a triangle-free graph with odd hole number at most 2l+ 1, such that χ(N2(v)) ≤ κ for
every vertex v. Let L0, L1, . . . , Lk be a levelling in G. Then there is a stable levelling in G with base
of chromatic number at least (χ(Lk)− (2l − 1)κ)/2.

Proof. We may assume l ≥ 1, since otherwise G is bipartite and the result is trivial. Also we may
assume that χ(Lk) > (2l − 1)κ, because otherwise the stable levelling L0, L1 satisfies the theorem.
We proceed by induction on |V (G)|, and so we may assume:

• V (G) = L0 ∪ L1 ∪ · · · ∪ Lk;
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• G[Lk] is connected; and

• for 0 ≤ i < k and every vertex u ∈ Li, there exists v ∈ Li+1 such that u is its only parent.

Let L0 = {s0}, and inductively for 1 ≤ i ≤ k, choose si ∈ Li such that si−1 is its only parent. Then
s0-s1- · · · -sk is an induced path S say.

Now sk−2 has no neighbour in Lk, so (Lk, sk−2-sk−1) is a lollipop. By 2.2, there is a licking of
this lollipop, say (C ′, T ′), with cleanliness at least 2l − 1 and with χ(C ′) ≥ χ(Lk) − (2l − 1)κ. Let
the first 2l − 1 vertices of T ′ be sk−2-sk−1-t1- · · · -t2l−3.

Let N(S) be the set of vertices of G not in S but with a neighbour in S. If v ∈ Li ∩N(S), then
v is adjacent to exactly one of si, si−1 and has no other neighbour in S; because every neighbour of
v belongs to one of Li−1, Li, Li+1, and G is triangle-free, and v is not adjacent to si+1 since si is the
only parent of si+1. So every vertex in Li ∩N(S) has one of two possible types. We say the type of
a vertex v ∈ Li ∩N(S) is α where α = 1 or 2 depending whether v is adjacent to si−1 and not to si,
or adjacent to si and not to si−1.

Let us fix a type α. Let V (α) be the minimal subset of V (G) \ V (S) such that

• every vertex in N(S) of type α belongs to V (α); and

• for every vertex v ∈ V (G)\ (V (S)∪N(S)), if some parent of v belongs to V (α) then v ∈ V (α).

Consequently, for every vertex v ∈ V (α), there is a path starting at v and ending at some vertex in
N(S) of type α, such that each vertex of the path (except v) is the parent of the previous vertex,
and no vertex of the path belongs to N(S) except the last.

There are only two types α, and so there is a type α such that χ(V (α)∩C ′) ≥ χ(C ′)/2 > 0. Let
C be the vertex set of a component of G[V (α) ∩ C ′] with maximum chromatic number, so

χ(C) ≥ χ(C ′)/2 ≥ (χ(Lk)− (2l − 1)κ)/2.

By 2.1, there is a path T such that (C, T ) is a licking of (C ′, T ′).
Let Jk = C, and for i = k− 1, k− 2, . . . , 1 choose Ji ⊆ V (α)∩Li minimal such that every vertex

in Ji+1 \N(S) has a neighbour in Ji. It follows from the cleanliness of (C ′, T ′) that Jk−1∩N(S) = ∅,
and no vertex in Jk−1 is adjacent to any of sk−2, sk−1, t1, . . . , t2l−3.

(1) For 1 ≤ i ≤ k − 1, if v ∈ Ji and v is nonadjacent to si, then there is an induced path Pv

between v and si of length at least 2l − 3 + 2(k − i) with interior in Li+1 ∪ · · · ∪ Lk, such that

• if i ≤ k − 2, no vertex in Ji different from v has a neighbour in the interior of Pv

• if i = k − 1, and u ∈ Ji \ {v} has a neighbour in the interior of Pv, then the induced path
between u, sk−1 with interior in V (Pv) has length at least 2l − 1.

Since v ∈ Ji, v has a neighbour in Ji+1 \ N(S) with no other parent in Ji; and so there is a path
v = pi-pi+1- · · · -pk such that

• pj ∈ Jj for i ≤ j ≤ k

• pj /∈ N(S) for i < j ≤ k
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• pj−1 is the only parent of pj in Jj−1 for i < j ≤ k.

Since pk−1 ∈ Jk−1, and no vertex in Jk−1 is adjacent to any of sk−2, sk−1, t1, . . . , t2l−3, it follows
that there is an induced path from pk−1 to sk−1 with interior in Lk containing all of t1, . . . , t2l−3
and at least one more vertex of Lk, and therefore with length at least 2l − 1. Its union with the
path pi- · · · -pk−1 and the path sk−1-si is an induced path between v and si, of length at least
2l−3 + 2(k− i). If u ∈ Ji \{v} and has a neighbour in the interior of Pv, then since u is nonadjacent
to all of si+1, . . . , sk−1, pi+1, . . . , pk−1 (because u has no neighbour in Li+2 ∪ · · · ∪ Lk, and si+1 has
a unique parent si, and pi+1 has no parent in Ji except pi), it follows that i = k − 1; and since no
vertex in Jk−1 is adjacent to any of sk−2, sk−1, t1, . . . , t2l−3, this proves (1).

For 1 ≤ i ≤ k and for every vertex v ∈ Ji, either v ∈ N(S) or it has a parent in Ji−1; and so
there is a path ri-ri−1, . . . , rh for some h ≤ i, such that rj ∈ Jj for h ≤ j ≤ i, and rh ∈ N(S), and
rj /∈ N(S) for h+ 1 ≤ j ≤ i. Since rh has a neighbour in S, one of

ri-ri−1- · · · -rh-sh−1-sh-sh+1- · · · -si,

ri, ri−1- · · · -rh-sh-sh+1- · · · -si
is an induced path (the first if α = 1 and the second if α = 2). We choose some such path and call it
Rv. Note that for all v ∈ J1∪· · ·∪Jk, the path Rv has even length if α = 1, and odd length otherwise.

(2) For 0 ≤ i ≤ k − 1, Ji is stable.

Suppose that u, v ∈ Ji are adjacent. Since G is triangle-free, not both u, v ∈ N(S). Suppose
that u ∈ N(S), and hence v /∈ N(S). Since N(S) ∩ Jk−1 = ∅ it follows that i ≤ k− 2. Consequently
u has no neighbour in the interior of Pv, where Pv is as in (1), and so Pv ∪ Rv, si-Pv-v-u-Ru-si are
both holes of length at least 2l+2, of different parity, which is impossible. So u, v /∈ N(S). We claim
that there is a path P of length at least 2l− 1, from one of u, v to si, with interior in Li+1 ∪ · · · ∪Lk,
such that the other (of u, v) has no neighbour in its interior. For if u has no neighbour in the interior
of Pv then we may take P = Pv, where Pv is as in (1); and if u has such a neighbour, let P be the
induced path between u and si with interior a subset of the interior of Pv. Note that in the second
case, v has no neighbour in the interior of P , since G is triangle-free. This proves that the desired
path P exists; say from v to si. Now the union of P and Rv is a hole of length at least 2l + 2, and
so P,Rv have the same parity. But the union of P and the path v-u-Ru-si is also a hole, of length
at least 2l + 3, and since Ru, Rv have the same parity this is impossible. This proves (2).

If α = 1 let Mi = {si} ∪ Ji for 0 ≤ i ≤ k, and if α = 2 let M0 = {s1},Mi = {si+1} ∪ Ji for
1 ≤ i < k, and Mk = Jk. In each case M0, . . . ,Mk is a levelling satisfying the theorem. This proves
3.1.

We deduce:

3.2 Let G be pentagonal, and let n ≥ 1 be an integer. If χ(G) ≥ 10n− 9, there is a stable levelling
in G with base of chromatic number at least n.
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Proof. Let G′ be a component of G with χ(G′) = χ(G). Choose v0 ∈ V (G′), and for i ≥ 0 let Li be
the set of vertices in G′ with distance i from v0. There exists k such that χ(Lk) ≥ χ(G)/2 and hence
χ(Lk) ≥ 5n−4. Now L0, . . . , Lk is a levelling in G. By 3.1, taking l = 2 and κ = n−1, either there is
a levelling M0,M1,M2 with χ(M2) ≥ n, necessarily stable, or there is a stable levelling M0, . . . ,Mk

in G with χ(Mk) ≥ (χ(Lk)− 3(n− 1))/2 ≥ n− 1/2. In either case the theorem holds.

We also include, for convenient reference:

3.3 Let G be pentagonal such that χ(N2(v)) ≤ 5 for every vertex v, and let n ≥ 1 be an integer. If
χ(G) ≥ 4n+ 27, there is a stable levelling in G with base of chromatic number at least n.

Proof. As before, choose a levelling L0, . . . , Lk with χ(Lk) ≥ χ(G)/2 and hence χ(Lk) ≥ 2n + 14.
By 3.1 with κ = 5, there is a stable levelling M0, . . . ,Mk in G with χ(Mk) ≥ (χ(Lk)−15)/2 ≥ n−1/2
and the result follows.

4 Reducing to bounded radius

Let L0, . . . , Lk be a levelling. If 0 ≤ i ≤ j ≤ k and u ∈ Li and v ∈ Lj , and there is a path between
u, v of length j − i with one vertex in each of Li, Li+1, . . . , Lj , we say that u is an ancestor of v and
v is a descendant of u.

4.1 Let G be a triangle-free graph with odd hole number at most 2l+1. For r = 2, 3, let χ(N r(v)) ≤
κr for every vertex v. Then χ(G) ≤ (12l − 2)κ2 + 4κ3 + 8.

Proof. Suppose that χ(G) > (12l− 2)κ2 + 4κ3 + 8. There is a levelling in G with base of chromatic
number at least χ(G)/2, and so by 3.1, there is a stable levelling L0, . . . , Lk in G with

χ(Lk) ≥ χ(G)/4− (l − 1/2)κ2 > 2lκ2 + κ3 + 2.

We may choose it in addition such that G[Lk] is connected, and for 0 ≤ i < k every vertex in Li has
a descendant in Lk. Since χ(Lk) > 1 it follows that k > 1. Choose ak−2 ∈ Lk−2. Let X1 be the set
of descendants of ak−2 in Lk; thus χ(X1) ≤ κ2, and since χ(Lk) > κ2, there is a component C1 of
G[Lk \X1] with

χ(C1) ≥ χ(Lk)− κ2 > (2l − 1)κ2 + κ3 + 2.

Since G[Lk] is connected and X1 6= ∅, there exists ak ∈ X1 with a neighbour in C1. Let ak−1 be a
parent of ak and child of ak−2.

Let X2 be the set of neighbours of ak in C1; then X2 is stable and nonempty, and since χ(C1) > 1,
there is a component C2 of C1 \X2 with

χ(C2) ≥ χ(C1)− 1 > (2l − 1)κ2 + κ3 + 1,

and a neighbour bk of ak with a neighbour in C2. Let bk−1 be a parent of bk. Thus bk−1, ak−2 are
nonadjacent since X1 ∩ C1 = ∅. Also bk−1, ak−1 are nonadjacent since Lk−1 is stable, and bk−1, ak
are nonadjacent since G is triangle-free. Consequently ak−2-ak−1-ak-bk-bk−1 is an induced path of G.
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Let X3 be the set of all children of bk−1; then since X3 is stable, and χ(C2) > 1, it follows that
there is a component C3 of C2 \X3 with

χ(C3) ≥ χ(C2)− 1 > (2l − 1)κ2 + κ3,

and a child ck of bk−1 with a neighbour in C3, taking ck = bk if bk has a neighbour in C3. Thus
(C3, bk−1-ck) is a lollipop. By 2.2, since χ(C3) > (2l−1)κ2, there is a licking (C4, T ) of (C3, bk−1-ck),
with cleanliness at least 2l − 1, such that

χ(C4) ≥ χ(C3)− (2l − 1)κ2 > κ3.

Let T have vertices t1-t2-t3- · · · -tm say, where m ≥ 2l and t1 = bk−1 and t2 = ck. Note that if bk 6= ck
then bk has no neighbour in C3 and in particular bk has no neighbour in T except t1.

Let X4 be the set of all vertices of C4 with distance three from bk−1. Since χ(X4) ≤ κ3, and
χ(C4)− κ3 > 0, there is a component C5 of C4 \X4. By 2.1, there is a licking (C5, S) say of (C4, T ).
Let S have vertices t1- · · · -tn say where n ≥ m. Let tn+1 ∈ V (C5) be adjacent to tn, and let dk−1 be
a parent of tn+1. Choose i with 1 ≤ i ≤ n+ 1 minimum such that dk−1 is adjacent to ti. Note that
dk−1 is nonadjacent to all of t1, . . . , th since (C4, T ) has cleanliness at least 2l− 1 and hence so does
(C5, S); and so i > 2l − 1. Let P be the path t2-t3-ti-dk−1. This path P is induced and has length
i− 1 ≥ 2l − 1.

Let dk−2 be a parent of dk−1. Now ak−2 6= dk−2, since ak−2 has no descendant in C1, and dk−2
has a descendant tn+1 in C5 and hence in C1. For the same reason ak−1 6= dk−1, and bk−1 6= dk−1
since bk−1 has no children in C3. Also, bk−1, dk−2 are nonadjacent, since tn+1 is in C5 and so there
is no three-edge path between bk−1 and tn+1.

Since L0, . . . , Lk−1 are stable, there is an induced path between bk−1, dk−1 of even length with
interior in L0 ∪ · · · ∪ Lk−2, and its union with the path bk−1-t2-P -dk−1 is a hole of length at least
2l+ 2, which consequently has even length; and so P has odd length. Now there is an even induced
path Q between ak−1, dk−1 with interior in L0 ∪ · · · ∪ Lk−2, not containing any neighbour of bk−1;
for if ak−1, dk−2 are adjacent then the path ak−1-dk−2-dk−1 satisfies our requirements, and otherwise
any even induced path between ak−2, dk−2 with interior in L0 ∪ · · · ∪ Lk−3 (extended by the edges
ak−1ak−2 and dk−1dk−2) provides the desired path. If bk 6= ck then

ak−1-ak-bk-bk−1-ck-P -dk−1-Q-ak−1

is an odd hole of length at least 2l + 5, while if bk = ck then

ak−1-ak-bk-P -dk−1-Q-ak−1

is an odd hole of length at least 2l + 3, in either case a contradiction. This proves 4.1.

5 The Grötzsch graph

Let G be a graph, and H an induced subgraph of G. We say a levelling L0, . . . , Lk in G is over H if
V (H) ⊆ Lk. An n-covering (in G, over H) is a sequence of graphs H = G0, G1, . . . , Gn = G, such
that for 1 ≤ i ≤ n there is a stable levelling in Gi over Gi−1. For n ≥ 1, let us say a graph H is
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n-coverable if there is an n-covering over H in some pentagonal graph G (and in particular, H itself
is pentagonal).

The Grötzsch graph has vertex set {a1, . . . , a5, b1, . . . , b5, c}, where a1-a2- · · · -a5-a1 is a cycle, ai, bi
are both adjacent to ai−1 and ai+1 for 1 ≤ i ≤ 5 (reading subscripts modulo 5), and c is adjacent to
b1, . . . , b5. We call the 5-hole a1-a2- · · · -a5-a1 its rim and c its apex.

5.1 The Grötzsch graph is not 1-coverable.

Proof. Suppose it is, and let G be pentagonal, with a stable levelling L0, . . . , Lk, such that G[Lk]
has an induced subgraph H isomorphic to the Grötzsch graph. Let V (H) be labelled as above. We
may assume that Lk = V (H), and Lk−1 is minimal such that every vertex in V (H) has a neighbour
in Lk−1. For each v ∈ Lk−1, let H(v) denote the set of neighbours of v in V (H). Consequently:

(1) For each v ∈ Lk−1, there exists u ∈ H(v) with no neighbour in Lk−1 except v.

We call such a vertex u a dependent of v. If u, v ∈ Lk−1, by a u-v gap we mean an induced
path P of G, with one end in H(u) and the other in H(v), and with no other vertex in H(u)∪H(v)
(a vertex in H(u) ∩H(v) forms a 1-vertex gap.) Thus a u-v gap is the interior of an induced path
between u and v. A u-v gap is odd if it has odd length, and even similarly.

(2) For all u, v ∈ Lk−1, every odd u-v gap has length one.

For suppose some u-v gap has odd length at least three; then there is an induced path between
u, v of odd length at least five, with interior in Lk. But u, v have neighbours in Lk−2, and so are
joined by an induced path of even length with interior in the top of the levelling; and the union of
these two paths is an odd hole of length at least seven, which is impossible.

(3) For every four-vertex induced path u1-u2-u3-u4 of H, if v, v′ ∈ Lk−1 and u1 ∈ H(v) and
u4 ∈ H(v′), then either one of u1, u2 ∈ H(v′), or one of u3, u4 ∈ H(v).

Because H(v), H(v′) are stable sets since G is triangle-free; and from (2) this path is not a u-v
gap; and the claim follows.

(4) |H(v0)| ≥ 2 for all v0 ∈ Lk−1 with c ∈ H(v0).

For suppose that H(v0) = {c}. Then by (1), c has no other neighbour in Lk−1. So for every
four-vertex path of H ending at c, say u1-u2-u3-c, and for all v ∈ Lk−1 with u1 ∈ H(v), (3) implies
that u3 ∈ H(v) (because u1, u2 /∈ H(v0) since |H(v0)| = 1, and c /∈ H(v′) since c is a dependent of
v0). Choose v1 ∈ Lk−1 with a1 ∈ H(v1). From a1-a5-b1-c it follows that b1 ∈ H(v1), and similarly
b3, b4 ∈ H(v1). Since H(v1) is stable, and the set {a1, b1, b3, b4} is a maximal stable set of H, it
follows that H(v1) = {a1, b1, b3, b4}. Choose v3 ∈ Lk−1 with a3 ∈ H(v3); then (from the symmetry
of H taking a3 to a1) it follows that H(v3) = {a3, b3, b1, b5}. But b4-a5-a4-b5 is an odd v1-v3 gap,
contrary to (2). This proves (1).

(5) |H(v0)| = 3 for all v0 ∈ Lk−1 with c ∈ H(v0).
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No stable set of H containing c has cardinality more than three, so we just need to show that
|H(v0)| 6= 2. Suppose not; then from the symmetry of H, we may assume that H(v0) = {c, a1}. One
of c, a1 is a dependent of v0.

Suppose first that c is a dependent of v0. Choose v5 ∈ Lk−1 with a5 ∈ H(v5). From a5-a4-b3-c and
(3) it follows that b3 ∈ H(v5), and from a5-a4-b5-c that b5 ∈ H(v5). Since a2, b3 are adjacent it follows
that a2 /∈ H(v5); choose v2 ∈ Lk−1 with a2 ∈ H(v2). Then from the symmetry of H exchanging
a2, a5 and fixing a1, it follows b2, b4 ∈ H(v2). From a5-b1-c-b2 and (3) it follows that b2 ∈ H(v5)
(since a5, b1 /∈ H(v2) because they both have neighbours in H(v2), and c /∈ H(b5) because it is a
dependent of v1). From the same symmetry, b5 ∈ H(v2); and so a3 /∈ H(v2) and a4 /∈ H(v5). But
then a5-a4-a3-a2 is a v5-v2 gap, contrary to (2).

This shows that c is not a dependent of v0, and so a1 is its dependent. Choose v3 ∈ Lk−1 with
a3 ∈ H(v3); then b5 ∈ H(v3) from a3-a4-b5-a1, and a5 ∈ H(v3) from a3-b4-a5-a1. Now a4 /∈ H(v3);
choose v4 ∈ Lk−1 with a4 ∈ H(v4), and then similarly a2, b2 ∈ H(v4). But then a5-b1-c-b2 is a v3-v2
gap, a contradiction. This proves (5).

In view of (5) and the symmetry we may assume henceforth that H(v0) = {a5, a2, c}. One
of a5, a2, c is a dependent of v0. Suppose first that c is a dependent of v0. Choose v3 ∈ Lk−1
with a3 ∈ H(v3); then b5 ∈ H(v3) from a2-a4-b5-c, and b2 ∈ H(v3) from a2-a4-b2-c. Similarly,
let a4 ∈ H(v4); then b2, b4 ∈ H(v4). From b4-a5-a1-b5 it follows that a5 ∈ H(v3), and similarly
a2 ∈ H(v4). But then a5-b1-c-b2 is a v3-v4 gap, a contradiction.

From the symmetry between a2, a5, we may therefore assume that a2 is a dependent of v0. Let
b2 ∈ H(v2); then a4 ∈ H(v2) from b2-a3-a4-a5, and b4 ∈ H(v2) from b2-a3-b4-a5. Also, a2 ∈ H(v2)
from a4-b5-a1-a2. Let a3 ∈ H(v3); then a1 ∈ H(v3) from a3-b2-a1-a5, and c ∈ H(v3) from a1-b5-c-b4.
But then a4-a5-b1-c is a v2-v3 gap, a contradiction. This proves 5.1.

6 Bounded radius

In this section we prove a bound on χ(N2(v)) for 2-coverable graphs, and on χ(N3(v)) for 3-coverable
graphs, to allow us to apply 4.1. We begin with:

6.1 Let L0, . . . , Lk be a stable levelling in a pentagonal graph G, and let P be a 5-hole of G[Lk].
Choose S ⊆ Lk−1 minimal such that every vertex in P has a neighbour in X. Then

• |S| = 3;

• we can label the vertices of P as p1- · · · -p5-p1 in order, and label the elements of S as a, b, c,
such that the edges of G between S and V (P ) are ap1, ap3, bp2, bp4, cp5 and possibly cp3;

• there exists z ∈ Lk−2 adjacent to every vertex in S.

Proof. We begin by proving the first two assertions. Each vertex in S has at most two neighbours
in P , because its neighbours form a stable set. Suppose that every vertex in S has exactly two
neighbours in P . We may assume that a ∈ S is adjacent to p1, p3; then choose b ∈ S adjacent to p2.
It follows that b is adjacent to one of p4, p5, say p4. Choose c ∈ S adjacent to p5; then c might also
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be adjacent to one of p2, p3, and from the symmetry we may assume it is not adjacent to p2; and so
S = {a, b, c}, and the first two assertions of the theorem hold. We may therefore assume that some
vertex in S, say c, has only one neighbour in P , say p5. From the minimality of S, no other vertex
in S is adjacent to p5. Choose a ∈ S adjacent to p3. If a has no more neighbours in P , then the
path a-p3-p2-p1-p5-c can be completed via an even path joining a, c with interior in L0 ∪ · · · ∪ Lk−2
to an odd hole of length at least seven, which is impossible. So a has another neighbour in P , and
since a is not adjacent to p5 it is adjacent to p1. Similarly, choose b ∈ S adjacent to p2; then b is also
adjacent to p4. From the minimality of S, S = {a, b, c} and again the first two assertions hold.

For the third assertion, choose Z ⊆ Lk−2 minimal containing a neighbour of each member of S.
Suppose that there are distinct z1, z2 ∈ Z. From the minimality of Z, there exist s1, s2 ∈ S such
that for 1 ≤ i, j ≤ 2, zi is adjacent to sj if and only if i = j. But from the second assertion of the
theorem, there is a three-edge path joining s1, s2 with interior in V (P ), say s1-p1-p2-s2, where p1p2
is an edge of P . Then z1-s1-p1-p2-s2-z2 is an induced path, and can be completed to an odd hole of
length at least seven via an even induced path joining z1, z2 with interior in L0 ∪ · · · ∪ Lk−3, which
is impossible. Thus |Z| = 1, and so the third assertion holds. This proves 6.1.

We also need the following lemma.

6.2 Let G be pentagonal, and let L0, . . . , Lk be a stable covering in G of a graph H. Let z ∈ V (H),
and A be the set of all vertices v ∈ N2

H(z0) such that every neighbour of v in Lk−1 is adjacent to z.
Then χ(A) ≤ 2.

Proof. Suppose that χ(A) > 2; then there is a 5-hole P ofG[A]. Choose a minimal subset S ofN1
H(z)

such that every vertex in p has a neighbour in S1; then by 6.1 we may assume that S = {a, b, c},
where the edges between S and V (P ) are ap1, ap3, bp2, bp4, cp5 and possibly cp3. Choose v ∈ Lk−1
adjacent to p5; by hypothesis, v is adjacent to z. Choose a′, b′ ∈ Lk−1 adjacent to a, b respectively.
Consequently a′, b′ are not adjacent to z, and so have no neighbours in V (P ); and in particular, a′, b′

are different from v. There is an even induced path between v, a′ with interior in L0∪· · ·∪Lk−2, and
so the odd path v-p5-p4-p3-a-a′ is not induced, since its union with the previous path would form an
odd hole of length at least seven. But a′ has no neighbour in P (because V (P ) ⊆ A), and v is not
adjacent to a (because G is triangle-free) and v is not adjacent to a′ (because Lk−1 is stable), and it
follows that v is adjacent to p3. The same arguments applied to the path v-p5-p1-p2-b-b

′ show that v
is adjacent to p2; yet not both of these are true since G is triangle-free, a contradiction. This proves
6.2.

We deduce:

6.3 If H is a 2-coverable graph and z ∈ V (H) then χ(N2
H(z)) ≤ 5.

Proof. Since H is 2-coverable, there is a 1-coverable graph G and a stable levelling L0, . . . , Lk in
G over H. Let A be the set of all vertices v in N2

H(z) such that every neighbour of v in Lk−1 is
adjacent to z, and let B = N2

H(z) \ A. By 6.2, χ(A) ≤ 2, so we may assume (for a contradiction)
that χ(B) > 3.

Choose z0 ∈ Lk−1 adjacent to z. Since NG(z0) is stable, it follows that χ(B \NG(z0)) ≥ 2; and
so there is a 5-hole P with V (P ) ⊆ B, such that z0 has no neighbours in P . Let S1 ⊆ NH(z) be
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minimal such that every vertex in P has a neighbour in S1. Each vertex in P has a neighbour in
Lk−1 nonadjacent to z, and so there exists a minimal subset S2 of Lk−1 \ NG(z) such that every
vertex in P has a neighbour in S2. By 6.1, |S1| = |S2| = 3.

(1) If a1 ∈ S1 and a2 ∈ S2 are joined by a three-edge path with interior in V (P ), then a1, a2
are adjacent. In particular, if a1 ∈ S1 and a2 ∈ S2 both have two neighbours in V (P ) and have a
common neighbour in V (P ) then they have the same neighbours in V (P ).

Let a1, a2 be adjacent to p1, p2 respectively, where p1p2 is an edge of P . If a1, a2 are not adja-
cent, then the path z0-z-a1-p1-p2-a2 is induced, and can be completed to an odd hole of length at
least seven via an even induced path between z0, a2 with interior in L0∪· · ·∪Lk−2, which is impossi-
ble. This proves the first claim of (1). For the second, suppose that a1, a2 have a common neighbour
in V (P ); then they are nonadjacent, and so cannot be joined by a three-edge path with interior in
V (P ), by the first claim. This proves (1).

Let Si = {ai, bi, ci} for i = 1, 2. By 6.1, for i = 1, 2 we may assume that ai, bi each have two
neighbours in V (P ), and have no common neighbour in V (P ). So one of a2, b2, say a2, is adjacent
to a neighbour of a1 in V (P ), and hence a1, a2 have the same neighbours in V (P ), by the second
claim of (1). Therefore b2 and b1 have a common neighbour in V (P ), and so by the same argument,
b1, b2 have the same neighbours in V (P ). If c1 has two neighbours in V (P ), then it has a common
neighbour in V (P ) with one of a2, b2, and so by the second claim of (1) it has the same neighbours
in V (P ) as one of a2, b2, and hence the same as one of a1, b1, which is impossible by the minimality
of S1. Thus c1 has exactly one neighbour in P , and similarly c2 has exactly one neighbour in P , and
the same neighbour as c1.

We may therefore assume that for i = 1, 2, ai is adjacent to p2, p4 and bi to p3, p5, and ci to p1.
By the first claim of (1), it follows that a1 is adjacent to b2, c2, and b1 to a2, c2, and c1 to a2, b2. But
then the subgraph induced on

{p1, p2, p4, p5, a1, b1, c1, a2, b2, c2, z}

is isomorphic to the Grötzsch graph (with rim a2-c1-p1-p5-b1-a2 and apex a1), contradicting 5.1 since
G is 1-coverable. This proves 6.3.

6.4 If H is a 3-coverable graph and z ∈ V (H) then χ(N3
H(z)) ≤ 20.

Proof. Since H is 3-coverable, there is a 2-coverable graph G and a stable levelling L0, . . . , Lk in G
over H. Choose z0 ∈ Lk−1 adjacent to z. Let

A = N3
H(z) \ (N2

G(z) ∪N2
G(z0)).

By 6.3, we can partition N2
H(z) into five stable sets D1, . . . , D5. For 1 ≤ i ≤ 5, let Ai be the set

of vertices in A with a neighbour in Di. Thus {z}, NH(z), Di, Ai is a stable levelling in G, and
A = A1 ∪ · · · ∪A5.

(1) χ(Ai) ≤ 2 for 1 ≤ i ≤ 5.
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For suppose this is false for some i, and let P be a 5-hole with V (P ) ⊆ Ai. Choose S1 ⊆ Di

minimal such that every vertex in P has a neighbour in S1. By 6.1, there exists n ∈ NH(z) adjacent
to every vertex in S1. By 6.2, some vertex x ∈ Lk−1 has a neighbour in V (P ) and is nonadjacent to
n. Let x be adjacent to p1 ∈ V (P ) say. Choose y ∈ S1 adjacent to p1; then the path x-p1-y-n-z-z0
is not induced, since x, z0 are joined by an even induced path with interior in L0 ∪ · · · ∪ Lk−2. But
z0 is not adjacent to any of x, p1, y, since p1 ∈ A and therefore has distance at least three from z0 in
G; and x is not adjacent to z, because p1 has distance three from z in G; and x is not adjacent to n,
a contradiction. This proves (1).

From (1) we deduce that χ(A) ≤ 10. But every vertex ofN3
H(z) belongs to one ofA,N2

G(z0), N
2
G(z),

and by 6.3 the latter two sets both have chromatic number at most five. This proves 6.4.

Now we complete the proof of 1.2, which we restate:

6.5 Every pentagonal graph is 82200-colourable.

Proof. Define n1 = 199, n2 = 4n1 + 27, n3 = 10n2 − 9, and n4 = 10n3 − 9. Suppose that there is
a pentagonal graph G4 with χ(G4) ≥ n4. By 3.2, there is a stable levelling in G4 over some graph
G3 with χ(G3) ≥ n3. Similarly there is a stable levelling in G3 over some G2 with χ(G2) ≥ n2. By
6.3, χ(N2

G2
(v)) ≤ 5 for every vertex v of G2. By 3.3 there is a stable levelling in G2 over some graph

G1 with χ(G1) ≥ n1; and χ(N3
G1

(v)) ≤ 20 for every vertex v of G1, by 6.4 applied to the 2-cover
G3, G2, G1. By 4.1, setting l = 2, κ2 = 5 and κ3 = 20, it follows that

χ(G1) ≤ (12l − 2)κ2 + 4κ3 + 8 = 198,

a contradiction. Thus there is no such G4, and hence every pentagonal graph has chromatic number
at most n4 − 1 = 82200. This proves 6.5.

7 Long holes

In this section we prove 1.3 and 1.4. The first is implied by the next result with m = 2:

7.1 Let l ≥ m ≥ 2 be integers, and let G be a triangle-free graph with no odd hole of length at most
2m+ 1 and no odd hole of length more than 2l + 1. Then χ(G) < (3 + 4l)4l−m − 4l.

Proof. We proceed by induction on l−m. If m = l then G is bipartite and the result is true, so we
assume that m < l. Suppose that χ(G) ≥ (3 + 4l)4l−m − 4l. Then we may choose a levelling in G
with base of chromatic number at least χ(G)/2 ≥ (6 + 8l)4l−m−1 − 2l. Since G has no odd cycle of
length at most five, it follows that N2(v) is stable for every vertex v; and so by 3.1 with κ = 1, there
is a stable levelling L0, L1, . . . , Lk in G with χ(Lk) ≥ (3 + 4l)4l−m−1− 2l, and we may choose it such
that G[Lk] is connected. It follows that k ≥ 3. For 0 ≤ i ≤ k choose si ∈ Li such that s0-s1- · · · -sk
is a path. Since χ(Lk) > 2l and (Lk, sk−2-sk−1) is a lollipop, 2.2 with κ = 1 implies that there is a
licking (C, T1) of this lollipop with

χ(C) ≥ χ(Lk)− 2l = (3 + 4l)4l−m−1 − 4l
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and cleanliness at least 2l. From the inductive hypothesis, there is a (2m + 3)-hole P in C, with
vertices p1- · · · -p2m+3-p1 say. By 2.1 there is a licking (P, T ) of (C, T1). Let T have vertices

sk−2-sk−1-t1- · · · -tr

say; thus tr has a neighbour in P , and since the lollipop (P, T ) has cleanliness at least 2l, it follows
that r ≥ 2l and each of sk−2, sk−1, t1, . . . , t2l−2 has distance at least three from V (P ).

Now since G has no odd cycle of length less than 2m+ 3, it follows that every vertex of G not in
P either has at most one neighbour in P , or has exactly two neighbours in P with distance two in
P . We may therefore assume that tr is adjacent to p1 and to no other vertex of P except possibly
p2m+2. For i = 3, 4, choose ai ∈ Lk−1 adjacent to pi. It follows that a3, a4 are nonadjacent to
sk−2, sk−1, t1, . . . , t2l−2. Since L0, . . . , Lk−1 are stable, for i = 3, 4 there is an even induced path Ri

between ai and sk−1 with interior in L0 ∪ · · · ∪ Lk−2.

(1) a4 has a neighbour in V (T ).

Because suppose not. Then R4∪T is an induced path from a4 to tr, of length at least r+ 2 ≥ 2l+ 2.
But there is an odd induced path and an even induced path between a4 and tr with interior in V (P )
(since a4 has no neighbours in P except p4 and possibly p2, p6, and tr has no neighbours in P except
p1 and possibly p2m+2; one of a4-p4-p3-p2-p1-t4, a4-p2-p1-tr is the desired odd path, and the even
path goes the other way around P .) But then the union of one of these paths with R4 ∪Q is an odd
hole of length at least 2l + 4, which is impossible. This proves (1).

Choose i ≤ r minimum such that ti is adjacent to one of a4, a3. By (1), such a choice is possible.
Since a3, a4 are nonadjacent to sk−2, sk−1, t1, . . . , t2l−2, it follows that i > 2l − 2. Since G has no
odd cycle of length at most five, ti is not adjacent to both a3, a4; let ti be adjacent to ah and not
to aj , where {h, j} = {3, 4}. Let Q be a minimal path between ah, sk−1 with interior in V (T ). It
follows that Q has length at least 2l. Consequently Q ∪ Rh is a hole of length at least 2l + 2, and
so it is even; and hence Q is even. Now ah has no neighbour in Rj , since ah is not adjacent to the
parent of aj (because G has no 5-holes) and ah is nonadjacent to sk−2 (because (P, T ) is a lollipop
of cleanliness at least one). Thus

ah-ph-pj-aj-Rj-sk−1-Q-ah

is an odd hole of length at least 2l + 5, which is impossible. This proves 7.1.

Finally we turn to the proof of 1.4. It follows from the next result.

7.2 Let l ≥ 3 and κ ≥ 1 be integers, and let G be a graph with no hole of length more than l, such
that χ(N(v)), χ(N2(v)) ≤ κ for every vertex v. Then χ(G) ≤ (2l − 2)κ.

Proof. Suppose not; then there is a levelling L0, . . . , Lk in G with χ(Lk) > (l − 1)κ. Let C ′ be the
vertex set of a component C ′ of G[Lk] with χ(C ′) > (l − 1)κ. Since l − 1 > 1, it follows that k ≥ 2.
For i = k − 2, k − 1 choose si ∈ Li, such that sk−2, sk−1 are adjacent and sk−1 has a neighbour in
C ′. Since χ(C ′) > (l − 1)κ and (V (C ′), sk−2-sk−1) is a lollipop, by 2.2 there is a licking (C, T ) of
it with cleanliness at least l − 1 and with χ(C) ≥ χ(C ′) − (l − 1)κ > 0. Choose a ∈ Lk−1 with a
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neighbour in C. Now a might have neighbours in T , but since (C, T ) has cleanliness at least l − 1,
a is nonadjacent to the first l − 1 vertices of T . Let P be an induced path between sk−1 and a with
interior in V (T ) ∪ C; thus P has length at least l − 1. But a, sk−1 are joined by an induced path
with interior in L0 ∪ · · · ∪ Lk−2, and the union of this path with P is a hole of length at least l + 1,
a contradiction. This proves 7.2.

We deduce 1.4, which we restate, slightly strengthened.

7.3 Let l ≥ 3 be an integer, and let G be a graph with no 5-hole and no hole of length more than l.
Then

χ(G) ≤ (2l − 2)2
ω(G)−1−1.

Proof. We proceed by induction on ω(G). If ω(G) = 1 the result is true, so we assume ω(G) > 1.
Let

n = (2l − 2)2
ω(G)−2−1.

From the inductive hypothesis, every induced subgraph H of G with ω(H) < ω(G) is n-colourable.

(1) For every vertex v of G, χ(N(v)) ≤ n, and χ(N2(v)) ≤ n2.

The graph G[N(v)] contains no clique of size ω(G), and so is n-colourable. Let A1, . . . , An be a
partition of N(v) into n stable sets, and for 1 ≤ i ≤ n let Bi be the set of vertices in N2(v) with
a neighbour in Ai. Suppose that there is a clique C of cardinality ω(G) with C ⊆ Bi for some i.
Choose a ∈ Ai with as many neighbours in C as possible; then there exists c′ ∈ C nonadjacent to
a, since G has no (ω(G) + 1)-clique. Choose a′ ∈ Ai adjacent to c′; then from the choice of a, there
exists c ∈ C adjacent to a and not to a′. But then the subgraph induced on {v, a, a′, c, c′} is a 5-hole,
which is impossible. Thus there is no such clique C, and so χ(Ai) ≤ n. Since this holds for all i, it
follows that χ(N2(v)) ≤ n2. This proves (1).

From (1) and 7.2, it follows that

χ(G) ≤ (2l − 2)n2 = (2l − 2)(2l − 2)2
ω(G)−1−2 = (2l − 2)2

ω(G)−1−1.

This proves 7.3.
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