Three steps towards Gyárfás' conjecture Maria Chudnovsky 1 Columbia University, New York, NY 10027 > Alex Scott Oxford University, Oxford, UK ${\rm Paul~Seymour^2}$ Princeton University, Princeton, NJ 08544 September 10, 2014; revised December 29, 2014 $^{^1{\}rm Supported}$ by NSF grants DMS-1001091 and IIS-1117631. $^2{\rm Supported}$ by ONR grant N00014-10-1-0680 and NSF grant DMS-1265563. #### Abstract Gyárfás conjectured in 1985 that for all k, l, every graph with no clique of size more than k and no odd hole of length more than l has chromatic number bounded by a function of k, l. We prove three weaker statements: - Every triangle-free graph with sufficiently large chromatic number has an odd hole of length different from five; - For all l, every triangle-free graph with sufficiently large chromatic number contains either a 5-hole or an odd hole of length more than l; - For all k, l, every graph with no clique of size more than k and sufficiently large chromatic number contains either a 5-hole or a hole of length more than l. ### 1 Introduction All graphs in this paper are finite, and without loops or parallel edges. A *hole* in a graph G is an induced subgraph which is a cycle of length at least four, and an *odd hole* means a hole of odd length. (The *length* of a path or cycle is the number of edges in it, and we sometimes call a hole of length n an n-hole.) A famous conjecture of A. Gyárfás [1] from 1985 asserts: **1.1 Conjecture:** For all integers k, l there exists n(k, l) such that every graph G with no clique of cardinality more than k and no odd hole of length more than l has chromatic number at most n(k, l). We might as well assume that $k \geq 2$, and $l \geq 3$ and is odd; and in a recent paper [3], two of us proved that this is true for all pairs (k,l) when l=3. No other cases have been settled, and the cases when k=2 are presumably the simplest to attack next. Here we settle the first open case, when k=2 and l=5. That asserts that all pentagonal graphs have bounded chromatic number, where we say a graph is *pentagonal* if every induced odd cycle in it has length five (and in particular, it has no triangles). Pentagonal graphs might all be 4-colourable as far as we know (the 11-vertex Grötzsch graph is pentagonal and not 3-colourable), but at least they do indeed all have bounded chromatic number. The following is our main result: 1.2 Every pentagonal graph is 82200-colourable. The proof of 1.2 occupies almost the whole paper. (Much of the proof needs just that G is triangle-free and has no odd hole of length more than l, for any fixed l, and so we have written it in this generality wherever we could.) We prove: - if G has no triangle and no odd hole of length more than l, and for every vertex v the set of vertices with distance at most three from v has chromatic number at most some k, then $\chi(G)$ is bounded by a function of k and l; - if G is pentagonal, and $\chi(G)$ is large, then there is an induced subgraph with large chromatic number in which for every vertex v the set of vertices with distance at most three from v has chromatic number at most 20. Together these imply that every pentagonal graph has bounded chromatic number. Both of these are consequences of a lemma, a variant of a theorem of [3], asserting roughly that for all l, if G is triangle-free and has no odd hole of length more than l, and $\chi(G)$ is large, then there is an induced subgraph H such that for some vertex v_0 of H, if we partition V(H) by distance in H from v_0 , then all these "level sets" are stable except for one with large χ . We prove this lemma first, and then apply it to prove the two bulleted statements in later sections. Gyárfás' conjecture 1.1 has a number of other interesting special cases that still remain open; for instance - Conjecture: For all l every triangle-free graph G with sufficiently large chromatic number has an odd hole of length more than l; - Conjecture: For all k, l every graph with no clique of size more than k and sufficiently large chromatic number has a hole of length more than l. At the end of this paper, we prove that both these statements are true if in addition we assume that G contains no 5-hole. More precisely, we prove the next two results, where $\omega(G)$ denotes the size of the largest clique of G: - **1.3** Let $l \ge 2$ be an integer, and let G be a triangle-free graph with no 5-hole and no odd hole of length more than 2l + 1. Then $\chi(G) \le (l+1)4^{l-1}$. - **1.4** Let $l \geq 3$ be an integer, and let G be a graph with no 5-hole and no hole of length more than l. Then $$\chi(G) \le (2l-2)^{2^{\omega(G)}}.$$ The last was proved (but not published) by the second author some time ago, and improves on [2]. # 2 Lollipops In [1], Gyárfás gave a neat proof that for any fixed path P, all graphs with no induced subgraph isomorphic to P and with bounded clique number also have bounded chromatic number, and in this section we use basically the same proof for a lemma that we need later. If $X \subseteq V(G)$, the subgraph of G induced on X is denoted by G[X], and we sometimes write $\chi(X)$ for $\chi(G[X])$ when there is no danger of ambiguity. If $x \in V(G)$ and $Y \subseteq V(G)$, the distance in G of X from Y (or of Y from X) is the length of the shortest path containing X and a vertex in Y. Let us say a lollipop in a graph G is a pair (C,T) where $C \subseteq V(G)$ and T is an induced path with vertices $t_1 \cdot \cdots \cdot t_k$ in order, say, with $k \geq 2$, satisfying: - $V(T) \cap C = \emptyset$; - G[C] is connected; - t_k has a neighbour in C; and - t_1, \ldots, t_{k-1} have no neighbours in C. The cleanliness of a lollipop (C,T) in G is the maximum l such that t_1, \ldots, t_l all have distance (in G) at least three from C (or 0 if t_1 has distance two from C). We call t_1 the end of the lollipop. If (C,T) and (C',T') are lollipops in G, we say the second is a licking of the first if $C' \subseteq C$, and they have the same end, and T is a subpath of T', and $V(T') \subseteq V(T) \cup C$ (and consequently the cleanliness of (C',T') is at least that of (C,T)). We observe first: **2.1** Let (C,T) be a lollipop in G, and let $C' \subseteq C$ be non-null, such that G[C'] is connected. Then there is a path T' of G such that (C',T') is a licking of (C,T). **Proof.** Let T be $t_1 cdots cdots t_k$, where (C, T) has end t_1 . Since t_k has a neighbour in C, there is a path P of G with one end t_k , and with $V(P) \subseteq C \cup \{t_k\}$, such that the other end of P has a neighbour in C'. Choose a minimal such path P. Then $V(P) \cap C' = \emptyset$, and $P' = T \cup P$ is an induced path. No vertex of P' has a neighbour in C' except its last, and so $(C', T \cup P)$ is a licking of (C, T) as required. This proves 2.1. For a vertex v of G, we denote the set of neighbours of v in G by N(v) or $N_G(v)$, and for $r \ge 1$, we denote the set of vertices at distance exactly r from v by $N^r(v)$ or $N_G^r(v)$. We need the following: **2.2** Let $h, \kappa \geq 0$ be integers. Let G be a graph such that $\chi(N^2(v)) \leq \kappa$ for every vertex v; and let (C,T) be a lollipop in G, with $\chi(C) > h\kappa$. Then there is a licking (C',T') of (C,T), with cleanliness at least h more than the cleanliness of (C,T), and such that $\chi(C') \geq \chi(C) - h\kappa$. **Proof.** We proceed by induction on h. If h = 0 we may take (C', T') = (C, T); so we assume that h > 0, and that the result holds for h - 1. Let (C, T) have cleanliness c say (where possibly c = 0), and let T have vertices $t_1 \cdot \dots \cdot t_k$ in order, where t_1 is the end. Thus t_i has distance at least three from C for $1 \le i \le c$, and so $k \ge c + 2$. Since $\chi(N^2(t_{c+1})) \le \kappa$, it follows that $$\chi(C \setminus N^2(t_{c+1})) \ge \chi(C) - \kappa > (h-1)\kappa \ge 0,$$ and so there is a component C'' of $C \setminus N^2(t_{c+1})$ with $\chi(C'') > (h-1)\kappa$. By 2.1, there is a licking (C'', T'') of (C, T). Since t_{c+1} has distance at least three from C'', it follows that (C'', T'') has cleanliness at least c+1. From the inductive hypothesis, there is a licking (C', T') of (C'', T'') and hence of (C, T) that satisfies the theorem. This proves 2.2. ## 3 Stable levelling Let G be a graph. A levelling \mathcal{L} in G is a sequence L_0, L_1, \ldots, L_k of disjoint subsets of V(G), with the following properties: - $|L_0| = 1$; - for each i with $1 \le i \le k$, every vertex in L_i has a neighbour in L_{i-1} ; and - for $0 \le i, j \le k$ with |j i| > 1, there are no edges between L_i and L_j . The levelling \mathcal{L} is called *stable* if each of the sets L_0, \ldots, L_{k-1} is stable (we do not require L_k to be stable). For $1 \leq i \leq k$, a *parent* of $v \in L_i$ is a neighbour u of v in L_{i-1} (and we also say v is a *child* of u). The next result is a variant of a theorem proved in [3]; we could use that theorem directly, but the modification here works better numerically. Let the *odd hole number* of G be the length of the longest induced odd cycle in G (or 1, if G is bipartite). If L_0, \ldots, L_k is a stable levelling, we call L_k its *base*. **3.1** Let G be a triangle-free graph with odd hole number at most 2l+1, such that $\chi(N^2(v)) \leq \kappa$ for every vertex v. Let L_0, L_1, \ldots, L_k be a levelling in G. Then there is a stable levelling in G with base of chromatic number at least $(\chi(L_k) - (2l-1)\kappa)/2$. **Proof.** We may assume $l \ge 1$, since otherwise G is bipartite and the result is trivial. Also we may assume that $\chi(L_k) > (2l-1)\kappa$, because otherwise the stable levelling L_0, L_1 satisfies the theorem. We proceed by induction on |V(G)|, and so we may assume: • $$V(G) = L_0 \cup L_1 \cup \cdots \cup L_k$$; - $G[L_k]$ is connected; and - for $0 \le i < k$ and every vertex $u \in L_i$, there exists $v \in L_{i+1}$ such that u is its only parent. Let $L_0 = \{s_0\}$, and inductively for $1 \le i \le k$, choose $s_i \in L_i$ such that s_{i-1} is its only parent. Then s_0 - s_1 - \cdots - s_k is an induced path S say. Now s_{k-2} has no neighbour in L_k , so $(L_k, s_{k-2} - s_{k-1})$ is a lollipop. By 2.2, there is a licking of this lollipop, say (C', T'), with cleanliness at least 2l-1 and with $\chi(C') \geq \chi(L_k) - (2l-1)\kappa$. Let the first 2l-1 vertices of T' be $s_{k-2} - s_{k-1} - t_1 - \cdots - t_{2l-3}$. Let N(S) be the set of vertices of G not in S but with a neighbour in S. If $v \in L_i \cap N(S)$, then v is adjacent to exactly one of s_i, s_{i-1} and has no other neighbour in S; because every neighbour of v belongs to one of L_{i-1}, L_i, L_{i+1} , and G is triangle-free, and v is not adjacent to s_{i+1} since s_i is the only parent of s_{i+1} . So every vertex in $L_i \cap N(S)$ has one of two possible types. We say the type of a vertex $v \in L_i \cap N(S)$ is α where $\alpha = 1$ or 2 depending whether v is adjacent to s_{i-1} and not to s_i , or adjacent to s_i and not to s_{i-1} . Let us fix a type α . Let $V(\alpha)$ be the minimal subset of $V(G) \setminus V(S)$ such that - every vertex in N(S) of type α belongs to $V(\alpha)$; and - for every vertex $v \in V(G) \setminus (V(S) \cup N(S))$, if some parent of v belongs to $V(\alpha)$ then $v \in V(\alpha)$. Consequently, for every vertex $v \in V(\alpha)$, there is a path starting at v and ending at some vertex in N(S) of type α , such that each vertex of the path (except v) is the parent of the previous vertex, and no vertex of the path belongs to N(S) except the last. There are only two types α , and so there is a type α such that $\chi(V(\alpha) \cap C') \ge \chi(C')/2 > 0$. Let C be the vertex set of a component of $G[V(\alpha) \cap C']$ with maximum chromatic number, so $$\chi(C) \ge \chi(C')/2 \ge (\chi(L_k) - (2l-1)\kappa)/2.$$ By 2.1, there is a path T such that (C,T) is a licking of (C',T'). Let $J_k = C$, and for i = k - 1, k - 2, ..., 1 choose $J_i \subseteq V(\alpha) \cap L_i$ minimal such that every vertex in $J_{i+1} \setminus N(S)$ has a neighbour in J_i . It follows from the cleanliness of (C', T') that $J_{k-1} \cap N(S) = \emptyset$, and no vertex in J_{k-1} is adjacent to any of $s_{k-2}, s_{k-1}, t_1, ..., t_{2l-3}$. - (1) For $1 \le i \le k-1$, if $v \in J_i$ and v is nonadjacent to s_i , then there is an induced path P_v between v and s_i of length at least 2l-3+2(k-i) with interior in $L_{i+1} \cup \cdots \cup L_k$, such that - if $i \leq k-2$, no vertex in J_i different from v has a neighbour in the interior of P_v - if i = k 1, and $u \in J_i \setminus \{v\}$ has a neighbour in the interior of P_v , then the induced path between u, s_{k-1} with interior in $V(P_v)$ has length at least 2l 1. Since $v \in J_i$, v has a neighbour in $J_{i+1} \setminus N(S)$ with no other parent in J_i ; and so there is a path $v = p_i - p_{i+1} - \cdots - p_k$ such that - $p_i \in J_i$ for $i \le j \le k$ - $p_i \notin N(S)$ for $i < j \le k$ • p_{j-1} is the only parent of p_j in J_{j-1} for $i < j \le k$. Since $p_{k-1} \in J_{k-1}$, and no vertex in J_{k-1} is adjacent to any of $s_{k-2}, s_{k-1}, t_1, \ldots, t_{2l-3}$, it follows that there is an induced path from p_{k-1} to s_{k-1} with interior in L_k containing all of t_1, \ldots, t_{2l-3} and at least one more vertex of L_k , and therefore with length at least 2l-1. Its union with the path $p_i - \cdots - p_{k-1}$ and the path $s_{k-1} - s_i$ is an induced path between v and s_i , of length at least 2l-3+2(k-i). If $u \in J_i \setminus \{v\}$ and has a neighbour in the interior of P_v , then since u is nonadjacent to all of $s_{i+1}, \ldots, s_{k-1}, p_{i+1}, \ldots, p_{k-1}$ (because u has no neighbour in $L_{i+2} \cup \cdots \cup L_k$, and s_{i+1} has a unique parent s_i , and p_{i+1} has no parent in J_i except p_i), it follows that i = k-1; and since no vertex in J_{k-1} is adjacent to any of $s_{k-2}, s_{k-1}, t_1, \ldots, t_{2l-3}$, this proves (1). For $1 \leq i \leq k$ and for every vertex $v \in J_i$, either $v \in N(S)$ or it has a parent in J_{i-1} ; and so there is a path r_i - r_{i-1}, \ldots, r_h for some $h \leq i$, such that $r_j \in J_j$ for $h \leq j \leq i$, and $r_h \in N(S)$, and $r_j \notin N(S)$ for $h + 1 \leq j \leq i$. Since r_h has a neighbour in S, one of $$r_i - r_{i-1} - \cdots - r_h - s_{h-1} - s_h - s_{h+1} - \cdots - s_i,$$ $r_i, r_{i-1} - \cdots - r_h - s_h - s_{h+1} - \cdots - s_i$ is an induced path (the first if $\alpha = 1$ and the second if $\alpha = 2$). We choose some such path and call it R_v . Note that for all $v \in J_1 \cup \cdots \cup J_k$, the path R_v has even length if $\alpha = 1$, and odd length otherwise. (2) For $0 \le i \le k-1$, J_i is stable. Suppose that $u, v \in J_i$ are adjacent. Since G is triangle-free, not both $u, v \in N(S)$. Suppose that $u \in N(S)$, and hence $v \notin N(S)$. Since $N(S) \cap J_{k-1} = \emptyset$ it follows that $i \leq k-2$. Consequently u has no neighbour in the interior of P_v , where P_v is as in (1), and so $P_v \cup R_v$, s_i - P_v -v-u- R_u - s_i are both holes of length at least 2l+2, of different parity, which is impossible. So $u, v \notin N(S)$. We claim that there is a path P of length at least 2l-1, from one of u, v to s_i , with interior in $L_{i+1} \cup \cdots \cup L_k$, such that the other (of u, v) has no neighbour in its interior. For if u has no neighbour in the interior of P_v then we may take $P = P_v$, where P_v is as in (1); and if u has such a neighbour, let P be the induced path between u and s_i with interior a subset of the interior of P_v . Note that in the second case, v has no neighbour in the interior of P, since G is triangle-free. This proves that the desired path P exists; say from v to s_i . Now the union of P and R_v is a hole of length at least 2l+2, and so P, R_v have the same parity. But the union of P and the path v-u- R_u - s_i is also a hole, of length at least 2l+3, and since R_v , R_v have the same parity this is impossible. This proves (2). If $\alpha = 1$ let $M_i = \{s_i\} \cup J_i$ for $0 \le i \le k$, and if $\alpha = 2$ let $M_0 = \{s_1\}, M_i = \{s_{i+1}\} \cup J_i$ for $1 \le i < k$, and $M_k = J_k$. In each case M_0, \ldots, M_k is a levelling satisfying the theorem. This proves 3.1. We deduce: **3.2** Let G be pentagonal, and let $n \ge 1$ be an integer. If $\chi(G) \ge 10n - 9$, there is a stable levelling in G with base of chromatic number at least n. **Proof.** Let G' be a component of G with $\chi(G') = \chi(G)$. Choose $v_0 \in V(G')$, and for $i \geq 0$ let L_i be the set of vertices in G' with distance i from v_0 . There exists k such that $\chi(L_k) \geq \chi(G)/2$ and hence $\chi(L_k) \geq 5n-4$. Now L_0, \ldots, L_k is a levelling in G. By 3.1, taking l=2 and $\kappa=n-1$, either there is a levelling M_0, M_1, M_2 with $\chi(M_2) \geq n$, necessarily stable, or there is a stable levelling M_0, \ldots, M_k in G with $\chi(M_k) \geq (\chi(L_k) - 3(n-1))/2 \geq n-1/2$. In either case the theorem holds. We also include, for convenient reference: **3.3** Let G be pentagonal such that $\chi(N^2(v)) \leq 5$ for every vertex v, and let $n \geq 1$ be an integer. If $\chi(G) \geq 4n + 27$, there is a stable levelling in G with base of chromatic number at least n. **Proof.** As before, choose a levelling L_0, \ldots, L_k with $\chi(L_k) \geq \chi(G)/2$ and hence $\chi(L_k) \geq 2n + 14$. By 3.1 with $\kappa = 5$, there is a stable levelling M_0, \ldots, M_k in G with $\chi(M_k) \geq (\chi(L_k) - 15)/2 \geq n - 1/2$ and the result follows. ## 4 Reducing to bounded radius Let L_0, \ldots, L_k be a levelling. If $0 \le i \le j \le k$ and $u \in L_i$ and $v \in L_j$, and there is a path between u, v of length j - i with one vertex in each of $L_i, L_{i+1}, \ldots, L_j$, we say that u is an ancestor of v and v is a descendant of u. **4.1** Let G be a triangle-free graph with odd hole number at most 2l+1. For r=2,3, let $\chi(N^r(v)) \le \kappa_r$ for every vertex v. Then $\chi(G) \le (12l-2)\kappa_2 + 4\kappa_3 + 8$. **Proof.** Suppose that $\chi(G) > (12l-2)\kappa_2 + 4\kappa_3 + 8$. There is a levelling in G with base of chromatic number at least $\chi(G)/2$, and so by 3.1, there is a stable levelling L_0, \ldots, L_k in G with $$\chi(L_k) > \chi(G)/4 - (l - 1/2)\kappa_2 > 2l\kappa_2 + \kappa_3 + 2.$$ We may choose it in addition such that $G[L_k]$ is connected, and for $0 \le i < k$ every vertex in L_i has a descendant in L_k . Since $\chi(L_k) > 1$ it follows that k > 1. Choose $a_{k-2} \in L_{k-2}$. Let X_1 be the set of descendants of a_{k-2} in L_k ; thus $\chi(X_1) \le \kappa_2$, and since $\chi(L_k) > \kappa_2$, there is a component C_1 of $G[L_k \setminus X_1]$ with $$\chi(C_1) \ge \chi(L_k) - \kappa_2 > (2l - 1)\kappa_2 + \kappa_3 + 2.$$ Since $G[L_k]$ is connected and $X_1 \neq \emptyset$, there exists $a_k \in X_1$ with a neighbour in C_1 . Let a_{k-1} be a parent of a_k and child of a_{k-2} . Let X_2 be the set of neighbours of a_k in C_1 ; then X_2 is stable and nonempty, and since $\chi(C_1) > 1$, there is a component C_2 of $C_1 \setminus X_2$ with $$\chi(C_2) \ge \chi(C_1) - 1 > (2l - 1)\kappa_2 + \kappa_3 + 1,$$ and a neighbour b_k of a_k with a neighbour in C_2 . Let b_{k-1} be a parent of b_k . Thus b_{k-1}, a_{k-2} are nonadjacent since $X_1 \cap C_1 = \emptyset$. Also b_{k-1}, a_{k-1} are nonadjacent since L_{k-1} is stable, and b_{k-1}, a_k are nonadjacent since G is triangle-free. Consequently $a_{k-2}-a_{k-1}-a_k-b_k-b_{k-1}$ is an induced path of G. Let X_3 be the set of all children of b_{k-1} ; then since X_3 is stable, and $\chi(C_2) > 1$, it follows that there is a component C_3 of $C_2 \setminus X_3$ with $$\chi(C_3) \ge \chi(C_2) - 1 > (2l - 1)\kappa_2 + \kappa_3$$ and a child c_k of b_{k-1} with a neighbour in C_3 , taking $c_k = b_k$ if b_k has a neighbour in C_3 . Thus $(C_3, b_{k-1}-c_k)$ is a lollipop. By 2.2, since $\chi(C_3) > (2l-1)\kappa_2$, there is a licking (C_4, T) of $(C_3, b_{k-1}-c_k)$, with cleanliness at least 2l-1, such that $$\chi(C_4) \ge \chi(C_3) - (2l - 1)\kappa_2 > \kappa_3.$$ Let T have vertices t_1 - t_2 - t_3 - \cdots - t_m say, where $m \ge 2l$ and $t_1 = b_{k-1}$ and $t_2 = c_k$. Note that if $b_k \ne c_k$ then b_k has no neighbour in C_3 and in particular b_k has no neighbour in T except t_1 . Let X_4 be the set of all vertices of C_4 with distance three from b_{k-1} . Since $\chi(X_4) \leq \kappa_3$, and $\chi(C_4) - \kappa_3 > 0$, there is a component C_5 of $C_4 \setminus X_4$. By 2.1, there is a licking (C_5, S) say of (C_4, T) . Let S have vertices $t_1 - \cdots - t_n$ say where $n \geq m$. Let $t_{n+1} \in V(C_5)$ be adjacent to t_n , and let d_{k-1} be a parent of t_{n+1} . Choose i with $1 \leq i \leq n+1$ minimum such that d_{k-1} is adjacent to t_i . Note that d_{k-1} is nonadjacent to all of t_1, \ldots, t_h since (C_4, T) has cleanliness at least 2l-1 and hence so does (C_5, S) ; and so i > 2l-1. Let P be the path t_2 - t_3 - t_i - d_{k-1} . This path P is induced and has length $i-1 \geq 2l-1$. Let d_{k-2} be a parent of d_{k-1} . Now $a_{k-2} \neq d_{k-2}$, since a_{k-2} has no descendant in C_1 , and d_{k-2} has a descendant t_{n+1} in C_5 and hence in C_1 . For the same reason $a_{k-1} \neq d_{k-1}$, and $b_{k-1} \neq d_{k-1}$ since b_{k-1} has no children in C_3 . Also, b_{k-1} , d_{k-2} are nonadjacent, since t_{n+1} is in C_5 and so there is no three-edge path between b_{k-1} and t_{n+1} . Since L_0, \ldots, L_{k-1} are stable, there is an induced path between b_{k-1}, d_{k-1} of even length with interior in $L_0 \cup \cdots \cup L_{k-2}$, and its union with the path b_{k-1} - t_2 -P- d_{k-1} is a hole of length at least 2l+2, which consequently has even length; and so P has odd length. Now there is an even induced path Q between a_{k-1}, d_{k-1} with interior in $L_0 \cup \cdots \cup L_{k-2}$, not containing any neighbour of b_{k-1} ; for if a_{k-1}, d_{k-2} are adjacent then the path a_{k-1} - d_{k-2} - d_{k-1} satisfies our requirements, and otherwise any even induced path between a_{k-2}, d_{k-2} with interior in $L_0 \cup \cdots \cup L_{k-3}$ (extended by the edges $a_{k-1}a_{k-2}$ and $d_{k-1}d_{k-2}$) provides the desired path. If $b_k \neq c_k$ then $$a_{k-1}$$ - a_k - b_k - b_{k-1} - c_k - P - d_{k-1} - Q - a_{k-1} is an odd hole of length at least 2l + 5, while if $b_k = c_k$ then $$a_{k-1}$$ - a_k - b_k - P - d_{k-1} - Q - a_{k-1} is an odd hole of length at least 2l + 3, in either case a contradiction. This proves 4.1. ## 5 The Grötzsch graph Let G be a graph, and H an induced subgraph of G. We say a levelling L_0, \ldots, L_k in G is over H if $V(H) \subseteq L_k$. An n-covering (in G, over H) is a sequence of graphs $H = G_0, G_1, \ldots, G_n = G$, such that for $1 \le i \le n$ there is a stable levelling in G_i over G_{i-1} . For $n \ge 1$, let us say a graph H is n-coverable if there is an n-covering over H in some pentagonal graph G (and in particular, H itself is pentagonal). The Grötzsch graph has vertex set $\{a_1, \ldots, a_5, b_1, \ldots, b_5, c\}$, where a_1 - a_2 - \cdots - a_5 - a_1 is a cycle, a_i, b_i are both adjacent to a_{i-1} and a_{i+1} for $1 \le i \le 5$ (reading subscripts modulo 5), and c is adjacent to b_1, \ldots, b_5 . We call the 5-hole a_1 - a_2 - \cdots - a_5 - a_1 its rim and c its apex. **5.1** The Grötzsch graph is not 1-coverable. **Proof.** Suppose it is, and let G be pentagonal, with a stable levelling L_0, \ldots, L_k , such that $G[L_k]$ has an induced subgraph H isomorphic to the Grötzsch graph. Let V(H) be labelled as above. We may assume that $L_k = V(H)$, and L_{k-1} is minimal such that every vertex in V(H) has a neighbour in L_{k-1} . For each $v \in L_{k-1}$, let H(v) denote the set of neighbours of v in V(H). Consequently: (1) For each $v \in L_{k-1}$, there exists $u \in H(v)$ with no neighbour in L_{k-1} except v. (2) For all $u, v \in L_{k-1}$, every odd u-v gap has length one. For suppose some u-v gap has odd length at least three; then there is an induced path between u, v of odd length at least five, with interior in L_k . But u, v have neighbours in L_{k-2} , and so are joined by an induced path of even length with interior in the top of the levelling; and the union of these two paths is an odd hole of length at least seven, which is impossible. (3) For every four-vertex induced path u_1 - u_2 - u_3 - u_4 of H, if $v, v' \in L_{k-1}$ and $u_1 \in H(v)$ and $u_4 \in H(v')$, then either one of $u_1, u_2 \in H(v')$, or one of $u_3, u_4 \in H(v)$. Because H(v), H(v') are stable sets since G is triangle-free; and from (2) this path is not a u-v gap; and the claim follows. (4) $|H(v_0)| \ge 2$ for all $v_0 \in L_{k-1}$ with $c \in H(v_0)$. For suppose that $H(v_0) = \{c\}$. Then by (1), c has no other neighbour in L_{k-1} . So for every four-vertex path of H ending at c, say u_1 - u_2 - u_3 -c, and for all $v \in L_{k-1}$ with $u_1 \in H(v)$, (3) implies that $u_3 \in H(v)$ (because $u_1, u_2 \notin H(v_0)$ since $|H(v_0)| = 1$, and $c \notin H(v')$ since c is a dependent of v_0). Choose $v_1 \in L_{k-1}$ with $a_1 \in H(v_1)$. From a_1 - a_5 - b_1 -c it follows that $b_1 \in H(v_1)$, and similarly $b_3, b_4 \in H(v_1)$. Since $H(v_1)$ is stable, and the set $\{a_1, b_1, b_3, b_4\}$ is a maximal stable set of H, it follows that $H(v_1) = \{a_1, b_1, b_3, b_4\}$. Choose $v_3 \in L_{k-1}$ with $a_3 \in H(v_3)$; then (from the symmetry of H taking a_3 to a_1) it follows that $H(v_3) = \{a_3, b_3, b_1, b_5\}$. But b_4 - a_5 - a_4 - b_5 is an odd v_1 - v_3 gap, contrary to (2). This proves (1). (5) $|H(v_0)| = 3$ for all $v_0 \in L_{k-1}$ with $c \in H(v_0)$. No stable set of H containing c has cardinality more than three, so we just need to show that $|H(v_0)| \neq 2$. Suppose not; then from the symmetry of H, we may assume that $H(v_0) = \{c, a_1\}$. One of c, a_1 is a dependent of v_0 . Suppose first that c is a dependent of v_0 . Choose $v_5 \in L_{k-1}$ with $a_5 \in H(v_5)$. From a_5 - a_4 - b_3 -c and (3) it follows that $b_3 \in H(v_5)$, and from a_5 - a_4 - b_5 -c that $b_5 \in H(v_5)$. Since a_2, b_3 are adjacent it follows that $a_2 \notin H(v_5)$; choose $v_2 \in L_{k-1}$ with $a_2 \in H(v_2)$. Then from the symmetry of H exchanging a_2, a_5 and fixing a_1 , it follows $b_2, b_4 \in H(v_2)$. From a_5 - b_1 -c- b_2 and (3) it follows that $b_2 \in H(v_5)$ (since $a_5, b_1 \notin H(v_2)$ because they both have neighbours in $H(v_2)$, and $c \notin H(b_5)$ because it is a dependent of v_1). From the same symmetry, $b_5 \in H(v_2)$; and so $a_3 \notin H(v_2)$ and $a_4 \notin H(v_5)$. But then a_5 - a_4 - a_3 - a_2 is a v_5 - v_2 gap, contrary to (2). This shows that c is not a dependent of v_0 , and so a_1 is its dependent. Choose $v_3 \in L_{k-1}$ with $a_3 \in H(v_3)$; then $b_5 \in H(v_3)$ from a_3 - a_4 - b_5 - a_1 , and $a_5 \in H(v_3)$ from a_3 - b_4 - a_5 - a_1 . Now $a_4 \notin H(v_3)$; choose $v_4 \in L_{k-1}$ with $a_4 \in H(v_4)$, and then similarly $a_2, b_2 \in H(v_4)$. But then a_5 - b_1 -c- b_2 is a v_3 - v_2 gap, a contradiction. This proves (5). In view of (5) and the symmetry we may assume henceforth that $H(v_0) = \{a_5, a_2, c\}$. One of a_5, a_2, c is a dependent of v_0 . Suppose first that c is a dependent of v_0 . Choose $v_3 \in L_{k-1}$ with $a_3 \in H(v_3)$; then $b_5 \in H(v_3)$ from a_2 - a_4 - b_5 -c, and $b_2 \in H(v_3)$ from a_2 - a_4 - b_2 -c. Similarly, let $a_4 \in H(v_4)$; then $b_2, b_4 \in H(v_4)$. From b_4 - a_5 - a_1 - b_5 it follows that $a_5 \in H(v_3)$, and similarly $a_2 \in H(v_4)$. But then a_5 - b_1 -c- b_2 is a v_3 - v_4 gap, a contradiction. From the symmetry between a_2, a_5 , we may therefore assume that a_2 is a dependent of v_0 . Let $b_2 \in H(v_2)$; then $a_4 \in H(v_2)$ from b_2 - a_3 - a_4 - a_5 , and $b_4 \in H(v_2)$ from b_2 - a_3 - b_4 - a_5 . Also, $a_2 \in H(v_2)$ from a_4 - b_5 - a_1 - a_2 . Let $a_3 \in H(v_3)$; then $a_1 \in H(v_3)$ from a_3 - b_2 - a_1 - a_5 , and $c \in H(v_3)$ from a_1 - b_5 -c- b_4 . But then a_4 - a_5 - b_1 -c is a v_2 - v_3 gap, a contradiction. This proves 5.1. # 6 Bounded radius In this section we prove a bound on $\chi(N^2(v))$ for 2-coverable graphs, and on $\chi(N^3(v))$ for 3-coverable graphs, to allow us to apply 4.1. We begin with: **6.1** Let L_0, \ldots, L_k be a stable levelling in a pentagonal graph G, and let P be a 5-hole of $G[L_k]$. Choose $S \subseteq L_{k-1}$ minimal such that every vertex in P has a neighbour in X. Then - |S| = 3; - we can label the vertices of P as $p_1 \cdots p_5 p_1$ in order, and label the elements of S as a, b, c, such that the edges of G between S and V(P) are $ap_1, ap_3, bp_2, bp_4, cp_5$ and possibly cp_3 ; - there exists $z \in L_{k-2}$ adjacent to every vertex in S. **Proof.** We begin by proving the first two assertions. Each vertex in S has at most two neighbours in P, because its neighbours form a stable set. Suppose that every vertex in S has exactly two neighbours in P. We may assume that $a \in S$ is adjacent to p_1, p_3 ; then choose $b \in S$ adjacent to p_2 . It follows that b is adjacent to one of p_4, p_5 , say p_4 . Choose $c \in S$ adjacent to p_5 ; then c might also be adjacent to one of p_2, p_3 , and from the symmetry we may assume it is not adjacent to p_2 ; and so $S = \{a, b, c\}$, and the first two assertions of the theorem hold. We may therefore assume that some vertex in S, say c, has only one neighbour in P, say p_5 . From the minimality of S, no other vertex in S is adjacent to p_5 . Choose $a \in S$ adjacent to p_3 . If a has no more neighbours in P, then the path a- p_3 - p_2 - p_1 - p_5 -c can be completed via an even path joining a, c with interior in $L_0 \cup \cdots \cup L_{k-2}$ to an odd hole of length at least seven, which is impossible. So a has another neighbour in P, and since a is not adjacent to p_5 it is adjacent to p_1 . Similarly, choose $b \in S$ adjacent to p_2 ; then b is also adjacent to p_4 . From the minimality of S, $S = \{a, b, c\}$ and again the first two assertions hold. For the third assertion, choose $Z \subseteq L_{k-2}$ minimal containing a neighbour of each member of S. Suppose that there are distinct $z_1, z_2 \in Z$. From the minimality of Z, there exist $s_1, s_2 \in S$ such that for $1 \le i, j \le 2$, z_i is adjacent to s_j if and only if i = j. But from the second assertion of the theorem, there is a three-edge path joining s_1, s_2 with interior in V(P), say s_1 - p_1 - p_2 - s_2 , where p_1p_2 is an edge of P. Then z_1 - s_1 - p_1 - p_2 - s_2 - z_2 is an induced path, and can be completed to an odd hole of length at least seven via an even induced path joining z_1, z_2 with interior in $L_0 \cup \cdots \cup L_{k-3}$, which is impossible. Thus |Z| = 1, and so the third assertion holds. This proves 6.1. We also need the following lemma. **6.2** Let G be pentagonal, and let L_0, \ldots, L_k be a stable covering in G of a graph H. Let $z \in V(H)$, and A be the set of all vertices $v \in N^2_H(z_0)$ such that every neighbour of v in L_{k-1} is adjacent to z. Then $\chi(A) \leq 2$. **Proof.** Suppose that $\chi(A) > 2$; then there is a 5-hole P of G[A]. Choose a minimal subset S of $N_H^1(z)$ such that every vertex in p has a neighbour in S_1 ; then by 6.1 we may assume that $S = \{a, b, c\}$, where the edges between S and V(P) are $ap_1, ap_3, bp_2, bp_4, cp_5$ and possibly cp_3 . Choose $v \in L_{k-1}$ adjacent to p_5 ; by hypothesis, v is adjacent to p_5 . Choose p_5 and possibly p_5 and in particular, p_5 are different from p_5 . There is an even induced path between p_5 with interior in p_5 and in particular, p_5 are different from p_5 . There is an even induced, since its union with the previous path would form an odd hole of length at least seven. But p_5 has no neighbour in p_5 (because p_5), and p_5 is not adjacent to p_5 and p_5 is adjacent to p_5 . The same arguments applied to the path p_5 - We deduce: **6.3** If H is a 2-coverable graph and $z \in V(H)$ then $\chi(N_H^2(z)) \leq 5$. **Proof.** Since H is 2-coverable, there is a 1-coverable graph G and a stable levelling L_0, \ldots, L_k in G over H. Let A be the set of all vertices v in $N_H^2(z)$ such that every neighbour of v in L_{k-1} is adjacent to z, and let $B = N_H^2(z) \setminus A$. By 6.2, $\chi(A) \leq 2$, so we may assume (for a contradiction) that $\chi(B) > 3$. Choose $z_0 \in L_{k-1}$ adjacent to z. Since $N_G(z_0)$ is stable, it follows that $\chi(B \setminus N_G(z_0)) \ge 2$; and so there is a 5-hole P with $V(P) \subseteq B$, such that z_0 has no neighbours in P. Let $S_1 \subseteq N_H(z)$ be minimal such that every vertex in P has a neighbour in S_1 . Each vertex in P has a neighbour in L_{k-1} nonadjacent to z, and so there exists a minimal subset S_2 of $L_{k-1} \setminus N_G(z)$ such that every vertex in P has a neighbour in S_2 . By 6.1, $|S_1| = |S_2| = 3$. (1) If $a_1 \in S_1$ and $a_2 \in S_2$ are joined by a three-edge path with interior in V(P), then a_1, a_2 are adjacent. In particular, if $a_1 \in S_1$ and $a_2 \in S_2$ both have two neighbours in V(P) and have a common neighbour in V(P) then they have the same neighbours in V(P). Let a_1, a_2 be adjacent to p_1, p_2 respectively, where p_1p_2 is an edge of P. If a_1, a_2 are not adjacent, then the path z_0 -z- a_1 - p_1 - p_2 - a_2 is induced, and can be completed to an odd hole of length at least seven via an even induced path between z_0, a_2 with interior in $L_0 \cup \cdots \cup L_{k-2}$, which is impossible. This proves the first claim of (1). For the second, suppose that a_1, a_2 have a common neighbour in V(P); then they are nonadjacent, and so cannot be joined by a three-edge path with interior in V(P), by the first claim. This proves (1). Let $S_i = \{a_i, b_i, c_i\}$ for i = 1, 2. By 6.1, for i = 1, 2 we may assume that a_i, b_i each have two neighbours in V(P), and have no common neighbour in V(P). So one of a_2, b_2 , say a_2 , is adjacent to a neighbour of a_1 in V(P), and hence a_1, a_2 have the same neighbours in V(P), by the second claim of (1). Therefore b_2 and b_1 have a common neighbour in V(P), and so by the same argument, b_1, b_2 have the same neighbours in V(P). If c_1 has two neighbours in V(P), then it has a common neighbour in V(P) with one of a_2, b_2 , and so by the second claim of (1) it has the same neighbours in V(P) as one of a_2, b_2 , and hence the same as one of a_1, b_1 , which is impossible by the minimality of S_1 . Thus c_1 has exactly one neighbour in P, and similarly c_2 has exactly one neighbour in P, and the same neighbour as c_1 . We may therefore assume that for i = 1, 2, a_i is adjacent to p_2, p_4 and b_i to p_3, p_5 , and c_i to p_1 . By the first claim of (1), it follows that a_1 is adjacent to b_2, c_2 , and b_1 to a_2, c_2 , and c_1 to a_2, b_2 . But then the subgraph induced on $$\{p_1, p_2, p_4, p_5, a_1, b_1, c_1, a_2, b_2, c_2, z\}$$ is isomorphic to the Grötzsch graph (with rim a_2 - c_1 - p_1 - p_5 - b_1 - a_2 and apex a_1), contradicting 5.1 since G is 1-coverable. This proves 6.3. **6.4** If H is a 3-coverable graph and $z \in V(H)$ then $\chi(N_H^3(z)) \leq 20$. **Proof.** Since H is 3-coverable, there is a 2-coverable graph G and a stable levelling L_0, \ldots, L_k in G over H. Choose $z_0 \in L_{k-1}$ adjacent to z. Let $$A = N_H^3(z) \setminus (N_G^2(z) \cup N_G^2(z_0)).$$ By 6.3, we can partition $N_H^2(z)$ into five stable sets D_1, \ldots, D_5 . For $1 \leq i \leq 5$, let A_i be the set of vertices in A with a neighbour in D_i . Thus $\{z\}, N_H(z), D_i, A_i$ is a stable levelling in G, and $A = A_1 \cup \cdots \cup A_5$. (1) $$\chi(A_i) \le 2 \text{ for } 1 \le i \le 5.$$ For suppose this is false for some i, and let P be a 5-hole with $V(P) \subseteq A_i$. Choose $S_1 \subseteq D_i$ minimal such that every vertex in P has a neighbour in S_1 . By 6.1, there exists $n \in N_H(z)$ adjacent to every vertex in S_1 . By 6.2, some vertex $x \in L_{k-1}$ has a neighbour in V(P) and is nonadjacent to n. Let x be adjacent to $p_1 \in V(P)$ say. Choose $y \in S_1$ adjacent to p_1 ; then the path x- p_1 -y-n-z- z_0 is not induced, since x, z_0 are joined by an even induced path with interior in $L_0 \cup \cdots \cup L_{k-2}$. But z_0 is not adjacent to any of x, p_1, y , since $p_1 \in A$ and therefore has distance at least three from z_0 in G; and x is not adjacent to z, because p_1 has distance three from z in G; and z is not adjacent to z, a contradiction. This proves (1). From (1) we deduce that $\chi(A) \leq 10$. But every vertex of $N_H^3(z)$ belongs to one of $A, N_G^2(z_0), N_G^2(z)$, and by 6.3 the latter two sets both have chromatic number at most five. This proves 6.4. Now we complete the proof of 1.2, which we restate: **6.5** Every pentagonal graph is 82200-colourable. **Proof.** Define $n_1 = 199$, $n_2 = 4n_1 + 27$, $n_3 = 10n_2 - 9$, and $n_4 = 10n_3 - 9$. Suppose that there is a pentagonal graph G_4 with $\chi(G_4) \geq n_4$. By 3.2, there is a stable levelling in G_4 over some graph G_3 with $\chi(G_3) \geq n_3$. Similarly there is a stable levelling in G_3 over some G_2 with $\chi(G_2) \geq n_2$. By 6.3, $\chi(N_{G_2}^2(v)) \leq 5$ for every vertex v of G_2 . By 3.3 there is a stable levelling in G_2 over some graph G_1 with $\chi(G_1) \geq n_1$; and $\chi(N_{G_1}^3(v)) \leq 20$ for every vertex v of G_1 , by 6.4 applied to the 2-cover G_3, G_2, G_1 . By 4.1, setting l = 2, $\kappa_2 = 5$ and $\kappa_3 = 20$, it follows that $$\chi(G_1) \le (12l - 2)\kappa_2 + 4\kappa_3 + 8 = 198,$$ a contradiction. Thus there is no such G_4 , and hence every pentagonal graph has chromatic number at most $n_4 - 1 = 82200$. This proves 6.5. ## 7 Long holes In this section we prove 1.3 and 1.4. The first is implied by the next result with m=2: **7.1** Let $l \ge m \ge 2$ be integers, and let G be a triangle-free graph with no odd hole of length at most 2m+1 and no odd hole of length more than 2l+1. Then $\chi(G) < (3+4l)4^{l-m}-4l$. **Proof.** We proceed by induction on l-m. If m=l then G is bipartite and the result is true, so we assume that m < l. Suppose that $\chi(G) \geq (3+4l)4^{l-m} - 4l$. Then we may choose a levelling in G with base of chromatic number at least $\chi(G)/2 \geq (6+8l)4^{l-m-1} - 2l$. Since G has no odd cycle of length at most five, it follows that $N_2(v)$ is stable for every vertex v; and so by 3.1 with $\kappa = 1$, there is a stable levelling L_0, L_1, \ldots, L_k in G with $\chi(L_k) \geq (3+4l)4^{l-m-1} - 2l$, and we may choose it such that $G[L_k]$ is connected. It follows that $k \geq 3$. For $0 \leq i \leq k$ choose $s_i \in L_i$ such that s_0 - s_1 - \cdots - s_k is a path. Since $\chi(L_k) > 2l$ and $(L_k, s_{k-2}$ - $s_{k-1})$ is a lollipop, 2.2 with $\kappa = 1$ implies that there is a licking (C, T_1) of this lollipop with $$\chi(C) \ge \chi(L_k) - 2l = (3+4l)4^{l-m-1} - 4l$$ and cleanliness at least 2l. From the inductive hypothesis, there is a (2m + 3)-hole P in C, with vertices $p_1 \cdot \cdots \cdot p_{2m+3} \cdot p_1$ say. By 2.1 there is a licking (P, T) of (C, T_1) . Let T have vertices $$s_{k-2}$$ - s_{k-1} - t_1 - \cdots - t_r say; thus t_r has a neighbour in P, and since the lollipop (P,T) has cleanliness at least 2l, it follows that $r \geq 2l$ and each of $s_{k-2}, s_{k-1}, t_1, \ldots, t_{2l-2}$ has distance at least three from V(P). Now since G has no odd cycle of length less than 2m+3, it follows that every vertex of G not in P either has at most one neighbour in P, or has exactly two neighbours in P with distance two in P. We may therefore assume that t_r is adjacent to p_1 and to no other vertex of P except possibly p_{2m+2} . For i=3,4, choose $a_i\in L_{k-1}$ adjacent to p_i . It follows that a_3,a_4 are nonadjacent to $s_{k-2},s_{k-1},t_1,\ldots,t_{2l-2}$. Since L_0,\ldots,L_{k-1} are stable, for i=3,4 there is an even induced path R_i between a_i and s_{k-1} with interior in $L_0\cup\cdots\cup L_{k-2}$. #### (1) a_4 has a neighbour in V(T). Because suppose not. Then $R_4 \cup T$ is an induced path from a_4 to t_r , of length at least $r+2 \geq 2l+2$. But there is an odd induced path and an even induced path between a_4 and t_r with interior in V(P) (since a_4 has no neighbours in P except p_4 and possibly p_2, p_6 , and t_r has no neighbours in P except p_1 and possibly p_{2m+2} ; one of a_4 - p_4 - p_3 - p_2 - p_1 - t_4 , a_4 - p_2 - p_1 - t_r is the desired odd path, and the even path goes the other way around P.) But then the union of one of these paths with $R_4 \cup Q$ is an odd hole of length at least 2l+4, which is impossible. This proves (1). Choose $i \leq r$ minimum such that t_i is adjacent to one of a_4, a_3 . By (1), such a choice is possible. Since a_3, a_4 are nonadjacent to $s_{k-2}, s_{k-1}, t_1, \ldots, t_{2l-2}$, it follows that i > 2l - 2. Since G has no odd cycle of length at most five, t_i is not adjacent to both a_3, a_4 ; let t_i be adjacent to a_h and not to a_j , where $\{h, j\} = \{3, 4\}$. Let Q be a minimal path between a_h, s_{k-1} with interior in V(T). It follows that Q has length at least 2l. Consequently $Q \cup R_h$ is a hole of length at least 2l + 2, and so it is even; and hence Q is even. Now a_h has no neighbour in R_j , since a_h is not adjacent to the parent of a_j (because G has no 5-holes) and a_h is nonadjacent to s_{k-2} (because (P, T) is a lollipop of cleanliness at least one). Thus $$a_h - p_h - p_i - a_i - R_i - s_{k-1} - Q - a_h$$ is an odd hole of length at least 2l + 5, which is impossible. This proves 7.1. Finally we turn to the proof of 1.4. It follows from the next result. **7.2** Let $l \geq 3$ and $\kappa \geq 1$ be integers, and let G be a graph with no hole of length more than l, such that $\chi(N(v)), \chi(N^2(v)) \leq \kappa$ for every vertex v. Then $\chi(G) \leq (2l-2)\kappa$. **Proof.** Suppose not; then there is a levelling L_0, \ldots, L_k in G with $\chi(L_k) > (l-1)\kappa$. Let C' be the vertex set of a component C' of $G[L_k]$ with $\chi(C') > (l-1)\kappa$. Since l-1 > 1, it follows that $k \ge 2$. For i = k-2, k-1 choose $s_i \in L_i$, such that s_{k-2}, s_{k-1} are adjacent and s_{k-1} has a neighbour in C'. Since $\chi(C') > (l-1)\kappa$ and $(V(C'), s_{k-2}-s_{k-1})$ is a lollipop, by 2.2 there is a licking (C, T) of it with cleanliness at least l-1 and with $\chi(C) \ge \chi(C') - (l-1)\kappa > 0$. Choose $a \in L_{k-1}$ with a neighbour in C. Now a might have neighbours in T, but since (C,T) has cleanliness at least l-1, a is nonadjacent to the first l-1 vertices of T. Let P be an induced path between s_{k-1} and a with interior in $V(T) \cup C$; thus P has length at least l-1. But a, s_{k-1} are joined by an induced path with interior in $L_0 \cup \cdots \cup L_{k-2}$, and the union of this path with P is a hole of length at least l+1, a contradiction. This proves 7.2. We deduce 1.4, which we restate, slightly strengthened. **7.3** Let $l \geq 3$ be an integer, and let G be a graph with no 5-hole and no hole of length more than l. Then $$\chi(G) \le (2l-2)^{2^{\omega(G)-1}-1}.$$ **Proof.** We proceed by induction on $\omega(G)$. If $\omega(G) = 1$ the result is true, so we assume $\omega(G) > 1$. Let $$n = (2l - 2)^{2^{\omega(G) - 2} - 1}.$$ From the inductive hypothesis, every induced subgraph H of G with $\omega(H) < \omega(G)$ is n-colourable. (1) For every vertex v of G, $\chi(N(v)) \leq n$, and $\chi(N^2(v)) \leq n^2$. The graph G[N(v)] contains no clique of size $\omega(G)$, and so is n-colourable. Let A_1, \ldots, A_n be a partition of N(v) into n stable sets, and for $1 \leq i \leq n$ let B_i be the set of vertices in $N^2(v)$ with a neighbour in A_i . Suppose that there is a clique C of cardinality $\omega(G)$ with $C \subseteq B_i$ for some i. Choose $a \in A_i$ with as many neighbours in C as possible; then there exists $c' \in C$ nonadjacent to a, since $a' \in A_i$ adjacent to From (1) and 7.2, it follows that $$\chi(G) \le (2l-2)n^2 = (2l-2)(2l-2)^{2^{\omega(G)-1}-2} = (2l-2)^{2^{\omega(G)-1}-1}.$$ Ī This proves 7.3. ## References - [1] A. Gyárfás, "Problems from the world surrounding perfect graphs", Proceedings of the International Conference on Combinatorial Analysis and its Applications, (Pokrzywna, 1985), Zastos. Mat. 19 (1987), 413–441. - [2] Alex Scott, "Induced cycles and chromatic number", J. Combinatorial Theory, Ser. B, 76 (1999), 150–154. - [3] Alex Scott and Paul Seymour, "Colouring graphs with no odd holes", submitted for publication (manuscript August 2014).