Time Preferences

Mark Dean

Behavioral Economics G6943 Fall 2022

Two Standard Ways

- In the introductory lecture we suggested two possible ways of spotting temptation
(1) Preference for Commitment
(2) Time inconsistency
- Previously we covered Preference for Commitment
- Now, time preferences!
- Note that the time preferences are of independent interest, one reason we will study them in some depth

Time Inconsistency

- Imagine you are asked to make a choice for today
(1) Salad or burger for lunch
(2) 10 minute massage today or 11 minute massage tomorrow
- And a choice for next Wednesday
(1) Salad or burger for lunch
(2) 10 minute massage on the 30 th or 11 minute massage on the 31st
- Choice $\{$ burger,salad $\}$ or $\{10,11\}$ is a 'preference reversal'

Time Inconsistency

- This is inconsistent with standard intertemporal choice theory
- Utility given by

$$
\sum_{t=1}^{T} \delta^{t} u\left(c_{t}\right)
$$

- δ is the discount rate
- c_{t} is consumption in period t
- u is stable utility function
- If $u(s)>u(b)$ then salad should be chosen over burger both today and next Monday
- If $u(s)<u(b)$ then burger should be chosen over salad both today and next Monday
- If $u(10)>\delta u(11)$ then 10 minute earlier massage should be chosen over 11 minute later massage both today and next week
- If $u(10)<\delta u(11)$ then 11 minute later massage should be chosen over 10 minute earlier massage both today and next week

Time Inconsistency

- Preference reversals often interpreted as a sign of temptation
- The DM is tempted by any reward that is available immediately
- The taste of the burger
- The immediate massage
- So chooses the sooner option
- Less tempted if both rewards are moved into the future
- Can choose the option that is 'better'

Time Inconsistency

- Are preference reversals evidence for temptation?
- Not necessarily - could be changing tastes
- Maybe just had a salad, so fancied a burger today but salad next week
- Maybe know they are going to be busy tomorrow, so would prefer the 10 minute massage today but 11 minute massage in a week and one day
- Such changes should be distributed randomly
- But in many cases choices vary consistently
- Thirsty subjects
- Juice now (60%) or twice amount in 5 minutes (40%)
- Juice in 20 minutes (30\%) or twice amount in 25 minutes (70\%)
- Hard to explain with changing tastes
- Though see Strack and Taubinsky [2022] (to be discussed later)

Time Inconsistency

- In order to model time preferences we need to decide what data set we are working with
- Initially consider preference over consumption streams
- Allow clean theoretical statements
- However, often we do not observe preference over consumption streams
- Instead we observe repeated consumption/savings choices
- Will next consider this data set
- Relate to preference for commitment

Preference Over Consumption Streams

- Object of choice are now consumption streams:

$$
C=\left\{c_{1}, c_{2}, \ldots . .\right\}
$$

- c_{i} is consumption at date i
- Standard model: Exponential Discounting

$$
U(C)=\sum_{i=1}^{\infty} \delta^{i} u\left(c_{i}\right)
$$

Exponential Discounting

- Characterized by two conditions
- Trade off consistency

$$
\begin{aligned}
\left\{x, y, c_{3}, c_{4}, \ldots .\right\} & \succ\left\{z, w, c_{3}, c_{4}, \ldots .\right\} \\
& \Rightarrow \\
\left\{x, y, d_{3}, d_{4}, \ldots .\right\} & \succ\left\{z, w, d_{3}, d_{4}, \ldots .\right\}
\end{aligned}
$$

- Stationarity

$$
\begin{aligned}
\left\{c_{1}, c_{2}, \ldots .\right\} & \succ\left\{d_{1}, d_{2}, \ldots\right\} \\
& \Rightarrow \\
\left\{e, c_{1}, c_{2}, \ldots\right\} & \succ\left\{e, d_{1}, d_{2}, . .\right\}
\end{aligned}
$$

Necessity

- Trade off consistency: necessary for separable utility function

$$
\begin{aligned}
\left\{x, y, c_{3}, c_{4}, \ldots .\right\} & \succ\left\{z, w, c_{3}, c_{4}, \ldots .\right\} \\
& \Rightarrow \\
\left\{x, y, d_{3}, d_{4}, \ldots .\right\} & \succ\left\{z, w, d_{3}, d_{4}, \ldots\right\}
\end{aligned}
$$

- Assuming exponential discounting

$$
\begin{aligned}
u(x)+\delta u(y)+\sum_{i=2}^{\infty} \delta^{i} u\left(c_{i}\right) & \geq u(w)+\delta u(z)+\sum_{i=2}^{\infty} \delta^{i} u\left(c_{i}\right) \Rightarrow \\
u(x)+\delta u(y) & \geq u(w)+\delta u(z) \Rightarrow \\
u(x)+\delta u(y)+\sum_{i=2}^{\infty} \delta^{i} u\left(d_{i}\right) & \geq u(w)+\delta u(z)+\sum_{i=2}^{\infty} \delta^{i} u\left(d_{i}\right)
\end{aligned}
$$

Necessity

- Stationarity: necessary for exponential discounting

$$
\begin{aligned}
\left\{c_{1}, c_{2}, \ldots .\right\} & \succ\left\{d_{1}, d_{2}, \ldots\right\} \\
& \Rightarrow \\
\left\{e, c_{1}, c_{2}, \ldots\right\} & \succ\left\{e, d_{1}, d_{2}, . .\right\}
\end{aligned}
$$

- Assuming exponential discounting

$$
\begin{aligned}
\sum_{i=0}^{\infty} \delta^{i} u\left(c_{i}\right) & \geq \sum_{i=0}^{\infty} \delta^{i} u\left(d_{i}\right) \Rightarrow \\
u(e)+\delta\left(\sum_{i=0}^{\infty} \delta^{i} u\left(c_{i}\right)\right) & \geq u(e)+\delta\left(\sum_{i=0}^{\infty} \delta^{i} u\left(d_{i}\right)\right)
\end{aligned}
$$

Sufficiency

- Trade Off Consistency and Stationarity clearly necessary for an exponential discounting representation
- Turns out that they are also sufficient (along with some technical axioms)
- Stationarity propagates Trade Off Consistency to future periods
- See Koopmans [1960] (or for an easier read Bleichrodt, Rohde and Wakker [2008])
- Which of these axioms is violated by time inconsistency?

Time Inconsistency

- Time inconsistency violates Stationarity

$$
\begin{aligned}
\{10,0,0, \ldots\} \succ & \{0,11,0, \ldots\} \\
& \text { but } \\
\{0,10,0,0, \ldots\} \prec & \{0,0,11,0, \ldots\}
\end{aligned}
$$

- In general this is dealt with by replacing exponential discounting with some other form
- Hyperbolic

$$
U(C)=\sum_{i=1}^{\infty} \frac{1}{1+k i} u\left(c_{i}\right)
$$

- quasi hyperbolic

$$
U(C)=u\left(c_{1}\right)+\sum_{i=2}^{\infty} \beta \delta^{i} u\left(c_{i}\right)
$$

- Hyperbolic discounting is a pain to use, so people generally work with quasi hyperbolic discounting [Laibson 1997]

Quasi Hyperbolic Discounting

- Implication of quasi hyperbolic discounting: Only the first period is special
- Otherwise the DM looks standard
- Weaken stationarity to 'quasi-stationarity' [Olea and Strzalecki 2014]

$$
\begin{aligned}
\left\{f, c_{1}, c_{2}, \ldots\right\} & \succ\left\{f, d_{1}, d_{2}, \ldots\right\} \\
& \Rightarrow \\
\left\{f, e, c_{1}, c_{2}, \ldots\right\} & \succ\left\{f, e, d_{1}, d_{2}, . .\right\}
\end{aligned}
$$

- Stationarity holds after first period

Quasi Hyperbolic Discounting

Clearly necessary for quasi-hyperbolic discounting

$$
\begin{aligned}
&\left\{f, c_{1}, c_{2}, \ldots\right\} \succ\left\{f, d_{1}, d_{2}, \ldots\right\} \\
& \Rightarrow \\
&\left\{f, e, c_{1}, c_{2}, \ldots\right\} \succ\left\{f, e, d_{1}, d_{2}, . .\right\} \\
& u(f)+\beta \sum_{i=1}^{\infty} \delta^{i} u\left(c_{i}\right) \geq u(f)+\beta \sum_{i=1}^{\infty} \delta^{i} u\left(d_{i}\right) \Rightarrow \\
& u(f)+\beta \delta\left(u(e)+\sum_{i=1}^{\infty} \delta^{i} u\left(c_{i}\right)\right) \\
& \geq u(f)+\beta \delta\left(u(e)+\sum_{i=1}^{\infty} \delta^{i} u\left(d_{i}\right)\right)
\end{aligned}
$$

Quasi Hyperbolic Discounting

- Olea and Strzalecki show that quasistationarity plus a slight modification to trade off consistency (plus technical axioms) is equivalent to

$$
u\left(c_{0}\right)+\beta \sum_{i=1}^{\infty} \delta^{i} v\left(c_{i}\right)
$$

- Note that u may be different from v

Quasi Hyperbolic Discounting

- To get to Quasihyperbolic discounting, need to add something else.
- If

$$
\begin{aligned}
\left\{b, e_{2}, e_{2}, \ldots\right\} & \succeq\left\{a, e_{1}, e_{1}, \ldots\right\} \\
\left\{c, e_{1}, e_{1}, \ldots\right\} & \succeq\left\{d, e_{2}, e_{2}, \ldots\right\} \\
\left\{e_{3}, a, a, \ldots\right\} & \sim\left\{e_{4}, b, b, \ldots\right\}
\end{aligned}
$$

then

$$
\left\{e_{3}, c, c, \ldots\right\} \succeq\left\{e_{4}, d, d, \ldots\right\}
$$

- First two conditions say that, according to u, c is 'more better' than d than a is to b
- Second two conditions says that this has to be preserved by v
- This ensures that u and v are the same

Quasi Hyperbolic Discounting

- Present bias: if $a \succ c$ then

$$
\begin{aligned}
\{g, a, b, e, \ldots\} & \sim\{g, c, d, f, \ldots\} \Rightarrow \\
\{a, b, e, \ldots\} & \succeq\{c, d, f, \ldots\}
\end{aligned}
$$

- Ensures $\beta \leq 1$

Consumption and Savings

- In general, we do not observe choice over consumption streams
- Instead, observe choices over consumption levels today, which determine savings levels tomorrow
- Consumption streams 'fix' level of future consumption
- Implicitly introduce commitment
- In consumption/savings problems, no commitment
- Consumption level at time t decided at time t
- What does quasi-hyperbolic discounting look like in this case?

Consumption and Savings - Example

- Three period cake eating problem, with initial endowment $3 y$
- Formulate two versions of the problem
- a single agent chooses c_{0}, c_{1} and c_{2} in order to maximize

$$
U(C)=u\left(c_{0}\right)+\beta \sum_{i=1}^{2} \delta^{i} u\left(c_{i}\right) \text { st } \sum_{i=0}^{2} c_{i} \leq 3 y
$$

- a game between 3 agents $k=0,1,2$ where agent k chooses c_{k} to max

$$
U(C)=u\left(c_{k}\right)+\beta \sum_{i=k+1}^{2} \delta^{i} u\left(c_{i}\right) \text { st } c_{k} \leq s_{k-1}
$$

- where s_{k-1} is remaining cake, and taking other agents strategies as given

Consumption and Savings with Exponential Discounting

- Under exponential discounting (i.e. $\beta=1$), these two approaches give same outcome
- Assuming CRRA utility

$$
\begin{aligned}
c_{0} & =\frac{3 y}{1+(\delta)^{\frac{1}{\sigma}}+\left(\delta^{2}\right)^{\frac{1}{\sigma}}} \\
c_{1} & =(\delta)^{\frac{1}{\sigma}} c_{0} \\
c_{2} & =(\delta)^{\frac{1}{\sigma}} c_{1}
\end{aligned}
$$

- Agents are time consistent: period i agent will stick to the plan of period $i-1$ agent
- Only exponential discounting function has this feature [Strotz 1955]

Consumption and Savings with Quasi Hyperbolic Discounting

- Now assume that the agent has a quasi-hyperbolic utility function: agent k chooses c_{k} to max

$$
U(C)=u\left(c_{k}\right)+\sum_{i=k+1}^{2} \beta \delta^{i} u\left(c_{i}\right) \text { st } c_{k} \leq s_{k-1}
$$

- Now the solutions are different:
- Consider three cases
(1) Commitment: time 0 agent gets to choose c_{0}, c_{1}, c_{2}
(2) Sophistication: each player solves the game by backward induction and chooses optimally, correctly anticipating future behavior
(3) Naive: each player acts as if future plans will be followed

Consumption and Savings with Quasi Hyperbolic Discounting

- Case 1: Commitment

$$
\begin{aligned}
& c_{0}=\left(1+(\beta \delta)^{\frac{1}{\sigma}}+\left(\beta \delta^{2}\right)^{\frac{1}{\sigma}}\right)^{-1} 3 y \\
& c_{2}=\delta^{\frac{1}{\sigma}} c_{1}
\end{aligned}
$$

- Case 2: Sophistication

$$
\begin{aligned}
& \bar{c}_{0}=\left[1+\left(\frac{\beta \delta}{\left(1+(\beta \delta)^{\frac{1}{\sigma}}\right)^{1-\sigma}}+\frac{\delta(\beta \delta)^{\frac{1}{\sigma}}}{\left(1+(\beta \delta)^{\frac{1}{\sigma}}\right)^{1-\sigma}}\right)^{\frac{1}{\sigma}}\right]^{-1} 3 y \\
& \bar{c}_{2}=(\beta \delta)^{\frac{1}{\sigma}} c_{1}
\end{aligned}
$$

- Without commitment, period 2 consumption lower relative to period 1 consumption

Consumption and Savings with Quasi Hyperbolic Discounting

- Case 1: Commitment

$$
\begin{aligned}
& c_{0}=\left(1+(\beta \delta)^{\frac{1}{\sigma}}+\left(\beta \delta^{2}\right)^{\frac{1}{\sigma}}\right)^{-1} 3 y \\
& c_{2}=\delta^{\frac{1}{\sigma}} c_{1}
\end{aligned}
$$

- Case 2: Sophistication

$$
\begin{aligned}
& \bar{c}_{0}=\left[1+\left(\frac{\beta \delta}{\left(1+(\beta \delta)^{\frac{1}{\sigma}}\right)^{1-\sigma}}+\frac{\delta(\beta \delta)^{\frac{1}{\sigma}}}{\left(1+(\beta \delta)^{\frac{1}{\sigma}}\right)^{1-\sigma}}\right)^{\frac{1}{\sigma}}\right]^{-1} 3 y \\
& \bar{c}_{2}=(\beta \delta)^{\frac{1}{\sigma}} c_{1}
\end{aligned}
$$

- Period 0 consumption can be lower or higher depending on σ
- Two offsetting effects:
- Less efficient use of savings
- Agent in period 2 gets screwed

Discounting and Preference for Commitment

- Note that an exponential discounter will not have a preference for commitment
- Agent at time 1 will follow plan made at time 0
- A sophisticated non-exponential discounter will have a preference for commitment
- Agent at time 1 will not follow preferred plan of agent at time 0
- Thus, under sophistication

Non-exponential discounting
\Leftrightarrow Preference reversals
\Leftrightarrow Demand for commitment

Consumption and Savings with Quasi Hyperbolic Discounting

- Case 3: Naivete

$$
\begin{aligned}
& c_{0}=\left(1+(\beta \delta)^{\frac{1}{\sigma}}+\left(\beta \delta^{2}\right)^{\frac{1}{\sigma}}\right)^{-1} 3 y \\
& c_{2}=(\beta \delta)^{\frac{1}{\sigma}} c_{1}
\end{aligned}
$$

- Period 0 consumption will be the same as commitment case (unsurprisingly)
- Period 1 consumption will be unambiguously higher
- Period 2 consumption will be unambiguously lower
- A naive q-hyperbolic discounter will not have a preference for commitment
- Will expect agent at time 1 to follow plan made at time 0

Discounting and Preference for Commitment

- This provides a link between preference reversals and demand for commitment
- A sophisticated q-hyperbolic agent would like to make use of illiquid assets, cut up credit cards, etc
- Next lecture we will examine whether there is an empirical link between the two
- A separate question: how valuable is commitment in consumption savings problems?
- Not very (Laibson [2015])

Strong Hyperbolic Euler Equation

- For sophisticated consumers with no commitment optimal behavior can be characterized by the SHEE

$$
\frac{\partial u\left(c_{t}\right)}{\partial c_{t}}=R E_{t}\left[\left(\beta \delta c_{t+1}^{\prime}+\left(1-c_{t+1}^{\prime}\right) \delta\right) \frac{\partial u\left(c_{t+1}\right)}{\partial c_{t+1}}\right]
$$

- Where c_{t+1}^{\prime} is the marginal propensity to consume in period $t+1$
- Modification of 'standard' Euler equation:
- Standard case: effective discount rate $d_{t}=\delta$
- SHEE: effective discount rate $d_{t}=\beta \delta c_{t+1}^{\prime}+\left(1-c_{c t+1}^{\prime}\right) \delta$
- If MPC is low, two models look similar
- Requires consumers not to be 'too' hyperbolic (see Harris and Laibson 2001)

Observing Time Inconsistency in a Consumption/Savings Problem

- What are the observable implications of quasi-hyperbolic discounting?
- If we observe a sequences of
- consumptions choices
- one period interest rates
- prices
- Incomes
under what circumstances are they consistent with q-hyperbolic discounting?
- Are these conditions different from those for the standard exponential discounting model?

Observing Time Inconsistency in a Consumption/Savings Problem

- Surprisingly, this question is not well answered
- Barro [1999] shows that if utility is log then the two are observationally equivalent
- What if utility is not log?
- In the CRRA class of utilities, there are three parameters to estimate, β, δ and σ
- Intuitively, need three moments
- Above data provides two:
- Response to changes in income
- Response to changes in interest rates
- Need to get third moment from somewhere
- See Blow, Browning and Crawford [2020] for one way forward involving multiple goods

Time Preferences as Risk Preferences

- One (quite fundamental) question is: why do we discount in the first place?
- One possible answer is that things in the future might not happen
- Would you prefer cake today or cake in a week?
- Before a week's time
- You might die
- The baker might die
- Everyone might die!
- So might prefer cake now

Time Preferences as Risk Preferences

- Consider a model in which there is a constant probability $(1-\delta)$ that the world will end in each period
- What is the value of an outcome c received in t periods?
- If you are an expected utility maximizer it is

$$
\delta^{t} u(c)
$$

- Exponential discounting!

Time Preferences as Risk Preferences

- However, in the domain of risky choices there is plentiful evidence that people violate EU

The Common Ratio Effect

- What would you choose?
- Many people choose C1 and D2

A Common Ratio Effect for Time Preferences

- Informally, we can see a link between the common ratio effect and present bias.
- Perhaps C1 is preferred because it is the only certain option?
- Outcomes received today are the only certain option in intertemporal choice
- In fact a model that gave a boost of $\frac{1}{\beta}$ for $\beta<1$ to options that are certain would
- Explain the common ratio effect
- Give the $\beta-\delta$ model
- c valued as
$\frac{1}{\beta} u(c)$ if received in period 0
$\delta^{t} u(c)$ if received in period $t>0$

A Common Ratio Effect for Time Preferences

- For various reasons such a model is not particularly popular
- But there are number of papers that have shown that models of probability weighting can explain behavior in both domains
- In fact the type of probability weighting that gives present bias is exactly the same that gives common ratio effects
- See
- Halevy, Yoram. "Strotz meets Allais: Diminishing impatience and the certainty effect." American Economic Review 98.3 (2008): 1145-62.
- Saito, Kota. "Strotz meets allais: Diminishing impatience and the certainty effect: Comment." American Economic Review 101.5 (2011): 2271-75.
- Chakraborty, Anujit, Yoram Halevy, and Kota Saito. "The Relation between Behavior under Risk and over Time." AER-I (2020)
- An obvious question: are these two behaviors linked empirically?

Discounting as Perceptual Noise

- Recently, researchers have focussed on another possible mechanism for discounting
- It might be harder to perceive the value of events that occur in the future
- Intuitively, this will mean that good events in the future will be downweighted relative to good events now
- Can give rise to 'present bias' choices

Discounting as Perceptual Noise

- Consider the following simple example from Gabaix and Laibson [2019]
- Imagine, that, when presented with a prospect of value u_{t} the DM receives a noisy signal

$$
s_{t}=u_{t}+\varepsilon_{t}
$$

Where $\varepsilon_{t} \sim N\left(0, t \sigma_{s}^{2}\right)$

- Assume prior beliefs are distributed $N\left(0, \sigma_{\mu}^{2}\right)$

Discounting as Perceptual Noise

- Upon receiving signal s_{t}, beliefs will be given by

$$
N\left(\frac{1}{1+\frac{t \sigma_{s}}{\sigma_{\mu}}} s_{t},\left(1-\frac{1}{1+\frac{t \sigma_{s}}{\sigma_{\mu}}}\right) \sigma_{\mu}^{2}\right)
$$

- Integrating over signals, the average mean belief is given by

$$
\frac{1}{1+\frac{t \sigma_{s}}{\sigma_{\mu}}} u_{t}
$$

- This has the hyperbolic form so assuming that $u_{t}>0$
- Future rewards will be downweighted
- Choices will be present biased even if there is no 'actual' discounting!

Discounting as Perceptual Noise

- Obviously there are many special assumptions about this set up but the logic is quite strong
- For example, Gabaix and Laibson show that as long as $\sigma_{s_{t}}^{2}$ is a weakly concave function of time, the 'discount rate' $\frac{1}{1+\frac{\sigma_{s t}}{\sigma_{\mu}}}$ will generate increasing patience
- Also a recent paper shows that present bias comes naturally out of an optimal choice of attention
- "Optimal similarity judgments in intertemporal choice" by Adriani and Sonderegger [2019]
- Key mechanism: when time periods are further in the future it is less worthwhile distinguishing between them
- See also
- Enke, Benjamin, and Thomas Graeber. Cognitive Uncertainty in Intertemporal Choice. No. w29577. National Bureau of Economic Research, 2021.
- Vieider, Ferdinand M. Noisy coding of time and reward discounting. No. 21/1036. Ghent University, Faculty of Economics and Business Administration. 2021

Fudenberg and Levine [2006]

- Q-hyperbolic model still difficult to solve for many periods
- Game between two long run players
- Multiple equilibria [Laibson 1997, Harris and Laibson 2004]
- Fudenberg and Levine come up with a simpler model

Fudenberg and Levine [2006]

- Long run self plays a game against a sequence of short lived self
- Short run self gets to choose what action to take $a \in A$
- Long run self chooses 'self control' $r \in R$ which modifies utility function of short run self
- State y evolves according to some (stochastic) process depending on history of y, a and r
- $\Gamma(y)$ available options in state y

Fudenberg and Levine [2006]

- Each short run player chooses an action a to maximize

$$
u(y, r, a)
$$

- Long run player chooses a mapping from histories h to R to maximize

$$
\sum_{i=1}^{\infty} \delta^{t-1} \int u(y(h), r(h), a(h)) d \pi(h)
$$

where

- $r(h)$ is the strategy of the long run player
- $a($.$) is strategy of each short run player$
- $y($.$) is the state following history h$
- π is the probability distribution over h given strategies

Fudenberg and Levine [2006]

- Define $C(y, a)$ as the self control cost of choosing a in state y

$$
C(y, a)=u(y, 0, a)-\sup _{r \text { s.t. } u(y, r, a) \geq u(y, r, b) \forall b \in \Gamma(y)} u(y, r, a)
$$

- Then we can rewrite long run's self problem as a decision problem
- choose mapping from h to A in order to maximize

$$
\sum_{i=1}^{\infty} \int u(y(h), 0, a(h))-c(y(h), a(h)) d \pi(h)
$$

Fudenberg and Levine [2006]

- Further assume that self control costs are
- Linear
- Depend only on the chosen object and most tempting object in choice set

$$
c(y, a)=\lambda\left(\max _{b \in \Gamma(y)} u(b, 0, y)-u(a, 0, y)\right)
$$

- This is a Gul-Pesendorfer type model
- Reducing choice set reduces self control costs

A Consumption/Saving Example

- State y represents wealth
- a is fraction of wealth saved
- Return on wealth is R
- Instantaneous utility is log

$$
u(y, 0, a)=\log ((1-a) y)
$$

- Temptation utility in each period is $\log (y)$
- Objective function becomes

$$
\begin{aligned}
& \sum_{i=1}^{\infty} \delta^{t-1}\left[\log \left((1-a) y_{i}\right)-\lambda\left(\log \left(y_{i}\right)-\log \left(\left(1-a_{i}\right) y_{i}\right)\right]\right. \\
= & \sum_{i=1}^{\infty} \delta^{t-1}\left[(1+\lambda) \log \left(\left(1-a_{i}\right) y_{i}\right)-\lambda \log \left(y_{i}\right)\right] \\
& \text { subject to } \\
a_{i} \in & {[0,1] } \\
y_{i+1}= & R a_{i} y_{i}
\end{aligned}
$$

A Consumption/Saving Example

- Solution. It turns out that optimal policy is constant savings rate, so $y_{i}=(R a)^{i-1} y_{1}$

$$
\begin{aligned}
& \sum_{i=1}^{\infty} \delta^{t-1}\left[\begin{array}{c}
(1+\lambda)\left[\begin{array}{ll}
\left.\log (1-a)+(i-1) \log R a+\log y_{1}\right] \\
-\lambda\left((i-1) \log R a+\log y_{1}\right)
\end{array}\right] \\
=
\end{array}\right. \\
&(1+\lambda) \frac{\log (1-a)}{(1-\delta)}+\frac{\log y_{1}}{(1-\delta)}+\frac{\delta \log (R a)}{(1-\delta)^{2}}
\end{aligned}
$$

- FOC wrt a

$$
\frac{(1+\lambda)}{(1-\delta)(1-a)}=\frac{\delta}{(1-\delta)^{2} a}
$$

A Consumption/Saving Example

$$
a=\frac{\delta}{1+(1-\delta) \lambda}
$$

- As self control costs increase, savings go down
- As δ increases, effect of self control increases

Risk Aversion in the Large and Small

- Rabin [2000] argued that lab risk aversion cannot be due to curvature of utility function
- Would lead to absurd levels of risk aversion in the large
- Can be explained by probability weighting
- F and L offer another explanation
- For small wins, prize will be consumed immediately - compare to current spending
- For large wins prize will be saved - compare to current wealth

Risk Aversion in the Large and Small

- Each period split in two
- Bank
- No consumption, but savings
- No temptation (nothing to consume)
- Choose amount x to take out of bank
- Casino
- Choose how much of x to consume
- Return remainder to the Bank

Risk Aversion in the Large and Small

- If everything is deterministic then can implement first best outcome
- Set $a^{*}=\delta$
- Now assume that with some small probability will be asked to choose between gambles at casino
- Assume probability is 'small' so still set $a^{*}=\delta$ in the bank
- Consider receiving prize z_{1}
- Wealth in period 2 given by

$$
y_{2}=R\left(y_{1}+z_{1}-c_{1}\right)
$$

Risk Aversion in the Large and Small

- Utility of y_{2} in period 2 is given by

$$
\begin{aligned}
& \sum_{i=1}^{\infty} \delta^{t-1}\left[(1+\lambda) \log \left(\left(1-a^{*}\right)+(i-1) \log R a^{*}+\log y_{2}\right)\right] \\
= & \frac{\log \left(1-a^{*}\right)}{(1-\delta)}+\frac{\log y_{2}}{(1-\delta)}+\frac{\delta \log \left(R a^{*}\right)}{(1-\delta)^{2}} \\
= & \frac{1}{(1-\delta)}\left[\log (1-\delta)+\log y_{2}+\frac{\delta}{1+\delta} \log (R \delta)\right]
\end{aligned}
$$

- Total utility from consuming c_{1}

$$
\begin{aligned}
& (1+\lambda) \log c_{1}-\lambda \log \left(x_{1}+z_{1}\right) \\
& +\frac{1}{(1-\delta)}\left[\log (1-\delta)+\log R\left(y_{1}+z_{1}-c_{1}\right)+\frac{\delta}{1+\delta} \log (R \delta)\right]
\end{aligned}
$$

Risk Aversion in the Large and Small

- Gives First Order Conditions

$$
\begin{aligned}
c^{*} & =\frac{(1-\delta)(1+\lambda)\left(y_{1}+z_{1}\right)}{\delta+(1+\lambda)(1-\delta)} \\
& =\left(1-\frac{\delta}{\delta+(1+\lambda)(1-\delta)}\right)\left(y_{1}+z_{1}\right)
\end{aligned}
$$

- Consumption is constrained by $x_{1}+z_{1}=(1-\delta) y_{1}+z_{1}$. Define z^{*} as

$$
\left(1-\frac{\delta}{\delta+(1+\lambda)(1-\delta)}\right)\left(y_{1}+z^{*}\right)=(1-\delta) y_{1}+z^{*}
$$

- For $z_{1}>z^{*}$, consume c^{*}, otherwise consume $(1-\delta) y_{1}+z_{1}$

Risk Aversion in the Large and Small

- Utility of prize less than z^{*}

$$
\begin{aligned}
& \log \left(x_{1}+z_{1}\right) \\
& +\frac{1}{(1-\delta)}\left[\log (1-\delta)+\log \left(y_{1}-x_{1}\right)+\frac{\delta}{1+\delta} \log (R \delta)\right]
\end{aligned}
$$

- Utility of prize greater than z^{*}

$$
\begin{aligned}
& (1+\lambda) \log \frac{(1-\delta)(1+\lambda)}{1+\lambda(1-\delta)}\left(y_{1}+z_{1}\right)-\lambda \log \left(x_{1}+z_{1}\right) \\
& +\frac{1}{(1-\delta)}\left[\log (1-\delta)+\log R \frac{\delta\left(y_{1}+z_{1}\right)}{1+\lambda(1-\delta)}+\frac{\delta}{1+\delta} \log (R \delta)\right]
\end{aligned}
$$

- For 'small' wins, constant relative risk aversion relative to pocket cash
- For 'large' wins (approximately) constant relative risk aversion relative to wealth

Summary

- Systematic preference reversals present a challenge to the standard model of time separable, exponential discounting
- A violation of stationarity
- There is a strong theoretical link between preference reversals, non-exponential discounting and preference for commitment
- Quasi-hyperbolic discounting model a popular alternative used to explain the data
- Treats today as special
- Can be used to model a wide variety of phenomena
- Demand for liquid assets
- Procrastination
- Pinning down the precise implications of the q-hyperbolic model is
- Easy in choice over consumption streams
- Harder in choice in consumption savings problems

