Choice Set Effects

Mark Dean

Behavioral Economics G6943
Fall 2022

Context Effects

- We will now think about context effects that are more general than simple reference dependence
- Standard Model: Adding options to a choice set can only affect choice in a very specific way
- Either a new option is chosen or it isn't
- Independence of Irrelevant Alternatives
- Work from economics, neuroscience and psychology suggest a different channel
- Changing the choice set changes the context of choice
- Context affects preferences
- Can lead to violations of IIA

Observing Context Effects

- We are going to consider two examples
(1) Stochastic Choice
- Divisive Normalization: Louie, Khaw and Glimcher [2013]
(2) Choice between multidimensional alternatives
- Relative Thinking: Bushong, Rabin and Schwartzstein [2021]
- Focussing: Koszegi and Szeidl [2013]
- Salience: Bordalo, Gennaioli and Shleifer [2012]
- Then discuss an experiment designed to test between the last three models
- Somerville [2022]

A Neuroscience Primer

- The brain needs some way of representing (or encoding) stimuli
- Brightness of visual stimuli
- Loudness of auditory stimuli
- Temperature etc.
- Typically, a given brain region will have the task of encoding a particular stimuli at a particular point in space and time
- e.g. the brightness of a light at a particular point in the visual field
- How is this encoding done?
- A 'naive' mode: neural activity encodes the absolute value of the stimuli

$$
\mu_{i}=K V_{i}
$$

- μ_{i} : neural activity in a particular region
- V_{i} : The value of the related stimuli

A Neuroscience Primer

- Encoding depends not only on the value of the stimuli, but also on the context [Carandini 2004]

A Neuroscience Primer

- Divisive Normalization:

$$
\mu_{i}=K \frac{V_{i}}{\sigma_{H}+\sum_{j} w_{j} V_{j}}
$$

- σ_{H} : Normalizing constant (semi-saturation)
- w_{j} : Weight of comparison stimuli j
- V_{j} : Value of comparison stimuli j

A Neuroscience Primer

- Why would the brain do this?
- Efficient use of neural resources [Carandini and Heager 2011]
- Neurons can only fire over a finite range
- Want the same system to work (for example) in very bright and very dark conditions
- Absolute value encoding is inefficient
- In dark environments, everything encoded at the bottom of the scale
- In light environments, everything encoded at the top of the scale
- Normalization encodes relative to the mean of the available options
- Encodes things near the middle of the scale.
- Allows stimuli to be encoded further apart from each other
- Reduces errors that occur due to noise

Divisive Normalization and Choice

- There is also evidence that the value of choice alternatives is normalized [Louie et. al. 2011]

Divisive Normalization and Choice

- Why should normalization matter for choice?
- Does not change the ordering of the valuation of alternatives, so why should it change choice?
- Because choice is stochastic
- The above describes mean firing rates
- Choice will be determined by a draw from a random distribution around that mean
- Claim that such stochasticity is an irreducible fact of neurological systems
- Probability of choice depends on the difference between the encoded value of each option
- Utility has a cardinal interpretation, not just an ordinal one

Divisive Normalization and Choice

Divisive Normalization and Choice

Divisive Normalization and Choice

- How do these predictions vary from standard random utility model?
- Luce model:

$$
p(a \mid A)=\frac{u(a)}{\sum_{b \in A} u(b)}
$$

- Implies that the relative likelihood of picking a over b is independent of the other available alternatives
- Stochastic IIA
- More general RUM
- Adding an alternative c can affect the relative likelihood of choosing a and b
- But only because c itself is chosen
- Can 'take away' probability from a or b
- The amount c is chosen bounds the effect it can affect the choice of a or b

Experimental Evidence

- Subjects (40) took part in two tasks involving snack foods
(1) Asked to bid on each of 30 different snack foods to elicit valuation
- BDM procedure used to make things incentive compatible
(2) Asked to make a choice from three alternatives
- Target, alternative and distractor
- 'True' value of each alternative assumed to be derived from the bidding stage

Experimental Evidence

Experimental Evidence

Experimental Evidence

Experimental Evidence

- But see "A neural mechanism underlying failure of optimal choice with multiple alternatives" by Chau et al. Nat Neurosci. 2014 Mar; 17(3): 463-470.

Choice with Multidimensional Alternatives

- In the model we just saw, adding a third 'distractor' changed the 'distance' between the value of two targets
- Context changed apparent magnitude of the difference
- This could not be seen in 'standard' choice data
- Is observable in stochastic choice

Choice with Multidimensional Alternatives

- Another data set in which such effects could be observed is choice over goods defined over multiple attributes
- $c=\left\{c_{1}, \ldots, c_{K}\right\}$
- Utility is assumed additive,

$$
U(c \mid A)=\sum_{k=1}^{K} w_{k}^{A} u_{k}\left(c_{k}\right)
$$

- $u_{k}($.$) the true (context independent) utility on dimension k$
- w_{k}^{A} is a context dependent weight on dimension k
- Utility also assumed to be observable
- Koszegi and Szeidl [2013] suggest how this can be done
- Context can change the distance between values on one dimension
- Change the trade off relative to other dimensions

Choice with Multidimensional Alternatives

- Many recent papers make use of this framework
- Bordalo, Gennaioli and Shleifer [2012, 2013]: Salience
- Soltani, De Martino and Camerer [2012]: Range Normalization
- Cunningham [2013]: Comparisons
- Koszegi and Szeidl [2013]: Focussing
- Bushong, Rabin and Schwartzstein [2021]: Relative thinking
- Landry and Webb [2021]: Pairwise Divisive Normalization

Choice with Multidimensional Alternatives

- Many recent papers make use of this framework
- Bordalo, Gennaioli and Shleifer [2012, 2013]: Salience
- Soltani, De Martino and Camerer [2012]: Range Normalization
- Cunningham [2013]: Comparisons
- Koszegi and Szeidl [2013]: Focussing
- Bushong, Rabin and Schwartzstein [2015]: Relative thinking
- Landry and Webb [2018]: Pairwise Divisive Normalization
- We will consider these three

Relative Thinking

- In the Louie et al. [2013] paper, normalization was relative to the mean of the value of the available options
- There is also a long psychology literature which suggests that range can play an important role in normalization
- A given absolute difference will seem smaller if the total range under consideration seems larger
- Bushong et al. [2021] suggest conditions on the weights w_{k}^{A} to capture this effect .

$$
U(c \mid A)=\sum_{k=1}^{K} w_{k}^{A} u_{k}\left(c_{k}\right)
$$

Relative Thinking: Assumptions

(1) $w_{k}^{A}=w\left(\Delta_{k}(A)\right)$ where

$$
\Delta_{k}(A)=\max _{a \in A} u_{k}\left(a_{k}\right)-\min _{a \in A} u_{k}\left(a_{k}\right)
$$

- The weight given to dimension k depends on the range of values in this dimension
(2) $w_{k}^{A}(\Delta)$ is diffable and decreasing in Δ
- A given absolute difference receives less weight as the range increases
(3) $w_{k}^{A}(\Delta) \Delta$ is strictly increasing, with $w(0) 0=0$
- The change in weight cannot fully offset a change in absolute difference
(4) $\lim _{\Delta \rightarrow \infty} w(\Delta)>0$
- Absolute differences still matter even as the range goes to infinity

Relative Thinking: Implications

- An example of such a function

$$
w_{k}^{A}(\Delta)=(1-\rho)+\rho \frac{1}{\Delta^{\alpha}}
$$

- Bushong et al. [2021] do not fully characterize the behavioral implications of their model
- Potentially interesting avenue for future research
- However, some of the implications are made clear in the following examples

Example 1

$$
c=\left\{\begin{array}{l}
2 \\
3 \\
0
\end{array}\right\}, c^{\prime}=\left\{\begin{array}{l}
0 \\
0 \\
5
\end{array}\right\}
$$

- Assume these payoffs are in utility units
- What will the DM choose?
- They would choose c, despite the fact that the 'unweighted' utility of the two options is the same

$$
2 w(2)+3 w(3)>5 w(3)>5 w(5)
$$

- DM favors benefits spread over a large number of dimensions

Example 2

$$
c=\left\{\begin{array}{l}
2 \\
1
\end{array}\right\}, c^{\prime}=\left\{\begin{array}{l}
1 \\
2
\end{array}\right\}
$$

- Say that, in the choice set $\left\{c, c^{\prime}\right\}$ the DM is indifferent between the two.
- What would they choose from

$$
c=\left\{\begin{array}{l}
2 \\
1
\end{array}\right\}, c^{\prime}=\left\{\begin{array}{l}
1 \\
2
\end{array}\right\}, c^{\prime \prime}=\left\{\begin{array}{l}
2 \\
0
\end{array}\right\}
$$

- They would choose c
- The introduction of $c^{\prime \prime}$ increases the range of dimension 2 , but not dimension 1
- Reduces the weight on the dimension in which c^{\prime} has the advantage
- This is an example of the asymmetric dominance effect

Example 2

Focussing

- Somewhat confusingly, Koszegi and Szeidl consider a model which
- Has the same set up
- Makes opposite assumption about W
- Specifically, $w_{k}^{A}(\Delta)$ is incresing in Δ
- Dimensions with higher range get a higher weight
- This is a model of focussing

Focussing

- What is the justification for this?
- Basically some sort of 'editing' procedure
- You are trying to simplify choice by focussing your attention on important dimensions
- Similar in spirit to
- Gabaix [2014]: Sparsity
- Bordallo et al [2012]: Salience
- Rubinstein [1988]: Similarity
- Unsurprisingly, Implications are the opposite of the relative thinking model
- Model biases choices towards options that focus their benefits in a small number of dimensions

Focussing

Theorem
For any $F>f>0$ and suppose that for some $c \in C$
(1) The advantages of c over any alternative in C are all greater than F
(2) The disadvantages of c over any alternative in C is less than f Then the DM will not choose any $c^{\prime} \in C \backslash c$ such that

$$
U\left(c^{\prime}\right)<U(c)+F\left[\frac{W(F)}{W(f)}-1\right]
$$

where $U($.$) is the unweighted utility$

- If the advantages of c are focussed in a small number of attributes it wiill be chosen

Salience Theory

- Basic Idea: Attention is not spread evenly across the environment
- Some things draw our attention whether we like it or not
- Bright lights
- Loud noises
- Funky dancing
- The things that draw our attention are likely to have more weight in our final decision
- Notice here that attention allocation is exogenous not endogenous
- Potentially could be thought of as a reduced form for some endogenous information gathering strategy

Salience Theory

- Bordalo, Gennaioli and Shleifer [2013] formulate salience in the following way

$$
\begin{aligned}
U(c \mid A) & =\sum_{k=1}^{K} w_{k, c}^{A} u_{k}\left(c_{k}\right) \\
& =\sum_{k=1}^{K} w_{k, c}^{A} \theta_{k} c_{k}
\end{aligned}
$$

- θ_{k} is the 'true' utility of dimension k
- $w_{k, c}^{A}$ is the 'salience' weight of dimension k for alternative c
- Notice that the weight that dimension k receives may be different for different alternatives

Determining Salience

- How are the weights determined?
- First define a 'Salience Function'

$$
\sigma\left(c_{k}, \bar{c}_{k}\right)
$$

- \bar{c}_{k} is the reference value for dimension k (usually, but not always, the mean value of dimension k across all alternatives)
- $\sigma\left(c_{k}, \bar{c}_{k}\right)$ is the salience of alternative c on dimension k
- Properties of the Salience function
(1) Ordering: $\left[\min \left(c_{k}, \bar{c}_{k}\right), \max \left(c_{k}, \bar{c}_{k}\right)\right] \supset$

$$
\left[\min \left(c_{k}^{\prime}, \bar{c}_{k}^{\prime}\right), \max \left(c_{k}^{\prime}, \bar{c}_{k}^{\prime}\right)\right] \Rightarrow \sigma\left(c_{k}^{\prime}, \bar{c}_{k}^{\prime}\right) \leq \sigma\left(c_{k}, \bar{c}_{k}\right)
$$

(2) Diminishing Sensitivity: $\sigma\left(c_{k}+\varepsilon, \bar{c}_{k}+\varepsilon\right)<\sigma\left(c_{k}, \bar{c}_{k}\right)$
(3) Reflection:

$$
\sigma\left(c_{k}^{\prime}, \bar{c}_{k}^{\prime}\right)>\sigma\left(c_{k}, \bar{c}_{k}\right) \Rightarrow \sigma\left(-c_{k}^{\prime},-\bar{c}_{k}^{\prime}\right)>\sigma\left(-c_{k},-\bar{c}_{k}\right)
$$

Determining Salience

- An example of a salience function

$$
\sigma\left(c_{k}, \bar{c}_{k}\right)=\frac{\left|c_{k}-\bar{c}_{k}\right|}{\left|c_{k}\right|+\left|\bar{c}_{k}\right|}
$$

- Note:
- Shares some features with both the previous approaches we have seen
- Normalization by the mean
- Diminishing sensitivity (but relative to zero, rather than the range)

From Salience to Decision Weights

- Use $\sigma\left(c_{k}, \bar{c}_{k}\right)$ to rank the salience of different dimensions for good c
- $r_{k, c}$ is the salience rank of dimension k (1 is most salient)
- Assign weight $w_{k, c}^{A}$ as

$$
\frac{\delta^{r_{k, c}}}{\sum_{j} \theta_{j} \delta^{r_{j, c}}}
$$

- Then plug into

$$
\sum_{k=1}^{K} w_{k, c}^{A} \theta_{k} c_{k}
$$

- More salient dimensions get a higher decision weight
- δ indexes degree to which subject is affected by salience
- lower δ, more affected by salience
- Note salience of a dimension is good specific

Application: Choice Under Risk

- Bordalo et al [2012] apply the salience model to choice under risk
- Choice objects are lotteries on a subjective state space
- Dimensions are states of the world
- c_{k} is the utility provided by lottery c in state of the world k
- θ_{k} is the objective probability of state of the world k
- Someone who does not have salience effects maximizes expected utility
- Salience leads to probability weighting
- Note: in binary choices, assume that each alternative has the same salience for each state
- e.g.

$$
\sigma\left(c_{k}, c_{k}^{\prime}\right)=\frac{\left|c_{k}-c_{k}^{\prime}\right|}{\left|c_{k}\right|+\left|c_{k}^{\prime}\right|+\lambda}
$$

Application: Choice Under Risk

- Example: Salience and the Allais Paradox
- Allais Paradox: Consider the following pairs of choices:

$$
\begin{aligned}
c & =(0.33: 2500 ; 0.01: 0 ; 0.66: 2400) \\
\text { or } c^{\prime} & =(0.34: 2400 ; 0.66: 2400) \\
& \\
\bar{c} & =(0.33: 2500 ; 0.01: 0 ; 0.66: 0) \\
\text { or } \bar{c}^{\prime} & =(0.34: 2400 ; 0.66: 0)
\end{aligned}
$$

- Typical choice is c^{\prime} over c but \bar{c} over \bar{c}^{\prime}
- Inconsistent with expected utility theory
- Can be explained by salience

Application: Choice Under Risk

- Consider choice 1

$$
\begin{aligned}
c & =(0.33: 2500 ; 0.01: 0 ; 0.66: 2400) \\
\text { or } c^{\prime} & =(0.34: 2400 ; 0.66: 2400)
\end{aligned}
$$

- Represent by the following state space:

State	c	c^{\prime}
s_{1}	2500	2400
s_{2}	0	2400
s_{3}	2400	2400

- State s_{2} is the most salient state, receives most weight
- c^{\prime} chosen if

$$
\delta 0.33 \times 100<0.01 \times 2400
$$

- More susceptible to salience, the more likely to choose c^{\prime}

Application: Choice Under Risk

- Consider choice 2

$$
\begin{aligned}
\bar{c} & =(0.33: 2500 ; 0.01: 0 ; 0.66: 0) \\
\text { or } \bar{c}^{\prime} & =(0.34: 2400 ; 0.66: 0)
\end{aligned}
$$

- Assume independence and represent by the following state space:

State	\bar{c}	\bar{c}^{\prime}
s_{1}	2500	2400
s_{2}	2500	0
s_{3}	0	2400
s_{4}	0	0

- Salience ranking is s_{2}, then s_{3}, then s_{1}
- Now the upside of \bar{c} is most salient
- \bar{c}^{\prime} chosen if
$0.33 \times 0.66 \times 2500-\delta 0.67 \times 0.34 \times 2400+\delta^{2} 0.33 \times 0.34 \times 100<0$
- Which is never true for $\delta \geq 0$

Somerville [2022]

- So now we have three potential models on the table
- Focussing
- Relative thinking
- Salience
- All have different implications
- Which one best matches the data?
- This question is addressed experimentally in a recent ECMA paper

Set Up

- Subjects asked to choose between options defined by $\left(q_{j}, p_{j}\right)$ where
- q_{j} is the quality of good j in monetary units
- p_{j} is the price
- Basic choice is between

$$
\left(q_{h}, p_{h}\right) \text { and }\left(q_{l}, p_{l}\right)
$$

with $q_{h}>q_{l}$

Set Up

- Assume that choices are driven by the utility function

$$
\Delta_{q}^{\gamma} q_{i}-\Delta_{p}^{\gamma} p_{i}
$$

- where Δ_{x} is the range of attribute x in the choice set and γ is a parameter
- $\gamma \in(-1,0)$ - relative thinking
- $\gamma>0$ - focussing
- What happens in binary choice?
- Choose h if

$$
\begin{aligned}
\Delta_{q}^{\gamma} q_{h}-\Delta_{p}^{\gamma} p_{h} & >\Delta_{q}^{\gamma} q_{l}-\Delta_{p}^{\gamma} p_{l} \\
& \Rightarrow \Delta_{q}^{\gamma+1}>\Delta_{p}^{\gamma+1}
\end{aligned}
$$

- So choice independent of γ

Set Up

- What about if we add the option to buy nothing?
- Treat this as a third alternative with values $(0,0)$
- What should happen in the 'standard' case?
- i.e. if $\gamma=0$?

Set Up

- Introduce new 'Don't buy' regon
- Should not switch choices between 'buy low' and 'buy high'

Set Up

- What about if $\gamma \neq 0$?
- Remember, h is chosen if

$$
\Delta_{q}^{\gamma}\left(q_{h}-q_{l}\right)>\Delta_{p}^{\gamma}\left(p_{h}-p_{i}\right)
$$

- Imagine that, without the option not to buy, the DM was indifferent, so

$$
\left(q_{h}-q_{l}\right)=\left(p_{h}-p_{i}\right)
$$

- Assume also, that we are in the region where both is prefered to not buying, so $q_{h}>p_{h}>p_{l}$
- So adding the option $(0,0)$ increases the range of q more that the range of p
- For relative thinking, implies that $\Delta_{q}^{\gamma}\left(q_{h}-q_{I}\right)<\Delta_{p}^{\gamma}\left(p_{h}-p_{i}\right)$
- For focussing imples $\Delta_{q}^{\gamma}\left(q_{h}-q_{l}\right)>\Delta_{p}^{\gamma}\left(p_{h}-p_{i}\right)$

Predictions

Panel (a): Focusing ($\gamma=1$)

Panel (b): Relative Thinking ($\gamma=-0.6$)

Predictions

- Note that utility maximization model implies that an increase in the price of either good must weakly decrease the probability of buying one of the goods
- let π_{i} be probability of buying good j
- $\pi_{h}+\pi_{l}$ decreasing in both p_{i} and p_{j}
- Not true for the relative thinking model
- In the 'high decoy' region (i.e. the buy low/dont buy border)
- An increase in p_{h} leads to an increase in π_{l}
- In the low decoy region
- An increase in p_{l} leads to an increase in π_{h}

Experiment

- Experiment conducted using real goods
- Two tasks
- Valuation (using BDM)
- Choice (with or without the option not to buy)

Experiment

When you are ready, please choose the option you prefer

Option A

Option B

Amazon Fire HD 8 Tablet

Option C

Amazon Fire 7 Tablet

Experiment

TABLE III
Change in choice probabilities in response to price increases.

	(i) Surplus Maximization $\gamma=0$	(ii) Focusing $\gamma>0$	(iii) Relative Thinking $\gamma<0$	(iv) Data

