Rational Inattention Lecture 2

Mark Dean

Behavioral Economics G6943
Fall 2022

Rational Inattention and Shannon Information Costs

- We have so far considered what we can say when we are agnostic about information costs
- We now move consider behavior under a specific assumed cost for information
- Based on the concept of Shannon Entropy
- Extremely popular in the applied literature
- Consider this the 'Cobb Douglas' case to last week's 'revealed preference' treatment
- Long history of research in information theory
- Quite a lot is known about how these costs behave
- Cover and Thomas is a great resource

Shannon Entropy

- Shannon Entropy is a measure of how much 'missing information' there is in a probability distribution
- In other words - how much we do not know, or how much we would learn from resolving the uncertainty
- For a random variable X that takes the value x_{i} with probability $p\left(x_{i}\right)$ for $i=1 \ldots n$, defined as

$$
\begin{aligned}
H(X) & =E\left(-\ln \left(p\left(x_{i}\right)\right)\right. \\
& =-\sum_{i} p\left(x_{i}\right) \ln \left(p_{i}\right)
\end{aligned}
$$

Shannon Entropy

- Can think of it as how much we learn from result of experiment

Justification for Shannon Entropy

- Say we want our measure of entropy to have the following features
- Depends only on the probability distribution
- $H(X)=H(p)$

Justification for Shannon Entropy

- Say we want our measure of entropy to have the following features
- Depends only on the probability distribution
- Maximized at a uniform probability distribution
- $\max _{p \in \Delta^{M}} H(p)=H\left(\left\{\frac{1}{M}, \frac{1}{M}, \ldots, \frac{1}{M}\right\}\right)$

Justification for Shannon Entropy

- Say we want our measure of entropy to have the following features
- Depends only on the probability distribution
- Maximized at a uniform probability distribution
- Unaffected by adding zero probability state
- $H\left(\left\{p_{1} \ldots . p_{M}\right\}\right)=H\left(\left\{p_{1} \ldots p_{M}, 0\right\}\right)$

Justification for Shannon Entropy

- Say we want our measure of entropy to have the following features
- Depends only on the probability distribution
- Maximized at a uniform probability distribution
- Unaffected by adding zero probability state
- Additive
- $H(X, Y)=H(X)+\sum_{x} p(x) H(Y \mid x)$
- How much you learn from observing X, plus how much you additionally learn from observing Y
- Implies that the entropy of two independent variables is just $H(X)+H(Y)$
- 'Constant returns to scale' assumption

Justification for Shannon Entropy

- Say we want our measure of entropy to have the following features
- Depends only on the probability distribution
- Maximized at a uniform probability distribution
- Unaffected by adding zero probability state
- Additive
- Then Entropy must be of the form (Khinchin 1957)

$$
H(X)=-\sum_{i} p\left(x_{i}\right) \ln \left(p_{i}\right)
$$

- Note, other entropies are available! e.g. Tsallis

$$
\frac{k}{q-1}\left(1-\sum_{i} p\left(x_{i}\right)^{q}\right)
$$

Entropy and Information Costs

- Related to the notion of entropy is the notion of Mutual Information

$$
I(X, Y)=\sum_{x} \sum_{y} p(x, y) \log \frac{p(x, y)}{p(x) p(y)}
$$

- Measure of how much information one variable tells you about another
- Note that $I(X, Y)=0$ if X and Y are independent

Entropy and Information Costs

- Note also that mutual information can be rewritten in the following way

$$
\begin{aligned}
I(X, Y) & =\sum_{x} \sum_{y} p(x, y) \log \frac{p(x, y)}{p(x) p(y)} \\
& =\sum_{x} \sum_{y} p(x, y) \log \frac{p(x \mid y)}{p(x)} \\
& =\sum_{y} \sum_{x} p(x, y) \ln P(x \mid y)-\sum_{x} \sum_{y} p(x, y) \ln p(x) \\
& =\sum_{y} p(y) \sum_{x} p(x \mid y) \ln P(x \mid y)-\sum_{y} p(x) \ln p(x) \\
& =H(X)-E(H(X \mid Y))
\end{aligned}
$$

- Difference between entropy of X and the expected entropy of X once Y is known

Mutual Information and Information Costs

- Mutual Information between states and signals often used to model information constraints
- Sims [2003] focused on a hard constraint on the amount of entropy a DM can use
- We will start by focussing on the case of costs that are linear in mutual information

$$
\begin{aligned}
K(\mu, \pi) & =\lambda(H(\mu)-E(H(\gamma)) \\
& =\lambda\binom{\sum_{\gamma \in \Gamma(\pi)} \pi(\gamma) \sum_{\Omega} \gamma(\omega) \ln \gamma(\omega)}{-\sum_{\Omega} \mu(\omega) \ln \mu(\omega)}
\end{aligned}
$$

- For convenience use γ to refer to the posterior beliefs generated by signal γ

Mutual Information and Information Costs

- Can be justified by information theory
- Mutual information is related to the rate of information flow
- Say you are going to observe n repetitions of the state Ω (let ω^{n} be a typical element)
- You are allowed to send a message consisting of $n R$ bits (R is the rate)
- Decoded in order to generate n repetitions of the signal space Γ (let γ^{n} be a typical element)
- Define $d(\omega, \gamma)$ be the loss associated with receiving signal γ in state ω, and $\hat{d}\left(\omega^{n}, \gamma^{n}\right)=\frac{1}{n} \sum d\left(\omega_{i}^{n}, \gamma_{i}^{n}\right)$

Mutual Information and Information Costs

- Rate Distortion Theorem: Let $R(D)$ be the minimal rate needed to generate loss D as $n \rightarrow \infty$, then

$$
R(D)=\min _{\pi \in \Pi} I(\Omega, \Gamma) \text { s.t. } \sum_{(\gamma, \omega)} \mu(x) \pi(\gamma \mid x) d(\omega, \gamma) \leq D
$$

- Implies (assuming strict monotonicity)

$$
\min \sum_{(\gamma, \omega)} \mu(x) \pi(\gamma \mid x) d(\omega, \gamma) \text { s.t. } I(\Omega, \Gamma) \leq R(D)
$$

- is equivalent to

$$
\min \sum_{(\gamma, \omega)} \mu(x) \pi(\gamma \mid x) d(\omega, \gamma) \text { s.t. } R \leq R(D)
$$

- See Cover and Thomas Chapter 10.

Shannon Entropy

- Key feature: Entropy is strictly concave
- So negative of entropy is strictly convex
- Say we choose a signal structure with two posteriors γ and γ^{\prime}
- It must be that

$$
P(\gamma) \gamma+P\left(\gamma^{\prime}\right) \gamma^{\prime}=\mu
$$

- so

$$
\begin{aligned}
P(\gamma) H(\gamma)+P\left(\gamma^{\prime}\right) H\left(\gamma^{\prime}\right) & <H\left(P(\gamma) \gamma+p\left(\gamma^{\prime}\right) \gamma^{\prime}\right) \\
& =H(\mu)
\end{aligned}
$$

- So the cost of 'learning something' is always positive

Solving Rational Inattention Models

- Solving the Shannon model can be difficult analytically
- Though easier than many other models
- General approach - ignore choice of information structure, instead focus on joint distribution of choice variable and state
- i.e. choose state dependent stochastic choice directly
- Can do this because optimal strategy will always be 'well behaved'
- Each action taken in at most one state
- Example (Matejka and McKay 2015) - continuous state space, finite action space
- We will talk about analytical approaches
- Alternative, algorithmic approaches
- e.g. Blahut-Arimotio algorithm
- See Cover and Thomas (page 191)

Solving Rational Inattention Models

- \mathcal{P} set of all state contingent stochastic choice functions for some state space Ω and set of acts A
- Remember $P(a \mid \omega)$ is the probability of choosing a in state ω
- Remember that, for $P \in \mathcal{P}$, the mutual information between choices a and objective state ω is given by

$$
I(A, \Omega)=H(A)-H(A \mid \Omega)
$$

Solving Rational Inattention Models

- Decision problem of agent is to choose $P \in \mathcal{P}$ to maximize

$$
\begin{aligned}
& \sum_{a \in A} \int_{\omega} u(a(\omega)) P(a \mid \omega) \mu(d \omega) \\
& -\lambda\left[\sum_{a \in A} \int_{\omega} P(a \mid \omega) \ln P(a \mid \omega) \mu(d \omega)+\sum_{a \in A} P(a) \ln P(a)\right]
\end{aligned}
$$

- Subject to

$$
\sum_{a \in A} P(a \mid \omega)=1 \text { Almost surely }
$$

- Where $P(a)$ is the unconditional probability of choosing a
- Note another constraint which we will ignore for now

$$
P(a \mid \omega) \geq 0 \forall a, \omega
$$

The Lagrangian Function

$$
\begin{aligned}
& \sum_{a \in A} \int_{\omega} u(a(\omega)) P(a \mid \omega) \mu(d \omega) \\
& -\lambda\left[\sum_{a \in A} \int_{\omega} P(a \mid \omega) \ln P(a \mid \omega) \mu(d \omega)+\sum_{a \in A} P(a) \ln P(a)\right] \\
& -\int_{\omega} \rho(\omega)\left[\sum_{a \in A} P(a \mid \omega)-1\right] \mu(d \omega)
\end{aligned}
$$

- $\rho(\omega)$ Lagrangian multiplier on the condition that $\sum_{a \in A} P(a \mid \omega)=1$
- FOC WRT $P(a \mid \omega)$ (assuming >0)

$$
u(a(\omega))-\rho(\omega)+\lambda[\ln P(a)+1-\ln P(a \mid \omega)-1]=0
$$

- Note that this is a convex problem

Solution

- FOC WRT $P(a \mid \omega)$ (assuming >0)

$$
u(a(\omega))-\rho(\omega)+\lambda[\ln P(a)+1-\ln P(a \mid \omega)-1]=0
$$

- Which gives

$$
P(a \mid \omega)=P(a) \exp ^{\frac{\mu(a(\omega))-\rho(\omega)}{\lambda}}
$$

- Plug this into

$$
\begin{aligned}
\sum_{a^{\prime} \in A} P\left(a^{\prime} \mid \omega\right) & =1 \\
& \Rightarrow \exp ^{\frac{\rho(\omega)}{\lambda}}=\sum_{a^{\prime} \in A} P\left(a^{\prime}\right) \exp ^{\frac{u\left(a^{\prime}(\omega)\right)}{\lambda}}
\end{aligned}
$$

- Which in turn gives...

Comments

$$
P(a \mid \omega)=\frac{P(a) \exp ^{\frac{\mu(a(\omega))}{\lambda}}}{\sum_{c \in A} P(c) \exp ^{\frac{\mu(c(\omega))}{\lambda}}}
$$

- Similar in form to logistic random choice
- If alternatives are ex ante identical, this is logistic choice
- Otherwise choice probabilities are 'warped' by $P(a)$ - which contains information on the prior value of each option
- Important: note that $P(a)$ is endogenous, not a parameter
- As costs go to zero, deterministically pick best option in that state
- As costs go to infinity, deterministically pick the best option ex ante

Comments

$$
P(a \mid \omega)=\frac{P(a) \exp ^{\frac{\mu(a(\omega))}{\lambda}}}{\sum_{c \in A} P(c) \exp ^{\frac{\mu(c(\omega))}{\lambda}}}
$$

- Importantly, not the same as logistic RUM
- This has to be true - we know this model violates monotonicity
- There are papers that play up this link
- It is true that there is an equivalence result for the two models if we look at a single choice problem
- But the models make very different predictions across choice problems

Comments

- The MM conditions ignore the constraint

$$
P(a \mid \omega) \geq 0 \forall a, \omega
$$

- Need to know which acts will be chosen with positive probability
- Typically there will be many acts not chosen at the optimum (Jung et al. 2019)
- There will be many solutions to the necessary conditions
- Ideally, would like necessary and sufficient conditions

Necessary and Sufficient Conditions

- Let $z(a, \omega)$ be 'normalized utilities'

$$
z(a, \omega)=\exp \left\{\frac{u(a, \omega)}{\lambda}\right\}
$$

- Note that the MM conditions are

$$
P(a \mid \omega)=\frac{P(a) z(a, \omega)}{\sum_{c \in A} P(c) z(c, \omega)}
$$

Necessary and Sufficient Conditions

Theorem

P is consistent with rational inattention with mutual information costs if and only if

$$
\begin{aligned}
& \sum_{\omega}\left[\frac{\mu(\omega) z(a, \omega)}{\sum_{c \in A} P(c) z(c, \omega)}\right] \leq 1 \text { all } a \in A \\
& \sum_{\omega}\left[\frac{\mu(\omega) z(a, \omega)}{\sum_{c \in A} P(c) z(c, \omega)}\right]=1 \text { all a s.t. } P(a)>0
\end{aligned}
$$

and

$$
P(a \mid \omega)=\frac{P(a) z(a, \omega)}{\sum_{c \in A} P(c) z(c, \omega)}
$$

(1) Identify correct unconditional choice probabilities

- Equality condition for chosen actions
- Check inequality condition for unchosen actions
(2) Read off conditional choice probabilities using MM conditions

Example: Finding the Good Act

- Choose from a set of goods $A=\left\{a_{1}, \ldots, a_{N}\right\}$
- Only one of these goods is of high quality
- u_{h} utility of the high quality good
- u_{l} utility of the low quality good
- μ_{i} prior probability that good i is the high quality good
- WLOG assume $\mu_{1} \geq \mu_{2} \ldots \geq \mu_{N}$
- Common set up in many psychology experiments

Solution

- Cutoff strategy in prior probabilities: Exists c such that
- $\mu_{i}>c \Rightarrow i$ chosen with positive probability
- $\mu_{i}<c \Rightarrow i$ never chosen and nothing is learned about their quality
- Endogenously form a 'consideration set'
- Let $\delta=\frac{\exp \left(\frac{U_{h}}{\lambda}\right)}{\exp \left(\frac{U}{\lambda}\right)}-1$: 'additional' utility from high act
- Search the best K alternatives, where K solves

$$
\mu_{K}>\frac{\sum_{k=1}^{K} \mu_{k}}{K+\delta} \geq \mu_{K+1}
$$

Consideration Set Formation

- Can use equality constraints to solve for unconditional choice probabilities

$$
P\left(a_{i}\right)=\frac{\mu\left(\omega_{i}\right)(K+\delta)-\sum_{k=1}^{K} \mu\left(\omega_{k}\right)}{\delta \sum_{k=1}^{K} \mu\left(\omega_{k}\right)}
$$

- MM conditions to solve for conditional choice probabilities

$$
P\left(b \mid b=u_{h}\right)=\frac{P(b) \delta}{\sum_{c \in A} P(c)}
$$

Choice Probabilities - Example

- Exponential priors
- $u_{h}=1, u_{l}=0$

Features of the Solution

- 'Consideration set' of alternatives chosen with positive probability
- Mistakes even amongst alternatives in the consideration sets
- Ex ante probability of alternative being good conditional on being chosen is same for all alternatives

Choice Probabilities - Example

Importance of Sufficient Conditions

- The MM necessary conditions could be solved for many possible 'consideration sets'
- Choosing any option with probability 1 will solve the necessary conditions
- For any set C with worst alternative $\mu_{\bar{C}}$ there is a solution to the necessary conditions if

$$
\frac{\mu_{\tau}}{\sum_{k \in C} \mu_{k}}>\frac{1}{|C|+\delta} .
$$

- Do no reference unchosen actions
- Do not determine whether higher utility could be obtained with a different consideration sets
- This is the advantage of the sufficient conditions

The Linear Quadratic Gaussian Case

- One case in which this problem becomes more tractable is if the input and output signal are both normal
- The entropy of a normal variable $X \sim N\left(\mu, \sigma_{x}^{2}\right)$ is given by

$$
H(X)=\frac{1}{2} \ln \left(2 \pi e \sigma_{x}^{2}\right)
$$

- If Y and X are both normal, then

$$
E(H(Y \mid X))=\int_{x} f(x) \int_{y} f(y \mid x) \ln f(y \mid x) d(y) d(x)
$$

- As $y \mid x$ is distributed normally with variance $\left(1-\rho^{2}\right) \sigma_{y}^{2}$, this becomes

$$
\begin{aligned}
E(H(Y \mid X)) & =\int_{x} f(x) \frac{1}{2} \ln \left(2 \pi e \sigma_{y \mid x}^{2}\right) d(x) \\
& =\frac{1}{2} \ln \left(2 \pi e\left(1-\rho^{2}\right) \sigma_{y}^{2}\right)
\end{aligned}
$$

where ρ is the correlation coefficient between X and Y

The Linear Quadratic Gaussian Case

- As mutual information is given by

$$
\begin{aligned}
& H(Y)-E(H(Y \mid X)) \\
= & \frac{1}{2} \ln \left(2 \pi e \sigma_{y}^{2}\right)-\frac{1}{2} \ln \left(2 \pi e\left(1-\rho^{2}\right) \sigma_{y}^{2}\right)
\end{aligned}
$$

- In this case, the mutual information is given by

$$
-\frac{1}{2} \ln \left(1-\rho^{2}\right)
$$

- So information costs depend only on the covariance of the two signals!
- It turns out that joint normality is optimal if the utility function is quadratic in the relationship between the objective and subjective state
- Choice of variance on some normally distributed error term
- However, note that some papers assume normality (this is bad)

The Linear Quadratic Gaussian Case

- In fact, the LQG case may be our best hope of a workhorse rational inattention model that can be applied to a wide range of problems
- Because it is so simple to solve
- If there are a vector of states and a vector of actions this framework can be used to approximate a number of situations
- Tracking problems (e.g. Sims [2003], Fulton [2018])
- Pricing (e.g. Maćkowiak and Wiederholt [2009], Paciello and Wiederholt [2014])
- Consumption with many sources of income and many goods (e.g. Koszegi and Matejka 2020)
- Portfolio selection (e.g. Van Nieuwerburg and Veldkamp [2009], Mondria [2010])
- Some of these paper assume that information has to be gathered on each shock separately
- Either for analytical tractability or realism

The Linear Quadratic Gaussian Case

- Recent work has provided analytic solutions to the multi state/multi action problem
- Even when there is prior correlation between states.
- One way to characterize solution [Fulton 2018]
- DM recombines states α into a set of 'canonical signals'

$$
y_{c}=S \alpha+\varepsilon
$$

Where S is a matrix derived from the prior covariance matrix and payoff matrix

- The optimal ε will be distributed normally with the covariance matrix being diagonal.
- Transforms the original problem into n independent problems
- The variance of the noise on each canonical shock is decided by a 'water filling' algorithm
- Some shocks will have no attention paid to them, the others will have attention paid to equalize cost and benefits

The Linear Quadratic Gaussian Case

- For further information see
- Fulton, Chad. "Choosing what to pay attention to." Theoretical Economics 17.1 (2022): 153-184.
- Miao, Jianjun, Jieran Wu, and Eric R. Young. "Multivariate rational inattention." Econometrica 90.2 (2022): 907-945.
- Dewan, A "Costly Multidimensional Information", Working paper [2019]
- Kőszegi, Botond, and Filip Matějka. "Choice simplification: A theory of mental budgeting and naive diversification." The Quarterly Journal of Economics 135.2 (2020): 1153-1207.
- Or ask our very own Hassan Afrouzi!

Set Up

- There is another way to approach this problem which possibly gives more insight
- Assume we are choosing Q, a (simple) distribution over posterior beliefs, with $Q(\gamma)$ the probability of belief γ
- We can also work with a generalized cost function

$$
\sum_{\Gamma} Q(\gamma) T(\gamma)-T(\mu)
$$

where T is some strictly convex function

- For example, we could replace Shannon entropy with other types of entropy.

Set Up

- One way to gain insight into what is going on is to rewrite the objective function

$$
\begin{aligned}
& \sum_{\Gamma} Q(\gamma)\left[\max _{a \in A} \sum_{\Omega} \gamma(\omega) u(a, \omega)\right]-\left[\sum_{\Gamma} Q(\gamma) T(\gamma)-T(\mu)\right] \\
= & \sum_{\Gamma} Q(\gamma)\left[\max _{a \in A} \sum_{\Omega} \gamma(\omega) u(a, \omega)-T(\gamma)\right]+T(\mu) \\
= & \sum_{\Gamma} Q(\gamma) \max _{a \in A} N_{a}(\gamma)
\end{aligned}
$$

- Each γ and a has a net utility associated with it

$$
N_{a}(\gamma)=\sum_{\Omega} \gamma(\omega) u(a, \omega)-[T(\gamma)-T(\mu)]
$$

- Aim is to pick distribution of posteriors which maximizes the expected value of net utilities subject to

$$
\sum_{\gamma \in \Gamma(\pi)} Q(\gamma) \gamma=\mu
$$

Net Utility

- Consider a simple case with two states and two acts

Action	Payoff in state 1	Payoff in state 2
a	10	0
b	0	10

Optimal Strategy

- What to find the posteriors which support the highest chord above the prior
- The solution for every possible prior defined by the lower epigraph of the concavified net utility function

Finding the Optimal Strategy

- Optimal posteriors identified by hyperplane that supports the set of feasible net utilities.

Theorem
Given decision problem $(\mu, A) \in \Gamma \times \mathcal{F}$ a set of posteriors are rationally inattentive if and only if:
(1) Invariant Likelihood Ratio (ILR) Equations for Chosen Acts: given $a, b \in B$, and $\omega \in \Omega$,

$$
\frac{\gamma^{a}(\omega)}{z(a(\omega))}=\frac{\gamma^{b}(\omega)}{z(b(\omega))}
$$

(2) Likelihood Ratio Inequalities for Unchosen Acts: given act a chosen with positive probability and $b \in A$,

$$
\sum_{\omega \in \Omega}\left[\frac{\gamma^{a}(\omega)}{z(a(\omega))}\right] z(b(\omega)) \leq 1
$$

Behavioral Properties

- We have necessary and sufficient conditions to characterize the Shannon model
- But these do not necessarily help us understand the behaviors that it predicts
- Also results apply only to the Shannon Model
- Might be helpful to have a more 'behavioral' characterization
- See Caplin, Dean and Leahy [2022]
- Define two additional classes of model
- Posterior Separable

$$
\sum_{\Gamma} Q(\gamma) T_{\mu}(\gamma)-T_{\mu}(\mu)
$$

- Uniformly Posterior Separable

$$
\sum_{\Gamma} Q(\gamma) T(\gamma)-T(\mu)
$$

Behavioral Properties

- UPS class (in particular) has proved popular in the literature
- Can fix some of the behavioral problems of Shannon
- Still maintains a lot of tractability
- Nice features
- Plays well with Bayesian Persuation (e.g. Matyskova [2018])
- Consistent with optimal dynamic information acquisition (e.g. Morris and Strack [2017], Hebert and Woodford [2019])
- Useful for dynamic programming (e.g. Miao and Xing [2020]

Posterior Separability

- Turns out that we can characterize using three behavioral axioms
- Plus some technical ones that we won't bother with
(1) Separability
(2) Locally Invariant Posteriors
(3) Invariance Under Compression

Separability

Separability

Separability

- Separability states you can always do this
- For any set of chosen acts and associated posteriors
- Can switch out one posterior and replace it with another posterior
- Changing only the associated act.
- This is a property of the Posterior Separable model

Locally Invariant Posterior

- Example: 2 states, 2 actions

Action	Payoff in state 1	Payoff in state 2
\mathbf{f}^{1}	x	0
\mathbf{f}^{2}	0	x

Behavior at 0.5 Prior

Behavior for prior<a

Behavior for prior $>\mathrm{a}$

a b Prior>a $\square-=-$ Net Benefit Tangent Hyperplane

Same Posteriors as for 0.5 prior

No Information Gathered

Locally Invariant Posteriors

- Locally Invariant posteriors: If a set of posteriors $\left\{\gamma^{a}\right\}_{a \in A}$ are optimal for decision problem $\{\mu, A\}$ and are also feasible for $\left\{\mu^{\prime}, A\right\}$ then they are also optimal for that decision problem
- Choice probabilities move 'mechanically' with prior to maintain posteriors
- Useful in, for example, models in which consumers are rationally inattentive to quality
- As the prior distribution of quality changes, posterior beliefs do not
- See Martin [2014]
- This is a property of the Uniformly Posterior Separable Model
- See Denti [2022] for an alternative characterization of the UPS model

Invariance Under Compression

- The Shannon model is clearly 'special' in many ways in the class of UPS model
- The literature has noted many properties
- Symmetry
- Separability of Orthogonal Decisions
- Lack of Complementarities
- All of these properties can be captured in a single axiom
- Invariance Under Compression

Invariance Under Compression - An Example

- Consider decision problem (i)

State	ω_{1}	ω_{2}
Prior Prob	0.5	0.5
Payoff Action A	10	0
Payoff Action B	0	10

- And now decision problem (ii) which splits ω_{2}

State	ω_{1}	ω_{2}	ω_{3}
Prior Prob	0.5	0.2	0.3
Payoff Action A	10	0	0
Payoff Action B	0	10	10

Invariance Under Compression - An Example

- How should behavior change between the two decision problems?
- In principal, many things could happen
- Could be harder to learn about two states that one, so less accurate in (ii) than (i)
- Could be easier to learn about two states that one, so more accurate in (ii) than (i)
- Shannon model says that behavior should not change
- $P_{i}\left(a \mid \omega_{2}\right)=P_{i i}\left(a \mid \omega_{2}\right)=P_{i i}\left(a \mid \omega_{3}\right)$

Behavioral Characterization

- Invariance under Compression formalizes this
- Defines the concept of a 'basic' decision problem
- No two states have the same payoff for all acts
- Every decision problem has associated basic forms
- Choice behavior the same when moving between decision problems and their basic forms
- Corollaries
- Behavior the same in every state which is payoff equivalent
- Moving prior probabilities between payoff equivalent states does not change behavior

Summary

- Introduced Shannon Mutual Information as a potential cost function
- Popular in the literature
- 'Cobb Douglas' vs 'Revealed Preference'
- Introduced some analytical tools to help solve the Shannon model
- MM - necessary conditions
- Necessary + Sufficient Conditions
- Posterior-based approach
- Behavioral characterization
- Shown that the Shannon model can give rise to endogenous consideration set formation

